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Summary

MicroRNAs have important functions in the development of eukaryotes. In plants, highly

conserved miRNA families have been shown to regulate morphogenesis and organ identity,

primarily by targeting cleavage of mRNAs encoding transcription factors. Cloning identified a

21 nt Arabidopsis miRNA, miR824, conserved in Brassica species, but not in more distantly

related species. miR824 is encoded at a single genetic locus as a polyadenylated, primary

miRNA that is spliced and then processed via a precursor miRNA intermediate. miR824

mediates cleavage of the AGAMOUS-LIKE 16 (AGL16) mRNA. AGL16 is a member of the

MADS-box protein family. The plant-specific MADS-box protein family has many established

functions in regulating growth and development. Impairing the miR824-mediated repression

of AGL16 leads to leaf abnormalities and growth defects raising the possibility that AGL16

has pleiotropic function in leaf developmental programs. This study shows that the density

and development of stomatal complexes on the epidermis of Arabidopsis leaves depend, in

part, on microRNA-mediated regulation of AGL16 assigning a novel function for the MADS-

box protein family. Mutants deficient in AGL16 and transgenics overexpressing miR824 show

decrease in stomatal density and developed only primary stomatal complexes. Ectopic ex-

pression of a miR824-resistant AGL16 mRNA, but not of the wild-type AGL16 mRNA in

transgenic plants, increases the stomatal density and the incidence of higher-order stom-

atal complexes. These results and the localization of AGL16 mRNA and miR824 in mature

stomata and satellite meristemoids, respectively, leads to the conclusion that miR824/AGL16

pathway functions in stomatal development. The miR824-AGL16 regulatory pathway is re-

stricted to Brassica and might account for some Brassicaceae-specific taxonomic features

of stomatal organization.



Zusammenfassung

MicroRNAs habe wichtige Funktionen in Entwicklungsprozessen von Eukaryonten. Im pflanz-

lichen Organismus regulieren die evolutionär konservierten miRNA Familien Gestalt- und

Formbildung, indem sie an komplementäre Sequenzen ihrer Ziel-mRNA, die meist für Trans-

kriptionsfaktoren kodieren, binden und spalten. Eine 21 nukleotid lange miRNA, miR824,

wurde aus Arabidopsis kloniert. Diese miRNA ist in Brassica Arten vorhanden, jedoch nicht

in entfernteren verwandten Arten. miR824 ist auf einem einzelnen genetischen Lokus ko-

diert. Die primäre miRNA liegt polyadenyliert vor, wird gespleißt und zu einer Vorläufer

miRNA prozessiert. miR824 spaltet AGAMOUS-LIKE 16 (AGL16) mRNA. AGL16 gehört

zur Familie der MADS-box Proteine. Pflanzliche MADS-box Proteine regulieren Wachstums-

und Entwicklungprozesse. Wird die durch miR824 vermittelte Unterdrückung von AGL16

beeinträchtigt, führt dies zu Blattmissbildung und Wachstumsdefekten, die eine pleiotrope

Funktion von AGL16 in Blattentwicklungsprogrammen nahe legen. Die vorliegende Arbeit

zeigt, dass die Dichte und Entwicklung von Spaltöffnungskomplexen auf der Epidermis von

Arabidopsisblättern zum Teil von der miRNA vermittelten Regulation von AGL16 abhängt.

Dies stellt eine bislang unbekannte Funktion der MADS-box Proteinfamilie dar. Mutanten die

AGL16 in unzureichendem Masse bilden und transgene Pflanze, die die miR824 verstärkt

bilden, zeigen einen verminderte Dichte an Spaltöffnungen und entwickeln hauptsächlich

einfache Spaltöffnungskomplexe. Die ektopische Expression einer miRNA resistenten Form

der AGL16 mRNA, jedoch nicht der Wildtypform, führt in transgenen Pflanzen zu einer er-

höhten Spaltöffnungsdichte und einem verstärkten Auftreten von multimeren Spaltöffnungs-

komplexen. Dieses Ergebnis sowie die Lokalisierung der AGL16 mRNA und der miR824

in ausgeformten Spaltöffnungen bzw. Satellitenmeristemoiden führt zur Schlussfolgerung,

dass die miR824-AGL16 Wechselwirkung die Entwicklung des Spaltöffnungsapparates re-

guliert. Dieser Regulierungsprozess beschränkt sich auf die Gattung der Brassica und kann

die Ausbildung von einigen Brassicaceae spezifischen taxonomischen Merkmalen der Spalt-

öffnungsanordnung bedingen.
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1. Introduction

Development of multi-cellular organisms is characterized by the specification and differentia-

tion of diverse cell types and organs. Specification is controlled by proteins and other regula-

tory elements present in specific locations and at specific times in adequate concentrations.

In Eukaryotes, several layers of gene regulation, including: transcription and chromatin mod-

ifications; RNA capping, RNA polyadenylation, RNA splicing; and mechanisms of protein

modification, localization, compartmentation, and degradation; have important roles in differ-

entiation processes (Alberts et al., 2002). Transcription factors are key components in the

spatio-temporal regulation of genes involved in cell differentiation. They can bind to regu-

latory elements in genes and increase or decrease their expression. More recent findings

have shown that the steady-state level of mRNAs, including those encoding transcription

factors, can be regulated by smRNAs (Chen and Rajewsky, 2007). This form of regulation

by smRNAs is major topic of this dissertation.

1. Small RNA pathways

1.1. Classes of smRNAs

Many levels of gene regulation in both plants and animals can be influenced by different

classes of non-coding smRNAs 19-30 nucleotides in length (Bartel, 2004; Zamore and Ha-

ley, 2005) that are distinguished by their biogenesis and genomic origin. smRNA-mediated

regulation is often referred to as RNA silencing, gene silencing, or RNA interference (RNAi)

because of their repressing function on gene expression. smRNAs are known to play essen-

tial roles in Eukaryotes, with the surprising exception of Saccharomyces cerevisiae (brewer’s

yeast) (Cerutti and Casas-Mollano, 2006). In plants small RNAs are involved in a variety of

phenomena that are essential for genome stability, development, and adaptive responses to

biotic and abiotic stresses.
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1. Small RNA pathways Introduction

1.1.1. small interfering RNA (siRNA)

siRNAs are produced either by exogenously triggered RNA silencing (double-stranded RNA

(dsRNA), viruses, and transgenes) resulting in transcript cleavage or by endogenous RNA

silencing pathways. Endogenously derived siRNAs are subdivided into: repeat-associated

siRNAs (ra-siRNAs) (Hamilton et al., 2002; Xie et al., 2004), trans-acting siRNAs (ta-siRNAs)

(Peragine et al., 2004; Vazquez et al., 2004), and natural antisense siRNAs (nat-siRNAs)

(Borsani et al., 2005). ra-siRNAs arise from loci with repeat sequences and are involved

in DNA methylation and establishment or maintenance of transcriptionally silent chromatin

(Lippmann et al., 2004). ta-siRNAs are generated from non-coding RNA precursors that are

initially targeted for cleavage by a microRNA (miRNA) and play an important developmental

role in the juvenile-to-adult transition (Hunter et al., 2003; Fahlgren et al., 2006). Partial over-

lapping genes on opposite strands of DNA from the same locus (cis-antisense genes) can

anneal, form dsRNAs, and give rise to nat-siRNAs. Nat-siRNAs are capable of regulating

target mRNA expression of one of the two parent transcripts at the post-transcriptional levels

by guiding mRNA cleavage, mainly in response to stress (Borsani et al., 2005).

1.1.2. micro RNA (miRNA)

The first miRNA, lin-4, was identified in a forward genetic screen in C. elegans to identify

genes that cause defects in timing in larval development. However, in this case lin-4 did not

encode a protein but a smRNA called at this time a small temporal RNA (stRNA) (Lee et al.,

1993). lin-4 inhibits translation of the heterochronic gene lin-14, with which it shares short

elements of partial sequence complementarity in its 3’UTR (Lee et al., 1993; Wightman et al.,

1993). miRNAs were later identified by cloning in many other organisms includingDrosophila

(Aravin et al., 2003), mouse, human (Lagos-Quintana et al., 2003; Lagos-Quintana et al.,

2002), various plant species (Billoud et al., 2005; Jones-Rhoades and Bartel, 2004; Lu et

al., 2005; Reinhart et al., 2002; Wang et al., 2004a; Zhang et al., 2005; Zhang et al., 2007)

and the green algae Chlamydomonas reinhardtii (Molnar et al., 2007; Zhao et al., 2007).

1.1.3. piwi-interacting RNA (piRNA)

piwi-interacting RNAs (piRNAs) are smRNAs that associate with members of the Piwi sub-

family of Argonaute (AGO) proteins found in the germline of Drosophila (Brennecke et al,

2007; Gunawardane et al., 2007; Saito et al., 2006; Vagin et al., 2006), zebrafish (Houwing

et al., 2007), and rodents (Aravin et al., 2006; Carmell et al., 2007; Girard et al., 2006; Grivna

et al., 2006; Lau et al., 2006; Watanabe et al., 2006). They are 24 to 29 nt with methylated
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Figure 1.1: Generalized core RNA silencing pathways.

