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Abstract

How can we train neural network (NN) heuristic functions for
classical planning, using only states as the NN input? Prior
work addressed this question by (a) per-instance imitation
learning and/or (b) per-domain learning. The former limits
the approach to instances small enough for training data gen-
eration, the latter to domains where the necessary knowledge
generalizes across instances. Here we explore three methods
for (a) that make training data generation scalable through
bootstrapping and approximate value iteration. In particu-
lar, we introduce a new bootstrapping variant that estimates
search effort instead of goal distance, which as we show con-
verges to the perfect heuristic under idealized circumstances.
We empirically compare these methods to (a) and (b), align-
ing three different NN heuristic function learning architec-
tures for cross-comparison in an experiment of unprecedented
breadth in this context. Key lessons are that our methods
and imitation learning are highly complementary; that per-
instance learning often yields stronger heuristics than per-
domain learning; and the LAMA planner is still dominant but
our methods outperform it in one benchmark domain.

Introduction
Given the success of neural networks (NN) as game-state
evaluators (Silver et al. 2016, 2017, 2018; Agostinelli et al.
2019), and the prominence of heuristic search in planning,
(e.g., Hoffmann and Nebel 2001; Helmert and Domshlak
2009; Richter and Westphal 2010; Helmert et al. 2014;
Domshlak, Hoffmann, and Katz 2015), NN heuristic func-
tions are increasingly investigated.

Here, we focus on learning heuristic functions for clas-
sical planning from scratch using only states as the NN in-
put. Prior work addressed this by (a) per-instance imitation
learning; and/or (b) per-domain learning.

Ferber, Helmert, and Hoffmann (2020) and Yu, Kuroiwa,
and Fukunaga (2020) use imitation learning for (a), where
the NN heuristic function generalizes only over the states in
the state space of the instance, and simple feed-forward NN
architectures can be used. This yields NN heuristic functions
competitive with the state of the art (Ferber, Helmert, and
Hoffmann 2020), but it is limited to instances small enough
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for training data generation – solving many sample states
with an off-the-shelf planner as the teacher – to be feasible.

Most works fall into category (b), exploring different vari-
ants of NN architectures based mostly on graph convolu-
tion (Garg, Bajpai, and Mausam 2019; Shen, Trevizan, and
Thiébaux 2020; Rivlin, Hazan, and Karpas 2020; Karia and
Srivastava 2021). Per-domain learning solves the teacher-
scalability problem as it can train the NN on small instances.
Yet this requires to transfer search knowledge from small in-
stances to large ones, which is challenging and might work
only for particular domains and instance distributions.

Here we explore three methods that can potentially avoid
both difficulties. Two of the methods are inspired by boot-
strapping (Arfaee, Zilles, and Holte 2011), where training
states are generated by increasingly longer backward walks
from the goal, and a search with the current NN heuristic
is used to label the states. In one of these methods we esti-
mate not goal-distance but the number of states the search
needs to expand; we prove that, in an idealized setting, this
converges to h∗. Our third method is based on approximate
value iteration inspired by Agostinelli et al. (2019), where a
k-step Bellman update is used to label the states.

We empirically compare our three methods to (a) per-
instance imitation learning by Ferber, Helmert, and Hoff-
mann (2020), as well as (b) per-domain learning using hy-
pergraph networks (STRIPS-HGN) by Shen, Trevizan, and
Thiébaux (2020). Thus, we align three different NN heuristic
function learning architectures for cross-comparison. Previ-
ous work has never compared NN heuristics from different
works, so this is an experiment of unprecedented breadth.
We believe that such cross-comparison is required to ad-
vance NN learning in planning. Finally, we compare against
state-of-the-art model-based heuristics.

Key lessons from our experiments are: 1. All NN heuris-
tic functions excel in some domains and achieve hardly any-
thing in others. 2. The per-domain strengths of NN heuris-
tics are highly complementary. 3. Per-instance learning often
trains stronger heuristics than per-domain learning. 4. While
LAMA (Richter and Westphal 2010) is generally still dom-
inant, NN heuristic functions can outperform it in particular
domains. In our experiments, this happens for the single do-
main (Storage) where LAMA’s performance is weak.

