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Identifying phase transitions and classifying phases of matter is central to understanding the properties
and behavior of a broad range of material systems. In recent years, machine-learning (ML) techniques have
been successfully applied to perform such tasks in a data-driven manner. However, the success of this
approach notwithstanding, we still lack a clear understanding of ML methods for detecting phase
transitions, particularly of those that utilize neural networks (NNs). In this work, we derive analytical
expressions for the optimal output of three widely used NN-based methods for detecting phase transitions.
These optimal predictions correspond to the results obtained in the limit of high model capacity. Therefore,
in practice, they can, for example, be recovered using sufficiently large, well-trained NNs. The inner
workings of the considered methods are revealed through the explicit dependence of the optimal output on
the input data. By evaluating the analytical expressions, we can identify phase transitions directly from
experimentally accessible data without training NNs, which makes this procedure favorable in terms of
computation time. Our theoretical results are supported by extensive numerical simulations covering, e.g.,
topological, quantum, and many-body localization phase transitions. We expect similar analyses to provide
a deeper understanding of other classification tasks in condensed matter physics.
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I. INTRODUCTION

In recent years, machine learning (ML) has been used
extensively to approach complex physics problems [1–3].
Among these applications, the task of classifying phases of
matter and the identification of phase transitions is par-
ticularly exciting [4–7], as it could enable the autonomous
discovery of novel phases of matter. Classical ML methods
have successfully revealed the phase diagrams of a plethora
of systems based on data from experimental measure-
ments [8–12] and numerical simulations [4,5,13–39]. Many
of the most powerful ML methods for detecting
phase transitions utilize neural networks (NNs) at their
core [4,5,14–26,28,29,31–34,36–39]. Prominent examples
are supervised learning [4], the learning-by-confusion

scheme [5,22], and the prediction-based method [29,31,34],
which are often applied in conjunction [10,23,31].
All three methods follow a similar work flow, which is

illustrated in Fig. 1 (steps 1–3). They take as input samples
that represent the state of a physical system at various
values of a tuning parameter. The samples are processed by
an NN whose parameters are tuned to minimize a specific
loss function. By analyzing the NN predictions, one can
compute a scalar quantity that highlights the critical value
of the tuning parameter at which the system’s state changes
most. As such, this quantity highlights phase boundaries
and serves as an indicator for phase transitions. The
decision whether the change corresponds to a crossover
or a phase transition does, however, requires further
analysis, such as finite-size scaling. The three methods
differ in their choice of loss function, i.e., in the formulation
of the underlying classification or regression task, and,
thus, in the resulting indicator for phase transitions.
NNs are universal function approximators [42–45]. This

fact makes supervised learning, the learning-by-confusion
scheme, and the prediction-based method extremely power-
ful and has played a central role in the original conception
of these methods [4,5,29]. Namely, the use of NNs for
detecting phase transitions from data has been inspired by
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the success of deep NNs (DNNs) in image recognition
tasks [46]. The more expressive a ML model [40,47,48],
such as an NN, the more resources are needed to train it, and
the more difficult it is to interpret the underlying functional
dependence of its prediction on the input [49,50]. Therefore,
NNs typically act as black boxes that can correctly highlight
phase transitions but whose internal workings remain opaque
to the user. Since the proposal of supervised learning, the
learning-by-confusion scheme, and the prediction-based
method, there have been numerous attempts to understand
their working principle, particularly through the extraction of
order parameters. As an example, (kernel) support vector
machines, which are easier to analyze than NNs due
to their inherent linear nature, were used as predictive
models [51–54]. Other approaches to improve interpretabil-
ity rely on systematic input engineering, such that the
objective function that the NN learns is approximately
linearly [55], or on a systematic reduction of the NN
expressivity [15]. Another set of works [56–59] analyze
trained NNs using standard interpretability tools from ML,
which rely on truncated Taylor expansions. Despite these
efforts, we still understand little about the working principle

of ML methods for the detection of phase transitions based
on NNs, when they fail or succeed, and how they differ [2]—
in particular, when DNNs are used (i.e., in the limit of high
model expressivity). These open questions reflect the general
scarcity of rigorous theory in ML [35].
Here, we address these gaps in knowledge by pursuing a

novel approach based on deriving analytical expressions for
the optimal predictions of the NNs underlying supervised
learning, learning by confusion, and the prediction-based
method. The predictions are optimal in the sense that they
minimize the target loss function; i.e., the corresponding
model performs the desired task (as specified by the loss
function) optimally. Based on the optimal predictions, we
find analytical expressions for the optimal indicators of
phase transitions of these three methods. The optimal
indicators correspond to the output of the methods when
using ideal high-capacity [40] predictive models, such as
well-trained, highly expressive NNs. The inner workings of
these methods are revealed through the dependence of the
optimal indicators on the input data. Moreover, the ana-
lytical expressions make it possible to compute the optimal
indicator directly from the input data without training NNs

neural network

FIG. 1. Schematic representation of the setup andwork flow of supervised learning, the learning-by-confusion scheme, and the prediction-
basedmethod for detectingphase transitions fromdata.Thephysical systemunder consideration is characterizedbya tuningparameterp. The
goal is to identify the critical value of the tuning parameterpc atwhich the system transitions fromone phase to another. In a first step (step 1),
the state x of the physical system is (repeatedly) sampled at various values of the tuning parameter fp1; p2;…; pKg, where
fP1ðxÞ; P2ðxÞ;…; PKðxÞg are the corresponding probability distributions. Based on these samples, a neural network (NN) is trained to
performaparticular classification or regression task; i.e., its tunable parameters are updated tominimize a particular loss function (step 2). The
threeMLmethods for detectingphase transitions differ in their formulationof the underlyingNN tasks.Having trained theNN, its predictions
ŷ are used to compute the value of an indicator of phase transitions I at fixed values of the tuning parameter (step 3). Ideally, the indicator has a
local maximum at pc, where the largest change in the state of the system occurs. As a result, the MLmethods then autonomously highlight
phase boundaries along the chosen scanning range of the tuning parameter. Note that the indicators of phase transitions obtained with
supervised learning, the learning-by-confusion scheme, and the prediction-basedmethoddiffer. The contribution ofourwork is highlighted in
blue: We derive analytical expressions for the optimal predictions ŷopt of the NNs used in these three methods. The optimal predictions
minimize the corresponding loss function and can, thus be achieved by NNs whose capacity, i.e., ability to fit a wide variety of functions
[40,41], is sufficiently high. The optimal predictions can solely be expressed in terms of the probability distributions underlying the physical
system.Using the optimal predictions ŷopt in place of theNNpredictions ŷ, we further obtain analytical expressions for the optimal indicators
of phase transitions Iopt (step 2*). Evaluating these analytical expressions provides an alternative path for computing indicators of phase
transitions without ever training NNs; see Table I, where we compare the computation times of the two approaches.
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(see step 2* in Fig. 1), manifesting an alternative numerical
routine to infer phase transitions. We demonstrate the
procedure in a numerical study on a variety of models
exhibiting, e.g., symmetry-breaking, topological, quantum,
and many-body localization phase transitions.
This work is structured as follows: In Sec. II, we

introduce the task of detecting phase transitions from data
in an automated fashion, including supervised learning, the
learning-by-confusion scheme, and the prediction-based
method. Section III discusses the analytical expressions of
their optimal indicators of phase transitions. A numerical
study of the optimal predictions and indicators for the Ising
model, Ising gauge theory, XY model, XXZ model, Kitaev
model, and Bose-Hubbard model is presented in Sec. IV.
Finally, the results are discussed in Sec. V, and conclusions
are drawn in Sec. VI.

II. AUTOMATED DETECTION OF PHASE
TRANSITIONS FROM DATA

In this section, we formally introduce the task of auto-
matically detecting phase transitions from data and how
supervised learning (SL), learning by confusion (LBC), and
the prediction-based method (PBM) approach this problem.
We consider the following scenario: The physical system to
be analyzed is characterized by a tuningparameterp sampled
equidistantly with a grid spacing Δp. In the following, we
denote the points at the boundary of the sampled region
as p1 and pK with K ∈ N sampled points in total
ðK ¼ ðpK − p1Þ=Δpþ 1Þ. At each sampled point pk
(1 ≤ k ≤ K), we draw M ∈ N samples from the system’s
state fSjkgMj¼1 which constitute our available data. We allow
for these data to be preprocessed via a mapping to a
representation space R∶S → x. At the core of each of the
three methods for detecting phase transitions under consid-
eration lies a predictive model m∶x → ŷ, such as an NN,
which takes the preprocessed data X ¼ fxjkj1 ≤ j ≤ M;
1 ≤ k ≤ Kg as input.Wedenote the available data at sampled
point pk as Xk ¼ fxjkgMj¼1. Note that X may contain
duplicates. Let X̄ be the set of unique inputs obtained from
X by removing all duplicates. We assume that the system is
present either in a single phaseA or two distinct phasesA and
B across the sampled range of the tuning parameter fpkgKk¼1.
If a system exhibits multiple distinct phases, the parameter
range can (in principle) be analyzed in a piecewise fashion
(for more details on this case, see Appendixes A 1 and A 2).
The task is then to compute a scalar indicator IðpÞ, which
peaks at the phase boundary if twodistinct phases are present,
i.e., has a local maximum, and does not exhibit a peak
otherwise.More specifically, if the system is in phaseA from
p1 topc and phaseB frompc topK with critical pointpc (not
necessarily a sampled point), the indicator IðpkÞ should
exhibit a local maximum at the sampled point closest to the
critical point argminpk

jpc − pkj.

A. Supervised learning

In SL, a predictive model m is trained on the data
available in regions near the two boundaries of the chosen
parameter range denoted by I and II. Regions I and II are
comprised of the set of sampled points fpkj1 ≤ k ≤ rIg and
fpkjlII ≤ k ≤ Kg, respectively. Here, rI; lII ∈ N denote the
rightmost and leftmost parameter point in region I and II,
respectively. In SL, we assume that there exist two distinct
phases A and B, with the regions I and II being located deep
within these phases. Without loss of generality, we assign
the label y ¼ 1 and y ¼ 0 to data obtained in region I and II,
respectively. The predictive model is trained to minimize a
cross-entropy (CE) loss

LSL ¼ −
1

MT

X
x∈T

fyðxÞ ln ½ŷðxÞ�

þ ½1 − yðxÞ� ln ½1 − ŷðxÞ�g; ð1Þ
where the sum runs over all MT data points in the training
set T ⊆ X , T ¼fxjkj1≤j≤M;k∈f1;…;rIg∪flII;…;Kgg.
Let us denote the set containing all unique inputs present in
T without repetition as T̄ . The output of the predictive
model ŷðxÞ ∈ ½0; 1� corresponds to the probability of input
x having the label y ¼ 1, whereas 1 − ŷðxÞ is the proba-
bility that the input x carries the label y ¼ 0.
After training the predictive model to minimize the loss

function in Eq. (1), it is evaluated on all available data X .
Averaging over the predictions ŷðxÞ for all data Xk at a
given point pk (1 ≤ k ≤ K) yields a prediction as a function
of the tuning parameter:

ŷSLðpkÞ ¼
1

M

X
x∈Xk

ŷðxÞ: ð2Þ

The indicator for phase transitions in SL, ISL, is then given
by the negative derivative of the prediction with respect to
the tuning parameter:

ISLðpkÞ ¼ −
∂ŷSLðpÞ

∂p

����
pk

: ð3Þ

The estimated critical value of the tuning parameter in SL
corresponds to the location of the global maximum in its
indicator [Eq. (3)], which can easily be determined in an
automated fashion without human supervision. If one choo-
ses to label data obtained in region I with y ¼ 0 and region II
with y ¼ 1 instead, the same indicator signal can be
recovered via a sign change ISLðpkÞ → −ISLðpkÞ. Note that
it is also common to identify the estimated critical valueof the
tuning parameter in SL as argminpk

jŷðpkÞ − 0.5j; see
Appendix D 1 for a comparison motivating our choice.
Intuitively, if there is a transition from one phase to

another (phase A to phase B) when varying the tuning
parameter p, the mean predictions ŷSLðpÞ should drop from
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ŷSLðp1Þ ¼ 1 (deep within phase A) to ŷSLðpKÞ ¼ 0 (deep
within phase B) as p is increased. If the transition is sharp,
the predictions should also change abruptly. Such a change
results in a peak in the negative derivative of the predictions,
i.e., in the indicator for phase transitions. In that case, the
predictive model acts as an order parameter that approaches
1 (0) deep within phase A (B). In general, one expects the
predictions—and, thus, the indicator—to vary most strongly
at the critical point pc. If there is only a single phase, one
expects the predictions to be approximately constant, result-
ing in a flat indicator ISLðpÞ. Our derivation of the optimal
indicator IoptSL provides a rigorous basis for these heuristic
arguments underlying the SL method.

B. Learning by confusion

In LBC, predictive models are trained on all available data
X . The labels are obtained by performing a split of the
sampled parameter range into two neighboring regions
labeled I and II. Each input x drawn in region I or II carries
the label y ¼ 1 or y ¼ 0, respectively. The values of the
tuning parameters which realize each of the K þ 1 possible
bipartitions are given as pbp

k ¼ p1 − Δp=2þ ðk − 1ÞΔp,
where 1 ≤ k ≤ K þ 1. For a given bipartition point pbp

k ,
regions I and II are then comprised of the sampled points
fpjjpj ≤ pbp

k ; 1 ≤ j ≤ Kg and fpjjpj > pbp
k ; 1 ≤ j ≤ Kg,

respectively. Note that for bipartitions 1 (pbp
1 ¼ p1 − Δp=2)

andK þ 1 (pbp
Kþ1 ¼ pK þ Δp=2), region I or II encompasses

the entire sampled parameter range, and all data are assigned
the label 1 or 0, respectively.
To each bipartition, i.e., choice of data labeling, we

associate a distinct predictive model mk ð1 ≤ k ≤ K þ 1Þ
which is trained to minimize a CE loss:

LLBC ¼ −
1

MX

X
x∈X

fyðxÞ ln ½ŷðxÞ�

þ ½1 − yðxÞ� ln ½1 − ŷðxÞ�g; ð4Þ

where the sum runs over allMX ¼ KM data points. Again,
the output of the predictive model ŷðxÞ ∈ ½0; 1� corresponds
to the probability of input x having the label y ¼ 1, whereas
1 − ŷðxÞ is the probability of the input x carrying the
label y ¼ 0.
Once a predictive model has been trained to minimize the

loss function in Eq. (4) for a given bipartition, it is
evaluated on all available data points. In particular, we
can compute the mean classification accuracy as a function
of the bipartition parameter pbp

k (1 ≤ k ≤ K þ 1) as

ILBCðpbp
k Þ ¼ 1 −

1

MX

X
x∈X

jθ½ŷðxÞ − 0.5� − yðxÞj; ð5Þ

where θ denotes the Heaviside step function. The predic-
tions ŷðxÞ are obtained from the predictive model mk

associated with the bipartition point pbp
k , and yðxÞ are the

corresponding labels.
Clearly, the mean classification accuracy ILBC exhibits

trivial local maxima at the points pbp
1 ¼ p1 − Δp=2 and

pbp
Kþ1 ¼ p1 þ Δp=2, where the entire data are assigned the

label 0 or 1, respectively. Therefore, a predictive model
effortlessly reaches a perfect accuracy of 1, because it
simply needs to predict a single label regardless of the
input. However, given that the underlying data can be
separated into two distinct classes of similar character (i.e.,
phases) through appropriate bipartitioning of the parameter
range at pc, one also expects the classification accuracy to
have a local maximum at pc. At such a point, the predictive
model is “least confused” by the choice of data labeling.
Hence, the mean classification accuracy serves as the
indicator for phase transitions within LBC. The estimated
critical value of the tuning parameter in LBC corresponds
to the location of the largest local maximum (excluding the
points pbp

1 and pbp
Kþ1 at the boundary) in its indicator

[Eq. (5)].

C. Prediction-based method

In PBM, a predictive model m is trained on all available
data X to infer the value of the tuning parameter pk
(1 ≤ k ≤ K) at which an input x was generated. While SL
and LBC constitute supervised classification tasks, PBM
corresponds to a supervised regression task, where the label
is given by the tuning parameter itself yðxÞ ¼ pk ∀ x ∈ Xk.
We train the predictive model m to minimize a mean-

square-error (MSE) loss function

LPBM ¼ 1

MX

X
x∈X

½ŷðxÞ − yðxÞ�2: ð6Þ

After training, the predictive model is evaluated on all
available data points X . Averaging over the predictions
ŷðxÞ for all data Xk at a given point pk yields a mean
prediction as a function of the tuning parameter:

ŷPBMðpkÞ ¼
1

M

X
x∈Xk

ŷðxÞ: ð7Þ

We then compute the deviation of the prediction from the
true underlying value of the tuning parameter δyPBMðpkÞ ¼
ŷPBMðpkÞ − pk. The indicator for phase transitions of PBM,
IPBM, is then given by the derivative of this deviation with
respect to the tuning parameter:

IPBMðpkÞ ¼
∂δyPBMðpÞ

∂p

����
pk

¼ ∂ŷPBMðpÞ
∂p

����
pk

− 1: ð8Þ

The estimated critical value of the tuning parameter in PBM
corresponds to the location of the global maximum in its
indicator [Eq. (8)].
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Intuitively, if there is only a single phase, in which inputs
cannot be distinguished well by the predictive model, one
expects the mean predictions to be approximately constant.
This results in the deviations δyPBM varying approximately
linear with the tuning parameter. Hence, the indicator IPBM
is approximately constant. However, if there is a transition
from one phase to another as the tuning parameter is varied,
the predictions and the corresponding deviations also vary
sharply. This results in a peak in the derivative of the
deviations, i.e., the indicator for phase transitions IPBM. In
particular, one expects that the predictions are most
susceptible at the phase boundary. Thus, its derivative
should vary most strongly at the critical point pc.
In many standard applications of NNs, it is typical

to split the available data into multiple sets, in particular,
to avoid overfitting [40]. For example, suppose we aim to
construct an accurate on-the-fly classifier of individual
samples into distinct phases of matter. In this case, it may
be beneficial to split the available data into a training and
validation set to avoid overfitting if only a limited amount
of data is available. In the case of PBM and LBC, we do not
explicitly split the dataset X into a training set and test set
(as well as a potential validation set). This can be done, e.g.,
to assess sampling convergence by comparing the predic-
tions obtained on the training set and test set or to perform
early stopping with NNs (see Appendix B 2 for concrete
examples). Note, however, that the task we consider here is
the detection of phase transitions given the data at hand. As
such, the dataset X does not necessarily need to be split. In
particular, in the limit of a sufficient number of samples, all
splits of a dataset coincide, assuming that all samples are
drawn independently from the same probability distribu-
tions underlying the physical system (see Fig. 1).
Therefore, the predictions and indicators obtained by
training NNs using multiple distinct datasets coincide with
the values obtained using the entire dataset for training and
evaluation up to deviations arising from finite-sample
statistics. That is, in the limit of a sufficient number
of samples, the results obtained in the two scenarios
coincide [40,60,61]. Moreover, given a fixed amount of
data X , better statistics are achieved by utilizing the entire
data for training and evaluation.