RNA silencing is triggered by several inducers that adapt a double-stranded (ds) RNA struc-

ture, achieved either by a hairpin structure or reverse transcription by an RNA-dependent

RNA polymerase (RDR). The dsRNA is processed by a member of the Dicer family of pro-

teins into small (sm) RNA duplex intermediates. smRNA duplexes are unwound and one

(passenger) strand (smRNA*) is degraded while the guiding strand (smRNA) is incorpo-

rated into RISC (RNA-induced silencing complex), an Argonaute protein containing complex.

RISC programmed with a smRNA lead to specific degradation of a target sequence.

3’ ends, map to euchromatic transposon loci, and their biogenesis occurs through a mech-

anism distinct from that of siRNAs and miRNAs. piRNAs are evolutionary conserved with a

potential role in maintenance of transposon silencing in the germline (O’Donnell and Boeke,

2007).

1.2. smRNA biogenesis and mechanistic basis of smRNA-mediated gene

regulation

RNA silencing pathways (Figure 1.1) have in common the processing of a dsRNA interme-

diate by a member of the Dicer family to produce smRNAs that are incorporated into an

Argonaute protein-containing complex. The smRNA guides the Argonaute complex to a tar-

get in a sequence-specific manner. Figure 1.2 highlights the miRNA pathway in Arabidopsis.
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Figure 1.2: The microRNA pathway in Arabidopsis.

miRNAs are encoded on a genetic locus. Most miRNA genes are transcribed by an RNA

Polymerase II (RNA Pol II) and have core promoter elements like TATA boxes. The tran-

scripts contain both 5’ guanosine caps, 3’ poly-adenosine tails, and may be spliced, like

conventional protein-coding transcripts. MIRNA transcripts fold back forming a stem loop

region that contains the future mature miRNA sequence. Processing of the precursor tran-

script is mediated by an RNase III type enzyme DICER-LIKE 1 (DCL1), a double strand

binding protein HYPERNASTIC LEAVES 1 (HYL1), and the zinc-finger protein SERRATE

(SE) to form a miRNA duplex. Each 3’ end of the duplex is protected from polyuridinyla-

tion and probably degradation by a methyl group mediated by the methyltransferase HUA

ENHANCER 1 (HEN1). The miRNA duplex is shuttled to the cytoplasm by HASTY (HST).

The guiding strand (miRNA) of the miRNA duplex will be incorporated into the RNA-induced

silencing complex (RISC) with ARGONAUTE 1 (AGO1) as its main component. The miRNA

will guide RISC to the target mRNA leading either to mRNA degradation by cleavage or

translational repression. The miRNA can also act on the target gene locus of a cleaved

mRNA by recruiting a chromatin-modifying complex (CMC). Additionally, miRNAs can direct

trans-acting (ta)-siRNA phasing. In this case the miRNA cleavage products of a non-protein

coding transcript are reversed transcript by an RNA-dependent RNA polymerase (RDR6),

that can be processed by Dicer-like proteins into pairs of 21 nt siRNAs. Because of the

positioning of the miRNA-directed cleavage, one ta-siRNA will be in correct register to direct

cleavage of an mRNA.
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1. Small RNA pathways Introduction

1.2.1. smRNA processing enzymes - Type III Ribonucleases (RNase III) (Dicer family)

The Dicer family of proteins are large type III ribonucleases that process smRNA precursors.

Cleavage by type III RNases produces a characteristic terminal dsRNA structure consisting

of a 5’ phosphate group and a 2 nt overhang at the 3’ end (Robertson et al., 1968). They have

been divided into three classes. The bacterial class 1 RNase III contains a single RNase

III domain and a dsRNA-binding domain (dsRBD). Class 2 (Drosha) and class 3 (Dicer)

proteins have two RNase III (a and b) domains and one dsRBD. Class 3 enzymes have

in addition functional domains, a DExD and DExC ATPase/helicase domain at their amino

(N)- terminal end, a domain of unknown function (DUF283), and a PAZ domain, which is

thought to specifically bind the single stranded tails of smRNA duplexes (Bernstein et al.,

2003; Tomari and Zamore 2005).

Drosha as well as Dicer RNases have been shown to mediate processing of siRNA or

miRNA precursors. They require a double-stranded RNA-binding protein (DRB) partner to

mediate RNA cleavage at the required positions (Liu et al., 2003). In Drosophila Drosha and

its binding partner Pasha are required for primary (pri-) miRNA maturation in the nucleus

(Denli et al., 2004). Dicer-1 (Dcr-1) and Loquacious (Loq) then act in the cytoplasm for fur-

ther processing of the precursor (pre-) miRNA into mature miRNAs (Forstemann et al., 2005;

Lee et al., 2004; Saito et al., 2005). R2D2, the binding partner of siRNA-producing Dicer-

2 in Drosophila, was shown to selectively bind to the siRNA/siRNA* double stranded end

with the higher thermodynamical stability. This orients the Dicer-2/R2D2 complex and stabi-

lizes the functional guide strand (Tomari et al., 2004), while the other strand, the passenger

strand, is degraded. C. elegans and mammals contain only a single Dicer enzyme, gener-

ating both siRNAs and miRNAs, whereas other species have split these functions between

different proteins. The miRNA biogenesis pathway in mammals and Drosophila are similar.

the Pasha homolog DGCR8 is required for pri-miRNA recognition and pre-miRNA formation

by Drosha in the nucleus (Han et al., 2004) and pre-miRNAs are subsequently processed in

the cytoplasm by Dicer associated with the Loq homologues HIV-1 TAR RNA-binding protein

(TRBP) (Chendrimada et al., 2005; Haase et al., 2005) and PACT (Kok et al., 2007; Lee et

al., 2006).

Four different DICER-LIKE (DCL) proteins have been described in Arabidopsis with differ-

ent, partially overlapping functions in smRNA biogenesis (Gasciolli et al., 2005). DCL1 is

the main enzyme generating miRNAs (Golden et al., 2002; Park et al., 2002; Reinhart et al.,

2002). HYPONASTIC LEAVES 1 (HYL1), one of the five DRBs in Arabidopsis, has been

shown to interact with DCL1 (Hiraguri et al., 2005; Vazquez et al., 2004a). DCL1 and HYL1

co-localize in the nucleus where HYL1 interacts directly with miRNA precursors (Hiraguri et
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1. Small RNA pathways Introduction

al., 2005; Kurihara et al., 2006; Song et al., 2007). DCL2 processes viral and nat-siRNAs

(Borsani et al., 2005; Xie et al., 2004). DCL3 is involved in the formation of viral and en-

dogenous siRNAs related to chromatin silencing (Qi et al., 2005; Xie et al., 2004), while

DCL4 has been implicated in the formation of secondary ta-siRNAs (Dunoyer et al., 2005;

Gasciolli et al., 2005; Xie et al., 2005) but also of some miRNAs (Rajagopalan et al., 2007).

DRB4 interacts with DCL4 in vitro (Hiraguri et al., 2005) to ensure production of ta-siRNAs

(Adenot et al., 2005). Examining the C. reinhardtii, poplar, and rice genomes revealed that

they contain three, five, and six DCL genes, respectively.

1.2.2. Additional smRNA processing enzymes in Arabidopsis

Proper miRNA processing in Arabidopsis depends on the interaction between HYL1 and

SERRATE (SE) which encodes a zinc-finger protein (Lobbes et al., 2006; Yang et al., 2006).

It also depends on HUA ENHANCER 1 (HEN1) which adds methyl groups to the 3’ terminal

riboses of both strands in the miRNA/miRNA* duplex (Yu et al., 2005) and stabilizes the

miRNA by preventing addition of one or several uridyl residues (Li et al., 2005). Similar

observations have been made for siRNA in plants and piRNAs in animals (Carmell et al.,

2007; Houwing et al., 2007; Horwich et al., 2007; Saito et al., 2007). HASTY, the plant

Exportin-5 ortholog has been implicated in shuttling miRNAs into the cytoplasm, where they

can exert their function (Bollman et al., 2003, Hunter et al., 2003).

RNA-DEPENDENT RNA POLYMERASES (RDRs) converts RNA transcripts into dsRNA

structures that serve as template for DCL processing and the RNA silencing response. The

Arabidopsis genome encodes six RDRs. Biological functions have been assigned only for

RDR1, RDR2, and RDR6. RDR6 was first shown to be involved in antiviral defense by mutant

screens that also implicated AGO1, HEN1, an RNA helicase (SDE3), and a coiled-coiled

protein (SGS3) (Dalmay et al., 2000, 2001; Mourrain et al., 2000). In this screen RDR6 was

required for resistance against Cucumber Mosaic Virus (CMV) infection; whereas, RDR1

was required for resistance against infection by tobamoviruses and tobraviruses (Yu et al.,

2003). In addition to its function in siRNAs biogenesis and viral defense, and transgene

silencing (Himber et al., 2003), RDR6 is required to produce endogenous, ta-siRNAs. Using

miRNA cleavage products of the TAS locus as templates, RDR6 produces dsRNAs that are

then cleaved in phase to give 21 nt ta-siRNAs (Peragine et al, 2004; Vazquez et al., 2004).

