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Abstract: Vibrational spectroscopy is a powerful technique to characterize the near-equilibrium dynamics of
molecules in the gas and the condensed phase. This contribution summarizes efforts from computer-based
methods to gain insight into the relationship between structure and spectroscopic response. Methods for this
purpose include physics-based and machine-learned energy functions, and methods that separate sampling
conformational space and determining the data for spectral analysis such as map-based techniques.
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1. Introduction

Optical spectroscopy, and in particular infrared and Raman
spectroscopy, are versatile tools to determine the chemical com-
position and structure of molecules.When extended into the time-
domain, techniques such as multidimensional infrared spectros-
copy also provide a structure-sensitive instrument to characterize
the environmental dynamics, couplings and energy transfer in
solution. For the interpretation of such experiments, simulations
play an important role. In the following, different approaches are
summarized which aim at providing a molecularly refined pic-
ture of the structural dynamics underlying the experimentally
observed spectroscopic features.

The present contribution revolves around dynamics-based
approaches which explicitly account for the structural dynam-
ics in solution. Methods primarily rooted in electronic structure
calculations can typically only be applied to individual confor-
mations in the gas phase. This has been done, for example, for
small peptides for which experimentally measured conformer-
specific spectra are available. The underlying structures were
assigned by comparing normal modes determined from density
functional theory (DFT) calculations for optimized structures
sampled from either finite-temperature MD or Monte Carlo sim-
ulations. [1,2]

The central quantity for dynamics-based approaches to vibra-
tional spectroscopy is the potential energy surface (PES) which
describes how the total energy of a system changes with geometry.
Computing and representing a full-dimensional PES suitable for
vibrational spectroscopyisaformidabletaskinitself. Severalmeth-
odsavailableforthisarebrieflymentioned and typical examples are
highlighted. The approaches range from augmented empirical en-
ergy functions with physics-based input such a multipolar electro-
statics[3] tomachine-learned energy functions. [4]

2. Molecular Dynamics Simulations with Physics-
based Energy Functions

Empirical energy functions which are also called “force
fields” have been extensively used to characterize the structure
and dynamics of macromolecules, including peptides and pro-
teins.[5–11] The extensive parametrization of any “general purpose
force field” includes fitting to experimental structural and spec-
troscopic data for equilibrium geometries and force constants,
experimental results on hydration free energies, heats of formation
and other thermodynamic properties for van der Waals param-

eters, and to electronic structure data for atomic charges.As such,
these energy functions are a useful zeroth order model for a wide
variety of problems in structural biology and chemistry. However,
for individual systems and specific observables more refined pa-
rametrizations are required andpossible.

One particularly informative observable is the infrared spec-
trumof a solvatedmolecule. The solvent-induced red or blue shifts
of the spectral lines provide a quantitative measure of the solvent-
solute interaction. If time-resolved methods such as 2-dimension-
al IR spectroscopy are used, the frequency-fluctuation correla-
tion function (FFCF) or alternatively the “center-line slope”[12]
is an observable and reflects the characteristic time-scale(s) of the
solvent fluctuations to which the solute degrees of freedom are
coupled.[13] Such fluctuations occur on the picosecond time scale
which makes them ideally suited for rigorous sampling by MD
simulations and with sufficiently long integration time the neces-
sary averaging over conformational substates can be achieved for
direct comparison with experiments. Typical time scales of such
simulations are in the nanosecond range which are sufficient for
systems such as ions in solution or ligands bound to proteins but
not necessarily for ionic liquidsor deep eutectic solvent with con-
siderably increased viscosity.