III. OPTIMAL INDICATORS OF PHASE
TRANSITIONS

In this section, we discuss the optimal indicators of phase
transitions Iopt for each of the phase-classification methods
presented in Sec. II. The optimal indicators can be directly
calculated given the predictions ŷoptðxÞ of an optimal model
mopt which minimizes the corresponding loss function. The
detailed proofs can be found in Appendix A 1. In the limit
of sufficient data, i.e., given accurate estimates of the
probability distributions underlying the physical system
fPkðxÞgKk¼1, such a model is also Bayes optimal [40,62],
meaning no other statistical model can outperform it (on

average) on the classification or regression task at hand. In
this case, the optimal loss value it achieves coincides with
the Bayes error [40,62], i.e., the irreducible error inherent
to the problem.
Supervised learning.—In SL (see Sec. II A), the optimal

predictions are given as

ŷoptSL ðxÞ ¼
PIðxÞ

PIðxÞ þ PIIðxÞ
∀ x ∈ T̄ ; ð9Þ

where

PIðxÞ ¼
XrI
k¼1

PkðxÞ ð10Þ

and

PIIðxÞ ¼
XK
k¼lII

PkðxÞ ð11Þ

are the (unnormalized) probabilities of drawing an input x
in region I and II, respectively. Hence, the optimal
prediction for a particular input corresponds to the prob-
ability of drawing that input in region I compared to
region II. Here, PkðxÞ denotes the (normalized) probability
to draw the input x at the sampled point pk. Given a dataset
Xk, this probability is estimated as PkðxÞ ≈MkðxÞ=M,
whereMkðxÞ is the number of times the input x is present in
the dataset X k. While having access to an analytical
expression for the underlying probability distributions
fPkðxÞgKk¼1 may ease computation and enable additional
insights, it is not strictly required to compute the optimal
predictions (see Sec. IV for application to physical sys-
tems). An expression for the optimal value of the loss in SL,
Lopt
SL , can be obtained by replacing ŷðxÞ with ŷoptSL ðxÞ in

Eq. (1), where, by definition, Lopt
SL ≤ LSL.

Assuming that all inputs within the entire dataset X are
already present in the training set T , i.e., T̄ ¼ X̄ , the mean
optimal prediction at a given point pk (1 ≤ k ≤ K) is

ŷoptSL ðpkÞ ¼
X
x∈X̄

PkðxÞŷoptðxÞ: ð12Þ

This corresponds to the probability of finding an input drawn
at that pointpk in region I compared to region II.We find this
assumption to be (approximately) satisfied for all physical
systems analyzed in this work and can estimate the errors
arising from a violation; see Sec. IV and Appendix A 2.
The optimal indicator of phase transitions in SL is then
given as

IoptSLðpkÞ ¼ −
∂ŷoptSLðpÞ

∂p

����
pk

: ð13Þ
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In general, the prediction in Eq. (12) changes most at a
transition point and, thus, its derivative, the optimal indicator
in Eq. (13), shows a peak.
Learning by confusion.—For a given bipartition of the

parameter range into regions I and II, the optimal pre-
dictions of LBC (see Sec. II B) are given as

ŷoptLBCðxÞ ¼
PIðxÞ

PIðxÞ þ PIIðxÞ
∀ x ∈ X̄ ; ð14Þ

which corresponds to the probability of drawing the input
in region I compared to region II. This characteristic is
inherent to the underlying classification task [compare
Eqs. (9) and (14)]. The mean classification error associated
with an input x is given by minfŷoptLBCðxÞ; 1 − ŷoptLBCðxÞg.
This classification error arises from a “confusion” of the
model: Different labels can be assigned to the same input
due to an overlap of the underlying probability distribu-
tions. The mean classification error over the entire param-
eter range given a particular choice of bipartition, i.e.,
labeling of the data, then corresponds to

IoptLBC ¼ 1 −
1

K

XK
k¼1

X
x∈X̄

PkðxÞ minfŷoptLBCðxÞ; 1 − ŷoptLBCðxÞg:

ð15Þ

This forms the optimal indicator for phase transitions in
LBC. An expression for the optimal value of the loss in
LBC, Lopt

LBC, can be obtained by replacing ŷðxÞ with
ŷoptLBCðxÞ in Eq. (4). The critical point pc is highlighted
by a dip in the mean classification error, i.e., by a peak in
the mean classification accuracy [Eq. (15)]. It corresponds
to the bipartition point for which the probability distribu-
tions underlying the two regions have the least overlap (on
average), resulting in the highest classification accuracy
and the least confusion. While confusion can arise due to
suboptimal predictions of models with restricted capacity
(see Appendix B 2 for a concrete example), we find that
confusion can persist even in the limit of high model
capacity if it is inherent to the underlying data. Based on the
analytical expressions, we thus gain an intuitive and
rigorous understanding of the concept of confusion under-
lying LBC [5].
Prediction-based method.—The optimal predictions

within PBM (see Sec. II C) are given as

ŷoptPBMðxÞ ¼
P

K
k¼1 PkðxÞpkP
K
k¼1 PkðxÞ

∀ x ∈ X̄ : ð16Þ

Here, the optimal prediction for a given input is obtained by
a weighted sum over each sampled point in the parameter
range, where the weight of a point corresponds to the
probability of obtaining the input at that point compared to
all other points along the parameter range. Therefore, the

prediction accuracy decreases if the same input can be
drawn at multiple values of the tuning parameter, i.e., when
the underlying probability distributions overlap. An expres-
sion for the optimal value of the loss in PBM, Lopt

PBM, can be
obtained by replacing ŷðxÞ by ŷoptPBMðxÞ in Eq. (6). The mean
prediction of an optimal modelmopt at a sampled point pk is
given by

ŷoptPBMðpkÞ ¼
X
x∈X̄

PkðxÞŷoptPBMðxÞ: ð17Þ

Thus, the optimal indicator for phase transitions is

IoptPBMðpkÞ ¼
∂δyoptPBMðpÞ

∂p

����
pk

; ð18Þ

where δyoptPBMðpkÞ ¼ ŷoptPBMðpkÞ − pk. Recall that, in PBM,
phase transitions are detected by analyzing the dependence
of the prediction error on the tuning parameter. The optimal
indicator [Eq. (18)] highlights the value of the tuning
parameter at which the mean predictions change most, i.e.,
where the overlap of the underlying probability distribu-
tions changes most. The optimal predictions and indicators
of PBM have previously been derived in Ref. [34] but have
neither been utilized in a numerical routine nor been used to
explain previous studies.
The optimal predictions of SL, LBC, and PBM can

solely be expressed in terms of the probability distributions
fPkðxÞgKk¼1 governing the input data. Crucially, this means
that the optimal predictions—and, thus, the optimal indica-
tors of phase transitions—do not depend on the particular
nature of an input or how similar it is to other inputs. Such
notions of similarity form the basis of a large set of other
phase-classification methods, e.g., based on principal
component analysis [13], diffusion maps [27], or anomaly
detection [32]. The analytical form of the optimal predic-
tions indicates that SL, LBC, and PBM ultimately gauge
changes in the probability distributions governing the data
akin to probability metrics [63]. Note that the same optimal
predictions and indicators are obtained for multiple choices
of representations R given that the same probability
distributions can still describe the data in the representation
space. Consequently, knowledge of the symmetries of the
system can be utilized to calculate indicators of phase
transitions more efficiently. We make use of this in Sec. IV.

A. Demonstration on prototypical
probability distributions

In this section, we compute the optimal indicators of SL,
LBC, and PBM for a set of simple probability distributions
governing the input data. The probability distributions
governing the data in physical systems can be regarded
as generalizations of the special cases discussed in this
section. Thus, they serve as a reasonable basis for
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understanding. We compare these results to the indicators
obtained by numerical optimization of NNs. The details on
the NN architecture and training, including the correspond-
ing hyperparameters, can be found in Appendix B. This
first demonstration shows how the analytical expressions
can be used to calculate the optimal indicator directly from
input data without NNs. Moreover, it confirms that the
optimal predictive models can be recovered by training
NNs with sufficient expressive power.
Case 1.—Let us first consider the case where the

probability distribution governing the data is identical
across the parameter range, i.e., PkðxÞ¼PðxÞ∀ 1≤k≤K.
Clearly, in this case, all three methods should indicate the
presence of a single phase. The optimal prediction in SL is

ŷoptSL ðpÞ ¼
KI

KI þ KII
¼ const; ð19Þ

corresponding to the relative size of region I compared to
region II [see Fig. 2(b)]. Here, KI ¼ rI and KII ¼ K − lII
correspond to the number of sampled parameter values in
region I or II, respectively. Taking the derivative of Eq. (19)
results in a flat indicator signal IoptSL ¼ 0. In LBC, the optimal
classification accuracy for a particular bipartition is given by
IoptLBC ¼ maxfKI=K;KII=Kg. This results in a characteristic
V shape [5], which has its minimum at the center of the
parameter range under consideration; see Fig. 2(c). In PBM,

the optimal mean prediction is also placed at the center of
mass ŷoptPBMðpkÞ ¼ 1=K

P
K
k¼1 pk ¼ const, which results in a

constant indicator IoptPBM ¼ −1 [see Fig. 2(d)]. As such, all
three methods yield optimal indicators that correctly signal
the presence of a single phase, i.e., the absence of two distinct
phases. For a concrete numerical demonstration, we consider
the case of binary inputs X̄ ¼ f0; 1g with equal probability
Pð0Þ ¼ Pð1Þ ¼ 0.5. Figures 2(a)–2(e) show the results for
all three methods using the analytical expressions as well as
NNs. The analytical predictions and indicators can be
approximated well using NNs as predictive models.
Case 2.—Next, we consider the case where the input

data naturally separate into two distinct sets. That is, the
underlying probability distributions result in a bipartition of
the parameter range into two regions A and B, where each
input can be drawn in only one of the two regions. In these
regions, we choose the probability distributions to be
identical:

PkðxÞ ¼
�
PAðxÞ∀ k ≤ c;

PBðxÞ∀ k > c;
ð20Þ

where 1 ≤ k; c ≤ K. This is a prototypical example for the
case where the physical system transitions from phase A to
B when crossing a critical value of the tuning parameter pc.

FIG. 2. Results for prototypical probability distributions in (a)–(e) case 1 with PkðxÞ ¼ PðxÞ ∀ k, where Pð0Þ ¼ Pð1Þ ¼ 0.5, (f)–(j)
case 2 given by Eq. (20) with PAð0Þ ¼ 1, PBð0Þ ¼ 0, and pc ¼ 1, and (k)–(o) case 3 with Eqs. (26) and (27). The tuning parameter
ranges from p1 ¼ 0.1 to pK ¼ 3 with Δp ¼ 0.05. Critical values of the tuning parameter are highlighted with red dashed lines. For
details on SL, LBC, and PBM using NNs, see Appendix B. (a),(f),(k) Illustration of the probability distributions underlying the data.
(b),(g),(l) Mean prediction ŷSLðpÞ obtained using the analytical expression (black solid line) or an NN (black dashed line), as well as the
corresponding indicator ISLðpÞ (blue lines). Here, we choose rI ¼ 1 and lII ¼ K. (c),(h),(m) The indicator of LBC, ILBC, obtained using
the analytical expression (black solid line) or an NN (black dashed line). (d),(i),(n) Mean prediction ŷPBMðpÞ of PBM obtained using
the analytical expression (black solid line) or an NN (black dashed line), as well as the corresponding indicator IPBMðpÞ (blue lines).
(e),(j),(o) Value of the loss function in LBC, LLBC, for each bipartition point pbp obtained using the analytical expression (black solid
line) or evaluated after NN training (black dashed line). In addition, the optimal values of the loss function for SL and PBM obtained by
evaluating the analytical expressions are reported. Note that, by definition, Lopt ≤ L for all three methods.
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Here, pc corresponds to a sampled value of the tuning
parameter, which may, in general, not be the case.
Using SL, the optimal strategy corresponds to

ŷoptSL ðpkÞ ¼
�
1∀ k ≤ c;

0∀ k > c:
ð21Þ

This results in

IoptSL ðpkÞ ¼

8>><
>>:

0∀ k < c;
1

2Δp ∀ k ∈ fc; cþ 1g;
0∀ k > cþ 1;

which diverges as Δp → 0 and exhibits a peak at the two
points which constitute the boundary between regions A
and B [see Fig. 2(g)]. Here, we approximate the derivative
in Eq. (13) by a symmetric difference quotient:

IoptSL ðpkÞ ≈ − ŷoptSL ðpkþ1Þ − ŷoptSL ðpk−1Þ
2Δp

; ð22Þ

where 2 ≤ k ≤ K − 1.
In LBC, one can reach a perfect (error-free) classification

when matching the natural bipartition present in the data.
Let us denote the region between the bipartition point
underlying the data, pc, and the chosen bipartition point in
the LBC scheme, pbp

k , as III. The number of sampled
parameter values within the smallest region between I, II,
and III is Km

k ¼ minfKI; KII; KIIIg. Note that all input data
drawn within one of these regions must be misclassified.
Thus, the optimal strategy which yields the smallest
classification error corresponds to misclassifying all input
data drawn within the smallest region. The optimal clas-
sification accuracy is then given as

IoptLBCðpbp
k Þ ¼ 1 −

Km
k

K
: ð23Þ

This results in a characteristic W shape of the indicator [5]
[see Fig. 2(h)], where the middle peak occurs at the
bipartition point pbp

k closest to pc.
In PBM, we have

ŷoptPBMðpkÞ¼
(hpiA¼1=c

P
c
j¼1pj∀ k≤c;

hpiB¼1=ðK−cÞPK
j¼cþ1pj∀ k>c;

ð24Þ

where hpiA=B denotes the center of region A and B,
respectively. This results in

IoptPBMðpkÞ ¼

8>><
>>:

−1∀ k < c;
hpiB−hpiA

2Δp ∀ k ∈ fc; cþ 1g;
−1∀ k > cþ 1;

ð25Þ

where we approximate the derivative in Eq. (18) by a
symmetric difference quotient [see Fig. 2(i)]. The expres-
sion in Eq. (25) diverges as Δp → 0 for k ∈ fc; cþ 1g and
results in a peak at the two points which constitute the
boundary between regions A and B. As such, the optimal
indicators of all three methods correctly indicate the
presence of two distinct sets of data, i.e., two distinct
phases. The results obtained using the analytical expres-
sions can be approximated well using NNs as predictive
models. This is illustrated in Figs. 2(f)–2(j), where we
consider the special case of binary inputs with PAð0Þ ¼ 1,
PBð0Þ ¼ 0, and pc ¼ 1.
Case 3.—Lastly, we consider the case where the prob-

ability distributions underlying the data do not overlap; i.e.,
the probability of drawing a given input at two distinct
values of the tuning parameter vanishes. This situation can,
for example, occur when dealing with large state spaces,
which are prone to result in insufficient sampling statistics
in practice. That is, even in scenarios where the ground-
truth probability distributions underlying the data do over-
lap, the estimated probabilities PkðxÞ ≈MkðxÞ=M based on
the drawn dataset X may not (see Appendix A 5 for a
concrete physical example). Many image classification
tasks encountered in traditional ML applications [64–70]
a priori fall into this category. In particular, the probability
distributions underlying the data are typically not known in
these cases. Therefore, constructing optimal models, in
particular, Bayes optimal models, largely remains concep-
tual in nature [62,71].
Here, an optimal predictive model is capable of distin-

guishing between samples obtained at distinct values of the
tuning parameter with perfect accuracy. This results in
IoptLBCðpbp

k Þ ¼ 1 ∀ 1 ≤ k ≤ K þ 1 for LBC [see Fig. 2(m)].
In the case of PBM, we have ŷoptPBMðpkÞ ¼ pk such that
IoptPBMðpkÞ ¼ −1 ∀ 1 ≤ k ≤ K [see Fig. 2(n)]. In both
cases, the indicator signals the absence of two distinct sets
of data, i.e., phases. The optimal predictions of SL for
x ∈ X̄ are underdetermined: Only the predictions for inputs
within the training data x ∈ T̄ are fixed after training, and
the assumption that X̄ ¼ T̄ is violated in this particular
case [see Fig. 2(l)]. Note, however, that the predictions are,
in principle, also unconstrained when using SL with NNs.
For a simple numerical example, we consider the case
where a single unique (scalar) input is drawn at each point
along the parameter range:

PkðxÞ ¼
�
1 for x ¼ fðpkÞ;
0 otherwise;

ð26Þ

with

fðpÞ ¼
�
5 − p∀ p ≤ 2;

2 − p∀ p > 2;
ð27Þ
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where 1 ≤ k ≤ K. The results are shown in Figs. 2(k)–2(o).
In practice, NNs tend to predict similar outputs for similar
inputs. The continuous nature of the NN results in SL
highlighting the value of the tuning parameter p ¼ 2 where
a discontinuity in the input data is present. We also observe
this tendency for the NNs in LBC and PBM during training.