A similar role for RDR6 in the processing of nat-siRNAs after DCL2 cleavage has been

proposed (Borsani et al., 2006). RDR2 is required for the formation of heterochromatin-

associated 24 nt siRNAs (Lu et al., 2006; Xie et al., 2004). Pontes et al. (2006) showed

that DCL3 colocalizes in nucleolar processing bodies with RDR2 and acts downstream of
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1. Small RNA pathways Introduction

RDR2 and Pol IVa, a plant-specific RNA polymerase (Herr et al., 2005; Pontier et al., 2005;

Onodera et al., 2005).

1.2.3. Assembly of smRNA containing ribonucleoprotein complexes and slicing activity -

the Argonaute (Ago) family

smRNAs serve as specificity components of the protein RNA induced silencing complex

(RISC). RISC is required for miRNA-mediated RNA cleavage (Baumberger and Baulcombe,

2005; Qi et al., 2005). RISC has also been shown to recruit RDRs and the DNA methylation

machinery (Bartel, 2004). AGO proteins are the central players of RISC-like complexes and

specifically bind small RNAs with their PAZ domain (Lingel et al., 2003; Song et al., 2003;

Song et al., 2004; Yan et al., 2003). A second functional region of Ago proteins, the PIWI do-

main, possesses endonucleolytic activity required for cleaving transcripts in the middle of the

region of complementarity to smRNAs (“slicer” activity) (Kasschau et al., 2003; Llave et al.,

2002b). This slicer activity was shown for Drosophila Ago2 (Liu et al., 2004), human Ago2

(Meister et al., 2004), and Arabidopsis AGO1 (Baumberger and Baulcombe, 2005). Studies

of RISC assembly show that Dicer, associates with AGO proteins in the RISC complex. Dicer

cleavage products are therefore directly exposed to the AGO PAZ domain, where passenger

strands are selectively degraded. Similar to Dicer proteins, AGO proteins are not unique in

many genomes, suggesting that they have acquired specialized functions. The Arabidopsis

genome encodes 10 AGO family members, whose functions are only partially understood.

AGO1 functions in both miRNA and siRNA target regulation (Vaucheret et al., 2004). Unlike

animal AGO proteins, which are normally found as part of a larger protein complex, AGO1 di-

rects miRNA and siRNA target cleavage without requiring any protein partners (Baumberger

and Baulcombe 2005). AGO4 is involved in siRNA-dependent silencing of transposons and

repeats (Zilberman et al., 2004). Although the mechanism of AGO4-mediated chromatin

modifications in combination with Pol IV-RDR2-DCL3 complex is still unclear, AGO4 slicer

activity is dispensable for maintenance of heterochromatin at some loci (Qi et al., 2006).

AGO7 (ZIPPY ) has been implicated in mediating slicing of ta-siRNAs gene targets (Axtell et

al., 2007; Fahlgren et al., 2006). Once the target mRNA is “sliced” by Ago proteins, the 5’

and 3’ cleavage fragments are degraded respectively, by the exosome complex and the 5’-3’

exonuclease XRN4 (Souret et al., 2004).
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1.3. Evolution of miRNA genes in plants

Currently, there are 1220 plant miRNAs catalogued in the miRNA sequence database re-

lease 10.0 (miRBase, http://microrna.sanger.ac.uk, Griffith-Jones, 2004), with the majority

identified in Arabidopsis (184 miRNAs grouped into 108 families) (Appendix Table A.1), rice

(243 miRNAs grouped into 63 families), and poplar (215 miRNAs grouped into 33 families).

The majority of miRNAs are conserved across plant species and even between flowering

plants and non-flowering plants such as ferns and mosses (Axtell and Bartel, 2005; Zhang

et al., 2006), indicating also the conservation of an ancient mechanism for miRNA process-

ing enzymes. Some miRNAs are unique for Arabidopsis and believed to be non-conserved

(e.g. miR778, miR780, miR824, and miR856) beyond this plant species, leading to a model

for the evolution of miRNA genes in plants that distinguishes between “old” and “young” miR-

NAs (Allen et al., 2004; Fahlgren et al., 2007; Rajagopalan et al., 2006). This suggests

that the MIRNA locus evolved recently in the Arabidopsis genome and possibly occurred by

aberrant transposition, inverted gene duplication or recombination of the expressed target

gene sequence. Duplication of protein-coding sequences creates new gene regulatory net-

works and occurred frequently in plant genomes (Teichmann and Babu, 2004). The current

model (inverted duplication hypothesis) is supported by the discovery of loci representing

intermediate stages in this process (Figure 1.3) and proposes that the newly formed MIRNA

gene has been co-expressed with the target gene sequence (called founder gene), adopt

a foldback structure to produce a miRNA, and is finally kept in the genome to negatively

regulate the founder gene (Allen et al., 2004). The MIRNA locus initially shows extensive

complementarity to its target and over time accumulates mutations and therefore becomes

highly divergent from the founder gene sequence except in small regions corresponding to

the miRNA and miRNA* sequences.

1.4. miRNA function in Arabidopsis - a developmental view

The number of putative transcripts regulated posttranscriptionally by miRNAs or other small

RNAs is potentially large in plants and animals (Jones-Rhoades et al., 2006; Rajewsky,

2006). In humans, for example, computational and indirect experimental evidence indicates

that miRNAs regulate expression of up to one third of all genes (Bentwich et al., 2005; Farh

et al., 2005; John et al., 2006). The crucial roles of miRNAs in Arabidopsis development

were exemplified by studying plants overexpressing miRNAs and a miRNA-resistant form of

the target gene (Jones-Rhoades et al., 2006) (Figure 1.4).
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Figure 1.3: Inverted gene duplication model for evolution of MIRNA genes.

MIRNA genes evolve de novo by inverted duplication of their future target genes (y axis). The

inverted duplication initially forms the arms of an almost perfect double stranded foldback

transcript that progressively, through adaptive selection, acquires bulged structures. During

evolution “young” miRNA precursors will show extensive complementarity to their targets,

and then acquire nt divergence to the point that only the mature miRNA sequence resembles

the founder gene sequence as seen in “old” miRNAs. However, the formation of miRNAs

requires also the evolution of miRNA processing enzymes (x axis).

1.4.1. miRNAs targeting mRNAs encoding SCL transcription factors

Studies of miR170 and miR171 provided the first experimental evidence for miRNA guided

cleavage of plant mRNAs (Llave et al., 2002). Based on sequence analysis, three mem-

bers of the GRAS family of transcription factors SCARECROW-LIKE 6 (SCL6), SCL22, and

SCL27 are potential targets for miR170/171 (Rhoades et al., 2002). While the developmen-

tal roles of miR170/171 and its SCL target genes have not been reported yet, studies of this

miRNA-mRNA interaction made crucial contributions in the understanding of miRNA func-

tions. Parizotto et al. (2004) showed that the foldback structure of pre-miR171 is sufficient

for miRNA processing by DCL1. This study also highlighted that the upstream region or

MIR171 contains highly specific promoter elements ensuring tissue-specific expression of

miR171.

1.4.2. miR156/157 targeting mRNAs encoding SPL transcription factors

miR156 is a 20 nt long miRNA that differs from the 21 nt long miR157 by one nucleotide and

two additional mismatches. Ten out of the 16 SQUAMOSA PROMOTER BINDING PROTEIN

LIKE (SPL) gene family have target sites for miR156/157. All of the genes are downregulated
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Figure 1.4: Phenotypical consequences of Arabidopsis plants impaired in miRNA and

target gene expression

miRNA overexpression (left panel; controlled by the 35S promoter) and miRNA-resistant

target gene expression (right panel; controlled by either the 35S or the endogenous target

gene promoter) result in obvious phenotypes of Arabidopsis as described and shown by a

picture.
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in plants constitutively overexpressing miR156b (Schwab et al., 2005) but only five of these

transcripts have been shown to be cleaved by these miRNAs (Chen et al., 2004; Kasschau

et al., 2003; Vazquez et al., 2004; Wu and Poethig, 2006). miR156/157 is responsible for

the change in SPL3 expression in vegetative phase change and floral induction (Wu and

Poethig, 2006). Interestingly, Gandikota et al. (2007) report that miR156/157 prevents early

flowering in seedlings by translational inhibition of SPL3. The phenotype is similar to that of

mutants deficient in ZIP and RDR6 that are required for the ta-siRNA pathway. Indeed, both

either directly or indirectly repress the expression of SPL3 during vegetative development

(Wu and Poethig, 2006). The heterochronic maize mutant corngrass 1 (cg1) is formed by

overexpressing a tandem arranged miR156 locus that is probably caused by retrotransposon

insertion (Chuck et al., 2007) and the phenotype is so severe that it causes reversion to a

more ancestral grass-like state (Singleton, 1951). This leads to the conclusion that altering

miR156/157 level can either prolong or shorten juvenile development in maize thus providing

a mechanism for how species-level heterochronic changes can occur in nature.

