PLANUTILS: Bringing Planning to the Masses

Christian Muise,' Florian Pommerening,” Jendrik Seipp,’ Michael Katz *

'Queen’s University
2University of Basel
3Linkoping University
“IBM T.J. Watson Research Center
christian.muise @queensu.ca, florian.pommerening @unibas.ch, jendrik.seipp @liu.se, Michael.Katz1 @ibm.com

Abstract

PLANUTILS is a general library for setting up Linux-based
environments for developing, running, and evaluating plan-
ners. Over the last decades, the planning community has pro-
duced countless solvers for various planning formalisms, as
well as many other tools to help the planning practitioner.
From state-of-the-art planners, over validators, to parsing li-
braries, the planning ecosystem has grown quite large. In the
demo, we highlight an effort that aims to unify this ecosys-
tem and make it seamless for users to get started with what
the ICAPS community has to offer.

Demo: mulab.ai/demo/planutils

1 Motivation

Many Al research fields are moving towards a model of
shared infrastructure to interface with modern research soft-
ware. The growing ecosystem of planning-based tools and
solvers is, however, currently hosted on personal or lab
spaces online, with tools often requiring a non-trivial setup
effort. PLANUTILS fills this gap within the planning commu-
nity. The project offers friction-free access to a wide range
of existing planners, and the scope of functionality contin-
ues to grow. Additionally, various modes of interacting with
this growing functionality are under active development so
that working with any of the modern planning systems is
accessible to everyone.

2 Packages

PLANUTILS is based on a package system, similar to PyPI
(Python Software Foundation 2022) and Anaconda (Ana-
conda Inc. 2022). In this section, we describe how to add
a new package (e.g., for a new planner) to PLANUTILS, and
show some of the packages that are already included.

2.1 Configuration

Configuring a new package requires four elements, each pro-
vided here as an example. First, a JSON manifest is required
to describe the package (including its size once installed):

{"name": "Fast_Downward",
"description": "fast-downward.org",
"install-size": "36M",
"dependencies": []}

The next element is a script for installing the package.
Typically this is as simple as fetching a pre-compiled image
for the planner (the PLANUTILS documentation includes in-
structions for building images):

#!/bin/bash
singularity pull —--name \
downward.sif shub://aibasel/downward

Similarly, we require a script to remove a package:

#!/bin/bash
rm downward.sif

\. J

And, finally, a script for running the package/planner
(note that all command-line arguments are passed through):

#!/bin/bash
singularity run -e \
S (dirname $0)/downward.sif $@

By defining dependencies between packages, one can
share common functionality. For example, the 1ama pack-
age has empty install/uninstall scripts, and depends on the
downward package:

e Y

{"name": "LAMA",
"description": "fast-downward.org",
"install-size": "20K",
"dependencies": ["downward"]}

#!/bin/bash
planutils run downward —— \
—-—alias lama $S@

\. J

2.2 Library Scope

The initial offering of PLANUTILS contains packages for a
wide variety of planners and planning utilities. Full details
can be found in the PLANUTILS command-line help. In sum-
mary, it includes access to the following utilities and plan-
ners (along with several variations): Cerberus (Katz 2018),
Delfi (Katz et al. 2018a), Fast Downward (Helmert 2006),
ENHSP (Scala et al. 2017), Forbidlterative (Katz et al.
2018b; Katz and Sohrabi 2020; Katz, Sohrabi, and Udrea
2020), hpdd12pddl (Alford, Kuter, and Nau 2009), K* (Katz

http://mulab.ai/demo/planutils

et al. 2018b), OPTIC (Benton, Coles, and Coles 2012), plan-
ning.domains (Muise 2016a), Pyperplan (Alkhazraji et al.
2020), Scorpion (Seipp, Keller, and Helmert 2020), SMT-
Plan+ (Cashmore et al. 2016), Tarski (Francés, Ramirez, and
Collaborators 2018), TFD (Réger, Eyerich, and Mattmiiller
2008), and VAL (Howey and Long 2003).

