edoc

Nuclear magnetism and electron order in interacting one-dimensional conductors

Braunecker, Bernd and Simon, Pascal and Loss, Daniel. (2009) Nuclear magnetism and electron order in interacting one-dimensional conductors. Physical Review B, Vol. 80, H. 16 , 165119, 28 S..

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5254580

Downloads: Statistics Overview

Abstract

The interaction between localized magnetic moments and the electrons of a one-dimensional conductor can lead to an ordered phase in which the magnetic moments and the electrons are tightly bound to each other. We show here that this occurs when a lattice of nuclear spins is embedded in a Luttinger liquid. Experimentally available examples of such a system are single wall carbon nanotubes grown entirely from C-13 and GaAs-based quantum wires. In these systems the hyperfine interaction between the nuclear spin and the conduction electron spin is very weak; yet it triggers a strong feedback reaction that results in an ordered phase consisting of a nuclear helimagnet that is inseparably bound to an electronic density wave combining charge and spin degrees of freedom. This effect can be interpreted as a strong renormalization of the nuclear Overhauser field and is a unique signature of Luttinger liquid physics. Through the feedback the order persists up into the millikelvin range. A particular signature is the reduction in the electric conductance by the universal factor of 2.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss)
UniBasel Contributors:Loss, Daniel
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:American Institute of Physics
ISSN:0163-1829
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:25
Deposited On:22 Mar 2012 13:49

Repository Staff Only: item control page