1.4.3. miRNAs targeting mRNA encoding TCP transcription factors

The sequence of miR159 and miR319/JAW differ by only three nucleotides (Palatnik et al.,

2003; Reinhart et al., 2002). The effects of overexpression, as well as the position of target

cleavage, indicated that miR159 and miR319 have largely nonoverlapping effects in vivo.

miR159 targets several MYB transcription factor genes involved in flowering and male fertility,

while miR319 primarily affects five TCP transcription factor genes controlling leaf shape

(Achard et al., 2004; Millar and Gubler, 2005; Palatnik et al., 2003; Schwab et al., 2005).

Cross regulation by cleavage has been shown by using a mutational approach of miR159

and miR319 targets (Palatnik et al., 2007). Surprisingly, Hikosaka et al. (2007) reported

that miR159 was found in the Xenopus tropicals miRNA cDNA library and is assembled with

transposons raising the possibility that MIR159 genes were horizontally transferred from

plants to animals.

1.4.4. miR172 targeting of AP2 transcription factors

miR172, which targets AP2 and AP2-like genes, was identified in screens for early flowering

and floral defects. For example, the early flowering eat-D mutant and late-flowering toe1-D

mutants turned out to have increased expression of MIR172b and the miR172 target gene

TOE1, respectively (Aukerman and Sakai, 2003). Interestingly, miR172 regulates AP2 via

repression of translation rather than cleavage (Aukerman and Sakai, 2003; Chen, 2004).
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miRNA resistant alleles of AP2 result in phenotypes similar to agamous (ag) mutants that

have stamens and carpels replaced by additional whorls of petals and sepals (Chen, 2004).

This phenotype is consistent with models of floral organ identity establishment in which AP2

and AG activities are antagonistic (Bowman et al., 1991). Activation of miR172 in flower

meristem could be a mechanism for cell fate specification by clearing AP2 transcripts rapidly

(Bartel and Bartel, 2002).

1.4.5. miR164 targeting of NAC transcription factors

miR164 targets mRNAs encoding CUC-like NAC transcription factors. cuc1 and cuc2 mu-

tants exhibit fused lateral organs, fusions of cotyledons, and failure in apical meristem forma-

tion (Aida et al., 1997). Constitutive expression of miR164 phenocopies a cuc1cuc2 double

mutant (Laufs et al., 2004; Mallory et al., 2004). So far, eep1/mir164c is the only reces-

sive loss-of-function miRNA mutant that has been identified in plants by a forward genetic

screen (Baker et al., 2005). Constitutive expression of a wild-type CUC1 gene results in

a dramatic phenotype in which ectopic meristems developed from the adaxial sites of both

cotyledons and rosette leaves and root branching is reduced (Guo et al, 2005; Mallory et

al., 2004; Takada et al., 2001). This suggests that local miR164 expression helps to clear

transcripts from cells rapidly following cell divisions and thus, limits the expansion of the

meristem boundary domain.

1.4.6. miR165/166 targeting of class III HD-ZIP transcription factors

Two miRNAs (miR165/166) target the five class III HD-ZIP gene family members, PHABU-

LOSA (PHB), PHAVULOTA (PHV ), REVOLUTA (REV ), ATHB8, and CNA/ATHB15 (Reinhart

et al., 2002; Rhoades et al., 2002). PHB, PHV, and REV are involved in establishment of

adaxial leaf identity, development of the apical meristem, and the vascular bundles (Emery

et al., 2003; McConnell and Barton, 1998; McConnell et al., 2001; Zhong and Ye, 2004).

Cleavage products were detected for all the miR165/166 targeted class III HD-ZIP gene

family members (Emery et al., 2003; Mallory et al., 2004; Zhong and Ye, 2004). miR166

overexpressor jba1-D and men mutants exhibited fasciated stems that primarily resulted

from the downregulation of PHB, PHV and CNA/ATHB15 mRNAs, but not from REV and

ATHB8, pointing to the importance of the tissue-specific regulation of miRNA expression

during development (Kim et al., 2005; Williams et al, 2005). Transgenic plants carrying a

miRNA-resistant PHB and REV gene exhibited a phenotype similar to a gain-of-function

mutant having a point mutation in the miR165/166 binding site. However, constitutive ex-
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pression of the wild-type versions of PHB and REV did not result in aberrant phenotypes.

By investigating DNA methylation patterns Bao et al. (2004) came to the conclusion that

miR165/166 direct more stable epigenetic changes by influencing chromatin remodeling at

the PHB loci rather than a rapid developmentally induced clearing of transcripts. Addition-

ally, it has been shown that histone deacetylases (HDACs) control levels and/or pattern of

miR165/166 (Ueno et al., 2007). The study of Nogueira et al. (2007) highlighted that ta-

siRNAs targeting the AUXIN RESPONSE FACTOR (ARF ) genes accumulate on the adaxial

side where they restrict the expression of miR166.

1.4.7. miRNAs implicated in hormonal regulation

Several links between hormonal signal transduction pathways in plants and miRNA regula-

tion have been identified. For example, miR159 levels are regulated by gibberellic acid during

flower development (Achard et al., 2004; Millar and Gubler, 2005) and by abscisic acid during

seed germination (Reyes and Chua, 2007). Auxins directly stimulate or inhibit the expression

of specific genes by targeting for degradation members of the Aux/IAA family of transcrip-

tional repressor proteins. The auxin receptor TIR1 is an F-box protein of the SCF ubiquitin

ligase complex (Dharmasiri et al., 2005; Kepinski and Leyser, 2005), which mediates ubiq-

uitination of the AUX/IAA protein and subsequent proteolysis through the 26S proteasome

pathway (Gray et al., 2001; Rogg and Bartel, 2001; Kepinski and Leyser, 2002). miR393

targets TIR1 mRNA and the three most closely related F-box proteins (Jones- Rhoades and

Bartel, 2004; Sunkar and Zhu, 2004). miR164 targets the mRNA encoding NAC1 (Rhoades

et al., 2002; Mallory et al., 2004), a putative transcription factor that acts downstream of TIR1

to promote lateral root development (Xie et al., 2002). AUX/IAA proteins heterodimerize with

AUXIN RESPONSE FACTORS (ARFs), which bind auxin-response elements and activate or

repress gene expression (Ulmasov et al., 1997a,b; Ulmasov et al., 1999a,b). Several clades

within the ARF family are negatively regulated by small RNAs. ARF6 and ARF8 mRNAs

are targeted by miR167 while ARF10, ARF16, and ARF17 mRNAs are targeted by miR160

(Rhoades et al., 2002; Kasschau et al., 2003; Jones-Rhoades and Bartel, 2004; Vazquez et

al., 2004). ARF6 and ARF8 regulate ovule and anther development (Ru et al., 2006; Wu et

al., 2006). miR160-resistant mutants have been used to study phenotypic changes (Chen,

2004; Guo et al., 2005; Laufs et al., 2004; Mallory et al., 2004; Millar and Gubler, 2005)

revealing that downregulation of ARF10 is needed for seed germination (Liu et al., 2007),

ARF16 and ARF17 are essential in root, leaf, and flower organ development (Mallory et al.,

2005; Wang et al., 2005). Additionally, miR390 guides in-phase processing of the TAS3 lo-

cus that generate ta-siRNAs, which in turn target ARF2, ARF3 (ETTIN), and ARF4 (Allen et
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al., 2005; Williams et al., 2005).

1.4.8. miRNAs implicated in responses to abiotic stress and nutrient deficiency

Plant miRNAs play important roles in plant resistance to abiotic and biotic stresses. miR398

targets COX5b-1, a subunit of the mitochondrial cytochrome c oxidase, and both the cytoso-

lic Cu-Zn superoxide dismutase (CSD1) and plastidic CSD2 that are involved in antioxidant

response (Jones-Rhoades and Bartel, 2004; Sunkar and Zhu, 2004). Under copper limiting

conditions miR398 degrades both CDS2 and COX5b-1 (Yamasaki et al., 2007). In response

to oxidative stress miR398 is transcriptionally downregulated to release its suppression of

CSD1 and CSD2 genes (Sunkar et al., 2006). miR398 can determine normal growth and

development on one hand or stress tolerance on the other hand. miR395 and miR399 have

been shown to function in nutrient homeostasis; miR395 are induced by low-sulfate treat-

ment (Jones-Rhoades and Bartel, 2004) and miR399 is induced by low-phosphate treatment

(Fujii et al., 2005; Chiou et al., 2006). miR395 targets ATP sulfurylases (APS1, APS3, and

APS4) that play a crucial role in sulfur assimilation pathways (Jones-Rhoades and Bartel,

2004; Sunkar and Zhu, 2004), while miR399 was predicted to target a phosphate trans-

porter (Jones-Rhoades and Bartel, 2004) and a putative ubiquitin conjugating enzyme-E2

(UBC24, PHO2) (Sunkar and Zhu, 2004). Downregulation of PHO2 mRNA levels under low

phosphate conditions is important for primary root elongation (Fujii et al., 2005). In addition

to its role in auxin signaling, miR393 was found to be induced in response to biotic stress

such as treatment with flagellin (Navarro et al., 2006) or Pseudomonas syringae (Fahlgren

et al., 2007).