3 Environments

Once installed, packages in PLANUTILS can be run by pre-
fixing their invocation with planutils run. Alterna-
tively, there are dedicated environments for a PLANUTILS
shell, remote mirror, and local server.

3.1 PLANUTILS Shell Environment

For a more direct access to the PLANUTILS packages, we
provide a special shell environment. Activating this environ-
ment exposes direct access to all PLANUTILS functionality,
and invoking uninstalled packages dynamically loads them
on demand:

$ planutils run lama d.pddl p.pddl
$ planutils activate

Entering planutils environment...

(planutils) $ lama d.pddl p.pddl

3.2 Remote Mirror

In coordination with the newly-released Planning-as-a-
Service project (Al Planning Community 2022), the func-
tionality of PLANUTILS can be redirected to a central server.
While this comes with reduced resource limits, this feature
makes it very easy and safe for practitioners to run state-of-
the-art planners on all operating systems:

[$ planutils remote lama d.pddl p.pddl]

3.3 Local Server

Finally, to interface with the online editor and VSCode
plugin for PDDL (Muise 2016b; Dolejsi et al. 2018), the
PLANUTILS functionality can be exposed via a localhost
API. This allows practitioners to use resources of the host
machine (and potentially custom planning software) with the
leading PDDL editors.

[$ planutils server]

4 Virtualization

PLANUTILS is largely based on modern virtualization solu-
tions. We describe the two key aspects of this here.

4.1 Singularity for Planners

Increasingly, modern IPC tracks are requiring planner sub-
missions to be compiled in a Singularity image (Kurtzer,
Sochat, and Bauer 2017). This allows organizers to run the
planners without wrestling a web of conflicting dependen-
cies between planners. PLANUTILS similarly recommends

that self-contained systems be packaged as Singularity im-
ages for simplicity, and the machine where PLANUTILS is
installed needs to be able to run these images. This is cur-
rently the case only for Linux.

4.2 Docker for Broad Access

To broaden the accessibility of PLANUTILS, we provide a
pre-compiled Docker (Merkel 2014) image which allows
quick and easy access to PLANUTILS for anyone with a
Docker installation:

$ docker pull aiplanning/planutils

$ docker run —-it —--privileged \
aiplanning/planutils

$ planutils —-help

5 Getting Started

Getting started with PLANUTILS is as easy as installing the
planutils Python package and running the setup com-
mand. Below we show the usage and output from a fresh
installation running lama:

$ pip install planutils
$ planutils setup
$ planutils activate

Entering planutils environment...
(planutils) $ lama d.pddl p.pddl

Package not installed!
Download & install? [Y/n] Y
lama will be installed.

About to install the following
packages: downward (36M), lama (20K)

Proceed? [Y/n] Y

Installing downward...
INFO: Downloading shub image
45.84 MiB / 45.84 MiB

[s=========] 100.00% 7.30 MiB/s 6s

Finished installing downward (size: 46M)

Installing lama...
Finished installing lama (size: 20K)

Successfully installed lama!

Original command: lama d.pddl p.pddl
Re-run command? [Y/n] Y

INFO Running translator.

6 Summary

Even though PLANUTILS is still a very new project, it has
already proved to be a powerful tool for rapidly prototyping
planning solutions and offering direct access to the best tools
our field has to offer. ! The impact created by the initiative
will be wide and long-lived, and we look forward to demon-
strating PLANUTILS in its current form at ICAPS 2022.

"Used for hands-on part of the ITCAI 2021 and AAAI 2022
tutorials on Al Planning (https://github.com/IBM/grammar2pddl).

https://github.com/IBM/grammar2pddl

References

Al Planning Community. 2022. Planning-as-a-Service.
https://github.com/AI-Planning/planning-as-a-service.

Alford, R.; Kuter, U.; and Nau, D. 2009. Translating HTNs
to PDDL: A Small Amount of Domain Knowledge Can Go
a Long Way. In Boutilier, C., ed., Proceedings of the 21st
International Joint Conference on Artificial Intelligence (1J-

CAI 2009), 1629-1634. AAAI Press.