Our appendix, code, input data, results, and the script to
evaluate the results are online available (Ferber et al. 2022).



Preliminaries
We use the FDR planning framework (Bäckström and Nebel
1995). A planning task is a tuple Π = ⟨V,A, sI ,G⟩. V is a
set of variables, A is a set of actions, sI is the initial state,
and G is the goal. Every variable has a domain D. A fact is
a pair ⟨v, d⟩ where v ∈ V and d ∈ Dv . The initial state is a
complete variable assignment. The goal is a partial variable
assignment. Each action a ∈ A defines a precondition prea
and an effect effa , both are partial variable assignments. We
consider unit action costs. A plan π is a sequence of actions
⟨a1, . . . , an⟩ which leads from sI to a goal state.

Throughout this work we require some additional con-
cepts: 1) regressing from a partial assignment G using an
action a leads to a new partial assignment G′. Applying a
on G′ leads to a partial assignment G′′ ⊇ G. 2) A heuris-
tic function h estimates for every state the cost to the next
goal state. With unit action costs, heuristics are goal-distance
estimators. 3) Bellman updates iteratively improve state-
value estimates (e.g., Bertsekas and Tsitsiklis 1996). In unit-
cost classical planning, the Bellman equation simplifies to
h∗(s) = 1 +mins′∈succ(s) h

∗(s′).

Common Hyperparameters
We train NNs as heuristic functions for a given FDR task Π.
Later, greedy best-first search (GBFS) uses these as heuris-
tics. Let us first summarize the common hyperparameters.

Similar to Agostinelli et al. (2019) we use residual net-
works (He et al. 2016). Our NN have two dense layers, fol-
lowed by one residual block with two dense layers, followed
by a single output neuron. Each dense layer has 250 neu-
rons. All neurons use the ReLU activation function. The NN
inputs are states represented as fixed-size Boolean vectors.
Every fact of Π is associated with a vector entry. If a fact is
true in a state, its entry is set to 1 and to 0 otherwise. The
NN outputs a single number which represents a heuristic
value. We use the mean squared error as loss function, and
the adam optimizer with default parameters (Kingma and Ba
2015). To prevent performance instabilities during training,
we update the model for the sample generation after at least
50 epochs have passed and the loss is below 0.1. We use ex-
perience replay, i.e. the data generation pushes samples into
a first-in-first-out buffer with a size limit of 25,000. In each
epoch we uniformly choose 250 samples from the buffer.

Bootstrapping
In what follows, we introduce our three methods to train NN
heuristic functions. Here, we present two methods based on
bootstrapping. The next section introduces a method based
on approximate value iteration.

Bootstrapping a Goal-Distance Estimator
Following Arfaee, Zilles, and Holte (2011), we train a
heuristic function named hBoot on states of increasing diffi-
culty which are generated by backward walks of increasing
length. We label a state s by the length of the plan obtained
by GBFS on s using the current hBoot.

In contrast to Arfaee, Zilles, and Holte (2011) who trained
a single-layer NN to combine the estimates of model-based

heuristics, we train a more complex NN to learn estimates
from the FDR facts of a state. Furthermore, we apply “back-
ward walks” in domains without fully specified goal, i.e.,
our goals are partial assignments. Thus, we use FDR re-
gression. We start at the goal of Π and perform a ran-
dom walk for n steps, where n is uniformly chosen from
{0 ≤ n ≤ walk length} and walk length grows iteratively.
At each step, a random regressable action is chosen. The
walk ends with a partial assignment. We assign each unas-
signed variable a random value without violating mutexes
known to Fast Downward (FD, Helmert 2009).

Our other changes amount to parameter tuning. The
GBFS which generates the labels has a timeout of 10 sec-
onds. If it succeeds, we use all states si along the plan for
training. The goal-distance estimate of si is the number of
remaining actions on the plan. In the beginning, hBoot is too
uninformed to solve many states. Thus, the maximum walk
length starts at 5 and doubles whenever GBFS finds a plan
for more than 95% of the generated states. We double the
maximum walk length at most 8 times.