1.4.9. Feedback regulation of miRNA pathways

DCL1 and AGO1, proteins involved in miRNA biogenesis and/or function, are themselves

negatively regulated by miRNAs. This negative feedback regulation provides probably cell

type specificity in the production or activity of miRNA by restricting them to certain cell or

tissue types (Rajagopalan et al., 2006; Vaucheret et al., 2004; Xie et al., 2003). miR162

targets DCL1 mRNA spanning exon 12 and 13 (Reinhart et al., 2002; Rhoades et al., 2002).

Interestingly, miR838, targeting a gene encoding Armadillo/ß-catenin protein, derives from a

hairpin within intron 14 of the DCL1 mRNA (Rajagopalan et al., 2006). Alternative splicing

of DCL1 leads to several transcript isoforms, which all accumulate in embryonic lethal dcl1

mutants (Hirsch et al., 2006; Xie et al., 2003). The intronic miR838 might help to enable

a self-regulatory mechanism to maintain DCL1 homeostasis. These findings suggest that
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splicing of this miR838 primary transcript and miR162 processing are competitive nuclear

events. miR168 targets AGO1 mRNA and helps to maintain AGO1 homeostasis. Disturbing

levels of miR168 has a global consequence on miRNA-programmed silencing complex lead-

ing to accumulation of mRNA levels of other miRNA targets (Vaucheret et al., 2006).

To summarize, a diverse set of genes is regulated by miRNAs. miRNAs therefore ensure

rapid clearing of transcripts during cell fate decisions in addition to the control of develop-

mental and physiological processes. miRNAs can act as key components or modulators

in signaling and metabolic pathways to ensure robustness or set a threshold for activation

switches. They adjust their own formation by targeting genes of their own biosynthesis and

take therefore also part in the regulation of endogenous and exogenous siRNA including

RNAi-dependent epigenetic mechanisms. The examples described and localization studies

(Valoczi et al., 2006) show that both miRNAs and their targets are spatial-temporal regulated

to ensure correct gene function.

2. The MADS-box gene family

The miRNA, miR824, described in this thesis targets for degradation AGAMOUS-LIKE 16

(AGL16) belonging to the MADS-box gene family. MADS-box genes encode a eukaryotic

family of transcriptional regulators involved in diverse biological functions. These proteins

contain a conserved MADS-box domain named after the founding members of this family:

theMINICHROMOSOMEMAINTENANCE 1 (MCM1) genes in yeast (Passmore et al., 1989),

AGAMOUS (AG) in Arabidopsis (Yanofsky et al., 1990), DEFICIENS (DEF ) in Antirrhinum

(Sommer et al., 1990), and SERUM RESPONSE FACTOR (SRF ) in humans (Norman et al.,

1988).

Before the divergence of plants from fungi and animals, a duplication occurred in the

MADS-box lineage, resulting in type I (SRF-like) and type II (MYOCYTE ENHANCER FAC-

TOR 2 [MEF2]-like) MADS-box genes (Alvarez- Buylla, et al., 2000 Pelaz; et al., 2000; Svens-

son et al., 2000). The type II MADS-box proteins are composed of an N-terminal MADS-box

domain involved in DNA binding and dimerization domain, followed by an intervening (I)

region and a keratin-like (K) box that are involved in protein-protein interactions (Theissen

et al., 2000), and the carboxyl-terminus (C) that is necessary for activity and ternary com-

plex formation (Egea-Cortines et al., 1999; Honma and Goto, 2001; Lamb and Irish 2003).

Some type II MADS-box proteins possess an additional N-terminal extension (Theissen et

al., 1996). In contrast, type I MADS-box proteins lack the K-box (Alvarez-Buylla et al., 2000;

Boffelli et al., 2003).
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2.1. The modular structure of plant MADS-box proteins

Mutational and functional analysis demonstrated that MADS-box proteins consist of a DNA-

binding region which serves as an interface for dimerization and interactions with other pro-

teins. There is a considerable overlap between these functional domains and the M, I, K,

and C structural domains, although none of the functions can exclusively be assigned to just

one single domain.

2.1.1. Protein interaction networks of MADS-box proteins

MADS domain proteins act as homo- or heterodimer to recognize AT-rich consensus se-

quences with a highly conserved 10 bp core. This common DNA motif, designated CArG-

box (CC(A/T)6GG) (Riechmann and Meyerowitz, 1997; Treisman, 1990), was used to gen-

erate crystal structures of SRF-core homodimers. The crystal structure revealed that the N-

terminus of the MADS domain is imbedded in the major groove of the DNA helix and causes

conformation changes of DNA (bending) upon binding (Pellegrini et al., 1995). Studies to

identify the minimal DNA binding domain of the AntirrhinumMADS-box proteins SQUAMOSA

(SQUA) and PLENA (PLE) demonstrated that the MADS- and I-domains are sufficient to per-

mit sequence-specific DNA binding by the proteins (West et al., 1998). Similar results were

obtained for the Arabidopsis MADS-box proteins APETALA1 (AP1), APETALA3 (AP3), PIS-

TILLATA (PI), and AGAMOUS (AG). In the case of AP3 and PI the regions involved to form

a protein-DNA complex are the MADS box, the entire I region and the first putative amphi-

pathic helix of the K box, while for AP1 and AG only the MADS-box and part of the I region

is needed (Riechmann et al., 1996a, b). For DNA binding the MADS-box proteins have to

homo- and/or heterodimerize. The differences in organization and partner specificity of the

AP1, AG, and AP3 and PI proteins support the idea that selective interactions achieve their

functional specificity. Since the DNA-binding activities of the dimers (AP1-AP1, AP3-PI and

AG-AG) are very similar, it is suggested that their biological specificity is achieved through

selective interactions with additional transcription factors. This mechanism appears to be

a common theme for MADS-box proteins of animals and fungi. DNA binding is often ac-

companied by transcription factor-induced DNA bending, which is important in determining

local promoter architecture and is thought to be a key determinant of their function, but the

mechanism is still unclear (West and Sharrocks, 1999).

In principle, the formation of dimers and multimers of MADS-box transcription factors pro-

vides a mechanism to increase the diversity of DNA-binding functions that could enhance

target gene specificity. The MADS domain proteins preferentially form heterodimers (Kauf-
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mann et al., 2005). A comprehensive yeast two-hybrid screen revealed that at least 269

MADS domain dimers can be formed in Arabidopsis (de Folter et al., 2005). The first in vitro

experiments showed that three Antirrhinum MADS proteins (SQUA, DEF, and GLOBOSA

(GLO)) form ternary complexes via their C-termini. Gel-shift assays have established that

the ternary complex shows enhanced DNA binding to consensus binding sites (CArG mo-

tifs) relative to DEF/GLO heterodimers or SQUA/SQUA homodimers (Egea-Cortines et al.,

1999). Additional genetic and yeast-two/three-hybrid screens confirmed higher-order com-

plex formation for many MADS domain proteins (Goto et al., 2001; Honma and Goto, 2001;

Krizek and Meyerowitz 1996ab; Mizukami et al., 1996; Pelaz et al., 2001; Sridhar et al.,

2006). Other studies showed the involvement of other interacting cofactors to facilitate DNA

binding (Gamboa et al., 2001; Pelaz et al., 2001; Remenyi et al., 2004).

2.1.2. Transcriptional regulation of MADS-box proteins

MADS-box proteins form cross- or auto-regulatory circuits to control their own or their part-

ner activity. MADS-box proteins DEF and GLO in Antirrhinum bind to their own promoter

sequences (Schwarz-Sommer et al., 1992; Trobner et al., 1992; Zachgo et al., 1995), similar

to AP3 and PI in Arabidopsis (Chen et al., 2000; Goto and Meyerowitz, 1994; Honma and

Goto, 2000; Jack et al., 1992). Autoregulation of AG (Espinosa-Soto, 2004; Gomez-Mena

et al., 2005) and AGL15 (Zhu and Perry, 2005) has also been described. Transcriptional

regulatory networks involving MADS-box proteins have been proposed for flower formation

(Espinosa-Soto, 2004). The floral MADS-box gene AG requires sequences located in a 3

kb intron for proper expression (Busch et al., 1999; Deyholos and Sieburth, 2000; Sieburth

and Meyerowitz, 1997). Expression of MADS-box genes FLOWERING LOCUS C (FLC)

and PLENA (PLE) are also regulated by intragenic regions (Bradley et al., 1993; Sheldon et

al., 2002). Three transcription factors LEAFY (LFY), WUSCHEL (WUS), and BELLRINGER

(BLR) bind to sequences within this intron (Boa et al., 2004; Busch et al., 1999; Lohmann

et al., 2001) that control AG enhancer activity. Interestingly, CArG-boxes are located in the

second intron of AG. Other MADS-box transcription factors bind to these intronic CArG motif

and control AG regulation on the transcriptional level (Hong et al., 2003).