Alkhazraji, Y.; Frorath, M.; Griitzner, M.; Helmert, M.;
Liebetraut, T.; Mattmiiller, R.; Ortlieb, M.; Seipp, J.; Sprin-
genberg, T.; Stahl, P; and Wiilfing, J. 2020. Pyperplan.
https://doi.org/10.5281/zenodo.3700819.

Anaconda Inc. 2022. Anaconda Software Distribution.
https://docs.anaconda.com/.

Benton, J.; Coles, A.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In McCluskey, L.; Williams, B.; Silva, J. R.; and
Bonet, B., eds., Proceedings of the Twenty-Second Interna-

tional Conference on Automated Planning and Scheduling
(ICAPS 2012), 2-10. AAAI Press.

Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and San-
ner, S., eds., Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling (ICAPS
2016), 79-87. AAAI Press.

Conitzer, V.; and Sha, F., eds. 2020. Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI 2020). AAAI Press.

Dolejsi, J.; Long, D.; Fox, M.; and Besangon, G. 2018.
PDDL authoring and validation environment for building
end-to-end planning solutions. In Proc. of the 28th Int. Con-
ference on Automated Planning and Scheduling (ICAPS).

Francés, G.; Ramirez, M.; and Collaborators. 2018. Tarski:
An Al Planning Modeling Framework. https://github.com/
aig-upf/tarski.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191-246.
Howey, R.; and Long, D. 2003. VAL’s Progress: The Auto-
matic Validation Tool for PDDL2.1 used in the International
Planning Competition. In Edelkamp, S.; and Hoffmann, J.,
eds., Proceedings of the ICAPS 2003 Workshop on the Com-
petition: Impact, Organisation, Evaluation, Benchmarks.

Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 47-51.

Katz, M.; and Sohrabi, S. 2020. Reshaping Diverse Plan-
ning. In (Conitzer and Sha 2020), 9892-9899.

Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S.
2018a. Delfi: Online Planner Selection for Cost-Optimal
Planning. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 57-64.

Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-Quality
Planning: Finding Practically Useful Sets of Best Plans. In
(Conitzer and Sha 2020), 9900-9907.

Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018b. A
Novel Iterative Approach to Top-k Planning. In de Weerdt,
M.; Koenig, S.; Roger, G.; and Spaan, M., eds., Proceed-
ings of the Twenty-Eighth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2018), 132-140.
AAALI Press.

Kurtzer, G. M.; Sochat, V.; and Bauer, M. W. 2017. Singu-
larity: Scientific containers for mobility of compute. PloS
one, 12(5): e0177459.

Merkel, D. 2014. Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux J.,
2014(239).

Muise, C. 2016a. Planning.Domains. In 26¢h International
Conference on Automated Planning and Scheduling, System
Demonstrations and Exhibits.

Muise, C. 2016b. Planning.Domains. In The 26th Interna-
tional Conference on Automated Planning and Scheduling -
Demonstrations.

Python Software Foundation. 2022. Python Package Index -
PyPl. https://pypi.org/.

Roger, G.; Eyerich, P.; and Mattmiiller, R. 2008. TFD: A
Numeric Temporal Extension to Fast Downward. IPC 2008
short papers, http://ipc.informatik.uni-freiburg.de/Planners.

Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S.
2017. Landmarks for Numeric Planning Problems. In Sierra,
C., ed., Proceedings of the 26th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2017), 4384—4390. 1J-
CAL

Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129-167.

https://github.com/AI-Planning/planning-as-a-service
https://doi.org/10.5281/zenodo.3700819
https://github.com/aig-upf/tarski
https://github.com/aig-upf/tarski
https://pypi.org/
http://ipc.informatik.uni-freiburg.de/Planners

	Motivation
	Packages
	Configuration
	Library Scope

	Environments
	Planutils Shell Environment
	Remote Mirror
	Local Server

	Virtualization
	Singularity for Planners
	Docker for Broad Access

	Getting Started
	Summary