Bootstrapping a Search-Space-Size Estimator
Goal distance estimates tend to correlate with search space
size, but in a lose way given the highly volatile behavior
of search as a function of the node ordering. Hence we in-
troduce a variant hBExp of bootstrapping, which instead es-
timates the search-space size of GBFS. Specifically, hBExp

learns to estimate the search-space size of GBFS when us-
ing hBExp as the heuristic function. While this self-recursion
may seem unintuitive at first, these estimates converge to h∗

under idealized settings so are suitable for training a heuris-
tic function.

The training states for hBExp are labeled as follows:

L(s) =

{
#expansions of GBFS(s, hBExp) if s is solvable
∞ otherwise

This assumes an idealized setting where GBFS does not op-
erate under computational limits and hence solves all solv-
able states. Under the additional idealizing assumption that
hBExp is a look-up table rather than a function approximator,
we get the stated convergence result:

Theorem 1 If hBExp uses a lookup-table G ∈ N|S| to store
its heuristic estimates and updates the table for all states
simultaneously, then it converges to h∗.

The proof is available in the appendix. In practice, we re-
place the lookup table with a NN, and we enforce a time
limit of 10 seconds on the GBFS. If GBFS succeeds, we use
the number of expanded states as label; otherwise, we use
the number of states expanded up to the time limit. The lat-
ter works better than other options (using a large constant or
only the solved training states) in preliminary experiments.

Approximate Value Iteration
Our third NN heuristic function hAVI is trained using ap-
proximate value iteration. Exact value iteration applies Bell-
man updates to a tabular value function h which maps ev-
ery state s to a cost estimate. If every state s is updated in-



finitely often, h converges to h∗ regardless of the update or-
dering (Bertsekas and Tsitsiklis 1996). Approximate value
iteration replaces the value table with an approximate value
function h, like an NN. This has been successfully done
in single-agent puzzles including Rubik’s Cube (Agostinelli
et al. 2019). We adapt this approach to classical planning.

The generation of sample states s for training is done ex-
actly as for bootstrapping, except that we keep the maximum
walk length fixed. To generate the training labels, we con-
struct the 2-step look-ahead tree of s. We evaluate all leaves
as 0 if they are goal states and otherwise with hAVI. Then we
perform Bellman updates backwards, updating the values of
intermediate states t in the tree with those of their children.
The updated value at s is used for training.

Boosting NN Heuristics through Validation
In preliminary experiments, we observed that the perfor-
mance of our NN heuristic functions is brittle. For a given
benchmark instance, they often solve either all test states or
none, with the picture changing radically after re-training.
Performance is thus drastically affected by the random-
ness during training (e.g. parameter initialization and ran-
dom walks in training data generation). As a simple remedy,
we introduce a validation method. For each benchmark in-
stance, we generate 10 new validation states. We evaluate all
NN with a GBFS on the validation states with a search-time
limit of 30 minutes. If less than 80% of the validation states
are solved, we retrain. We retrain at most three times, and
the last trained NN is used.

Experiment Methodology
We implemented our NN heuristic functions on top of FD,
starting from Ferber et al.’s (2020) code base, and used Lab
(Seipp et al. 2017) for our experiments. We use the Keras
framework (Chollet 2015) with Tensorflow (Abadi et al.
2015) as back-end to train and evaluate our NN.

We train (including data generation) for 28 hours on 4
cores of an Intel Xeon E5-2600 processor with 4 GB mem-
ory. We use Python to update the NN and C++ to generate
the training data. We test all heuristic functions in GBFS
with 4 GB of memory using purely C++. We use a single
core because we compare to the FF heuristic (hFF, Hoffmann
and Nebel 2001) and the first iteration of the LAMA planner
(Richter and Westphal 2010). Both cannot exploit multiple
cores. However, compared to model-based heuristics, NN
heuristics profit dramatically from multiple cores or GPUs
(Silver et al. 2016, 2018; Agostinelli et al. 2019). Hence, we
set a generous search-time limit of 10 hours, allowing the
NN heuristics to exhibit strengths in informedness.