Atomistic simulations with multipolar force fields have dem-
onstrated that it is possible to realistically describe the 1d and 2d-
spectroscopy of small molecules in electrostatically demanding
environments such as in proteins or in water.[16,20,21] It was also
shown for cyanide (CN−) in water that the same energy function
for the solute is capable of correctly describing a range of con-
densed-phase properties including the solvent-induced shift, the
decay time of the FFCF, the hydration free energy, and the vibra-
tional energy relaxation rate in water (Fig1.).[14,16,18] This indicates
that physics-based refinements of such generic energy functions
provide a meaningful extension for molecularly resolved inves-
tigations of complex systems. The spectroscopy of photodisso-
ciated CO in myoglobin (Mb) was also investigated by using a
fluctuating multipolar representation for the electrostatics. [20,21]
This allowed to assign for the first time the experimentally ob-
served[22,23] split infrared spectrum and to identify the two peaks
with two distinct conformational substates: one in which the oxy-
gen end of CO pointed towards the heme-iron atom and a second
state for which the carbon was closer to the Fe atom.[20,21,24] This
model correctly captures the red shift of the two bands relative
to gas phase CO, the splitting of the two peaks and their relative
intensity.

Finally, it is also possible to refine energy functions by compar-
ingexperimentallydetermined IR spectra with those from compu-
tations. The infrared spectrum of acetylacetone (doubly methylat-
ed malonaldehyde) features a prominent band between 2000 and
3000 cm−1which is due to proton transfer across a low barrier.[26]
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But all of them incur a considerably larger number of free
parameters to be determined.[29,30]

In recent years an alternative approach has matured which is
based on using statistical models[31] to represent precomputed
energies and forces from electronic structure calculations. Such
machine learning (ML) techniques do not necessarily require a
parametrized form to be used but rather represent data given a set
of kernel functions (kernel ridge regression) or by minimizing a
loss function of a neural network (NN).[4,32,33] For kernel-based
methods the long range physical shape of the PES can be encod-
ed in the kernel which guarantees correct extrapolation to large
separations. [34,35] No such procedure is known for short range
interactions.[36] For NN-learned energy functions extrapolation
to geometries outside the training set needs to be carefully as-
sessed.[4]

One of the advantages of ML-based energy functions is that
they contain all couplings between the degrees of freedom. This
is very challenging for empirical energy functions. For instance,
the CO bonds in protonated oxalate change between single and
double-bond character depending on where the proton is located.
[37] Although such effects can be “encoded” in an empirical force
field, capturing such effects fromaglobally valid,machine-learned
energy function is more readily possible as has recently been done
for formic aciddimer.[38,39]

Morphing[25,27] a parametrized PES suitable for following proton
transfer and comparing the resulting infrared spectrum with that
from experiments yields an estimated barrier for proton transfer
of 2.35 kcal/mol; see Fig. 2. Simulations with half and twice this
barrier height demonstrated that the spectroscopic features char-
acterizing H-transfer are directly sensitive to the barrier height.
Subsequent machine learning reported a barrier height of 3.25
kcal/mol from transfer learning to the PNO-LCCSDT(T)-F12
level of theory.[28] Hence, the barrier height extracted from spec-
troscopy in this fashion is qualitatively correct although the
value from transfer learning may also change at yet higher levels
of theory, such as CCSD(T)-F12. Potential further improvement
of the morphed PES can be achieved by including effects due to
differences in zero point energy between the minimum energy
and transition state structures, which will increase the experi-
mentally determined barrier height.

3. MolecularDynamicsSimulationswithMachine-
learned Potentials

Oneofthemajorchallengesinempiricalforcefielddevelopment
is to find a suitable parametrized form of the energy function de-
pending on internal coordinates for a molecule.Various extensions
to the generic harmonic oscillator models for bonds and angles
have been considered.

Fig. 1: Structural and hydration dynamics of cyanide in water. Panel A: vibrational relaxation of the vCN− = 1 stretch through vibrational energy trans-
fer (VET)[14] into the water libration and bending motion (red arrows) from classical MD simulations consistent with experiment.[15] Panel B: The 1d
lineshape from simulations using multipoles (MTP)[16] with those measured experimentally (horizontal bar).[15]Panel C: Decay of the center line slope
(equivalent to the FFCF, see text) from using point charges (PC, magenta) and MTP chargemodels comparedwith experiment (grey). [16,17]PanelD:
Hydration freeenergyofCN− fromMTP simulations are consistent with those from experiment.[18,19] Figure adapted from Refs.[14,16,18]
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protein dynamics to follow protein assembly or protein-ligand
interactions.