2.2. Functions of MADS-box genes in Arabidopsis

In contrast to animals, homeotic genes (Hox genes) in plants do not code for homeodomain-

containing proteins, but in almost all cases for MADS domain proteins (Meyerowitz, 2002).

The gene family encoding MADS domain transcription factors in plants encompasses a rel-

18



2. The MADS-box gene family Introduction

atively large family with 107 members in the Arabidopsis genome (Parenicova et al., 2003).

They are further subdivided into two groups: the class II MADS box proteins, comprising the

MIKCc (Henschel et al., 2002; Kaufmann et al., 2005) and Mδ/ MIKC* types (Mδ in Pareni-

cova et al., 2003; MIKC* in Becker and Theissen, 2003), and the class I proteins that are

further subdivided into the Mα, Mβ, and Mγ types (Alvarez-Buylla et al., 2000; Parenicova et

al., 2003). The majority of MIKC-type MADS-box genes are involved in the determination of

flowering time, floral meristem, and floral organ identity (overview given in Figure 1.5).
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Figure 1.5: The Arabidopsis MIKC-type of MADS box protein interaction map.

MADS box protein are arranged according to their phylogenetic relationship as has been

reported by Parenicova et al. (2003) and de Folter et al. (2005). The phylogenetic tree

is shown on the left. For example: AGL16 forms a homodimer. Protein-protein interactions

with AGL16 are represented in red (inhibition) or in green (activation) blocks, and interactions

that could not be tested in gray. Gene expression pattern were determined by RT-PCR. A

positive signal is indicated by a plus in each box in the study of Parenicova et al. (2003)

and by colored boxes in the study of Hillemann et al. (2006). Validated function of each

MADS-box transcription factor is presented on the right. r, roots; s, seedlings; rl, rosette

leaves; cl, cauline leaves; ef, early flowers; lf, late flowers; si, siliques; se, seeds. Note: rl

and cl analyzed as “leaves”, ef and lf analyzed as “inflorescence” in Parenicova et al. (2003)
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2.2.1. Control of flowering time by MADS-box genes

The function of MADS-box genes in the reproductive development of plants has been stud-

ied in detail. Flowering time is influenced by environmental conditions, such as day length,

temperature, light quality, nutrient deprivation, as well as by developmental parameters as-

sociated with the age of the plant (Koornneef et al., 1998). The MADS-box genes FLC and

SHORT VEGETATIVE PHASE (SVP) belong to the autonomous pathway and regulate neg-

atively the transition from vegetative to reproductive development under both long-day and

short-day conditions (Michaels and Amasino, 1999; Hartmann et al., 2000). CONSTANS

(CO), a zinc-finger protein is involved in the photoperiodic pathway (also called the long-day

pathway) which promotes flowering only under long-day conditions but has no effect under

short days (Putterill et al., 1995). The day-length independent pathway (also called the gib-

berellin pathway) stimulates flowering by the plant hormone gibberellin. It has been shown

that the MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) can

integrate signals from all three pathways (Moon et al., 2003; Onouchi et al., 2000; Samach

et al., 2000) and that it is a direct target of CO (Onouchi et al., 2000; Samach et al., 2000).

Compared to late-flowering genes, less is known about early-flowering genes. TERMINAL

FLOWER (TFL) controls both flowering time and the identity of the shoot meristem (Shan-

non and Meekss-Wagner, 1991). Therefore, TFL provides a link between the control of

flowering time and flower initiation. How MADS-box genes like AP1, CAULIFLOWER (CAL),

FRUITFULL (FUL) and SVP, which also control flowering time, are integrated into the current

framework is still unclear (Mandel et al., 1992; Kempin et al., 1995; Mandel and Yanofsky

1995; Ferrandiz et al., 2000; Hartmann et al., 2000).

2.2.2. Control of floral meristem identity

The switch from vegetative to reproductive development involves the production of flowers

instead of leaves or shoots and requires the activity of floral meristem identity genes whose

expression is upregulated in developing floral primordia during the transition (Cary et al.,

2002; Bowman et al., 2002). Mutants affecting these genes develop shoots or shoot-like

structures in place of flowers. These genes include AP1, CAL, and FUL, as well as the non-

MADS-box gene LFY. The AP1 and CAL genes have overlapping functions in promoting

flower meristem identity and ap1 cal double mutants have a massive proliferation of a shoot-

like meristem in positions normally occupied by a single flower (Bowman et al., 1991). This

phenotype is further enhanced by mutations in FUL, such that ful;ap1;cal triple mutants

never flower under standard growth conditions, and continuously elaborate leafy shoots in
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place of flowers (Ferrandiz et al., 2000). This observation indicates that these three genes

act together to control meristem identity. The failure to flower in the triple mutant is due to

loss of LFY upregulation, because introducing a transgene that constitutively expresses LFY

into the ful;ap1;cal background restores flowering (Ferrandiz et al., 2000).

2.2.3. Control of floral organ identity - the “ABCDE” and “quartet” models

The “ABC” model, based on homeotic mutants affecting floral organs, was proposed to ac-

count for the function of specific classes of transcription factors in flower development (Coen

and Meyerowitz, 1991; Weigel and Meyerowitz, 1994). According to this model, A class

genes APETALA1 (AP1) and the non-MADS-box gene APETALA2 (AP2) specify sepals in

the first whorl. A class genes in combination with the B class genes APETALA3 (AP3) and

PISTILLATA (PI) specify petals in the second whorl. B class genes and C class genes AG-

AMOUS (AG) specify stamens (male reproductive organs) in the third whorl; and, C class

genes specify carpels (female reproductive organs) in the fourth whorl of a typical Arabidop-

sis flower (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994). In addition to ABC

class genes, D class genes SEEDSTICK (STK), important for ovule development, and E

class genes SEPALLATA1 (SEP1), SEPALLATA2 (SEP2), SEPALLATA3 (SEP3), and SEPAL-

LATA4 (SEP4), which encode additional transcription factors playing a role in determining the

identity of all four whorls, have been described. This led to an extension of the ABC model

to the current “ABCDE” model (Theissen, 2001; Ditta et al., 2004). Moreover, evidence is

growing on the formation of multimers, possibly tetramers according to the “quartet” model

(Figure 1.6), consisting of proteins encoded by these different MADS-box gene classes and

regulating different aspects of floral organ development (Honma and Goto, 2001; Theissen

and Saedler, 2001; de Folter et al., 2005; Kaufmann et al., 2005b).

2.2.4. Additional functions of MIKC-type MADS-box genes

MIKC-type MADS-box genes also play roles in the vegetative development of Arabidop-

sis (Figure 1.5). The ARABIDOPSIS NITRATE REGULATED 1 (ANR1) gene controls root

growth in response to nitrate (Zhang and Forde, 1998; Gan et al., 2005). Other MADS-box

genes are involved in the specification of cell fates in the fruit. FRUITFULL (FUL), AGL13,

SHATTERPROOF 1 (SHP1), and SHATTERPROOF 2 (SHP2) determine cell fate in the de-

velopment of the fruit (Rounsley et al., 1995). SHP1 and 2 are closely related, functionally

redundant, and involved in the differentiation of the dehiscence zone (Liljegren et al., 2000).

Differentiation of the valves (peripheral wall of the silique) separating seed compartments
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Figure 1.6: The “ABCDE” and “quartet model” in Arabidopsis.

ABCDE model maintains that class A+E genes are required to specify sepals, A+B+E petals,

B+C+E stamens, C+E carpels, and D+E ovules. The combinatorial protein complexes rep-

resent transcription factors that exert their function by binding to promoters of target genes

leading to their activation or repression. Endothelium, the inner layer in the integument of

ovules. ABS, Arabidopsis Bsister; for all other names see text

in Arabidopsis requires the activity of FUL, which negatively regulates SHP1 and SHP2 ex-

pression (Ferrandiz et al., 2000). Other MADS-box genes regulate different aspects of root

(AGL12, AGL14, and AGL17 ) (Rounsley et al., 1995) and embryo (AGL15 and AGL18)

(Heck et al., 1995; Lehti-Shiu et al., 2005) development. AGL16 is expressed in guard cells

and trichomes (Alvarez-Buylla et al., 2000) but its biological function is unknown.

2.3. Evolutionary complexity of MADS-box gene family members

Natural variation and selection of MADS-box genes implicated in flowering are believed to

have played a key role in the structural evolution of flowers (Becker and Theissen 2003).