B. Computational cost

We can use the analytical expressions to assess the
computational cost associated with the evaluation of the
mean optimal predictions and optimal indicators of SL,
LBC, and PBM for a given set of input data (see
Appendix A 3 for proofs). In our estimation, we neglect
the overhead arising from the computation of the proba-
bility distributions fPkðxÞgKk¼1 which is identical for all
three methods. In the case of SL, the computation of its
optimal predictions (as a function of the tuning parameter)
and indicator scales as OðMX̄KÞ. Here, we assume that the
number of sampled values of the tuning parameter during
training is small compared to the total number of sampled
points KI þ KII ≪ K. For PBM and LBC, the computation
scales asOðMX̄K

2Þ andOðMX̄K
3Þ, respectively. By saving

the optimal predictions for each input ŷoptðxÞ instead of
recomputing it, the computational cost can be reduced and
scales as OðMX̄KÞ, OðMX̄KÞ, and OðMX̄K

2Þ, in the case
of SL, PBM, and LBC, respectively. Note the appearance of
MX̄ , which can result in an exponential scaling for quantum
problems due to the exponential growth of the Hilbert space
H (and, thus, the state space MX̄ ).

IV. APPLICATION TO PHYSICAL SYSTEMS

In this section, we compute the optimal predictions and
indicators of phase transitions of SL, LBC, and PBM,
directly from data using the analytical expressions intro-
duced in Sec. III for the Ising model, Ising gauge theory,
XY model, XXZ model, Kitaev model, and Bose-Hubbard
model. For the classical systems, namely, the Ising model,
Ising gauge theory, and XY model, spin configurations are
sampled from a thermal distribution at various temperatures
Tk using the Metropolis-Hastings algorithm [72]. Here, the
temperature serves as a tuning parameter. The probability
that a system in equilibrium at inverse temperature βk ¼
1=kBTk (where kB is the Boltzmann constant) is found in a
state with spin configuration σ is given by a Boltzmann
distribution:

PkðσÞ ¼
e−βkHðσÞ

Zk
; ð28Þ

where Zk ¼
P

σ e
−βkHðσÞ is the partition function and H is

the respective system Hamiltonian. In principle, one could
use the raw spin configurations as input, i.e., estimate the
underlying probability distributions as PkðσÞ ¼ MkðσÞ=M.
However, the probability of drawing a particular spin

configuration depends only on its energy [see Eq. (28)].
One can show that the optimal predictions and indicators
remain identical when the energy is used as input instead of
the raw configurations, i.e., when the probability distribu-
tions governing the data are given by

PkðEÞ ¼
gðEÞe−βkE

Zk
; ð29Þ

where gðEÞ is the degeneracy factor (see Appendix A 4 for
a proof). Using the energy as input instead of the raw
configurations reduces both the input dimension and the
size of the associated state space. This, in turn, reduces the
cost of computing the optimal predictions and indicators. In
general, one can take advantage of the symmetries of the
system by adopting a symmetry-adapted representation.
In the quantum case, we are typically looking at a state

associated with a Hamiltonian HðpÞ that depends on the
tuning parameter p. This state could, for example, be the
ground state or a state which has undergone unitary time
evolution starting from a fixed initial state. Having chosen a
complete orthonormal basis fjjigdj¼1 to study the system
[d ¼ dimðHÞ], the relevant quantum state at pk can be
written as jΨki ¼

P
d
j¼1 cjkjji. Thus, the probability dis-

tribution Pk associated with a given value pk of the tuning
parameter is PkðjÞ ¼ jcjkj2 with 1 ≤ j ≤ d and 1 ≤ k ≤ K.
The value of PkðjÞ corresponds to the probability of
measuring the system in state jji given that the value of
the tuning parameter is pk. This corresponds to using the
indices of the basis states jji (1 ≤ j ≤ d) as inputs, which
are governed by the probability distributions fPkðjÞgKk¼1.
For simplicity, we choose MX̄ ¼ d. In the case of spin
systems, we use the Sz basis, whereas we choose the Fock
basis for bosonic and fermionic systems. This choice of
bases corresponds to experimentally accessible local mea-
surements [73–79]. In this work, we obtain the ground
states through exact diagonalization. Thus, we have direct
access to the underlying probability distributions and do
not rely on sampling. In Appendix A 5, we show that the
optimal indicators can also be obtained from individual
samples, i.e., measurement outcomes (similar to the
classical case). As such, the procedure is in principle
applicable to experimental scenarios.
In general, we can consider scenarios where a state jΨii

is drawn with probability akðiÞ at pk. Then, the relevant
quantum state is given by a classical probabilistic mixture
ρk ¼

P
i akðiÞjΨiihΨij; i ∈ N. The probability distribution

associated with such a state is PkðjÞ ¼
P

i akðiÞjcijj2. This
case is particularly relevant for the study of many-body
localization phase transitions where disorder is naturally
present (see Sec. IV F). Here, the tuning parameter pk itself
characterizes a distribution ak. Further details on the data
generation can be found in Appendix C.
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Clearly, in the quantum case, there is an ambiguity in the
choice of input or, equivalently, the choice of measurement
basis. Changing the measurement basis may change the
probability distributions underlying the data and, thus, the
corresponding optimal predictors and indicators. In turn,
the estimated critical value of the tuning parameter may
change (which is difficult to assess a priori for a given
system). In order to avoid an explicit choice of measure-
ment basis, sampling over various classical projections can
be performed. Classical representations of quantum states
obtained via classical shadow tomography [35,80,81] are
an example of this. Alternatively, measurements given by
informationally complete positive operator-valued mea-
sures (IC-POVMs) can be used [82,83]. However, projec-
tive measurements in a single basis have been the most
common choice, reflecting experimental constraints or
prior knowledge of the system [10,11,31,37,84,85].

A. Ising model

The two-dimensional square-lattice ferromagnetic Ising
model is described by the following Hamiltonian:

HðσÞ ¼ −J
X
hiji

σiσj; ð30Þ

where the sum runs over all nearest-neighboring sites (with
periodic boundary conditions) and J is the interaction
strength (J > 0). At each lattice site k, there is a discrete
spin variable σi ∈ fþ1;−1g. This results in a state space of

size 2L×L for a square lattice of linear size L. The system
is completely characterized by its spin configuration σ ¼
ðσ1; σ2;…; σL×LÞ. Two example spin configurations of
the Ising model at different temperatures are shown in
Fig. 3(a). The Ising model exhibits a symmetry-breaking
phase transition at a critical temperature of [86]

Tc ¼
2J

kB lnð1þ
ffiffiffi
2

p Þ : ð31Þ

The system undergoes a transition between a paramagnetic
(disordered) phase at high temperature and a ferromagnetic
(ordered) phase at low temperature. Spontaneous magneti-
zation occurs below the critical temperature Tc, where the
interaction is sufficiently strong to cause neighboring spins to
align spontaneously. This spontaneous symmetry breaking
leads to a nonzero mean magnetization. Above Tc, thermal
fluctuations dominate over spin alignment, resulting in a
vanishing magnetization. Consequently, the phase transition
can be characterized by the magnetizationMðσÞ ¼ P

L2

i¼1 σi,
whereM=L2 serves as an order parameter that is zero within
the paramagnetic phase and approaches one in the ferro-
magnetic phase; see Fig. 3(h). The phase transition can also
be revealed by the heat capacity

CðTÞ ¼ dhEiT
dT

¼ hE2iT − hEi2T
kBT2

; ð32Þ

which diverges at Tc [see Fig. 3(g)].

FIG. 3. Results for the Ising model (L ¼ 60) with the dimensionless temperature as a tuning parameter p ¼ kBT=J, where p1 ¼ 0.05,
pK ¼ 10, and Δp ¼ 0.05. In SL, the data obtained at p1 and pK constitute our training set, i.e., rI ¼ 1 and lII ¼ K. The critical
temperature [Eq. (31)] is highlighted by a red dashed line. (a) Illustration of the symmetry-breaking phase transition in the Ising model.
(b) Mean optimal prediction ŷoptSL in SL (black line) and the corresponding indicator IoptSL (blue line). (c) Optimal indicator of LBC, IoptLBC

(black line). (d) Mean optimal prediction ŷoptPBM in PBM (black line) and the corresponding indicator IoptPBM (blue line). (e) Estimated
critical temperatures based on IoptSL (SL), IoptLBC (LBC), IoptPBM (PBM), and heat capacity (C) as a function of the lattice size L. The estimated
critical temperature based on the heat capacity corresponds to the location of its maximum. (f) Probability distributions governing the
input data (here, the energy) as a function of the tuning parameter, where the color scale denotes the probability. The blue dashed line
highlights the predicted critical temperature of SL and PBM. (g) Average energy per site (black line) and associated heat capacity (blue
line) as a function of the temperature, where N ¼ L2. (h) Average magnetization per site as a function of the temperature.
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The results for the Ising model are shown in Fig. 3.
Interestingly, SL fails to predict the correct critical temper-
ature even for large lattices [see Figs. 3(b) and 3(e)]. In fact,
we can further analyze the special case when the inputs are
governed by Boltzmann distributions [Eq. (29)]: For train-
ing data obtained at T1 ¼ 0 (region I) and TK > 0 (region
II), the mean optimal prediction of SL at an intermediate
temperature Tk is

ŷoptSL ðTkÞ ¼
PkðEgsÞ

1þ PKðEgsÞ
∝ PkðEgsÞ; ð33Þ

which approaches PkðEgsÞ in the thermodynamic limit as
TK → ∞ (see Appendix A 4 for a proof). Here, Egs denotes
the ground-state energy. Therefore, in this case, the optimal
indicator in SL peaks at the temperature at which the
probability of drawing the ground state changes most [see
the blue dashed line in Fig. 3(f)]. The location of the peak
tends to zero as one approaches the thermodynamic limit;
see Fig. 3(e).
The optimal indicator of PBM shows two distinct peaks.

One coincides with the peak of the optimal indicator in SL,
whereas the other coincides with the critical temperature of
the Ising model [see Fig. 3(d)]. This observation suggests a
deeper connection between SL and PBM. A similar
indicator signal (with two distinct peaks) is observed in
Ref. [29] with NNs after a sufficient number of training
epochs. In principle, the finite-size scaling analysis allows
one to identify the dominant peak as erroneous without
prior knowledge of Tc, because it shifts toward T ¼ 0 as
the lattice size is increased, whereas the small peak remains
stable. In the same fashion, the output of SL can be
identified to be erroneous. Note that the fluctuations present
in the optimal indicator signal of PBM can be attributed to
finite-sample statistics. A detailed study of the effect of
finite-sample statistics on the optimal predictions and
indicators can be found in Appendix A 5. Crucially, the
analytical expression for the optimal indicator signal allows
us to disentangle the stochasticity inherent to the NN
training from other sources of noise, which was not
rigorously possible in previous works.
In Ref. [4], SL with NNs is shown to predict the critical

temperature of the Ising model for various lattice sizes
correctly. In this case, small NNs with restricted expressive
power in combination with l2 regularization are used.
Similarly, using PBM in Ref. [29] a single, distinct peak at
Tc is observed after a small number of training epochs with
a second peak emerging after longer training. Training
time, NN size, and explicit l2 regularization are all factors
which influence the effective capacity of the resulting
model and, thus, determine its ability to approximate the
optimal predictive model [40,41], i.e., to realize the global
minimum of the loss function corresponding to the optimal
predictions and indicators. We recover the same behavior
using NNs as in Refs. [4,29] by restricting the model

capacity, e.g., by choosing a small NN, stopping the
training early, or using strong l2 regularization (see
Appendix B 1 for details). As these restrictions are lifted,
i.e., by choosing a larger NN, training for longer, or
reducing the regularization strength, the NN-based predic-
tions and indicators approach the corresponding optimal
predictions and indicators displayed in Fig. 3. Thus, our
analysis demonstrates that SL and PBM necessarily rely on
models with restricted capacity and hyperparameter tuning
to correctly predict the critical temperature of the Ising
model.
Finally, the optimal indicator of LBC correctly highlights

the critical temperature of the Ising model for various lattice
sizes in accordance with Ref. [5]; see Figs. 3(c) and 3(e).
Overall, the optimal indicators of all three methods show
peaks at temperatures where the probability distribution
underlying the data varies strongly. Recall the finding from
Sec. III that all three methods gauge changes in the
probability distributions underlying the data. Note that the
results shown in Fig. 3 are stable against small perturbations
of the chosen parameter range, including regions I and II
in SL.

B. Ising gauge theory

Wegner’s Ising gauge theory (IGT) [88] is described by
the following Hamiltonian:

HðσÞ ¼ −J
X
P

Y
i∈P

σi; ð34Þ

where P refers to plaquettes on the lattice; see Fig. 4(a).
The IGT is a prototypical example of a classical system that
exhibits a topological phase of matter [89]. It is a spin
model (σi ∈ fþ1;−1g) defined on a square lattice of linear
size L (with periodic boundary conditions) where the spins
are placed on the lattice bonds [see Fig. 4(a)]. The IGT
ground state is a degenerate manifold made up of all states
which fulfill the condition that the product of spins on each
plaquette is

Q
i∈P σi ¼ 1 corresponding to a topological

phase. These topological constraints can be violated at
finite temperature, where the system leaves its ground state.
Note that there is no phase transition at finite temperature:
The critical temperature approaches zero in the thermody-
namic limit. In finite-sized systems, however, the violations
of local constraints are suppressed. Therefore, the system
exhibits a crossover from the topological phase at low
temperature to a phase with violated topological constraints
at high temperature. The crossover temperature Tc is
defined by the first appearance of a violated local constraint
and scales as Tc ∝ 1= lnð2L2Þ [87]. Figure 4(a), which
shows typical spin configurations of the IGT, highlights
that the phases of the IGT are hard to distinguish visually
without prior knowledge of the local constraints or a dual
representation [4,31]. Note that the heat capacity fails to
identify the crossover; see Fig. 4(f). The topological

REPLACING NEURAL NETWORKS BY OPTIMAL ANALYTICAL … PHYS. REV. X 12, 031044 (2022)

031044-11



character of the ground-state phase can be revealed through
Wilson loops. These are formed by connecting edges with
spins of the same orientation; see Fig. 4(a). In the ground-
state phase, all such loops are closed. The violation of a
plaquette constraint breaks a loop.
Recall that SL, LBC, and PBM are a priori sensitive to

both phase transitions and crossovers. The results for the
crossover in the IGT are shown in Fig. 4. The optimal
indicator of SL [Fig. 4(b)] shows an appropriate scaling
behavior. Moreover, the corresponding estimated critical
temperature highlights the first appearance of violated local
constraints; see Figs. 4(e) and 4(f). This can be confirmed
explicitly, as SL can be shown to measure changes in the
probability of drawing the ground state (cf. Sec. IVA).
Observe that the underlying probability distribution
undergoes a large change at the crossover temperature;
see Fig. 4(e). In Refs. [4,31], SL and PBM are shown to
correctly highlight the crossover temperature of the IGT
using NNs. In fact, the optimal model underlying PBM for
the IGT coincides with the physically motivated density-of-
states-based model proposed in Ref. [31]; see Appendix D
2 for details. We find that the optimal indicator of PBM
correctly marks the crossover temperature of the IGT
except at small lattice sizes. As for the Ising model, the
optimal indicator of PBM exhibits two peaks in this case.
The peak located at the crossover temperature dominates
for large lattice sizes. Note that for the IGT it is not

beneficial to reduce the model capacity when using PBM or
SL, which leads to an erroneous peak closely matching the
specific heat [see Fig. 4(f)], given that the corresponding
optimal indicators correctly highlight the crossover
temperature.
The optimal indicator of LBC correctly highlights the

crossover temperature via its local maximum at small lattice
sizes but shows slight deviations from the appropriate
scaling behavior for large lattices. Reference [31] reports
difficulties in identifying the crossover temperature using
LBC due to a distorted W shape of its indicator. Choosing
the same range for the tuning parameter, we can qualita-
tively reproduce their results using our analytical expres-
sion for the optimal indicator of LBC; see Appendix D 2.
Using NNs, it is difficult to make concrete statements on
whether a method succeeds or fails at identifying a given
phase transition due to the inherent stochasticity arising
during NN training and the choice of hyperparameters,
such as the NN size. Our theoretical analysis allows for
rigorous statements to be made about the optimal outcome
when applying ML methods for detecting phase transitions
to a given system (i.e., dataset). In this particular example,
the analytical expressions allow us to determine that, when
training highly expressive NNs for sufficiently long, the
indicator signal of LBC is indeed ambiguous (as reported in
Ref. [31]). Note that restricting the model capacity is not
found to resolve this issue [31].