4. Molecular Dynamics Simulations with
Spectroscopic Maps

Determining the frequency trajectories ω(t) required for com-
puting the FFCF and 2d-IR response can be computationally
prohibitive. One way to circumvent the expensive instantaneous
normal mode or reduced-dimensionality quantum bound state cal-
culations is to use spectroscopic maps.[51–54] Such maps can be
parametrized from electronic structure calculations using model
systems and exploit the fact that the frequency shift of an oscilla-
tor in the field of surrounding point charges can be approximately
described by the Stark effect. Maps have been generated for a
range of spectroscopic probes, including the amide-I stretch,[52]
the nitrile stretch, the azido stretch, and others.[54] Recently, ma-
chine learning has also been applied to refine the amide-I map.[55]

With such spectroscopic maps it is then quite straightforward
to determine the frequency trajectory for a particular oscillator
from conventional MD simulations. For every snapshot to be ana-
lyzed the electric field at the position of the oscillator of interest
is determined and related to the frequency shift by evaluating the
spectroscopic map. This provides the information required to gen-
erate the FFCF fromwhich important information about the struc-
tural dynamics around the spectroscopic reporter can be obtained.

One of the conceptual disadvantages of spectroscopic maps
is the fact that the energy function used to run the MD simu-
lations typically differs from the energy function used to evalu-
ate the spectroscopic response which is also possible by using
physics-based force fields. Furthermore, some maps have been
generated for rigid labels as was the case for the amide-Imaps.
Hence, the MD simulations need to be run with constrained CO
distances for the maps to be valid. A direct comparison between
map-based analyses and results from instantaneous normal modes
and solutions of the nuclear Schrödinger equation has recently
been given for insulin monomer and dimer. For this system it was
found that the maps perform inferior compared with the other two
approaches.[48]

As an example for the performance of state-of-the art ML-
based methods for vibrational spectroscopy, formic acid mono-
mer and dimer (FAM and FAD) in the gas phase is considered.
[38] Using PhysNet[40] a reference machine-learned PES was de-
termined at the MP2/aug-cc-pVTZ level of theory for FAM and
FAD. The mean averaged error between reference calculations
and the statistical model is 0.01 kcal/mol. Transfer learning the
MP2-based PES to the CCSD(T)/aug-cc-pVTZ level of theory
yields normal mode frequencies within 25 cm−1 on average com-
pared with experiment for modes below 2000 cm−1. Including
anharmonic corrections within second order vibrational perturba-
tion theory (VPT2)[41] reduces this to 17 cm−1. For the OH-stretch
mode the VPT2 calculations yield 3011 cm−1, compared with
an experimentally reported, ∼ 100 cm−1 broad absorption band
with center frequency at ∼ 3050 cm−1. Finally, using diffusion
Monte Carlo (DMC)[42] calculations for the full-dimensional
ground state potential energy and including corrections due to ba-
sis set superposition and basis set completeness errors yield a dis-
sociation energy of D

0
= −14.23 ± 0.08 kcal/mol compared with

an experimentally determined value of −14.22 ± 0.12 kcal/mol.[43]
It is of interest to note that experiment-guided refinement

of an advanced force field based on molecular mechanics with
proton transfer (MMPT)[44] the barrier height for double pro-
ton transfer in FAD could be inferred. For this, the height of the
double well potential was adjusted to match the experimentally
observed broad band associated with DPT in FAD. The result-
ing[45] barrier height was 7.2 kcal/mol which compares with an ex-
perimentally determined value from microwave spectroscopy of
7.3 kcal/mol.[46] In this fashion, information from vibrational
spectroscopy can also be used to adapt (“morph”) PESs.[25]