We compare our heuristics hBoot, hBExp, and hAVI against
the imitation learning approach (hIL) of Ferber, Helmert, and
Hoffmann (2020), STRIPS-HGN (hHGN) by Shen, Trevizan,
and Thiébaux (2020), hFF, and LAMA (Richter and West-
phal 2010). We also run of hBoot, hBExp, hAVI, and hFF in a
dual-queue search where one queue expands only the hFF

preferred operators (PO). We denote these variants by an
additional + in the superscript, e.g. hBoot+.

A major part of our experimental methodology was the
alignment across all the NN heuristic functions evaluated, to
make the cross-comparison as fair as possible. For space rea-
sons, we defer the full details to the appendix. One important
aspect is validation (Section ), which we implemented also
for hIL and hHGN. As training data generation is independent
from training for both hIL and hHGN, we generate the train-
ing data only once and use it to train 10 models. We reuse
the validation states across methods. For hIL, validation led
to large coverage changes, while hHGN was more robust (we
observed only minor performance fluctuations).

We use the domains selected by Ferber, Helmert, and
Hoffmann (2020) (cf. Table 1), and we use their instances,
which were selected to be difficult enough to be interest-
ing while easy enough to generate training data for imitation
learning. Here we refer to these tasks as moderate, and be-
yond them we also consider larger hard instances not con-
sidered by Ferber, Helmert, and Hoffmann (2020).1

For each benchmark instance, we evaluate all heuristic
functions on 50 distinct test states. For the moderate tasks,
we use the states published by Ferber, Helmert, and Hoff-
mann (2020). For the hard tasks, we use their method to cre-
ate test states.

Experiment Results
Table 1 summarizes our empirical findings in terms of cover-
age, i.e. the fraction of solved test states when using the dif-
ferent heuristic functions in GBFS. The table has three parts,
which we will discuss in turn below. The effect of validation
(cf. Section ) is evaluated separately, on the moderate tasks,
through the left part (w/o validation) and middle part (w/
validation) of the table. The right part of the table evaluates
the heuristic functions’ capability to scale to the hard tasks.
Within each table part, we highlight the best-performing NN
heuristic function in bold.

Validation
Consider first the data regarding validation in the left and
middle part of Table 1. It shows that for each of our tech-
niques and in most domains, validation increases coverage.
The improvement is often substantial, e.g. from 31.7% to
60.3% for hBoot in Depots. As validation hardly ever deteri-
orates performance, we keep it switched on in what follows.

Coverage Comparison for Moderate Tasks
Consider now our three techniques on the moderate tasks
(cf. Table 1, middle). No method dominates the others in all
domains. hBoot has highest coverage in 7 domains, hBExp in
4. hAVI is close to the highest coverage in 2 domains.

Adding hIL to the comparison, we see that it outperforms
our techniques in 4 domains, hBoot outperforms hIL in 6 do-
mains, hBExp outperforms hIL in 2 domains, and hAVI outper-
forms hIL in 2 domains. The coverage differences are dra-
matic in many domains.

1In Blocksworld and Grid, there were no larger tasks in the stan-
dard benchmarks, so we generated new ones. We do not consider
the benchmarks used by Shen, Trevizan, and Thiébaux (2020), as
all these instances are comparatively small.



Moderate Tasks Moderate Tasks with Validation Hard Tasks with Validation
w/o Validation

Domain hBoot hBExp hAVI hBoot hBExp hAVI hIL hHGN hFF LAMA hBoot hBExp hAVI hIL hHGN hFF LAMA hBoot+ hFF+

blocks 0 0 0 18 0 0 80 100 99 100 0 0 0 0 50 62 97 0 70
depots 32 18 44 60 33 55 90 0 98 100 8 4 13 35 0 36 83 24 67
grid 100 100 51 100 100 51 93 0 96 100 88 95 70 60 0 53 100 98 77
npuzzle 27 0 1 28 0 1 0 0 98 100 0 0 0 0 0 33 86 0 31
pipes-nt 36 51 21 58 68 50 92 8 82 99 23 19 8 49 0 27 69 29 64
rovers 36 15 34 48 22 45 26 14 84 100 3 1 6 2 0 14 100 36 96
scanaly. 33 60 67 33 71 67 83 11 98 100 3 0 61 60 0 98 100 8 99
storage 89 61 67 89 58 70 24 0 48 38 27 13 16 0 0 14 12 32 9
transport 84 80 70 100 100 88 99 95 98 100 0 0 2 0 0 0 93 0 26
visitall 17 0 0 55 0 0 0 100 93 100 28 0 0 0 100 74 100 32 78

Table 1: Coverage (in %). Best coverage among NN heuristic functions highlighted in boldface in each part of the table.