FIG. 4. Results for the IGT (L ¼ 28) with the dimensionless temperature as a tuning parameter p ¼ kBT=J, where p1 ¼ 0.05,
pK ¼ 5, and Δp ¼ 0.05. In SL, the data obtained at p1 and pK constitute our training set, i.e., rI ¼ 1 and lII ¼ K. The crossover
temperature is highlighted by a red dashed line and scales as kBTc=J ∝ 1= lnð2L2Þ [87]. (a) Upper panels show examples of plaquettes P
where the topological constraint is met (

Q
i∈P σi ¼ 1) and violated (

Q
i∈P σi ¼ −1). Middle panels show examples of spin

configurations within the topological ground-state phase (left) and phase with violated topological constraints at high temperature
(right). Lower panels show the corresponding Wilson loops. (b) Mean optimal prediction ŷoptSL in SL (black line) and the corresponding
indicator IoptSL (blue line). (c) Optimal indicator of LBC, IoptLBC (black line). (d) Mean optimal prediction ŷoptPBM in PBM (black line) and the
corresponding indicator IoptPBM (blue line). (e) Probability distributions governing the input data (here, the energy) as a function of the
tuning parameter, where the color scale depicts the probability. (f) Average energy per site (black line) and associated heat capacity (blue
line) as a function of the temperature, where N ¼ 2L2. Note that the heat capacity does not peak at the crossover temperature.
(g) Estimated critical temperature based on IoptSL (SL), IoptLBC (LBC), and IoptPBM (PBM) as a function of the lattice size L.
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C. XY model

Next, we consider the two-dimensional classical XY
model that exhibits a Berezinskii-Kosterlitz-Thouless
(BKT) transition driven by the emergence of topological
defects [90,91]. The model is described by the following
Hamiltonian:

H ¼ −J
X
hiji

cosðθi − θjÞ; ð35Þ

where hiji denotes the sum over nearest neighbors (with
periodic boundary conditions) of a square lattice of linear size
L. The angle θi ∈ ½0; 2πÞ corresponds to the orientation of
the spin at site i. The formation of topological defects (i.e.,
vortices and antivortices) results in a quasi-long-range-
ordered phase. The transition between the quasi-long-
range-ordered phase at low temperature and a disordered
phase at high temperature is a BKT transition, and the
associated critical temperature is kBTc=J ≈ 0.8935 [92].
Below Tc, vortex-antivortex pairs form due to thermal
fluctuations, but they remain bound to minimize their total
free energy [see Fig. 5(a)]. At Tc, the entropic contribution to
the free energy equals the binding energy of a pair which
triggers vortex unbinding. These unbinding events drive the
BKT phase transition. Note that the heat capacity has a peak
atT > Tcwhich is associatedwith the entropy releasedwhen

most vortex pairs unbind [93,94]; see Fig. 5(g). Moreover,
while the XY model has strictly zero magnetization for all
T > 0 in the thermodynamic limit, a nonzero value is found
for systems of finite size [95]; see Fig. 5(h). Instead, the
critical temperature can, for example, be estimated based on
the helicity modulus [94,96] (see Appendix C).
The results for the XY model are shown in Fig. 5. Here,

SL fails to predict the critical temperature correctly. This
failure is linked to the fact that the optimal indicator of SL
highlights changes in the probability to obtain the ground
state (cf. Sec. IVA), which quickly vanishes with increas-
ing temperature; see Fig. 5(f). In a similar spirit, in Ref. [23]
it is found that “naive” SL (without engineering the features
or NN architecture) fails to yield accurate estimates of the
critical temperature. Here, we explicitly confirm that a
classification based on detecting vortices does not corre-
spond to the most optimal strategy. The peak in the optimal
indicator of LBC matches the peak in the heat capacity at
kBT=J ≈ 1 [see Figs. 5(c) and 5(e)] and, thus, overestimates
the critical temperature of the XY model. In Ref. [23],
indicator signals of similar shape are obtained using LBC
with NNs for the XY model. The rapid decrease in the
optimal indicator of LBC for kBT=J ≳ 1 can be attributed
to the increase in the overlap of the underlying probability
distributions [Fig. 5(f)], which results in a higher classi-
fication error. Note that the overlap of the probability

FIG. 5. Results for the XY model (L ¼ 60) with the dimensionless temperature as a tuning parameter p ¼ kBT=J, where p1 ¼ 0.025,
pK ¼ 2.5, andΔp ¼ 0.025. In SL, the data obtained at p1 and pK constitute our training set, i.e., rI ¼ 1 and lII ¼ K. The BKT transition
temperature kBTc=J ≈ 0.8935 [92] is highlighted by a red dashed line. The blue dashed line highlights the estimated critical temperature
using LBC. (a) Illustration of the BKT phase transition in the XY model. (b) Mean optimal prediction ŷoptSL in SL (black line) and the
corresponding indicator IoptSL (blue line). (c) Optimal indicator of LBC, IoptLBC (black line). The blue dashed line highlights the predicted
critical temperature of LBC. (d) Mean optimal prediction ŷoptPBM in PBM (black line) and the corresponding indicator IoptPBM (blue line).
The inset shows the optimal indicator signal of PBM for L ¼ 10, which exhibits a peak near the location of the maximum in the heat
capacity. (e) Estimated critical temperature based on IoptSL (SL), IoptLBC (LBC), IoptPBM (PBM), and heat capacity (C) as a function of the lattice
size L. The estimated critical temperature of the heat capacity corresponds to the location of its maximum. (f) Probability distributions
governing the input data (here, the energy) as a function of the tuning parameter, where the color scale denotes the probability. The inset
shows the probability distributions for L ¼ 10. (g) Average energy per site (black line) and associated heat capacity (blue line) as a
function of the temperature, where N ¼ L2. (h) Average magnetization per site as a function of the temperature.
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distributions decreases with increasing lattice size; see
Fig. 5(f). Hence, the indicator of PBM [Fig. 5(d)] shows
a clear peak close to the location of the peak in the heat
capacity for small lattice sizes. For systems of increasing
size, the optimal predictions of PBM start to closely match
the underlying tuning parameter, resulting in an increas-
ingly linear behavior [see the black line in Fig. 5(d)]. This
corresponds to an optimal indicator signal close to zero,
where the variations in the predicted critical value of
the tuning parameter [Fig. 5(e)] are due to small local
fluctuations.
Overall, the behavior of the optimal indicators of all

three methods closely resembles our previous example
regarding perfectly distinguishable input data (see case 3 in
Sec. III A). This can be traced back to the small overlap of
the underlying probability distributions; see Fig. 5(f). The
increase in the overlap with increasing temperature results
in a decrease in the mean classification accuracy of LBC,
i.e., its indicator [see Fig. 5(c)]. Evidently, in such a case,
NNs with restricted expressive power and other phase-
classification methods based on the similarity of input
data [27] may provide more valuable insights. In particular,
we find that the indicators peak close to the transition
temperature, i.e., near the location of the peak in the heat
capacity and drop in the magnetization, when restricting the
model capacity, e.g., by stopping the NN training early (see
Appendix B). Recall that this is also observed in the case of
the Ising model (see Sec. IVA and Appendix B).

D. XXZ model

Having discussed classical models, we move on to the
quantum case. First, we consider the spin-1/2 XXZ
chain [97,98] with open boundary conditions whose
Hamiltonian is given by

H ¼
XL−1
i¼1

JðSxiþ1S
x
i þ Syiþ1S

y
i Þ þ ΔSziþ1S

z
i ; ð36Þ

where J is the coupling strength along the x and y directions
and Δ is the coupling strength in the z direction. For
Δ=J < 1, the XXZ chain is in the ferromagnetic phase;
see Fig. 6(a). The ground state is spanned by the two product
states where all spins point in either the z or −z direction
which have a magnetization of hMi ¼ 2hSztoti ¼ �L. The
ferromagnetic phase exhibits a broken symmetry: These
states do not exhibit the discrete symmetry of spin reflection
Szi → −Szi under which the Hamiltonian is invariant. For
Δ=J > 1, the XXZ chain is in the antiferromagnetic phase
with broken symmetry and two degenerate ground states.
These are product states with vanishing magnetization.
For −1 < Δ=J < 1, the XXZ chain is in the paramagnetic
XY phase characterized by uniaxial symmetry of the easy-
plane type and vanishing magnetization.
Here, we restrict our analysis to the transition between

the ferromagnetic phase and the paramagnetic XY phase.
The ground states are obtained through exact

FIG. 6. Results for the XXZ chain (L ¼ 14) with the dimensionless anisotropy strength along the z direction as the tuning parameter
p ¼ Δ=J, where p1 ¼ −2, pK ¼ 0, and Δp ¼ 0.01. In SL, the data obtained at p1 and pK constitute our training set, i.e., rI ¼ 1 and
lII ¼ K. The critical value of the tuning parameter Δ=J ¼ −1 at which the phase transition between the ferromagnetic phase and
paramagnetic XY phase occurs is highlighted by a red dashed line. (a) Illustration of the quantum phase transitions of the XXZ chain.
(b) Mean optimal prediction ŷoptSL in SL (black line) and the corresponding indicator IoptSL (blue line). (c) Optimal indicator of LBC, IoptLBC

(black line). (d) Mean optimal prediction ŷoptPBM in PBM (black line) and the corresponding indicator IoptPBM (blue line). (e) Probability
distributions governing the input data (indices of Sz basis states) as a function of the tuning parameter, where the color scale denotes the
probability. The color scale is cut off at 10−10 to improve visual clarity. (f) Average magnetization per site (black line), where N ¼ L.
(g) Estimated critical value of the tuning parameter based on IoptSL (SL), IoptLBC (LBC), and IoptPBM (PBM) as a function of the chain length L.
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diagonalization. Figure 6 shows the results when the
ground state with hSztoti ¼ þL=2 is selected in the ferro-
magnetic phase and Sz is chosen as a measurement basis.
The quantum phase transition can be revealed by looking at
the magnetization; see Fig. 6(f). The optimal indicators of
all three methods correctly highlight the phase transition.
Looking at the underlying probability distributions [see
Fig. 6(e)], the problem closely resembles the prototypical
case of a bipartitioned dataset (see case 2 in Sec. III A).
Thus, the optimal predictions and indicators also qualita-
tively match the results obtained in this case. In particular,
the optimal predictions of SL can be described by Eq. (33),
where the ferromagnetic ground state takes the role of the
ground-state energy (see Appendix A 4 for proof). We have
verified that the optimal indicators also mark the phase
transition when other states from the ground-state manifold
are selected in the ferromagnetic phase and when mea-
surements are performed in the Sx or Sy basis.

E. Kitaev model

The Kitaev chain is a one-dimensional model based on L
spinless fermions, which undergoes a quantum phase
transition between a topologically trivial and nontrivial
phase [99,100]. The Kitaev Hamiltonian is given by

H ¼
XL−1
i¼1

ðΔciþ1ci − tc†iþ1ci þ H:c:Þ − μ
XL
i¼1

ni; ð37Þ

where we consider open boundary conditions, μ is the
chemical potential, t is the hopping amplitude, and Δ is the
induced superconducting gap. In the following, we set
Δ ¼ −t. The ground state of this model features a quantum
phase transition from a topologically trivial (jμ=tj > 2) to a
nontrivial state (jμ=tj < 2); see Fig. 7(a). In the topological
phase, Majorana zero modes [101] are present. Here, we
restrict ourselves to μ=t ≤ 0. We compute the ground states
through exact diagonalization. For results based on indi-
vidual measurement outcomes (of projective measurements
in the Fock basis), see Appendix A 5.
The topologically trivial and nontrivial phase can be

distinguished through entanglement spectra and the corre-
sponding entanglement entropy [102]. Consider the
reduced density matrix ρA of a system in the pure state
jΨi obtained by subdividing the Hilbert space H into two
parts, A and B, and tracing out the degrees of freedom of B:

ρA ¼ TrBjΨihΨj; ð38Þ
with fλig the spectrum of ρA and f− lnðλiÞg the entangle-
ment spectrum. Here, we consider the bipartition of the

FIG. 7. Results for the Kitaev chain (L ¼ 20) with the dimensionless chemical potential as a tuning parameter p ¼ μ=t, where
p1 ¼ −6, pK ¼ 0, and Δp ¼ 0.06. In SL, the data obtained at p1 and pK constitute our training set, i.e., rI ¼ 1 and lII ¼ K. The critical
value μc=t ¼ −2 is highlighted by a red dashed line. (a) Illustration of the phase transition in the Kitaev chain between a topological and
trivial phase, where the Majorana operators γi;1 and γi;2 are defined by ci ¼ ðγi;1 þ iγi;2Þ=

ffiffiffi
2

p
, c†i ¼ ðγi;1 − iγi;2Þ=

ffiffiffi
2

p
. (b) Mean optimal

prediction ŷoptSL in SL (black line) and the corresponding indicator IoptSL (blue line). (c) Optimal indicator of LBC, IoptLBC (black line).
(d) Mean optimal prediction ŷoptPBM in PBM (black line) and the corresponding indicator IoptPBM (blue line). (e) Estimated critical value of
the tuning parameter based on IoptSL (SL), IoptLBC (LBC), IoptPBM (PBM), and the derivative of the largest eigenvalue of the reduced density
matrix [see the black line in (g)] given by ∂λ=∂p (∂λ), as a function of the chain length L. The estimated critical value of the tuning
parameter denoted by ∂λ corresponds to the location of the minimum in ∂λ=∂p. (f) Probability distributions governing the input data
(indices of Fock basis states) as a function of the tuning parameter, where the color scale denotes the probability. The color scale is cut
off at 10−14 to improve visual clarity. (g) The three largest eigenvalues of ρA [Eq. (38)] as a function of the tuning parameter.
(h) Entanglement entropy Sent [Eq. (39)] (black line) and its derivative with respect to the tuning parameter ∂Sent=∂p (blue line).
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chain into left and right halves with LA ¼ LB ¼ L=2. The
entanglement entropy can then be computed as

SentðρAÞ ¼ −
X
i

λi lnðλiÞ: ð39Þ

The three largest eigenvalues of ρA are shown in Fig. 7(g),
and the resulting entanglement entropy is shown in Fig. 7(h).
Both the spectrum and entanglement entropy exhibit
the largest change close to the critical value μc=t ¼ −2.
The entanglement entropy approaches zero deep within the
topologically trivial phase, signaling that the two halves of
the ground state of the chain are not entangled. In the
topological phase, the entanglement entropy approaches a
value of ln(2) characteristic of an entangled ground state.
Figure 7 shows the results of SL, LBC, and PBM. The

location of the local maxima of the optimal indicators based
on all three methods converges to the critical value of μc=t ¼
−2with increasing chain length. Considering the probability
distributions governing the input data [see Fig. 7(f)], we
observe that almost all basis states become occupied with
non-negligible probability as the tuning parameter μ=t is
tuned across its critical value. Note that, in Ref. [5], the phase
transition in the Kitaev model is successfully revealed using
LBC with NNs where the entanglement spectrum of the

ground state serves as an input. The scaling behavior of the
estimated critical value of the tuning parameter based on the
optimal indicators of SL, LBC, and PBM is comparable to
standard physical indicators, such as the eigenvalues of the
reduced density matrix or the entanglement entropy [see
Fig. 7(e)]. In the limit μ=t → −∞, the ground state of the
Kitaev chain corresponds to the Fock state with each site
being occupied. Thus, in the limit μ1=t → −∞, the optimal
predictions of SL follow Eq. (33), where the aforementioned
Fock state takes the role of the ground-state energy (see
Appendix A 4 for proof).

F. Bose-Hubbard model

Finally, we consider the many-body localization (MBL)
phase transition in the 1D Bose-Hubbard model (with open
boundary conditions) following Refs. [10,75,76]. The
system is described by the Hamiltonian

H ¼ −J
XL−1
i¼1

ðb†iþ1bi þ H:c:Þ þ
XL
i¼1

U
2
niðni − 1Þ þWhini;

ð40Þ
where J is the hopping strength and U is the on-
site interaction strength [see the top panel in Fig. 8(a)].

FIG. 8. Results for the MBL phase transition in the 1D Bose-Hubbard model (L ¼ 8) with the dimensionless disorder strength as a
tuning parameter p ¼ W=J ranging from p1 ¼ 0.1 to pK ¼ 20 in steps of Δp ¼ 0.1. Here, 1.1 × 103 different disorder realizations are
considered. In SL, the data obtained at p1 and pK constitute our training set, i.e., rI ¼ 1 and lII ¼ K. The reference range for the critical
value of the tuning parameter Wc=J ≈ 4–7 [10,76] at which the phase transition between the thermalizing and MBL phase occurs is
highlighted in red. (a) Illustration of the 1D Bose-Hubbard model [Eq. (40)] (top) and the MBL phase transition (bottom), where the
system is initialized in a Mott-insulating state. (b) Mean optimal prediction ŷoptSL in SL (black line) and the corresponding indicator IoptSL

(blue line). (c) Optimal indicator of LBC IoptLBC (black line). (d) Mean optimal prediction ŷoptPBM in PBM (black line) and the corresponding
indicator IoptPBM (blue line). (e) Probability distributions governing the input data (indices of Fock basis states with Nb ¼ 8 particles) as a
function of the tuning parameter, where the color scale denotes the probability. The color scale is cut off at 10−9 to improve visual clarity.
The blue dashed line highlights the initial Mott-insulating state. (f) Disorder-averaged retrieval probability Pretr as a function of the
tuning parameter corresponding to the line cut marked in (e). (g) Average ratio of consecutive level spacings hri for a chain of length
L ¼ 6 (blue line) and L ¼ 8 (black line) with reference values rGOE ¼ 0.5307 (green dashed line) and rPoisson ¼ 2 lnð2Þ − 1 ≈ 0.3863
(gray dashed line). We consider all eigenstates located in the middle one-third of the spectrum [76,103] restricted to subspace with
Nb ¼ L particles and additionally average over multiple disorder realizations (1 × 104 for L ¼ 6 and 1.1 × 103 for L ¼ 8).
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Here, we fix U=J ¼ 2.9. The last term in Eq. (40) cor-
responds to a quasiperiodic potential hi ¼ cosð2παiþ ϕÞ
mimicking on-site disorder with amplitudeW, where we fix
1=α ¼ 1.618. This system transitions to the MBL phase,
where thermalization breaks down as the disorder strength
is increased beyond a critical value Wc=J; see the bottom
panel in Fig. 8(a). We analyze the system in the long-time
limit tJ ¼ 100 after unitary time evolution starting from a
Mott-insulating state with one particle per site by solving
the Schrödinger equation numerically. We average over
different disorder realizations obtained by sampling the
phase ϕ ∈ ½0; 2πÞ of the potential uniformly.
A popular way to differentiate between the thermalizing

and MBL regimes relies on the study of spectral statistics
using tools from random matrix theory [103–105]. In the
thermal regime, the statistical distribution of level spacings
is given by a Gaussian orthogonal ensemble (GOE), while a
Poisson distribution is expected for localized states. The
ratio of consecutive level spacings is

ri ¼
minðδi; δiþ1Þ
maxðδi; δiþ1Þ

; ð41Þ

with δi ¼ Ei − Ei−1 at a given eigenenergy Ei. Averaging
over the spectrum and multiple disorder realizations yields
hri, which varies from rGOE ¼ 0.5307 within the thermal-
izing phase to rPoisson ¼ 2 lnð2Þ − 1 ≈ 0.3863 within the
MBL phase; see Fig. 8(g).
The results are shown inFig. 8.All threemethods correctly

identify the MBL phase boundary, where we take Wc=J ≈
4–7 from Refs. [10,76] as a reference. This is in agreement
with the spectral analysis: The crossover between the average
ratio of consecutive level spacings for systems of size L ¼ 6
and L ¼ 8 is located at Wc=J ≈ 4; see Fig. 8(g). Moreover,
the phase boundary marks the range of the tuning parameter
in which the most significant change in the underlying
probability distribution occurs [see Fig. 8(e)]. A line cut
along the index corresponding to the initial Mott-insulating
state is shown in Fig. 8(f). It corresponds to the disorder-
averaged probability of retrieving the initial state after unitary
time evolution. The MBL phase boundary is marked by the
sudden increase in Pretr [75] which is correctly picked up by
SL, LBC, and PBM.
Our results are also in agreement with Ref. [10], which

examines the MBL phase transition within the same model
using SL, PBM, and LBC with NNs on numerical and
experimental data. As such, this example highlights the
possibility of calculating optimal indicators directly from
experimental data. Note that, in Ref. [10], the authors
attempt to construct a simplified indicator for phase
transitions when using LBC by subtracting the V-shaped
indicator signal in the case of indistinguishable data (see
case 1 in Sec. III A) as a baseline. However, we find that
this procedure biases the peak of the optimal indicator
signal of LBC toward the center of the parameter range

under consideration and is, thus, not a viable procedure; see
Appendix D 3.