Finally, machine-learned energy functions can also be used
in a mixed quantum mechanics/molecular mechanics fashion
to accurately describe the bonded energetics for spectroscopic
probes used in protein 2-dimensional IR spectroscopy.[47] This
was successfully done using reproducing kernel-based represen-
tations for the amide-I mode in insulin and trialanine or for azide
attached to all alanine residues in Lysozyme.[48–50] Such simula-
tions provide a positionally sensitive probe of the local and global

Fig. 2: Experimental infrared (violet) and computed (green, black/orange,
red) power spectrum in the region of the H-transfer mode of acetylace-
tone. For the computations PESs featuring different barrier heights (1.18,
2.35, 4.70) kcal/mol were used in amorphing-type approach[25] to assess
the position of the proton transfer band. Best agreement between ex-
perimentally measured and computed IR spectra is for a barrier height of
2.35 kcal/mol, comparedwith3.2kcal/mol fromCCSD(T) calculations. [26]

Thesignaturesaround3000cm−1 in the experimentally measured spectra
are due to the CH stretch vibrations. The process studied(H-transfer) for
acetylacetoneis illustratedinthetoppartofthefigureswithR=CH3. Figure
adapted from Ref.

[26]

Fig. 3: Double proton transfer in formic acid dimer. The arrows indicate
the process that is followed in the simulations. Breaking of the two hy-
drogen bonds (dashed lines) yields two formic acid monomers for which
the experimentally determined43 value is −14.22± 0.12 kcal/mol com-
pared with D0 = −14.23 ± 0.08 kcal/mol from recent computations.[38]

Recent simulations[39] suggest that double proton transfer in FAD is syn-
chronous with a maximum time delay of ∼ 5 fs between two consecutive
proton transfers.
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5. Outlook
Molecular dynamics simulations with advanced energy func-

tions provide important information about the structural dynamics
of molecules in solution. Extensively sampling the conformation-
al degrees of freedom is essential and only possible with effi-
cient implementations of the energy functions. Treating spectro-
scopic probes with quantitatively accurate energy functions and
using them in MD simulations provides information where to
attach small molecules in order to be most sensitive to external
perturbations such as binding of a ligand. For such and other
applications the combination of experiment and simulation is
indispensable and promises the necessary molecular-level in-
formation to control and design chemical systems with desired
properties.

For the nuclear dynamics classical MD simulations have prov-
en adequate for the purposes outlined in the present contribution.
It is of interest to note that already 40 years ago it was pointed
out for CO in the gas phase and in argon that classical MD simu-
lations are even capable of correctly capturing the envelopes of
R(J→ J + 1)and P(J + 1 → J ) -branches similar to what quantum
mechanical treatments provide.[56] This work demonstrated that
four different approaches give essentially the same band shapes,
namely: I) a quantum mechanical treatment, II) the quantum-cor-
rected result for k→ 0, III) classical mechanical (Newtonian) treat-
ment within classical linear response theory and quantum correc-
tion factors, and IV) experiment. More recently, this has also been
found for dilute HOD in H

2
O for which the P-, Q-, and R-branch

envelopes from classical MD simulations using quantum correc-
tion factors closely agree with experimental measurements.[55]
These simulations found that even though the HOD rotations are
treated classically, the rovibrational structure of the spectrum was
described correctly. Hence, developing approximate quantum
treatments will be of interest in order to delineate the range of
applicability of classical mechanics for vibrational spectroscopy.
Also, quantum effects including zero-point energy and tunneling
are outside the scope of any classical mechanics-based method.
For this reason, developing quantum methods applicable to the
dynamics in solution remain an important quest in this field.[57]

In summary, it is anticipated that MD simulations with im-
proved energy functions together with experimental characteriza-
tion of small molecules, peptides, and proteins in solution will
provide important molecular-level insights into the dynamics of
complex systems. With increasing accuracy of the energy func-
tions it may even be possible to predict the dynamics and spectros-
copy of such systems which is an important element for systems
design.

Acknowledgments
The author acknowledges financial support from the Swiss National

Science Foundation (NCCR-MUST and Grant No. 200021-188724), the
AFOSR, and the University of Basel.

