
PLANUTILS: Bringing Planning to the Masses

Christian Muise,1 Florian Pommerening,2 Jendrik Seipp,3 Michael Katz 4

1Queen’s University
2University of Basel

3Linköping University
4IBM T.J. Watson Research Center

christian.muise@queensu.ca, florian.pommerening@unibas.ch, jendrik.seipp@liu.se, Michael.Katz1@ibm.com

Abstract

PLANUTILS is a general library for setting up Linux-based
environments for developing, running, and evaluating plan-
ners. Over the last decades, the planning community has pro-
duced countless solvers for various planning formalisms, as
well as many other tools to help the planning practitioner.
From state-of-the-art planners, over validators, to parsing li-
braries, the planning ecosystem has grown quite large. In the
demo, we highlight an effort that aims to unify this ecosys-
tem and make it seamless for users to get started with what
the ICAPS community has to offer.
Demo: mulab.ai/demo/planutils

1 Motivation
Many AI research fields are moving towards a model of
shared infrastructure to interface with modern research soft-
ware. The growing ecosystem of planning-based tools and
solvers is, however, currently hosted on personal or lab
spaces online, with tools often requiring a non-trivial setup
effort. PLANUTILS fills this gap within the planning commu-
nity. The project offers friction-free access to a wide range
of existing planners, and the scope of functionality contin-
ues to grow. Additionally, various modes of interacting with
this growing functionality are under active development so
that working with any of the modern planning systems is
accessible to everyone.

2 Packages
PLANUTILS is based on a package system, similar to PyPI
(Python Software Foundation 2022) and Anaconda (Ana-
conda Inc. 2022). In this section, we describe how to add
a new package (e.g., for a new planner) to PLANUTILS, and
show some of the packages that are already included.

2.1 Configuration
Configuring a new package requires four elements, each pro-
vided here as an example. First, a JSON manifest is required
to describe the package (including its size once installed):

{"name": "Fast Downward",
"description": "fast-downward.org",
"install-size": "36M",
"dependencies": []}

The next element is a script for installing the package.
Typically this is as simple as fetching a pre-compiled image
for the planner (the PLANUTILS documentation includes in-
structions for building images):

#!/bin/bash
singularity pull --name \
downward.sif shub://aibasel/downward

Similarly, we require a script to remove a package:

#!/bin/bash
rm downward.sif

And, finally, a script for running the package/planner
(note that all command-line arguments are passed through):

#!/bin/bash
singularity run -e \
$(dirname $0)/downward.sif $@

By defining dependencies between packages, one can
share common functionality. For example, the lama pack-
age has empty install/uninstall scripts, and depends on the
downward package:

{"name": "LAMA",
"description": "fast-downward.org",
"install-size": "20K",
"dependencies": ["downward"]}

#!/bin/bash
planutils run downward -- \
--alias lama $@

2.2 Library Scope
The initial offering of PLANUTILS contains packages for a
wide variety of planners and planning utilities. Full details
can be found in the PLANUTILS command-line help. In sum-
mary, it includes access to the following utilities and plan-
ners (along with several variations): Cerberus (Katz 2018),
Delfi (Katz et al. 2018a), Fast Downward (Helmert 2006),
ENHSP (Scala et al. 2017), ForbidIterative (Katz et al.
2018b; Katz and Sohrabi 2020; Katz, Sohrabi, and Udrea
2020), hpddl2pddl (Alford, Kuter, and Nau 2009), K∗ (Katz

http://mulab.ai/demo/planutils

et al. 2018b), OPTIC (Benton, Coles, and Coles 2012), plan-
ning.domains (Muise 2016a), Pyperplan (Alkhazraji et al.
2020), Scorpion (Seipp, Keller, and Helmert 2020), SMT-
Plan+ (Cashmore et al. 2016), Tarski (Francés, Ramirez, and
Collaborators 2018), TFD (Röger, Eyerich, and Mattmüller
2008), and VAL (Howey and Long 2003).