We see that hHGN excels in Blocksworld and VisitAll.
Here, our approaches struggle. It performs well in Transport,
but fails in all other domains. Often, the reason is the hyper-
graph size. For many tasks in Depots, Storage and Grid, it
exceeds memory. For other domains, evaluating hHGN takes
too much time. Blocksworld and VisitAll have very small
hypergraphs: less than 1000 nodes and 1500 hyperedges.

The primary conclusion here is that the different NN
heuristic functions are highly complementary to each other.
No heuristic dominates any other, and each approach favors
a subset of the domains. There seems, however, to be a ten-
dency that per-instance learning often yields more effective
heuristics than per-domain learning by hHGN.

Turning to the comparison with model-based planners,
LAMA and hFF are highly competitive across all domains,
generally outperforming all learning-based approaches. In-
deed LAMA has perfect or almost perfect coverage every-
where, so it is impossible to beat on these benchmarks. Stor-
age is the only domain where LAMA struggles. In that do-
main, all three of our approaches – but neither hIL nor hHGN

– outperform LAMA. hBoot solves almost 90% of the tasks
compared to only 39% for LAMA and 48% for hFF.

Coverage Comparison for Hard Tasks
Finally, consider the hard task (Table 1, right). Coverage
drops for all techniques in most domains. Qualitatively
though, the comparison across approaches is similar to the
moderate tasks. The trained heuristic functions are now even
more complementary. hHGN still excels in VisitAll, but de-
grades heavily in Transport and Blocksworld.

Regarding hIL, Ferber, Helmert, and Hoffmann (2020) did
not consider the hard tasks as training data generation was
expected to be a bottleneck. Indeed, this happens in some do-
mains (e.g. Depots, NPuzzle, Rovers, and Storage). In other
domains, the training data size decreases with growing in-
stance size (to varying degrees). Yet in some cases the data
is still sufficient to learn useful heuristic functions.

Our new heuristics hBoot, hBExp, and hAVI still beat hFF

in Grid, and beat both hFF and LAMA in Storage. Using
PO improves the coverage of our heuristics and hFF signif-
icantly. Our advantage in Storage increases and the margin

between us and LAMA shrinks in the other domains. LAMA
cannot be improved with those PO, as it already uses them.
The appendix shows the improvements for hBExp and hAVI.

Given our comparatively large search time limit of 10
hours, we also inspected coverage over time. With few ex-
ceptions, a NN that is superior to another NN after 30 min-
utes remains superior across the entire time limit. On the
other hand, LAMA typically solves a task either quickly or
not at all, as it runs against the memory limit. The slow NN
heuristics require time to “catch up”, and still solve tasks af-
ter long run-times. In particular, the advantages over LAMA
in Storage grow as a function of the run-time limit. Details
can be found in the appendix.

Conclusion
We contribute a large experiment evaluating NN heuris-
tic functions in classical planning, exploring three methods
based on bootstrapping and approximate value iteration –
one of which incorporates the new idea of estimating search
effort instead of goal distance – in comparison with hIL by
Ferber, Helmert, and Hoffmann (2020) and hHGN by Shen,
Trevizan, and Thiébaux (2020). In particular, we contribute
the first empirical comparison between per-domain learning
and per-instance learning.

The results show that NN heuristic functions are ex-
tremely complementary, and that per-instance learning often
beats per-domain learning. Our hBoot heuristic outperforms
both hIL and hHGN in 4 out of 10 domains, and in Storage
even outperforms LAMA. To our knowledge, the latter is
just one of two known successes of an NN heuristic func-
tion against LAMA (the other being by Karia and Srivastava
(2021) on the Spanner domain from the IPC Learning track).
On our other domains though, LAMA still reigns supreme.