V. DISCUSSION

In the previous section, we have demonstrated that the
optimal indicators of SL, LBC, and PBM successfully detect
phase transitions and crossovers in a variety of different
classical and quantum systems based on numerical data.
Recall that the optimal analytical predictors correspond to an
optimal model that reaches the global minimum of the loss
function.Apriori, it is unclear if the optimal predictors can be
recovered in practice when training NNs, because the
employed NNs are of finite size and local optimization
techniques are used. In Appendix B, we demonstrate that the
optimal predictions and indicators of all six systems studied
in Sec. IV can be recovered by training NNs. This reach-
ability further underpins the practical relevance of our
analysis for the case when using SL, LBC, and PBM
with NNs.
In a traditional NN-based approach, one searches for the

optimal model by iteratively updating the parameters of an
NN in order to minimize a loss function (see step 2 in
Fig. 1). In contrast, our numerical routine based on the
derived analytical expressions allows for the optimal model
to be constructed directly from data (see step 2* in Fig. 1).
As such, evaluating the analytical predictors also compares
favorably to the NN-based approach in terms of compu-
tation time. For each of the three methods and across all six
studied physical systems, we find that the time needed to
train an NN of minimal size (one hidden layer with a single
node) for a single epoch is of the same order of magnitude
as the time needed to compute the optimal predictions,
optimal indicator, and optimal loss (see Table I). Therefore,
the computation time associated with constructing and
evaluating an optimal model is at worst comparable with
training and evaluating an NN-based model. In practice,
however, the latter approach typically requires significantly
more computation time, because larger NNs need to be
used, the training takes many epochs, and hyperparameters
need to be adjusted (see Appendix B for a detailed
discussion). In particular, as the system size increases
and the associated state space grows, converging to the
global minimum of the loss function can become increas-
ingly difficult. The convergence of the optimal model, on
the other hand, is guaranteed by construction.
In Sec. IV, we have observed that the optimal indicator of

a given method may fail to correctly highlight a phase
transition. A failure can, for example, occur if only a
limited amount of data is available and finite-sample
statistics dominate. In this case, while the ground-truth
probability distributions underlying the data show a sig-
nificant overlap resulting in a peak in the indicator signal,
the inferred probability distributions do not (see
Appendix A 5 for a concrete example). However, even if
the dataset is sufficiently large, i.e., the ground-truth
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probability distributions are well approximated, the optimal
model can fail (see classical systems in Sec. IV for
examples). Both instances of failure can often be resolved
by employing nonoptimal models. Such a model can be
realized by an NN whose capacity, i.e., its ability to fit a
wide variety of functions [40,41], is restricted. This can be
achieved, e.g., by reducing the NN size, performing early
stopping, or the explicit addition of l2 regularization (see
Appendixes B 1 and B 2). In these instances, other phase-
classification methods which are inherently based on the
similarity of input data [13,27,32,34] are also expected to
provide valuable insights. These methods stand in contrast
to the optimal predictors of SL, LBC, and PBM, which are
not explicitly based on learning order parameters, i.e.,
recognizing prevalent patterns or orderings. Instead, the
optimal predictors gauge changes in the probability dis-
tributions governing the data. Contrary to popular opinion,
the failure of optimal models, or, equivalently, high-capacity
NNs, does not always correspond to overfitting in the
traditional sense [40]: The gap between training and test
loss vanishes in the limit of a sufficiently large dataset (which
is available for the examples discussed inSec. IV).Therefore,
suboptimal models, such as NNs with insufficient capacity,
are, in fact, underfitting the data. This signals a fundamental
mismatch between the classification or regression task
underlying a particular ML method, i.e., the corresponding
loss function, and the goal of detecting phase transitions. In
particular, it raises the intriguing question ofwhether one can
adjust the learning task in SL, PBM, and LBC such that the
corresponding optimal models also correctly highlight the
phase transition in these problematic cases, e.g., through an
appropriate modification of the underlying loss functions or
by enforcing explicit constraints.

VI. CONCLUSION AND OUTLOOK

The ML methods for detecting phase transitions from
data given by SL, LBC, and PBM can be viewed under a
unifying light: All three approaches have predictive
models, such as NNs, at their heart which are trained
to solve a given classification or regression task.
Analyzing their predictions allows us to compute a scalar
indicator that highlights phase boundaries. The power and
success of these methods is largely attributed to the
universal function approximation capabilities of their
underlying NNs, which are often sacrificed in practice
to regain interpretability [15,51–55,106]. Here, we take an
alternative approach to cope with the interpretability-
expressivity trade-off: By analyzing the class of predictive
models that solve the classification and regression tasks
underlying SL, LBC, and PBM optimally, we derive
analytical expressions for the indicators of phase tran-
sitions of these three methods.
Our work establishes a solid theoretical foundation

for SL, LBC, and PBM, based on which we are able to
explain and understand the results of a variety of previous

studies [4,5,10,23,29,31].We anticipate that similar analyses
will be useful to gain an understanding of other methods for
identifying phase transitions with NNs [21,28,32,36,38,107]
and other classification tasks in condensed matter
physics [85,108–113]. In these cases, the optimal models
can also serve as benchmark solutions that enable future
studies aimed at investigate the learning process of NNs and
improving their design andupdate routines [11,85,114–117].
For example, in Refs. [4,16,20], it is shown that an NN
trained to predict the phase transition in a given model using
SL can successfully classify configurations generated from
an entirely different Hamiltonian. An exciting prospect is to
explorewhether the success of this “transfer learning” can be
rigorously explained based on our results.
The analytical expressions not only enable our under-

standing of the phase-classification methods under con-
sideration, they also allow for the direct computation of
their optimal predictions and indicators based on the input
data without explicitly training NNs. We have demon-
strated that this novel procedure can successfully reveal a
broad range of different phase transitions in a numerical
setting and is favorable in terms of computation time. Our
results suggest a variety of avenues for further explora-
tions. As a next step, one can consider whether tools from
ML, especially for density estimation [118–121], can aid
in the computation of the optimal indicators. In the
quantum case, classical representations of quantum states
obtained via classical shadow tomography [35,80] may
help to evade the arising exponential complexity. We
believe that optimal predictors will be a valuable tool to
detect, interpret, and characterize phases of matter and
their transitions from experimental data, particularly in the
advent of digital quantum computers [122–126] and
programmable quantum simulators [10,11,79,127–129].
The code for computing the optimal predictions and

indicators of SL, LBC, and PBM utilized in this work is
open source [130].
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APPENDIX A: OPTIMAL PREDICTIONS
AND INDICATORS

In this appendix, we provide detailed derivations of the
optimal predictions and indicators of SL, LBC, and PBM.
In particular, we discuss the assumptions underlying the
derivation of the optimal predictions of SL and how the
analytical predictors are evaluated in practice. This includes
an analysis of the computational cost associated with
constructing and evaluating the optimal models and the
role of finite-sample statistics.

1. Derivation of optimal predictions and indicators

Here, we derive the form of the optimal predictions and
indicators of phase transitions for SL, LBC, and PBM
presented in Sec. II in the main text.
Supervised learning.—In SL, a predictive model m is

trained to minimize the CE loss function given in Eq. (1).
Now, consider a particular input contained within the
training set x̃ ∈ T̄ . We can determine the optimal model
prediction ŷoptSL ðx̃Þ for this particular input by minimizing
the loss function in Eq. (1) with respect to ŷðx̃Þ, i.e., by
solving the necessary condition

∂LSL

∂ŷðx̃Þ ¼ −
1

MT

X
x̃∈T

�
yðx̃Þ
ŷðx̃Þ −

1 − yðx̃Þ
1 − ŷðx̃Þ

�
¼ 0: ðA1Þ

Using the explicit expressions for the labels (y ¼ 1 and
y ¼ 0 for all inputs drawn in region I and II, respectively)
in Eq. (A1), we have

PrI
k¼1Mkðx̃ÞP
K
k¼lII

Mkðx̃Þ
¼ MIðx̃Þ

MIIðx̃Þ
¼ ŷðx̃Þ

1 − ŷðx̃Þ : ðA2Þ

Here, MI=IIðx̃Þ denotes the number of times the input x̃ is
found in region I or II, respectively. In SL, the predictive
model must, by definition, satisfy ŷðxÞ ∈ ½0; 1� ∀ x. Thus,
Eq. (A2) is satisfied given predictions of the form

ŷoptSL ðx̃Þ ¼
MIðx̃Þ

MIðx̃Þ þMIIðx̃Þ
: ðA3Þ

The opposite choice of labeling (y ¼ 0 and y ¼ 1 for all
inputs drawn in region I and II, respectively) is equally
valid and results in

ŷoptSL ðx̃Þ ¼
MIIðx̃Þ

MIðx̃Þ þMIIðx̃Þ
: ðA4Þ

That is, the roles of ŷoptSL ðx̃Þ and 1 − ŷoptSL ðx̃Þ are swapped. In
this work, we stick to the former choice [Eq. (A3)]. The
optimality of the predictions in Eq. (A3) can be confirmed
by calculating the second derivative of the loss function:

∂
2LSL

∂ŷðx̃Þ2 ¼
MI

MT

1

ŷðx̃Þ2 þ
MII

MT

1

½1 − ŷðx̃Þ�2 > 0: ðA5Þ

The probability distribution governing the input data is
denoted as Pkðx̃Þ ≈Mkðx̃Þ=M (1 ≤ k ≤ K). This allows for
Eq. (A3) to be expressed as

ŷoptSL ðx̃Þ ¼
PIðx̃Þ

PIðx̃Þ þ PIIðx̃Þ
; ðA6Þ

where

PIðx̃Þ ¼
XrI
k¼1

Pkðx̃Þ ðA7Þ

and

PIIðx̃Þ ¼
XK
k¼lII

Pkðx̃Þ ðA8Þ

are the (unnormalized) probabilities of drawing the input x̃
in region I and II, respectively. Repeating the above
procedure for all inputs within the training set T̄ , we obtain

ŷoptSL ðxÞ ¼
PIðxÞ

PIðxÞ þ PIIðxÞ
∀ x ∈ T̄ ; ðA9Þ

which matches Eq. (9) reported in the main text.
Relaxations of the assumption in SL that there are only
two distinct phases to be distinguished are discussed
in Appendix A 2.
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Note that the same optimal predictions are obtained
when training on a MSE loss function:

LMSE ¼ 1

MT

X
x∈T

½ŷðxÞ − yðxÞ�2; ðA10Þ

instead of a CE loss function. Again, consider a particular
input x̃ contained within the training set T̄ . We can
determine the optimal model prediction ŷoptSL ðx̃Þ for this
input by minimizing the loss function in Eq. (A10) with
respect to ŷðx̃Þ, i.e., by solving

∂LMSE

∂ŷðx̃Þ ¼ 2

MT

X
x̃∈T

½ŷðx̃Þ − yðx̃Þ� ¼ 0: ðA11Þ

Plugging the expression for the labels given by a one-hot
encoding into Eq. (A11), we have

MIðx̃Þ½1 − ŷðx̃Þ� −MIIðx̃Þŷðx̃Þ ¼ 0: ðA12Þ

This coincides with the condition for the predictions given
in Eq. (A2) obtained from a CE loss function. Their
optimality can be confirmed via

∂
2LMSE

∂ŷðx̃Þ2 ¼ 2ðMI þMIIÞ
MT

> 0: ðA13Þ

Therefore, in SL, the optimal predictions and indicators
associated with optimal models trained on a CE or MSE
loss function are identical.
Learning by confusion.—To reveal the phase transition

by means of LBC, we perform several splits of the
parameter range into two neighboring regions labeled I
and II. For a fixed bipartition, we minimize a CE [Eq. (4)]
or MSE loss function:

LMSE ¼ 1

MX

X
x∈X

½ŷðxÞ − yðxÞ�2: ðA14Þ

Following the analysis of SL presented above, we obtain a
similar expression for the optimal predictions:

ŷoptLBCðxÞ ¼
PIðxÞ

PIðxÞ þ PIIðxÞ
∀ x ∈ X ; ðA15Þ

with T ¼ X in LBC. Thus, we recover Eq. (14) in the main
text. Their optimality can be confirmed via

∂
2LLBC

∂ŷðx̃Þ2 ¼ MI

MX

1

ŷðx̃Þ2 þ
MII

MX

1

½1 − ŷðx̃Þ�2 > 0 ðA16Þ

or

∂
2LMSE

∂ŷðx̃Þ2 ¼ 2ðMI þMIIÞ
MX

> 0; ðA17Þ

in the case of a CE or MSE loss, respectively. The value of
the indicator in LBC for a given bipartition corresponds to
the mean classification accuracy [Eq. (5)], where the
continuous predictions ŷðxÞ ∈ ½0; 1� are mapped to binary
labels via θ½ŷðxÞ − 0.5�. Using the optimal prediction in
Eq. (A15), the mean classification error for a given input x
is minfŷoptLBCðxÞ; 1 − ŷoptLBCðxÞg. Weighting the contribution
of each input x to the mean classification error by its
probability PkðxÞ, we arrive at Eq. (15) in the main text.
Note that, in principle, the assumption in LBC that there are
only two phases to be distinguished can be relaxed [5]. In
this case, the optimal indicator may show multiple distinct
peaks highlighting the different phase boundaries [131].
Prediction-based method.—In PBM, a predictive model

m∶x → ŷðxÞ is trained to minimize the MSE loss function
LPBM specified in Eq. (6). Consider a particular input
x̃ ∈ X̄ . We can determine the optimal model prediction
ŷoptPBMðx̃Þ for this input by minimizing the loss function in
Eq. (6) with respect to ŷðx̃Þ, i.e., by solving

∂LPBM

∂ŷðx̃Þ ¼ 2

KM

XK
k¼1

Mkðx̃Þ½ŷðx̃Þ − pk� ¼ 0: ðA18Þ

Solving Eq. (A18) yields

ŷoptPBMðx̃Þ ¼
P

K
k¼1 Pkðx̃ÞpkP
K
k¼1 Pkðx̃Þ

: ðA19Þ

This prediction is indeed optimal, as

∂
2LPBM

∂ŷðx̃Þ2 ¼ 2

K

XK
k¼1

Pkðx̃Þ > 0: ðA20Þ

Repeating this procedure for all available inputs x ∈ X̄
yields

ŷoptPBMðxÞ ¼
P

K
k¼1 PkðxÞpkP
K
k¼1 PkðxÞ

∀ x ∈ X̄ : ðA21Þ

Thereby, we recover Eq. (16) in the main text. Note that this
derivation can be generalized to higher-dimensional param-
eter spaces (which may host multiple distinct phases) in a
straightforward manner (see Ref. [34]), resulting in

ŷoptPBMðxÞ ¼
P

kPkðxÞpkP
kPkðxÞ

: ðA22Þ

Here, the sum runs over all sampled points pk in parameter
space. The optimal indicator is then given as a divergence:
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IoptPBMðpÞ ¼ ∇pδy
opt
PBMðpÞ; ðA23Þ

where δyoptPBMðpkÞ ¼
P

x∈X̄ PkðxÞŷoptPBMðxÞ − pk.

2. Assumptions for supervised learning

Let us we review the assumption of X̄ ¼ T̄ underlying
the derivation for the optimal predictions and correspond-
ing indicator of SL. In general, if X̄ ≠ T̄ , the optimal
predictions of SL can be expressed as

ŷopt
0

SL ðpkÞ ¼
X
x∈T̄

PkðxÞŷoptSL ðxÞ þ
X
x∉T̄

PkðxÞŷSLðxÞ: ðA24Þ

The first contribution in Eq. (A24) comes from predictions
for inputs contained in the training data, which are
determined through minimization of the corresponding
loss function [see Eq. (A1)]. The second contribution
comes from predictions for inputs not contained in the
training data, which are a priori restricted only to the unit
interval ŷSLðxÞ ∈ ½0; 1�. Therefore, this contribution to
Eq. (A24) is bounded by the probability of drawing an
input at pk that is not present in the training data, which is
given by

P
x∉T̄ PkðxÞ. When using SL with NNs, the

predictions for inputs not contained in the training data
[second contribution in Eq. (A24)] are most susceptible to
noise inherent to NN training and hyperparameter choices.
As such, its physical relevance is questionable. It may be
possible to obtain better bounds for this second contribu-
tion when using SL with NNs, e.g., based on the theory of
neural tangent kernels [132].
Let us explicitly discuss the classical systems analyzed in

this work, which are governed by Boltzmann distribution
[Eqs. (28) and (29)]. Because the probability of drawing a
particular configuration sample (or energy) at any nonzero
temperature is nonzero, the assumption of X̄ ¼ T̄ holds
given a sufficient number of samples. When computing the
optimal indicator of SL numerically, we work with a finite
number of samples. Thus, it can happen that an input is
encountered which is not part of the training data x ∉ T̄ . In
practice, we can verify on the fly whether this is the case. If
so, we set ySLðxÞ ¼ 0 in Eq. (A24). Thereby, we effectively
ignore the contribution to the predictions of SL from inputs
not present in the training data. Note that, because these
predictions correspond to inputs with low probability, they
are also most susceptible to finite-sample statistics. This
procedure is further justified by the fact that the optimal
predictions ŷoptSL obtained in this manner track the ground-
state probability with high accuracy [see Figs. 3(b), 4(b),
and 5(b)]. That is, the optimal predictions closely match the
expression in Eq. (33) valid in the case where deviations
due to finite-sample statistics vanish.
In the quantum case, it is typically not straightforward to

determine a prioriwhether the assumption of X̄ ¼ T̄ is met
for a given system and choice of basis. Here, when

calculating the optimal predictions and indicators numeri-
cally, we use the same procedure as described for the
classical case. In our study, we find only cases where x ∉ T̄
for the XXZ model. The error resulting from neglecting the
second contribution in Eq. (A24) is marginal, as the
probability of drawing such inputs across the parameter
range is found to be small. Note that the optimal indicator
of SL obtained in such a manner correctly reveals the
quantum phase transition in the XXZ model (see Fig. 6). In
fact, the optimal predictions calculated via this procedure
correspond to the probability of measuring the ferromag-
netic ground state (see Sec. IV D). For the above reasons,
we expect that the optimal predictions of SL are capable of
revealing phase transitions even if X̄ ≠ T̄ .
A relevant scenario inwhich the assumption that X̄ ¼ T̄ is

violated occurswhen the system transitions betweenmultiple
phases as the tuning parameter is varied. Then, inputs drawn
in thephases present in themiddle of the sampled range of the
tuning parameter may not be present in the two boundary
phases. By dropping the second contribution in Eq. (A24),
we may still faithfully detect the transition between the first
and second phase.However, all subsequent phase boundaries
are then likelymissed. In the future, it will be of interest to lift
the assumption of X̄ ¼ T̄ underlying the optimal predictions
through appropriate interpolation schemes [31,35,132],
which would allow for the generalization capabilities of
SL to be explored.