3 Environments
Once installed, packages in PLANUTILS can be run by pre-
fixing their invocation with planutils run. Alterna-
tively, there are dedicated environments for a PLANUTILS
shell, remote mirror, and local server.

3.1 PLANUTILS Shell Environment
For a more direct access to the PLANUTILS packages, we
provide a special shell environment. Activating this environ-
ment exposes direct access to all PLANUTILS functionality,
and invoking uninstalled packages dynamically loads them
on demand:

$ planutils run lama d.pddl p.pddl
...
$ planutils activate

Entering planutils environment...

(planutils) $ lama d.pddl p.pddl

3.2 Remote Mirror
In coordination with the newly-released Planning-as-a-
Service project (AI Planning Community 2022), the func-
tionality of PLANUTILS can be redirected to a central server.
While this comes with reduced resource limits, this feature
makes it very easy and safe for practitioners to run state-of-
the-art planners on all operating systems:

$ planutils remote lama d.pddl p.pddl

3.3 Local Server
Finally, to interface with the online editor and VSCode
plugin for PDDL (Muise 2016b; Dolejsi et al. 2018), the
PLANUTILS functionality can be exposed via a localhost
API. This allows practitioners to use resources of the host
machine (and potentially custom planning software) with the
leading PDDL editors.

$ planutils server

4 Virtualization
PLANUTILS is largely based on modern virtualization solu-
tions. We describe the two key aspects of this here.

4.1 Singularity for Planners
Increasingly, modern IPC tracks are requiring planner sub-
missions to be compiled in a Singularity image (Kurtzer,
Sochat, and Bauer 2017). This allows organizers to run the
planners without wrestling a web of conflicting dependen-
cies between planners. PLANUTILS similarly recommends

that self-contained systems be packaged as Singularity im-
ages for simplicity, and the machine where PLANUTILS is
installed needs to be able to run these images. This is cur-
rently the case only for Linux.

4.2 Docker for Broad Access
To broaden the accessibility of PLANUTILS, we provide a
pre-compiled Docker (Merkel 2014) image which allows
quick and easy access to PLANUTILS for anyone with a
Docker installation:

$ docker pull aiplanning/planutils
$ docker run -it --privileged \

aiplanning/planutils
$ planutils --help

5 Getting Started
Getting started with PLANUTILS is as easy as installing the
planutils Python package and running the setup com-
mand. Below we show the usage and output from a fresh
installation running lama:

$ pip install planutils
$ planutils setup
$ planutils activate

Entering planutils environment...

(planutils) $ lama d.pddl p.pddl

Package not installed!
Download & install? [Y/n] Y

lama will be installed.

About to install the following
packages: downward (36M), lama (20K)

Proceed? [Y/n] Y

Installing downward...
INFO: Downloading shub image
45.84 MiB / 45.84 MiB
[==========] 100.00% 7.30 MiB/s 6s

Finished installing downward (size: 46M)

Installing lama...
Finished installing lama (size: 20K)

Successfully installed lama!

Original command: lama d.pddl p.pddl
Re-run command? [Y/n] Y

INFO Running translator.
...

6 Summary
Even though PLANUTILS is still a very new project, it has
already proved to be a powerful tool for rapidly prototyping
planning solutions and offering direct access to the best tools
our field has to offer. 1 The impact created by the initiative
will be wide and long-lived, and we look forward to demon-
strating PLANUTILS in its current form at ICAPS 2022.