The major open questions remain how to make the train-
ing more robust – retraining the NN can significantly change
its performance – and whether and how more reliable perfor-
mance can be obtained with NNs – the informedness varies
wildly across domains for all evaluated methods. One may
argue that this phenomenon pertains to virtually all heuris-
tic functions, but our impression is that this is significantly
more pronounced for NN than for model-based techniques.
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Proof of Theorem 1
PROOF: Denote by S the set of all states and by H∗

n the set
of states whose value is h∗ after n updates: H∗

n := {s | s ∈
S, Gn(s) = h∗(s)}. For convenience, we start counting the
update iterations with n = 0. The initial lookup-table G0

is arbitrarily initialized. We show by induction that H∗
n ⊇

{s|s ∈ S, h∗(s) ≤ n}.
Induction basis: After iteration n = 0, all goal states have
the value 0, so, H∗

0 ⊇ {s | s ∈ S, h∗(s) = 0}
Induction step: s is a state with h∗(s) = n. Then s has a
successor s′ with h∗(s′) = n− 1. By induction hypothesis,
we have H∗

n−1 ⊇ {s | s ∈ S, h∗(s) ≤ n − 1} and s′ ∈
H∗

n−1. Thus, there is a path P from s′ to the goal with Gn−1

decreasing by 1 in each step. A GBFS run on s generates
s′ when expanding s, and afterwards follows P (or another
path of the same length) resulting in n expansions. Hence
H∗

n ⊇ {s|s ∈ S, h∗(s) = n}. The same argument applies
by induction assumption to all states t where h∗(t) < n:
GBFS follows a direct path to the goal. So we have t ∈ H∗

n,
and hence H∗

n ⊇ {s|s ∈ S, h∗(s) ≤ n} as desired.
In all updates, GBFS run on a dead-end state s proves that

s is a dead-end. Thus, all states s with infinite h∗ value also
satisfy h∗(s) = Gn(s), for all n. This proves the claim. □

Adapting NN Training
Adaptations for hIL

Only minor changes are needed to compare with hIL, which
like our heuristic functions is based on per-instance learn-
ing. Ferber, Helmert, and Hoffmann (2020) generated train-
ing data for up to 400 hours, on a single CPU core. Then
they trained for up to 48 hours using 4 CPU cores and 12
GB of memory. This exceeds our resource limits by far, and
also Ferber et al. state themselves that, in many domains, a
fraction of the training data is sufficient. Thus we adapted
their resource limits to our setting, as follows.

For each benchmark instance, we generate training data
on a single core for 56 hours. We train 10 heuristic functions.
Each heuristic function is trained on two cores for up to 2.8
hours. Supervised learning has to keep the training data in
memory, thus we use Ferber et al.’s original memory limit of
12 GB. We use validation as described above, and evaluate
the resulting heuristic function hIL in our experiments.

Adaptations for hHGN

STRIPS-HGN is designed for good performance with short
training time, and in their original work Shen, Trevizan, and
Thiébaux (2020) train the networks for only 10 minutes on
small-sized problem instances. To provide a fair compari-
son, we adapted the training procedure of STRIPS-HGN to
account for the extra training time and the source of train-
ing data used by the other learning approaches. Precisely,
for each domain, we trained 10 different STRIPS-HGN net-
works simultaneously for up to 28 hours using 4 cores and
3.8 GB per core. We split the training time between data
generation (10 hours) and network training (1.8 hour per net-
work). Initially, we tried out different training parameters for
STRIPS-HGN. We observed that, for Blocksworld, Scana-
lyzer and Transport, the original training time of 10 minutes

Hard Tasks with Validation
Domain hBoot hBoot+ hBExp hBExp+ hAVI hAVI+ hFF hFF+

blocks 0 +0 0 +0 0 +0 62 +9
depots 8 +16 4 +13 13 +1 36 +31
grid 88 +11 95 +4 70 +10 53 24
npuzzle 0 +0 0 +0 0 +0 33 -2
pipes-nt 23 +6 19 +10 8 +3 27 +37
rovers 3 +34 1 +5 6 +0 14 +82
scanaly. 3 +5 0 +3 61 +6 98 +1
storage 27 +5 13 +6 16 +6 14 -5
transport 0 +0 0 +0 2 +30 0 +26
visitall 28 +4 0 +0 0 +0 74 +4

Table 2: The coverage (in %) for hBoot, hBExp, and hAVI with
and without using the preferred operators of hFF on the hard
tasks.

and a shorter data generation time of 2 hours leads to more
robust performance. We hence used this setup for these three
domains. In all cases, we use the validation states to select
the best STRIPS-HGN network per domain.