Received: May 3, 2022

[1] Zwier, T. S., J. Phys. Chem. A 2006, 110, 4133,
https://doi.org/10.1021/jp056390z.

[2] Rizzo,T.R.Stearns, J.A.Boyarkin,O.V. , Int. Rev.Phys.Chem.2009,28,481,
https://doi.org/10.1080/01442350903069931.

[3] Koner, D. Salehi, S. M. Mondal, P. Meuwly, M., J. Chem. Phys. 2020, 153,
010901, https://doi.org/10.1063/5.0009628.

[4] Unke, O. T. Chmiela, S. Sauceda, H. E. Gastegger, M. Poltavsky, I. Schütt,
K. T. Tkatchenko, A. Müller, K.-R., Chem. Rev. 2021, 121, 10142,
https://doi.org/10.1021/acs.chemrev.0c01111.

[5] Lifson, S. Warshel, A., J. Chem. Phys. 1968, 49, 5116,
https://doi.org/10.1063/1.1670007.

[6] Levitt, M. Lifson, S., J. Mol. Biol. 1969, 46, 269,
https://doi.org/10.1016/0022-2836(69)90421-5.



Frontiers in ultraFast spectroscopy and dynamics CHIMIA 2022, 76, No. 6 593

[45] Mackeprang, K. Xu, Z.-H. Maroun, Z. Meuwly, M. Kjaergaard, H. G., Phys.
Chem.Chem.Phys. 2016, 18, 24654, https://doi.org/10.1039/C6CP03462D.

[46] Li,W. Evangelisti, L. Gou,Q. Caminati,W.Meyer,R. , Angew. Chem. Int. Ed.
Engl.2019, 58, 859, https://doi.org/10.1002/anie.201812754.

[47] Johnson, P. J. Koziol, K. L. Hamm, P., J. Phys. Chem. Lett. 2017, 8, 2280,
https://doi.org/10.1021/acs.jpclett.7b00742.

[48] Salehi, S. M. Koner, D. Meuwly, M., J. Phys. Chem. B 2020, 124, 11882,
https://doi.org/10.1021/acs.jpcb.0c08048.

[49] Salehi, S. M. Meuwly, M., J. Chem. Phys. 2021, 154, 165101,
https://doi.org/10.1063/5.0047330.

[50] Mondal, P. Cazade, P.-A. Das, A. K. Bereau, T.
Meuwly, M., J. Phys. Chem. B 2021, 125, 10928,
https://doi.org/10.1021/acs.jpcb.1c05423.

[51] Jansen, T. l. C. Dijkstra, A. G. Watson, T. M. Hirst, J. D. Knoester, J. , J.
Chem. Phys. 2006, 125,044312, https://doi.org/10.1063/1.2218516.

[52] Reppert, M. Tokmakoff, A., J. Chem. Phys. 2013, 138, 134116,
https://doi.org/10.1063/1.4798938.

[53] Wang, L. Middleton, C. T. Zanni, M. T. Skinner, J. L., J. Phys. Chem. B 2011,
115, 3713, https://doi.org/10.1021/jp200745r.

[54] Baiz, C. R. et al., Chem. Rev. 2020, 120, 7152,
https://doi.org/10.1021/acs.chemrev.9b00813.

[55] Kananenka, A. A.Yao, K. Corcelli, S. A. Skinner, J., J. Chem. Theor. Comp.
2019, 15, 6850, https://doi.org/10.1021/acs.jctc.9b00698.

[56] Berens, P. H. Wilson, K. R., J. Chem. Phys. 1981, 74, 4872,
https://doi.org/10.1063/1.441739.

[57] Rossi, M., J. Chem. Phys. 2021, 154, 170902,
https://doi.org/10.1063/5.0042572.

License and Terms
This is an Open Access article under the
terms of the Creative Commons Attribution
License CC BY 4.0. The material may not
be used for commercial purposes.

The license is subject to the CHIMIA terms and conditions:
(https://chimia.ch/chimia/about).

The definitive version of this article is the electronic one that can be
found at https://doi.org/10.2533/chimia.2022.589