1Used for hands-on part of the IJCAI 2021 and AAAI 2022
tutorials on AI Planning (https://github.com/IBM/grammar2pddl).

https://github.com/IBM/grammar2pddl

References
AI Planning Community. 2022. Planning-as-a-Service.
https://github.com/AI-Planning/planning-as-a-service.
Alford, R.; Kuter, U.; and Nau, D. 2009. Translating HTNs
to PDDL: A Small Amount of Domain Knowledge Can Go
a Long Way. In Boutilier, C., ed., Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJ-
CAI 2009), 1629–1634. AAAI Press.
Alkhazraji, Y.; Frorath, M.; Grützner, M.; Helmert, M.;
Liebetraut, T.; Mattmüller, R.; Ortlieb, M.; Seipp, J.; Sprin-
genberg, T.; Stahl, P.; and Wülfing, J. 2020. Pyperplan.
https://doi.org/10.5281/zenodo.3700819.
Anaconda Inc. 2022. Anaconda Software Distribution.
https://docs.anaconda.com/.
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In McCluskey, L.; Williams, B.; Silva, J. R.; and
Bonet, B., eds., Proceedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2012), 2–10. AAAI Press.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and San-
ner, S., eds., Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling (ICAPS
2016), 79–87. AAAI Press.
Conitzer, V.; and Sha, F., eds. 2020. Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI 2020). AAAI Press.
Dolejsi, J.; Long, D.; Fox, M.; and Besançon, G. 2018.
PDDL authoring and validation environment for building
end-to-end planning solutions. In Proc. of the 28th Int. Con-
ference on Automated Planning and Scheduling (ICAPS).
Francés, G.; Ramirez, M.; and Collaborators. 2018. Tarski:
An AI Planning Modeling Framework. https://github.com/
aig-upf/tarski.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Howey, R.; and Long, D. 2003. VAL’s Progress: The Auto-
matic Validation Tool for PDDL2.1 used in the International
Planning Competition. In Edelkamp, S.; and Hoffmann, J.,
eds., Proceedings of the ICAPS 2003 Workshop on the Com-
petition: Impact, Organisation, Evaluation, Benchmarks.
Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 47–51.
Katz, M.; and Sohrabi, S. 2020. Reshaping Diverse Plan-
ning. In (Conitzer and Sha 2020), 9892–9899.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S.
2018a. Delfi: Online Planner Selection for Cost-Optimal
Planning. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 57–64.
Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-Quality
Planning: Finding Practically Useful Sets of Best Plans. In
(Conitzer and Sha 2020), 9900–9907.

Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018b. A
Novel Iterative Approach to Top-k Planning. In de Weerdt,
M.; Koenig, S.; Röger, G.; and Spaan, M., eds., Proceed-
ings of the Twenty-Eighth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2018), 132–140.
AAAI Press.
Kurtzer, G. M.; Sochat, V.; and Bauer, M. W. 2017. Singu-
larity: Scientific containers for mobility of compute. PloS
one, 12(5): e0177459.
Merkel, D. 2014. Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux J.,
2014(239).
Muise, C. 2016a. Planning.Domains. In 26th International
Conference on Automated Planning and Scheduling, System
Demonstrations and Exhibits.
Muise, C. 2016b. Planning.Domains. In The 26th Interna-
tional Conference on Automated Planning and Scheduling -
Demonstrations.
Python Software Foundation. 2022. Python Package Index -
PyPI. https://pypi.org/.
Röger, G.; Eyerich, P.; and Mattmüller, R. 2008. TFD: A
Numeric Temporal Extension to Fast Downward. IPC 2008
short papers, http://ipc.informatik.uni-freiburg.de/Planners.
Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S.
2017. Landmarks for Numeric Planning Problems. In Sierra,
C., ed., Proceedings of the 26th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2017), 4384–4390. IJ-
CAI.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129–167.

https://github.com/AI-Planning/planning-as-a-service
https://doi.org/10.5281/zenodo.3700819
https://github.com/aig-upf/tarski
https://github.com/aig-upf/tarski
https://pypi.org/
http://ipc.informatik.uni-freiburg.de/Planners

	Motivation
	Packages
	Configuration
	Library Scope

	Environments
	Planutils Shell Environment
	Remote Mirror
	Local Server

	Virtualization
	Singularity for Planners
	Docker for Broad Access

	Getting Started
	Summary