We generate the training data for STRIPS-HGN as fol-
lows. We sample, with replacement, a moderate or hard
instance, perform the same backward walk as hBoot and
hBExpfor n steps (see below), and solve the generated task
using A∗ instead of GBFS (as in the original STRIPS-HGN).
We repeat this procedure until time is up. We discard every
task solved within 5 minutes as they are to easy. We also dis-
card tasks not solved after 30 minutes as it is unlikely that
we will find a solution. From the solved tasks, we use the
states along the (optimal) plans as training data.

The random walk length n here is uniformly chosen from
{n ≤ n ≤ n} where n and n are initially 50 and 500, re-
spectively. Whenever our procedure generates an easy task,
it updates the lower bound n to (n + 3n)/4; whenever our
procedure generates a timed-out task, it updates the upper
bound n to (n + n)/2. The number of state-value pairs ob-
tained following this procedure ranges from 78 for Trans-
port to 1563 for VisitAll. Al the mentioned parameters were
tuned so as to optimize hHGN’s performance in GBFS.

Further Results
Preferred Operators
All our techniques can be enhanced by the preferred opera-
tors of hFF. For this purpose, we execute a GBFS with two
open lists. The first open list uses simply the predictions of
the NN, the second open list uses the same predictions, but
stores only states which are reached by a preferred operator
of hFF. Table 2 shows that the enhanced versions dominate
the base versions. For every technique, using the preferred
operators leads to significant improves in multiple domains.

Coverage Over Time
Given our comparatively large search time limit of 10 hours,
Figure 1 shows coverage as a function of runtime. We show
results for moderate tasks in four domains; the data is quali-
tatively similar in the other domains and tasks.
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Figure 1: Coverage (%) as a function of the search time (in hours), on all moderate task for four domains.

Comparing different NN heuristics, the general finding is
that coverage superiority persists over any time limit. With
few exceptions, an approach that is better after 30 minutes
is still better after 2 or more hours. The picture with re-
spect to LAMA is different, as LAMA (like all state-of-
the-art model-based heuristic search planners) tends to solve
a task either quickly or not at all. With its comparatively
fast heuristic functions, LAMA quickly runs up against the
memory limit. The NN heuristic functions in contrast are
very slow (run on a single core!), and thus require some time
to “catch up” with LAMA. They still solve additional tasks
even after very long run-times, and relative performance dif-
ferences become more pronounced over time. In particular,
the advantages over LAMA in Storage grow as a function of
the run-time limit.

Informedness
We compare the informedness across the different ap-
proaches by comparing the number of expansions they re-
quire to solve a task. Figure 2 shows the distribution of ex-
pansions per domain, for commonly solved moderate tasks.
In each domain we ignore algorithms that solve less than
10% of the tasks, as otherwise the set of commonly solved
tasks would become too small.

Again, the primary conclusion from these results is that
the techniques are highly complementary – at a glance, just
consider how the different colors in Figure 2 move to and
fro in the plots. Comparing neural network heuristic func-

tions against each other, hHGN is only well informed in the
3 domains in which it yields high coverage. The compari-
son between hIL and our RL methods is similar as for cover-
age, exhibiting performance differences in the same domains
(which is expected as the per-state runtime of these heuristic
functions is very similar). Finally, the NN heuristic func-
tions are quite competitive with hFF and LAMA in terms of
informedness. In Depots, Grid, and VisitAll the lowest num-
ber of expansions is achieved by a NN heuristic function (a
different one in each case); and in Pipesworld-NoTankage,
Rovers, and Scanalyzer, the best NN heuristic function is
basically on par with hFF.
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Figure 2: Expansions on commonly solved moderate tasks, removing algorithms with coverage < 10%. In each plot, the line
within the body indicates the median, the body of the box plot indicates the 25 and 75 percentile, and the whiskers show the 5
and 95 percentiles.