Phylogenetic studies of MADS-box genes showed that the MIKC-type diversified extensively

in land plants. MIKC-type MADS box genes have independently duplicated in different plant

lineages, with 39 paralogous genes present in the Arabidopsis genome (Kofuji et al., 2003;

Parenicova et al., 2003) and ca. 47 copies in the rice genome (Nam et al., 2004). A gene du-

plication event is the simplest form to produce two functional redundant, paralogous genes.
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It has been demonstrated that after the duplication of an ancestral gene, one copy accumu-

lates mutations, especially in the C-terminal domain, while the MIK domain is retained. Inser-

tions or deletions causing a frameshift in the coding sequence may have yield to novel func-

tional motifs and were integrated in regulatory networks (Litt and Irish, 2003; Vandenbusche

et al., 2003). However, the extent that these networks are conserved and act to specify sim-

ilar developmental outcomes across angiosperms is unclear. For example, in Arabidopsis,

the CONSTANS transcription factor activates FT, which encodes a key integrator of flower-

ing signals (Samach et al., 2000). In contrast, the rice homolog of CONSTANS functions to

repress the FT homolog, suggesting that a switch in the mode of transcriptional regulation of

FT is responsible for long day versus short day flowering (Causier et al., 2005; Davies et al.,

1999; Hayama et al., 2003; Kramer et al., 2004; Zachgo et al., 1997). Conversely there are

examples of paralogous MADS-box genes that appear to have taken on equivalent develop-

mental functions (Martienssen and Irish, 1999; Irish, 2003; Causier et al., 2005). In many

cases, (partial) functional redundancy between paralogous MADS-box genes (e.g., AP1-

CAL, SHP1-SHP2, and SEP1-SEP2-SEP3-SEP4) has been described (Ditta et al., 2004;

Ferrandiz et al., 2000; Malcomber and Kellogg, 2005, Pinyopich et al., 2003). In summary,

DNA-binding and multimerization properties of MADS-box proteins evolved to ensure proper

interaction between the family members (e.g. “quartet” model) required for the specification

of sophisticated organ development such as flowers (Theissen and Saedler, 2001).

3. Stomatal development and patterning

The MADS-box gene AGL16 targeted by miR824 was shown to be expressed in guard cells

of stomata in Arabidopsis (Alvarez-Buylla et al., 2000). Stomata are epidermal structures

that are responsible for modulating the exchange of gases between the plant and the envi-

ronment. The epidermis provides the major boundary between the plant and the external

world.

3.1. Evolution and function of epidermal structures

When higher plants started to colonize land, only their subterranean organs found an environ-

ment with relatively high water potential whereas the aerial organs did not. Plants adapted

to the new environment by developing specialized cell types within the epidermis: at first

rhizoids and later on root hairs for the acquisition of water and mineral nutrients as well as

stomata within the aerial epidermis for the control of water loss and regulation of gas ex-

change. The fossil evidence shows that stomata first arose in moss 400 million years ago.
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Functional considerations suggest that stomata evolution is linked to the development of the

surrounding epidermal cells. Thus, stomatal complex refers to the stoma (i.e. the pore), the

surrounding pair of guard cells with chloroplasts, plus its associated two to four contact cells

(subsidiary cells) that lack chloroplasts (Carpenter, 2005). Other specialized cell types of

the aerial epidermis are the trichomes or hairs which developed first in fern. The function of

trichomes is less obvious. Mostly, their role is thought to be reflectance of light (Benz and

Martin, 2006) and protection against herbivores (Gassmann and Hare, 2005). Some epi-

phytes (Tillandsia) have foliar trichomes that can absorb water from moist air (Benz and Mar-

tin, 2006). Hydropotes and ethereal oil cells are another type of specialized epidermal cells

that are often considered to be a type of trichomes (Esau, 1965). Studies of angiosperm

origins and early evolution have directed several phylogenetic analyses of multiple genes

that arose from earliest lineage-splitting events within the extant angiosperm clade. An in-

triguing role of MYB-bHLH-WD40-type of transcription factors in the evolution of epidermal

patterning has been addressed (Larkin et al., 2003; Ramsay and Glover, 2005).

3.2. Anatomy of stomata

Stomatal architecture - the number, form, and arrangement of specialized epidermal cells

associated with stomatal guard cells - are valuable taxonomic and systematic features of

present-day and fossil plants (Metcalfe and Chalk, 1950; Pant, 1965) that have been im-

portant in the development of hypotheses for early angiosperm evolution (Upchurch, 1984).

Angiosperm stomatal complexes exhibit two fundamental mode of architecture. In monocots

stomata appear in ordered arrays adjacent to cell files near vascular bundles whereas in

eudicots stomata arise from multiple locations (Croxdale, 2000). Studies in maize suggest

that an inhibitory signal derives from the veins of the leaf to control the ordered patterning

of stomata in rows (Hernandez et al., 1999). In eudicots a set number of epidermal cells

surround the stoma leading to the morphological classification into 14 types (Metcalfe and

Chalk, 1950). In Arabidopsis and other members of Brassicaceae the stoma is surrounded

by three epidermal cells, one of them is smaller than the other two. This arrangement is

called anisocytic and accounts as a taxonomic feature of Brassicaceae (Pant and Kidway,

1967).

The epidermis of most leaves shows dorsoventral anatomy: the upper (adaxial) and lower

(abaxial) surfaces have somewhat different construction and may serve different functions.

The number of stomata (stomatal density) varies from about 10 to over 1000 per mm2 of leaf

surface. Stomata are more numerous over the abaxial epidermis of the leaf than the adaxial

epidermis probably because heating of leaves is less on the abaxial surface and therefore
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loss of water through transpiration can be reduced (Geisler and Sack, 1998).

3.2.1. Stomatal development

The stomatal lineage in Arabidopsis is initiated by a subset of protodermal cells called meris-

temoid mother cells (MMC). The MMC undergoes an asymmetric ”entry” division that pro-

duces a small triangular cell called a meristemoid, and a larger sister cell called a stomatal-

lineage ground cell (SLGC), which often becomes a cuticularized epidermal pavement cell.

The meristemoid will undergo two more asymmetric divisions and differentiate into a round

guard mother cell (GMC) that will subsequently divide symmetrically to produce a pair of

guard cells, which work in concert to control the size of the pore. Meristemoids are self-

renewing and can give rise to another meristemoid, called satellite meristemoid (SM), which

will undergo the same division process. The asymmetric division ensures that the satellite

meristemoid is always oriented away from the existing GMC or stoma and separated by one

intervening cell. The mature guard cells are terminally differentiated and do not divide further

(Pillitteri and Torii, 2007) (Figure 1.7 A).

The placement of stomata on the epidermal surface is regulated and appears to depend

on the elaboration and perception of local as well as long-distance signals. The present un-

derstanding of the underlying mechanisms has come primarily from studies of Arabidopsis

mutants impaired in the stomatal development or patterning (Figure 1.7 B, Table 1.1). A

current model for stomatal development is shown in Figure 1.7 A. According to this model an

extracellular, inhibitory signal helps regulate spacing of stomata. STOMATAL DENSITY AND

DISTRIBUTION 1 (SDD1), a subtilisin-like serine protease, acts to process a yet unidenti-

fied ligand to generate this signal (Berger and Altmann, 2000). Another possible signal is

the small protein EPIDERMAL PATTERNING FACTOR 1 (EPF1), which does not depend on

SDD1 (Hara et al., 2007). The signals are perceived by TOO MANY MOUTHS (TMM) which

is a leucine-rich repeat receptor-like protein (LRR-RLP). TMM is localized in the plasma

membrane (Yang and Sack, 1995) and is thought to interact with three LRR receptor-like

kinases (RLK), ERECTA (ER) and ERECTA-LIKE (ERL) proteins (ER, ERL1, and ERL2)

(Nadeau and Sack, 2002; Shpak et al., 2005; Torii et al., 1996). Only er;erl1;erl2 triple mu-

tants exhibited an excess of guard cells and spacing abnormalities, indicating that the ER-

family members are functionally redundant (Shpak et al., 2005). The identification of several

mutants has implicated a mitogen activated protein kinase cascade in transduction of the

receptor signal to the ultimate gene targets. Mutations in the MAP kinase kinase kinase

(MAPKKK) gene, YODA (YDA), cause the formation of large stomatal clusters (Bergmann

et al., 2004). Two MAP kinase kinase genes and two MAP kinase genes, MKK4/MKK5 and
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MPK3/MPK6, respectively, were shown to act downstream of YDA in this signaling pathway

(Wang et al., 2007). The proteins described above are all required for proper orientation

of divisions, density of stomata, and control of entry and amplifying divisions but not for

differentiating cell types within the stomatal lineage. Stomatal differentiation requires the

successive action of three closely related bHLH proteins, SPEECHLESS (SPCH), MUTE,

and FAMA. A mutation in any one of these gene results in aerial organs that lack stomata.

They have a distinct role in key transitional states of the stomatal lineage: first, the transition

from MMC to meristemoid is maintained by SPCH because the epidermis of spch mutants

exhibited only jigsaw-puzzle-shaped pavement cells (MacAlister et al., 2007; Pillitteri et al.,

2007). MUTE activity drives the second transition from meristemoid to GMC. Meristemoids

in mute mutants undergo an excessive number of amplifying divisions but fail to form GMCs

(Pillitteri et al., 2007). FAMA acts at the third transition from GMC to guard cell. fama-1 mu-

tant produces abnormal “caterpillar-like” rows of GMCs (Bergmann et al., 2004; Ohashi-Ito

and Bergmann, 2006). The strong fama-1 phenotype is similar to that described for a double

mutant knockout of FOUR LIPS (FLP) (Yang and Sack, 1995) and MYB88 (R2R3 MYB-type

transcription factors) (Lai et al., 2005). MYB-like proteins can form complexes with bHLH

to control cell-fate specification as seen in root epidermal patterning (Lee and Schiefelbein,

1999; Zimmermann et al., 2004). However, no interaction was observed between FAMA and

MYB88/ FLP (Ohashi-Ito and Bergmann, 2006).