3. Computational cost

Here, we derive the scaling of the computational cost
with the number of unique inputs MX̄ and the number of
sampled tuning parameter values N reported in Sec. III B in
the main text. Note that we do not consider the overhead
associated with computing the probability distributions
fPkðxÞgKk¼1 ∀ x ∈ X̄ from the data at hand (or any other
constant overhead). The computation of the optimal pre-
dictions and indicators can be approached in two ways:
Either the optimal predictions for a given input ŷoptðxÞ are
recomputed in each function call, or they are cached. We
report the required number of floating-point operations in
both instances, which can be counted based on the
analytical expressions reported in Sec. III. This counting
represents a rough, hardware-independent estimate of the
required computational cost. In the following, we assume
that the optimal indicators in SL and PBM are computed
using a symmetric difference quotient; cf. Eq. (22).
Supervised learning.—The computation of ŷoptSL for all

x ∈ X̄ requires MX̄KT floating-point operations, where
KT ¼ KI þ KII is the number of sampled values of the
tuning parameter in the training regions I and II. Caching
these values, the number of operations required to compute
the mean optimal prediction ŷoptSL for all fpkgKk¼1 is
Kð2MX̄ − 1Þ þMX̄KT . Thus, computing the optimal indi-
cator requires MX̄ ð2KþKT ÞþK operations. Typically, in
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SL we have KT ≪ K. Under this assumption, the compu-
tation of the mean optimal predictions and the optimal
indicators each require OðMX̄KÞ operations. If the values
ŷoptSL ðxÞ ∀ x ∈ X̄ are not cached, computing the mean
optimal prediction instead requires K½ð2MX̄ − 1Þþ
MX̄KT � operations. Computing the optimal indicator then
requires MX̄Kð2þ KT Þ þ K operations. For both quan-
tities, this still corresponds to OðMX̄KÞ operations.
Learning by confusion.—The computation of ŷoptLBC for

all x ∈ X̄ requiresMX̄K floating-point operations. Caching
these values, the number of operations required to compute
the optimal indicator is MX̄K

2ðFmin þ 2Þ, where Fmin
denotes the number of floating-point operations required
to compute minfŷoptLBCðxÞ; 1 − ŷoptLBCðxÞg. This corresponds
to OðMX̄K

2Þ operations. Without caching, the optimal
indicator requires MX̄K

3 þMX̄K
2ðFmin þ 2Þ þ K opera-

tions to compute, resulting in a scaling of OðMX̄K
3Þ.

Prediction-based method.—In PBM, the computation of
ŷoptPBM for all x ∈ X̄ requires MX̄ ð3K − 1Þ floating-point
operations. Caching these values, the number of operations
required to compute the mean optimal prediction ŷoptPBM for
all fpkgKk¼1 is 5MX̄K − K −MX̄ . Computing the optimal
indicator then requires MX̄ ð5K − 1Þ þ K operations. The

computation of the mean optimal predictions and the
optimal indicator each require OðMX̄KÞ operations.
If the values ŷoptPBMðxÞ ∀ x ∈ X̄ are not cached, computing
the mean optimal prediction instead requires 3MX̄K

2 þ
KðMX̄ − 1Þ operations. Computing the optimal indicator
then requires 3MX̄K

2 þ KMX̄ þ K operations. For both
quantities, this results in a scaling of OðMX̄K

2Þ.
Numerical implementation.—The measured computa-

tion times associated with calculating the optimal indicators
of phase transitions of SL, LBC, and PBM for all six
physical systems discussed in the main text (see Sec. IV)
are reported in Table I. The corresponding code is open
source [130]. Again, we do not consider the computational
cost associated with generating samples and estimating the
underlying probability distributions.
Overall, the computation times are remarkably low. For

all systems, the optimal indicator of SL and PBM can be
obtained in under a second and the optimal indicator of
LBC in under a minute. We observe that the computation
times of SL and PBM are comparable, with PBM being
slightly slower than SL. In contrast, the computations times
of LBC are 2 orders of magnitude larger. Note that these are
the evaluation times corresponding to the largest system sizes
under consideration. We find that the computation times

TABLE I. Measured computation times in seconds associated with constructing and evaluating optimal models, topt, or training an NN
of minimal size (one hidden layer with a single node) for a single epoch, tNN, for all three methods and six systems discussed in the main
text (see Sec. IV). The linear system size L and the corresponding number of unique samples MX̄ as well as the number of sampled
values of the tuning parameter K for each system are also reported. The construction and evaluation of the optimal models yield the
optimal predictions, optimal indicator, and optimal loss value. A training epoch is comprised of evaluating the NN at all MX̄ unique
samples, calculating the loss function, obtaining the gradient via backpropagation, and performing a single gradient step. For details on
the NN architecture and training, see Appendix B. Note that, in LBC, tNNLBC corresponds toK þ 1 times the computation time of a training
epoch for a single NN. All computation times are measured on a single CPU [Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz], and
garbage collection times are subtracted from the total run-time. To gather statistics, for each method and system computations are run for
20 h. If 105 independent runs are completed in less than 20 h, the computations are stopped prematurely. The error corresponds to the
observed standard deviation.

Ising IGT XY XXZ Kitaev Bose-Hubbard

toptSL
0.0007� 0.0002 0.00007� 0.00002 0.00012� 0.00003 0.0049� 0.0009 0.17� 0.02 0.0044� 0.0009

tNNSL 0.00060� 0.00005 0.00030� 0.00002 0.00048� 0.00003 0.0060� 0.0009 0.14� 0.02 0.0023� 0.0003

tNNSL =t
opt
SL

0.9� 0.3 4.9� 1.3 4.0� 0.8 1.2� 0.3 0.9� 0.2 0.5� 0.1

toptPBM
0.0016� 0.0004 0.00014� 0.00006 0.00021� 0.00008 0.019� 0.003 0.42� 0.05 0.009� 0.002

tNNPBM 0.0042� 0.0007 0.0005� 0.0001 0.00084� 0.00004 0.080� 0.006 1.2� 0.1 0.026� 0.004

tNNPBM=t
opt
PBM

2.7� 0.8 4.0� 2.1 4.0� 1.5 4.2� 0.8 2.8� 0.4 2.7� 0.6

toptLBC
0.8� 0.1 0.042� 0.001 0.041� 0.004 3.7� 0.4 32.0� 1.7 1.4� 0.2

tNNLBC 1.11� 0.06 0.09� 0.01 0.12� 0.01 12.2� 1.2 93.9� 3.8 3.2� 0.4

tNNLBC=t
opt
LBC

1.3� 0.2 2.1� 0.2 2.8� 0.4 3.3� 0.5 3.0� 0.2 2.4� 0.5

toptPBM=t
opt
SL

2.3� 0.9 2.0� 1.1 1.8� 0.7 3.8� 1.0 2.7� 0.5 2.1� 0.6

toptLBC=t
opt
SL

1231� 374 629� 164 346� 77 751� 158 204� 33 308� 78

L 60 28 60 14 20 8

MX̄ 1711 353 1000 16 384 524 288 6435

K 200 100 100 201 101 200
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qualitatively agree with the complexity analysis described
above (for the relevant casewhere caching is performed). An
additional speedup can be gained through parallel execution.
In particular, it is straightforward to compute optimal
predictions (in the case of SL and PBM) and optimal
indicators (in the case of LBC) at discrete values of the
tuning parameter in parallel, e.g., via multithreading (which
is implemented in Ref. [130]).

4. Boltzmann-distributed inputs

Let us discuss the special case when the drawn inputs x,
such as spin configurations, follow a Boltzmann distribution

PkðxÞ ¼
e−HðxÞ=kBTk

Zk
: ðA25Þ

The probability to draw a sample with energy E is, thus,
given by

PkðEÞ ¼
gðEÞe−E=kBTk

Zk
; ðA26Þ

where gðEÞ is the corresponding degeneracy factor

gðEÞ ¼
X
x∈S

δHðxÞ;E: ðA27Þ

Here,S denotes the state space of the samplesx, i.e., the set of
all unique samples without duplicates. Therefore, we have

PkðxÞ ¼ Pk½HðxÞ�=g½HðxÞ�: ðA28Þ

Supervised learning.—Plugging Eq. (A28) into Eq. (9),
we immediately find that

ŷoptSL ðxÞ ¼
PI½HðxÞ�

PI½HðxÞ� þ PII½HðxÞ�
¼ ŷoptSL ½HðxÞ� ∀ x ∈ S; ðA29Þ

wherewe assume that T̄ ¼ X̄ ¼ S. Using Eq. (12), we have

ŷoptSLðpkÞ ¼
X
x∈S

PkðxÞŷoptðxÞ

¼
X
x∈S

Pk½HðxÞ�ŷopt½HðxÞ�=g½HðxÞ�

¼
X
E∈SE

PkðEÞŷoptðEÞ; ðA30Þ

where SE is the set of unique energies corresponding to the
state spaceS. To obtain an expression for the optimal loss,we
can rewrite Eq. (1) as

LSL ¼ −
1

rI þ ðK − lII þ 1Þ
XrI
k¼1

XK
k¼lII

X
x∈S

PkðxÞ

× fyðxÞ ln ½ŷðxÞ� þ ½1 − yðxÞ� ln ½1 − ŷðxÞ�g: ðA31Þ

Using Eq. (A29), we have

Lopt
SL ¼ −

1

rI þ ðK − lII þ 1Þ
XrI
k¼1

XK
k¼lII

X
x∈S

Pk½HðxÞ�

× (y½HðxÞ� ln fŷoptSL ½HðxÞ�g
þ f1 − y½HðxÞ�g ln f1 − ŷoptSL ½HðxÞ�g); ðA32Þ

where we use the fact that yðxÞ ¼ y½HðxÞ�, i.e., the assigned
labels remain identical. Equation (A32) can be simplified to

Lopt
SL ¼ −

1

rI þ ðK − lII þ 1Þ
XrI
k¼1

XK
k¼lII

X
E∈SE

PkðEÞ

× fyðEÞ ln ½ŷoptSLðEÞ� þ ½1 − yðEÞ� ln ½1 − ŷoptSLðEÞ�g;
ðA33Þ

using Eq. (A28).
Learning by confusion.—For a fixed bipartition in LBC,

we can proceed in a similar manner. Plugging Eq. (A28)
into Eq. (14) assuming X̄ ¼ S, we have

ŷoptLBCðxÞ ¼
PI½HðxÞ�

PI½HðxÞ� þ PII½HðxÞ�
¼ ŷoptLBC½HðxÞ� ∀ x ∈ S: ðA34Þ

Using Eq. (15), this yields

IoptLBC ¼ 1−
1

K

XK
k¼1

X
x∈S

PkðxÞ minfŷoptLBCðxÞ;1− ŷoptLBCðxÞg

¼ 1−
1

K

XK
k¼1

X
E∈SE

PkðEÞ minfŷoptLBCðEÞ;1− ŷoptLBCðEÞg:

ðA35Þ
To obtain an expression for the optimal loss, we follow the
above procedure outlined for SL starting with Eq. (4) and
eventually arrive at

Lopt
LBC ¼ −

1

K

XK
k¼1

X
E∈SE

PkðEÞ

× fyðEÞ ln ½ŷðEÞ� þ ½1 − yðEÞ� ln ½1 − ŷðEÞ�g:
ðA36Þ

Prediction-based method.—Plugging Eq. (A28) into
Eq. (16) assuming X̄ ¼ S, we find that

ŷoptPBMðxÞ ¼
P

K
k¼1 Pk½HðxÞ�pkP
K
k¼1 Pk½HðxÞ�

¼ ŷoptPBM½HðxÞ� ∀ x ∈ S: ðA37Þ

Using Eq. (17), we have
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ŷoptPBMðpkÞ ¼
X
x∈S

PkðxÞŷoptPBMðxÞ

¼
X
E∈SE

PkðEÞŷoptPBMðEÞ: ðA38Þ

To obtain an expression for the optimal loss, we rewrite
Eq. (6) as

LPBM ¼ 1

K

XK
k¼1

X
x∈S

PkðxÞ½ŷðxÞ − yðxÞ�2: ðA39Þ

Using Eq. (A37), we have

Lopt
PBM¼ 1

K

XK
k¼1

X
x∈S

PkðxÞfŷoptPBM½HðxÞ�−y½HðxÞ�g2; ðA40Þ

where yðxÞ ¼ y½HðxÞ�. With Eq. (A28), we finally get

Lopt
PBM ¼ 1

K

XK
k¼1

X
E∈SE

PkðEÞ½ŷoptPBMðEÞ − yðEÞ�2: ðA41Þ

This shows that the optimal predictions, indicators, and
loss values of SL, LBC, and PBM remain identical when
configuration samples which follow a Boltzmann distribu-
tion are used as input or when the corresponding energies are
used as input instead. In practice, given a finite set of samples,
the inferred probability distribution PkðxÞ ≈MkðxÞ=M is
only approximately Boltzmann, i.e., T̄ ; X̄ ≈ S, and the two
scenarios are equivalent only up to deviations due to finite-
sample statistics. In particular, the inferred probability
distribution PkðxÞ ¼ MkðxÞ=M based on raw configuration
samples may not correspond to the inferred probability
distributionPkðEÞ ¼ MkðEÞ=M based on the corresponding
energy, where the degeneracy factor for the conversion is
inferred from the samples as

gðEÞ ¼
X
x∈X̄

δHðxÞ;E: ðA42Þ

However, using the energy as input instead of configuration
samples yields a more accurate estimate of the ground-truth
distribution. This is because the associated state space SE is
significantly smaller compared to the entire configuration
space S, resulting in better statistics given a fixed number of
samples. In the 2D Ising model, for example, the size of the
configuration space is 2L

2

, whereas there are L2 − 1 unique
number of energies (for even L). Therefore, the optimal
predictions and indicators obtained using the energy as input
converge significantly faster compared to the casewhere raw
spin configurations are used. Note that the energy is readily
available in numerical studies.However, in principle, one can
obtain the same results without having access to the energy
given that a sufficient number of raw configurations are

sampled. In the future, it will be of interest to employ more
elaborate techniques for density estimation [118–121] in
order to obtain a more accurate estimate of the underlying
distribution given a reduced dataset size.
Finally, let us continue the analysis of the optimal

predictions and indicators of SL in the case of
Boltzmann-distributed inputs. We take region I to be
composed of a single point T1. Let T1 → 0 such that

P1ðEÞ ¼
�
1 if E ¼ Egs;

0 otherwise;
ðA43Þ

where Egs is the ground-state energy. Plugging into
Eq. (A9) yields

ŷoptSL ðEÞ ¼
� 1

1þPIIðEgsÞ if E ¼ Egs;

0 otherwise:
ðA44Þ

We calculate the mean prediction at a given temperature as

ŷoptSL ðTkÞ ¼
X
E∈SE

PkðEÞŷoptSL ðEÞ: ðA45Þ

Using Eq. (A44), this results in

ŷoptSL ðTkÞ ¼
PkðEgsÞ

1þ PIIðEgsÞ
: ðA46Þ

Assuming region II is composed of a single point TK , we
have PIIðEgsÞ ¼ PKðEgsÞ and recover Eq. (33) in the main
text. For TK → ∞, we have PKðEgsÞ ¼ gðEgsÞ=MS, where
MS is the total number of unique system configurations.
For the two-dimensional Ising model, for example,
MS ¼ 2L×L. Approaching the thermodynamic limit, this
yields ŷoptSL ðTkÞ → PkðEgsÞ.
Note that these results can be extended to non-

Boltzmann distributions: Given that

P1ðxÞ ¼
�
1 if x ¼ x�;

0 otherwise
ðA47Þ

and following the same procedure as above, we have

ŷoptSL ðpkÞ ¼
Pkðx�Þ

1þ PIIðx�Þ
: ðA48Þ

In particular, Eq. (A48) can be used to qualitatively explain
the optimal indicator signals of SL in the XXZ chain
(Sec. IV D) and Kitaev chain (Sec. IV E). In this case, x�
corresponds to a ground state which is one of the chosen
basis states.

5. Finite-sample statistics

Finally, we investigate how the optimal predictions and
indicators of SL, LBC, and PBM change as the number of
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data points M per sampled value of the tuning parameter is
varied. Recall that the results for the classical systems
displayed in the main text are obtained using the energy
from Monte Carlo sampling as input, where M ¼ 105 spin
configurations are drawn per temperature. For small lattice
sizes, however, it is possible to enumerate all spin con-
figurations explicitly. In Fig. 9, we compare the optimal
predictions and indicators for the Ising model on a 4 × 4

lattice when enumerating all 216 ¼ 65536 spin configura-
tions explicitly or using Monte Carlo sampling with 105

number of configurations per sampled value of the tuning
parameter. The results obtained based on the two distinct
datasets are in good agreement, which is to be expected
given that there are only 15 unique energies. The noise
present in the indicator signals of SL and PBM when using
Monte Carlo samples is absent when using exact enumer-
ation. In the latter case, both indicators vary smoothly as a
function of the temperature. As such, this noise can be
attributed to finite-sample statistics.
In general, for both the classical and quantum systems,

we observe that the overlap in the underlying probability

distributions leading to a peak in the indicator signals
decreases as the number of samples M is decreased.
However, meaningful results can already be obtained when
only a fraction of the total state space is covered. In the case
of the Ising model on a 60 × 60 lattice, for example, we
observe that the optimal predictions and indicators are
already well converged for M ¼ 102, i.e., matching the
results obtained with M ¼ 105. In particular, the key
features in the indicators, i.e., the peak locations, can
already be identified for M ¼ 10. Compare this to the
number of unique energies given by 3599.
Figure 10 shows the optimal predictions and indicators

of SL, LBC, and PBM for the Kitaev chain of length
L ¼ 20 given various values of M. Recall that the results
for the quantum systems displayed in the main text (see
Sec. IV) are obtained based on the “ground-truth” prob-
ability distributions from exact diagonalization. Here, we
explicitly sample these probability distributions, i.e., per-
form projective measurements and infer the probability
distribution based on the measurement results. In SL and
PBM, accurate estimates for the critical value of the tuning

FIG. 9. Results for the Ising model (L ¼ 4) with the dimensionless temperature as a tuning parameter p ¼ kBT=J, where p1 ¼ 0.05,
pK ¼ 10, and Δp ¼ 0.05. The critical temperature [Eq. (31)] is highlighted by a red dashed line. In SL, the data obtained at p1 and pK
constitute our training set, i.e., rI ¼ 1 and lII ¼ K. The inputs are computed based on spin configurations obtained through exact
enumeration (lines) or Monte Carlo sampling (points). (a) Mean optimal prediction ŷoptSL in SL (black line) and the corresponding
indicator IoptSL (blue line). (b) Optimal indicator of LBC, IoptLBC (black line). (c) Mean optimal prediction ŷoptPBM in PBM (black line) and the
corresponding indicator IoptPBM (blue line).

FIG. 10. Optimal predictions and indicators of SL, LBC, and PBM for the Kitaev chain (L ¼ 20) with a varying number of data points
M per sampled value of the tuning parameter p ¼ μ=t, where p1 ¼ −6, pK ¼ 0, and Δp ¼ 0.06. In SL, the data obtained at p1 and pK
constitute our training set, i.e., rI ¼ 1 and lII ¼ K. The critical value μc=t ¼ −2 is highlighted by a red dashed line. The optimal
predictions and indicators obtained based on the ground-truth probability distributions from exact diagonalization are shown in black.
(a) Mean optimal prediction ŷoptSL in SL and (b) the corresponding indicator IoptSL. (c) Optimal indicator of LBC, IoptLBC. (d) Mean optimal
prediction ŷoptPBM in PBM and (e) the corresponding indicator IoptPBM. Here, we report results averaged over 100 independent datasets,
where the error bars correspond to the standard deviation.
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parameter can be obtained based on M ¼ 103 samples,
whereas M ¼ 104 samples are required for a local maxi-
mum to emerge in LBC. This covers only a fraction of the
total state space comprised of MX̄ ¼ 524288 states. Notice
that the indicator of LBC shows a plateau close to one in the
topological phase for a small number of samples, which
signifies the absence of “confusion” inherent to the data
(see Fig. 10). Similarly, the optimal prediction of PBM is
approximately linear in the topological phase for a small
number of samples, corresponding to a model which can
perfectly resolve the value of the tuning parameter asso-
ciated with the input. This demonstrates the fact that, while
the ground-truth probability distributions may have sub-
stantial overlap, estimated probabilities based on a drawn
dataset may not.
The high level of uncertainty in the indicator of SL and

PBM compared to LBC can be attributed to the symmetric
difference quotient used to approximate the derivative.
Moreover, in LBC, we associate a distinct optimal pre-
dictive model to each bipartition point, whereas the optimal
indicator is extracted from a single optimal model in the
case of SL and PBM. This leads to an additional suppres-
sion of fluctuations in the case of LBC. In the future, it will
be of interest to enhance the quality of the optimal
predictions and indicators based on finite data through
improved derivative computations in the case of SL and
PBM [133], as well as more elaborate techniques for
density estimation [118–121].

APPENDIX B: COMPUTATION
USING NEURAL NETWORKS

In this appendix, we discuss the application of SL, LBC,
and PBM to the six physical systems discussed in the main
text (see Sec. IV) using NNs. First, we show that one can
recover the optimal analytical predictions and indicators by
training NNs. Next, we discuss the computational cost
associated with training NNs compared to constructing and
evaluating optimal models. Finally, we investigate the
influence of NN size, early stopping, regularization, and
finite-sample statistics on the results.
Data preparation.—For the classical systems (Ising

model, IGT, and XY model), the energy HðσÞ of the spin
configurations σ sampled from Boltzmann distributions at
various temperatures serves as an input. To counteract the
effect of finite-sample statistics on the predictions in the
case of SL due to inputs not contained in the training set
x ∉ T̄ , i.e., X̄ ≠ T̄ , we modify the corresponding proba-
bility distributions, such that PKðxÞ ¼ 1=ðM þM∉T Þ as
opposed to PKðxÞ ¼ 0. Here, M∉T denotes the number of
such inputs at pK . That is, we add a single instance of each
sample which does not appear at the boundary point pK to
the corresponding dataset XK . Alternatively, we could set
these predictions to zero as discussed in Appendix A 2.
While the NN-based indicator can change if no such

modifications are performed, this does not resolve the
instances where the optimal indicator of SL fails to locate
the phase transition (such as in the Ising model or XY
model). For the quantum systems (XXZ chain, Kitaev
chain, and Bose-Hubbard model), the index of the corre-
sponding basis states serves as input. We use a physically
motivated encoding, where the Sz eigenstate given by
j ↑ ↓… ↑i and the Fock state j10…1i are encoded as a
bit string x ¼ ð10…1Þ.
Before training the NNs, each input x ¼ fxig is stand-

ardized via the following affine transformation:

x0i ¼
xi − hxii

σxi
; ðB1Þ

where hxii and σxi are the mean value and standard deviation
of xi across the training data, respectively. Standardization
generally leads to a faster rate of convergencewhen applying
gradient-based optimizers [134]. Note that this bijective
mapping does not change the probability associated with
each input, i.e., PkðxÞ ¼ Pkðx0Þ ∀ 1 ≤ k ≤ K. Therefore,
the optimal predictions and indicators remain unchanged.
Neural network architecture.—For simplicity, the NNs

used in this work consist of a series of fully connected layers,
where rectified linear units (ReLUs), fðzÞ ¼ maxð0; zÞ, are
used as activation functions [40]. The NNs for SL and LBC
have two output nodes, where a softmax activation function

fiðzÞ ¼
eziP
je

zj
ðB2Þ

is used in the output layer to guarantee that ŷðx0Þ ∈ ½0; 1�.
Here, the sum runs over all output nodes, and ŷ corresponds
to the value of one of the output nodes after application of the
softmax activation function. In PBM, no activation function
is used for the output layer. The value of the single output
node corresponds to ŷðx0Þ, which is the estimated value of the
tuning parameter at which the input x0 was drawn. For the
prototypical probability distributions discussed in Sec. III A
in the main text, we use a single hidden layer with 64 nodes.
The number of hidden layers and nodes for all othermodels is
reported in the corresponding figure captions.
Training.—The NNs are implemented using Flux in

JULIA [135], where the weights and biases are optimized
via gradient descent with Adam [136] to minimize the loss
function over a series of training epochs. In SL and LBC,
we train on a CE loss function [Eq. (1) and (4),
respectively], whereas in PBM we train on a MSE loss
function [Eq. (6)]. Gradients are calculated using back-
propagation [40,137,138]. For the prototypical probability
distributions discussed in Sec. III A, we train for 10 000
epochs with a learning rate of 0.001. The number of
training epochs and learning rate for all other models are
reported in the corresponding figure captions.
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Results.—Figures 11 and 12 show the predictions and
indicators of the three methods obtained using NNs (dashed
lines) after long training for all six physical systems
considered in the main text. Here, we choose the smallest
system sizes for convenience. Overall, they are in excellent
agreement with the corresponding optimal predictions and
indicators (bold lines). As the system size is increased, it
becomes increasingly difficult to approximate the corre-
sponding optimal predictions and indicator with high
accuracy, because the NN size has to be increased sys-
tematically; i.e., hyperparameters need to be adjusted more
carefully. However, even for the largest system sizes
considered in this work, qualitative agreement can still
be achieved with moderate NN sizes; see Appendix B 1 for
an explicit example.
Computational cost.—Finally, let us touch upon the

computational cost of training NNs. Table I reports the
measured computation times associated with training an
NN with one hidden layer composed of a single node for

one epoch. A training epoch is comprised of evaluating the
NN (or NNs in the case of LBC) at all MX̄ unique samples
(see Table I), calculating the loss function, obtaining the
gradient via backpropagation, and performing a single
gradient step. This represents a lower bound for the total
computation time associated with obtaining NN-based
predictions and indicators. In a typical application, how-
ever, larger NNs need to be used, the NNs need to be
trained for multiple epochs, the NN parameters (or the
corresponding predictions and indicator) need to be cached
at regular intervals, hyperparameters need to be tuned, and,
finally, the indicator needs to be computed based on the NN
predictions. The computation time for a single epoch is also
expected to increase if the data are processed in a batchwise
fashion (albeit likely at the benefit of requiring fewer
training epochs overall). We find that this lower bound on
the training time is comparable with the evaluation time of
the corresponding optimal predictions and indicators (and
optimal loss) and the two times differ by less than an order

FIG. 11. (a)–(d) Results for the Ising model (L ¼ 10) using NNs. The NNs used in SL, LBC, and PBM are trained for 10 000, 1000,
and 5000 epochs, respectively. The tuning parameter ranges from p1 ¼ 0.05 to pK ¼ 10 with Δp ¼ 0.05. (e)–(h) Results for the IGT
(L ¼ 4) using NNs. The NNs used in SL, LBC, and PBM are trained for 10 000, 1000, and 5000 epochs, respectively. The tuning
parameter ranges from p1 ¼ 0.05 to pK ¼ 5 with Δp ¼ 0.05. (i)–(l) Results for the XY model (L ¼ 10) using NNs. The NNs used in
SL, LBC, and PBM are trained for 10 000, 1000, and 10 000 epochs, respectively. The tuning parameter ranges from p1 ¼ 0.025 to
pK ¼ 2.5 with Δp ¼ 0.025. The critical value of the tuning parameter pc ¼ kBTc=J is highlighted in red. (a),(e),(i) Mean prediction
ŷSLðpÞ obtained using the analytical expression (black solid line) or an NN (black dashed line), as well as the corresponding indicator
ISLðpÞ (blue lines). Here, we choose rI ¼ 1 and lII ¼ K. (b),(f),(j) The indicator of LBC, ILBCðpÞ, obtained using the analytical
expression (black solid line) or an NN (black dashed line). (c),(g),(k) Mean prediction ŷPBMðpÞ of PBM obtained using the analytical
expression (black solid line) or an NN (black dashed line), as well as the corresponding indicator IPBMðpÞ (blue lines). (d),(h),(l) Value
of the loss function in LBC, LLBC, for each bipartition point pbp obtained using the analytical expression (black solid line) or evaluated
after NN training (black dashed line). In all three models, the NNs are comprised of three hidden layers with 64 nodes each, and the
learning rate is set to 0.001.
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of magnitude across all six physical systems studied in the
main text. This empirical finding can be explained as
follows: To construct the optimal model, the probability of
all inputs needs to be evaluated. Similarly, in each training
epoch, the NN is evaluated at all inputs contained in the
training dataset. The computation time associated with
evaluating a small NN for a given input is comparable with
evaluating the corresponding optimal model prediction, and
the overhead associated with the gradient computation via
backpropagation is of the same order of magnitude as the
NN forward pass [139].
Suppose one is interested in the predictions and indica-

tors of SL, PBM, and LBC, in the limit of a perfectly
trained, highly expressive NNs. Evidently, based on the
discussion above, the evaluation of the analytical expres-
sions is generally more efficient in that case. The precise

timings depend on the particular implementation, as well as
the choice of hyperparameters. However, even in the case
where small NNs are trained for short times, the compu-
tation time associated with constructing and evaluating an
optimal model is at worst comparable. Here, we neglect
any overhead associated with constructing probability
distributions based on drawn samples. In principle, when
using NN one does not rely on the estimated probability
distributions; i.e., one can directly work with the unproc-
essed dataset. Note, however, that in many scenarios
(including this work) the overhead of estimated probability
distributions from the dataset is negligible. When studying
quantum systems using exact diagonalization, one has
direct access to the underlying probability distributions.
Similarly, when performing Monte Carlo studies, the
energy statistics are readily available.

FIG. 12. (a)–(d) Results for the XXZ chain (L ¼ 4) using NNs. The NNs used in SL, LBC, and PBM are trained for 10 000, 1000, and
5000 epochs, respectively. The tuning parameter ranges from p1 ¼ −2 to pK ¼ 0 with Δp ¼ 0.01. The critical value of the tuning
parameter pc ¼ Δc=J is highlighted in red. (e)–(h) Results for the Kitaev chain (L ¼ 10) using NNs. The NNs used in SL, LBC, and
PBM are trained for 5000, 500, and 1000 epochs, respectively. The tuning parameter ranges from p1 ¼ −6 to pK ¼ 0 with Δp ¼ 0.06.
The critical value of the tuning parameter pc ¼ μc=t is highlighted in red. (i)–(l) Results for the many-body localization phase transition
in the Bose-Hubbard model (L ¼ 6) using NNs. The NNs used in SL, LBC, and PBM are trained for 10 000, 300, and 1000 epochs,
respectively. The tuning parameter ranges from p1 ¼ 0.1 to pK ¼ 20 with Δp ¼ 0.1. The critical value of the tuning parameter
pc ¼ Wc=J is highlighted in red. (a),(e),(i) Mean prediction ŷSLðpÞ obtained using the analytical expression (black solid line) or an NN
(black dashed line), as well as the corresponding indicator ISLðpÞ (blue lines). Here, we choose rI ¼ 1 and lII ¼ K. (b),(f),(j) The
indicator of LBC, ILBCðpÞ, obtained using the analytical expression (black solid line) or an NN (black dashed line). (c),(g),(k) Mean
prediction ŷPBMðpÞ of PBM obtained using the analytical expression (black solid line) or an NN (black dashed line), as well as the
corresponding indicator IPBMðpÞ (blue lines). (d),(h),(l) Value of the loss function in LBC, LLBC, for each bipartition point pbp obtained
using the analytical expression (black solid line) or evaluated after NN training (black dashed line). For the XXZ model, the NNs are
comprised of three hidden layers with 64 nodes each. For the Kitaev chain and Bose-Hubbard model, we use two hidden layers with 128
nodes each, followed by three hidden layers with 64 nodes each. In all three cases, the learning rate is set to 0.001.

JULIAN ARNOLD and FRANK SCHÄFER PHYS. REV. X 12, 031044 (2022)

031044-28



1. Controlling model capacity

Here, we investigate the effect of NN size, training time,
and l2 regularization on the NN-based predictions and
indicators and compare themwith the corresponding optimal
predictions and indicators. All three factors influence the
capacity of the resultingmodel and, thus, determine its ability
to approximate the optimal predictive model realizing the
global minimum of the loss function corresponding to the
optimal predictions and indicators [40,41]. As pointed out in
the main text (see Sec. IV), there are instances where the
optimalmodel does not correctly highlight the corresponding
phase transition, whereas simpler models do.
As an example, let us consider the application of PBM to

the Ising model. Figure 13 shows the results for a 60 × 60
lattice obtained with NNs composed of a single hidden layer
with a variable number of hidden nodes ranging from 2 to
2048. Figures 13(b) and 13(f) show the corresponding NN-
based predictions and indicators after training for 10 000
epochs. For NNs with two and eight nodes, the indicator
shows a clear peak at the critical valueof the tuningparameter.
As the number of nodes increases, the NN results start to
resemble the optimal predictions and indicators (black) more
closely. This reflects the fact that the expressivity of an NN
increases as the number of nodes is increased. A similar
behavior is also visible in Fig. 13(a), which shows the loss
over time, where NNs with more than eight nodes achieve
values close to the optimal loss (black), i.e., the global
minimum.

Figures 13(c) and 13(g) show the predictions and
indicators for the smallest NN (two hidden nodes) evalu-
ated at various training epochs. Here, the indicator gradu-
ally converges toward its final form, which exhibits a peak
at the critical value of the tuning parameter. Similarly,
Figs. 13(d) and 13(h) shows the results for the largest NN
(2048 hidden nodes). Here, early on during training the
indicator is sharply peaked near the critical value of the
tuning parameter. As the training progresses, the indicator
signal starts to wash out and converge to the optimal
indicator signal. The evolution of the global maximum of
the indicator signal as a function of the training epoch for
the various NN sizes is shown in Fig. 13(e). These results
quantify how accurately the estimated critical value of the
tuning parameter based on the optimal indicator (black) is
reproduced for a given NN size and training time.
Figure 13(e) shows that even for the large NNs there

seems to be an intermediate time period during training
where the indicator peaks near the critical value of the
tuning parameter correctly highlighting the phase transi-
tion. Looking at Fig. 13(a), during these intermediate time
periods, the corresponding loss function starts to saturate
and display a kink. This suggests a procedure for early
stopping, where the training is stopped once a kink in the
loss function is observed [40]. Early stopping based on the
validation loss is discussed in the subsequent section (see
Appendix B 2). During training, the model capacity
increases as visible by the steady decrease in the

FIG. 13. Results for the Ising model (L ¼ 60) of PBM using NNs with a single hidden layer composed of different numbers of hidden
nodes Nnodes. The learning rate is set to 0.01. The tuning parameter ranges from p1 ¼ 0.05 to pK ¼ 10 with Δp ¼ 0.05. The critical
value of the tuning parameter pc ¼ kBTc=J is highlighted in red. The optimal predictions, optimal indicator, optimal loss, and
corresponding estimated critical value of the tuning parameter are highlighted in black. (a) Loss LPBM as a function of the number of
training epochs Nepochs. The locations in kinks in the loss (as identified by eye) are marked by vertical dashed lines. (b),(f) Mean
prediction ŷPBMðpÞ of PBM obtained using NNs after training for 10 000 epochs, as well as the corresponding indicator IPBMðpÞ. (c),(g)
Mean prediction ŷPBMðpÞ of PBM obtained using an NN with Nnodes ¼ 2 at various stages during training, as well as the corresponding
indicator IPBMðpÞ. (d),(h) Mean prediction ŷPBMðpÞ of PBM obtained using an NN withNnodes ¼ 2048 at various stages during training,
as well as the corresponding indicator IPBMðpÞ. (e) Estimated critical value of the tuning parameter as a function of the number of
training epochs.
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corresponding loss [40,140,141]: Initially, the model can-
not resolve anything; in the intermediate stages, it can
resolve between the two phases leading to the sharp peak;
and, eventually, it approaches the optimal predictive model
(which, in this case, does not correctly highlight the phase
transition). By stopping the training at the intermediate
stage (i.e., selecting the corresponding NN parameters after
the training is complete), a model of intermediate resolution
can be obtained. Thus, early stopping acts as an implicit
regularization [40,140,141]. In the case of PBM, stopping
the training early yields an NN whose indicator peaks near
the critical temperature of the Ising model. However, this is
not always the case. In LBC, for example, the estimated
critical temperature gradually improves during training,
i.e., as the model capacity increases. Recall that the optimal
indicator of LBC correctly highlights the phase transition.
Qualitatively similar results can be obtained for the other
methods and systems. In particular, in the Ising model and
XY model, we find that the indicators of SL and PBM both
show a clear peak near the critical transition temperature
early on during training around the epochs marked by a
kink in the loss function. The peak locations of the
corresponding NN-based indicator signals coincide with
the signals of physical indicators, such as the magnetization
or heat capacity.
Lastly, we can also control the capacity of our model

through explicit l2 regularization [40]

L → Lþ λl2
X
i

θ2i ; ðB3Þ

where the sum runs over all tunable parameters θi of the
NN and λl2 is the regularization strength. Figure 14 shows
the NN-based predictions and indicators of PBM for the
Ising model after training with various regularization
strengths. At large regularization strength, the resulting
model cannot resolve any structure leading to a flat
indicator signal. At an intermediate regularization strength,
the resulting model can distinguish between the two phases,

leading to a clear peak in the indicator signal at the critical
temperature of the Ising model. As the regularization
strength is decreased further, the resulting model becomes
more complex and converges toward the optimal model that
minimizes the loss function in the absence of regulariza-
tion. Consequently, the predictions and indicators converge
toward the optimal predictions and indicator. In the Ising
model, we thus find that explicit regularization helps to
construct a model of intermediate resolution whose indi-
cator correctly highlights the critical temperature (similarly
for SL). However, as mentioned above, models with
restricted capacity may not always highlight the critical
value of the tuning parameter correctly. In the IGT, for
example, the indicator of regularized NNs tends to display
an erroneous peak similar to the specific heat; see Fig. 4.

2. Finite-sample statistics: Splitting data
into training, validation, and test sets

Here, we investigate NN-based predictions and indica-
tors in the case where only a limited amount of data is
available. In particular, we discuss the effect of splitting the
data into a training, validation, and test set. Recall that, in
the limit of sufficient data, the training, validation, and test
set coincide, as they are all sampled independently from the
same probability distribution underlying the physical sys-
tem; see Sec. II. Therefore, in the limit of sufficient data, the
training, validation, and test losses decrease in lock step
during training. This is illustrated in Fig. 15, which shows
the training, validation, and test loss of PBM for the Kitaev
chain for different dataset sizes. For small datasets, the
training, validation, and test sets can differ, resulting in
differing training, validation, and test losses. In particular,
one can observe a characteristic increase of the validation
loss after a certain time period attributed to overfitting [40].
This allows one to perform early stopping such that the

FIG. 15. (a) Training loss and (b) validation loss as a function of
the number of training epochs of PBM for the Kitaev chain
(L ¼ 14) using an NN composed of a single hidden layer with
128 nodes for various numbers of training samples Mtrain per
parameter value, where Mvalid ¼ Mtest ¼ Mtrain=5. The corre-
sponding optimal loss based on the training or validation dataset
is highlighted by a colored dashed line. The optimal loss based on
the ground-truth probability distributions is highlighted in black.
The test loss shows the same behavior as the validation loss. Each
NN is trained for 10 000 epochs with a learning rate of 0.01. The
results are averaged over ten independent datasets.

FIG. 14. (a) Mean prediction ŷPBMðpÞ and (b) the correspond-
ing indicator IPBMðpÞ of PBM for the Ising model (L ¼ 60) using
NNs obtained after long training for various regularization
strengths λl2 [cf. Eq. (B3)]. The tuning parameter ranges from
p1 ¼ 0.05 to pK ¼ 10 with Δp ¼ 0.05. The critical value of the
tuning parameter pc ¼ kBTc=J is highlighted in red. The optimal
predictions and indicator are highlighted in black. Each NN has a
single hidden layer with 2048 nodes and is trained for 10 000
epochs with a learning rate of 0.01.
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minimum in the validation loss is realized [40]. Note that
the location of the minima in the validation loss coincides
with the kink in the corresponding training loss. The sharp
local minimum in the validation loss fades as the dataset
size is increased further, leaving only the corresponding
kinks in the training loss as a signal for early stopping. The
latter situation is discussed in Appendix B 1. Therefore, a
splitting into training, validation, and test set may allow for
a clearer signal to perform early stopping given a small
dataset.
Another effect arising when a limited amount of data is

available and finite-sample statistics play a role is best
illustrated by investigating the Kitaev chain using LBC.
Figure 16 shows the NN-based indicator signal of LBC
obtained for training, test, and validation sets of various
sizes. For small dataset sizes [see Figs. 16(a) and 16(d)] the
optimal indicator (black solid line) shows no local maxi-
mum due to the negligible overlap in the inferred proba-
bility distribution. The NN-based indicator of a sufficiently
large NN closely matches the optimal indicator on the
training set after training [Fig. 16(a)], whereas a small NN
is incapable of approximating the optimal indicator on the
training set. However, interestingly, the indicator signal of
the small NN qualitatively matches the optimal indicator
signal based on the ground-truth probability distributions.
In particular, it features a local maximum allowing for an
estimate of the critical value of the tuning parameter to be
obtained. This is another example illustrating how simple

models can lead to sharp indicator signals. While the
inferred probability distribution has only a marginal over-
lap in the topological phase resulting in the absence of a
local maximum in the optimal indicator signal (black), the
data may be partially indistinguishable to a simple model.
This illustrates how “confusion” can also arise due tomodels
with restricted expressivity (see Sec. III). The same phe-
nomenon can also be observed for the indicator signal of the
large NN evaluated on the test set (or validation set); see
Fig. 16(d). Here, the confusion arises because the predictions
for the unseen data within the validation and test set are
suboptimal. In the future, it will be of interest to investigate
whether this effect can be mimicked through appropriate
interpolation of the optimal predictions [31,35,132].
Figures 16(b) and 16(e) and Figs. 16(c) and 16(f) show
how the discrepancy between the optimal indicator signal
based on a finite dataset and theNN-based indicator vanishes
for the large NN as the dataset size increases. This arises
because, eventually, the training, validation, and test sets
become indistinguishable. Note, however, that the discrep-
ancy persists for the small NN.

APPENDIX C: DATA GENERATION

In this appendix, we provide further details on the data-
generation process for each of the physical systems
analyzed in the main text (see Sec. IV). For the classical
systems, given by the Ising model, IGT, and XY model,

FIG. 16. Results of LBC for the Kitaev chain (L ¼ 10) using NNs composed of a single hidden layer with 2 or 2048 nodes for various
numbers of training samples Mtrain per parameter value, where Mvalid ¼ Mtest ¼ Mtrain=5. The tuning parameter p ¼ μ=t ranges from
p1 ¼ −6 to pK ¼ 0 with Δp ¼ 0.06. The critical value μc=t ¼ −2 is highlighted by a red dashed line. The optimal indicator obtained
based on the corresponding dataset or the ground-truth probability distributions is highlighted by a black solid or dashed line,
respectively. (a)–(c) Indicator ILBC of LBC evaluated on the training set for (a)Mtrain ¼ 10, (b)Mtrain ¼ 102, and (c)Mtrain ¼ 105, where
the NN-based predictions are obtained after training. (d)–(f) Indicator ILBC of LBC evaluated on the test set for (a) Mtrain ¼ 10,
(b)Mtrain ¼ 102, and (c)Mtrain ¼ 105, where early stopping is performed by minimizing the validation loss. Similar results are obtained
when evaluating the NNs at the end of training instead. Each NN is trained for 10 000 epochs with a learning rate of 0.005. The results
are averaged over ten independent datasets, and the error bars are given by the standard deviation.
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we use the Metropolis-Hastings algorithm [72] to sample
spin configurations from the thermal distribution at a given
temperature T. The lattice is initialized in a state with all
spins pointing up for the Ising model and a random spin
configuration in the case of the IGT and XY model. The
lattice is updated by drawing a random spin, which is
flipped with probability minð1; e−ΔE=TÞ, where ΔE is the
energy difference resulting from the considered flip. In the
XY model, instead of flipping a given spin, we add a
perturbation Δθ ∈ ½−π; π�, which is drawn uniformly at
random. To ensure that the systems are sufficiently ther-
malized, we sweep the complete lattice 105 times, where
each lattice site is updated once per sweep. After the
thermalization period, we collect 105 samples, which we
find to be sufficient for achieving convergence (see
Appendix A 5). In the Ising model and IGT, we increase
the temperature gradually, whereas it is decreased in the
XY model.
In the XY model, we can further validate the quality of

the Monte Carlo samples by estimating the BKT transition
point. One way to do this is to determine the temperature at
which the helicity modulus ϒðTÞ crosses 2T=π [94,96].
The helicity modulus is also referred to as spin stiffness or
spin rigidity and measures the response of the system to an
in-plane twist of the spins. We find that the estimated BKT
transition point based on our samples matches the literature
value well; see Fig. 17. Note that, in the XY model, the
angle of each spin can take on any value θ ∈ ½0; 2π�. This
results in a continuum of states. Hence, we discretize the
energy in practice, which serves as an input for the ML
methods. This discretization eases computation and, more

crucially, results in overlapping probability distributions
given finite-sample statistics (see discussion on case 3 in
Sec. III A). The discretization is performed through simple
histogram binning using 1000 bins of equal size. The
number of bins is increased systematically until a con-
vergence of the optimal indicator signals is observed. In
future works, histogram binning may be replaced by more
elaborate techniques for density estimation [118–121].
Let us move on to the quantum case. To perform exact

diagonalization and solve the Schrödinger equation, we use
the QuSpin package [142,143] in PYTHON. Note that, when
computing the ground state of the Kitaev chain through
exact diagonalization, we restrict ourselves to the even-
particle sector whose corresponding ground state has a
lower energy within the topologically trivial phase. In the
topological phase, the ground state is doubly degenerate,
and the two states can be distinguished by their fermionic
parity. This is because of the presence of the pairing term in
the Kitaev chain Hamiltonian [Eq. (37)]. As a consequence,
H does not conserve the total fermion number Nf ¼P

L
i¼1 ni, i.e., ½H;Nf� ≠ 0. However, the fermion number

modulo 2 is conserved, ½H; ð−1ÞNf � ¼ 0 [144].

APPENDIX D: COMPARISON
TO OTHER WORKS

In this appendix, we provide additional material which
facilitates comparison to other works.

1. Alternative approach toward supervised learning

Here, we review our approach to SL (see Sec. II A) and
put it into context. In Ref. [4], the authors originally
proposed to identify the estimated critical value of the
tuning parameter in SL as argminpk

jŷðpkÞ − 0.5j. In all
systems analyzed in the main text (see Sec. IV), this yields
similar results compared to our approach based on iden-
tifying the peak location of the mean prediction’s derivative
[Eq. (3)]. Note that the latter approach has, e.g., already
been mentioned as an alternative in Ref. [20]. Looking at
Fig. 8(b), we observe that these two procedures would yield
slightly different estimated critical values for the MBL
phase transition. This discrepancy is even more prominent
for the Mott insulator to superfluid transition in the Bose-
Hubbard model. Here, we investigate the two-dimensional
Bose-Hubbard model whose Hamiltonian is given by

H ¼ −J
X
hiji

ðb†i bj þ H:c:Þ þ
X
i

U
2
niðni − 1Þ − μni; ðD1Þ

where J is the nearest-neighbor hopping strength, U is the
on-site interaction strength, and μ is the chemical potential.
This model undergoes a quantum phase transition at zero
temperature from a Mott insulating phase to a superfluid
phase as the tuning parameter J=U is increased at a fixed

FIG. 17. Helicity modulus ϒ as a function of the tuning
parameter p ¼ kBT=J for the two-dimensional XY model for
various lattice sizes. The value of the BKT transition point from
the literature, kBTc=J ≈ 0.8935 [92], is highlighted by a red
dashed line. The estimated transition point based on our
Monte Carlo samples at finite size corresponds to the point at
which the helicity modulus crosses the line given by 2kBT=Jπ
(black dashed line).
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chemical potential. This gives rise to the characteristic Mott
lobes [145,146]; see Fig. 18(a).
We perform mean-field calculations based on a

Gutzwiller ansatz in which the ground-state wave function
is written as a product state

jΨMFi ¼
Y
i

jϕii ðD2Þ

with

jϕii ¼
Xnmax

n¼0

fnjnii; ðD3Þ

where jnii denotes theFock statewithn bosons at site i [148].
We minimize the expectation value of the Hamiltonian with
respect to theGutzwiller coefficients fjfnj2gnmax

n¼0 bymeans of
simulated annealing [21,149] with a maximum number of
bosons per site of nmax ¼ 20. Here, the Gutzwiller coeffi-
cients fjfnj2gnmax

n¼0 represent the relevant probability distribu-
tions governing the data. Note that the simulated annealing
algorithm can get stuck in local energy minima. To counter-
act this noise, we average the Gutzwiller coefficients
obtained from 500 independent simulated annealing runs.
At the tip of the first Mott lobe (μ=U ¼ 0.5), the phase

transition occurs at Jc=U ¼ 1=ð5.8zÞ [see Fig. 18(a)],

where z is the coordination number (here, z ¼ 4) [147].
The phase transition can be revealed by looking at the
average boson number per site hni; see Fig. 18(g). TheMott
insulator is characterized by an integer density enforced by
the Mott energy gap ∝ U. As a result of the energy gap, the
Mott insulator is incompressible. In contrast, the superfluid

FIG. 18. Results for the Mott insulating to superfluid phase transition in the (two-dimensional) Bose-Hubbard model with the
dimensionless coupling strength as a tuning parameter p ¼ J=U ranging from p1 ¼ 0 to pK ¼ 0.3 in steps of Δp ¼ 0.03, where
μ=U ¼ 0.5. In SL, the data obtained at p1 and pK constitute our training set, i.e., rI ¼ 1 and lII ¼ K. The reference value for the critical
value of the tuning parameter Jc=U ¼ 1=ð5.8zÞ with z ¼ 4 [147] is highlighted by a red dashed line. (a) Illustration of the two-
dimensional phase diagram of the Bose-Hubbard model containing three Mott lobes. Here, we analyze the quantum phase transition
from a Mott insulating state to a superfluid state occurring at the tip of the first Mott lobe (μ=U ¼ 0.5). A sketch of the two distinct
phases is shown on the bottom. (b) Mean optimal prediction ŷoptSL in SL (black solid line) and the corresponding indicator IoptSL (blue line).
The value ŷoptSL ¼ 0.5 is highlighted by a black dashed line. (c) Optimal indicator of LBC, IoptLBC (black line). (d) Mean optimal prediction
ŷoptPBM in PBM (black line) and the corresponding indicator IoptPBM (blue line). (e) Probability distributions governing the input data (indices
of Fock basis states fjniignmax

i¼1 ) as a function of the tuning parameter, where the color scale denotes the probability. (f) Average energy per
site (N ¼ L sites in total) as a function of the tuning parameter. Notice the drop in the average energy as the system undergoes the
quantum phase transition. (g) Average occupation number per site hni as a function of the tuning parameter.

FIG. 19. Optimal indicator of LBC for the IGT (L ¼ 12) with
dimensionless inverse temperature p ¼ βJ as a tuning parameter,
where p1 ¼ 0.05, pK ¼ 5, and Δp ¼ 0.05. The critical value of
the tuning parameter pc ¼ βcJ from Fig. 4 is highlighted in red.
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phase is compressible and is characterized by strong
number fluctuations (even at low temperature).
Figure 18 shows the results of SL, LBC, and PBM. Here,

both SL and PBM correctly identify the quantum phase
transition, whereas LBC fails. Looking at Fig. 18(e), we see
that a large change in the underlying probability distribu-
tions occurs at the quantum phase transition. In Ref. [22],
LBC with NNs is shown to correctly highlight the Mott-
insulating to superfluid transition in the Bose-Hubbard
model. However, in this case, the Gutzwiller coefficients
directly serve as input, whereas here the individual Fock
basis states (i.e., their indices) constitute the input. Note
that the phase transition would not be predicted with a high
accuracy using SL if we estimate the predicted critical
temperature as the value of the tuning parameter for which
ŷoptSL ¼ 0.5; see the black dashed line in Fig. 18(b). This
motivates our approach to SL compared to the procedure
originally proposed in Ref. [4]. However, both approaches
for obtaining estimated critical values are directly appli-
cable given optimal predictions.

2. Analysis of Ising gauge theory

Figure 19 shows the optimal indicator of LBC for the
IGT with inverse temperature β as a tuning parameter. The
signal qualitatively matches the indicator of LBC reported
in Fig. C1 in Ref. [31] obtained with NNs, confirming that
for high-capacity models the indicator signal of LBC is
indeed ambiguous in this case.
In Ref. [31], the authors also investigate the IGT with

PBM using NNs. They empirically find that the NN-based
predictions agree well with a physical model based on the
underlying density of states, which is proposed in an ad hoc

fashion guided by physical intuition. In our work, we
explicitly confirm this physical intuition on what the NN
learns by proving that the optimal prediction of PBM for a
given configuration in the IGT corresponds to the most
likely tuning parameter value based on the underlying
Boltzmann distribution.

3. Background subtraction for learning by confusion

Figure 20 shows the optimal indicator in LBC for all
physical systems considered in the main text, as well as a
modified version where the V-shaped indicator signal
characteristic of indistinguishable data is subtracted.
Note that this V-shaped indicator signal is computed
separately for each system, i.e., parameter range. For all
systems, we find that the modified indicator peaks near the
center of the parameter range under consideration, whereas
the original indicator signal peaks near the phase transition
(red dashed line). This bias arises because the subtracted
signal is lowest near the center of the parameter range. As
such, the bias can be easily missed if the transition point is
indeed located in the center of the chosen parameter range;
see Fig. 20(d).
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