3.3. Environmental factors affecting stomatal development

Stomatal density and function needed to adapt to global climatic changes environmental

changes (Hetherington and Woodward, 2003). Stomatal densities are sensitive to atmo-

spheric CO2 concentrations. In eudicot leaves, stomatal density decreases as atmospheric

CO2 levels increase, but in conifers, the number of rows of cells that are determined to form

stomata is decreased rather than stomatal density (Kouwenberg et al., 2004). The high in

carbon dioxide (hic) mutant of Arabidopsis increases stomatal density in response to ele-

vated CO2 (Gray et al., 2000). HIC encodes a 3-keto acyl CoA synthetase that is involved in

synthesizing the long chain fatty acids of epicuticular waxes. It has been suggested that HIC

affects the permeability of the guard cell walls to a mobile signal, influencing stomatal den-

sity, or that the signal itself might be a product or a by-product of wax biosynthesis (Holroyd

et al., 2002). The mobile signal that affects stomatal density could be a plant hormone. De-

creased stomatal conductance caused in response to increases in atmospheric CO2 levels

or to decreased light, might affect transpirational water flow significantly. Changes in the rate

of transpiration might in turn affect the flux of hormones (abscisic acid [ABA] and cytokinins
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Figure 1.7: Lineage-based mechanism for the patterning and determination of stom-

ata in Arabidopsis.

A. Stages of divisions (red) during stomatal development and their genetic control (black).

A protodermal cell (not shown) is converted into a meristemoid mother cell (MMC) through

an unknown process. The MMC undergoes an asymmetric entry division to create a meris-

temoid (M). Meristemoids go through additional rounds of asymmetric divisions before dif-

ferentiation in to a guard mother cell (GMC). GMCs divide symmetrically to produces two

guard cells (GCs), which form mature stomata. The stomatal lineage ground cell (SLGCs)

or subsidiary cells, produced form amplifying divisions, can initiate an entry division to form

a satellite meristem (SM) that is placed away form an existing precursor cell or stoma. Neg-

ative regulation is indicated by T-shaped lines, positive regulation by an arrow. Abbreviation

of proteins altered in mutants indicated under Figure 1.7 B.

B. Drawing of terminal leaf phenotypes in stomatal mutants indicating the typical number

and arrangement of stomata (green) or terminal cell type (red for M, pink for GMC). White

cells in erecta and flp;myb88 panels represent cells of indeterminate identity.

27



3. Stomatal development and patterning Introduction

Table 1.1.: Genes involved in Arabidopsis stomatal development in rosette leaves.

Gene name  Symbol  Molecular
homology  

Mutant Phenotype Overexpression/Constitutively 
Active Phenotype 

Patterning genes 

STOMATAL DENSITY 
AND DISTRIBUTION 1 

SDD1 Subtilisin-like 
protease

Increased SI, small 
clusters

Represses stomatal divisions 
Arrested meristemoids and GMCs 

EPIDERMAL 
PATTERNING 
FACTOR 1 

EPF1 secretory signal 
peptide

Increased SD, small 
clusters 

Represses stomatal divisions 

TOO MANY MOUTHS   TMM  Leucine-rich
repeat receptor-
like protein

Increased SD, 
clusters

ND

ERECTA- and 
ERECTA-LIKE family

ER.ERL1,
ERL2

Leucine-rich
repeat receptor-
like kinase

Greatly increased 
SD, large clusters 

erecta - no phenotype 
erl1 and erl2-ND 

YODA  YDA Mitogen-
activated
protein kinase 
kinase kinase 

Greatly increased 
SD, large clusters  

No stomata, pavement cell only 

MAPKK4/MAPKK5 MKK4/MKK5 Mitogen-
activated
protein kinase 
kinase

Entire epidermis 
converted to stomata  

No stomata, pavement cell only 

MAPK3/MAPK6  MPK3/MPK6  Mitogen-
activated
protein kinase

Entire epidermis 
converted to stomata  

No stomata, pavement cell only 

Differentiation genes 

SPEECHLESS SPCH bHLH protein  No initiation of 
asymmetric cell 
division in the 
epidermis - no 
stomata

Excessive epidermal divisions, no 
extra stomata 

MUTE  MUTE bHLH protein  Initiation and 
reiteration of 
asymmetric cell 
division in the 
epidermis - no 
stomata

Entire epidermis converted to 
stomata

FAMA FAMA bHLH protein Reiterative divisions 
of the GMC - no 
stomata

Entire epidermis converted to 
single guard cells 

FOUR LIPS  FLP R2R3 MYB 
protein

Reiterative divisions 
of the GMC, small 
clusters 

ND

MYB88 MYB88 R2R3 MYB 
protein

None, enhances flp 
phenotype 

ND

[CK]) to the leaves from the roots. Application of either ABA or CK can increase stomatal

densities in a variety of plant species (Bradford et al., 1983; Franks and Farquhar, 2001).

Serna and Fenoll (1997) showed that growing Arabidopsis plants in enclosed environments

(i.e. at high humidity) could significantly affect the lineage-based patterning mechanism

and give rise to clustered stomata that phenocopies the tmm and flp mutant phenotypes.

Stomatal densities or stomatal index (the proportion of epidermal cells that are stomata) are

influenced by several other environmental conditions, including light intensity (Lake et al.,

2002), light quality (Liu-Gitz et al., 2000), UV-B radiation (Dai et al., 1995), drought (Franks

and Farquhar, 2001), and ozone (Pääkkönen et al., 1997).
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4. Aim of the dissertation

The initial motivation for my thesis project was the cloning of numerous naturally occurring

smRNAs by our laboratory. Our group, like many other groups, was interested in how these

smRNAs are generated and function. In silico analyses had shown that Arabidopsis genome

encodes 184 miRNAs targeting for degradation genes with various functions. So far only

eleven Arabidopsis miRNAs were characterized regulating mostly transcription factors with

an established function in cell patterning and specification. My objective was to fully elu-

cidate a plant miRNA pathway from its biogenesis to repression of target-gene expression

and biological function. I focused on one miRNA identified in our screen, now called miR824,

that is encoded at a single locus and appeared to target a single gene, AGAMOUS-LIKE 16

(AGL16) belonging to the MADS-box family of transcription factors. Using informative mu-

tants and a transgenic-plant approach I established the molecular requirements for miR824

biogenesis and confirmed AGL16 mRNA as the single target for miR824-guided degradation.

Combined with bioinformatic studies I showed that miR824 is a member of the class of non-

conserved miRNAs that is conserved in Brassica species and Arabidopsis, but not in more

distantly related monocots and eudicots. The reported expression of AGL16 in mature guard

cells focused my attention on the possible function of AGL16 in stomatal development. This

study shows that miR824 negatively regulates AGL16 in stomatal complexes to control the

pattern and number of stomata on the leaf surface. The stomatal developmental pathway

has not been shown to be regulated neither by miRNAs nor by MADS-box proteins. This

mechanism of regulation is conserved in Brassica species and, therefore, provides some

of the first evidence for important roles of non-conserved miRNAs in determining species-

specific taxonomic features.
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1. Materials

1.1. Chemicals and enzymes

Unless otherwise indicated, all molecular biology grade chemicals and organic solvents were

purchased from Merck (Darmstadt, Germany), Fluka (Buchs, Switzerland), Sigma (St. Louis

MO, USA) or BioRAD (Richmond CA, USA). Restriction endonucleases and DNA modifying

enzymes were purchased from New England Biolabs NEB (Beverly MA, USA), Fermentas

(St. Leon-Rot, Germany), Invitrogen (Carlsbad CA, USA), Promega (Madison WI, USA),

and Roche (Basel, Switzerland). RNA modifying enzymes were purchased from Ambion

(Austin, TX, USA), Epicentre (Madison WI, USA) and Roche. Taq DNA Polymerases were

purchased from Eppendorf (Schönenbuch, Switzerland), and Invitrogen. The proofreading

DNA Polymerases used in this study were included in the kit “Expand High Fidelity” and “Ex-

pand Long template” PCR systems (Roche). Other proofreading enzymes were the Pfu and

Pfu Turbo R© purchased respectively from Promega, and from Stratagene (La Jolla, CA, USA)

respectively. Kits for DNA and RNA extraction were purchased from Qiagen (Basel, Switzer-

land), GE Healthcare Biosciences (Piscataway NJ, USA) and Promega (Madison WI, USA).

DNA and RNA Oligonucleotides were synthesized by Microsynth (Balgach, Switzerland).

1.2. Plasmids

The TOPO-TA cloning kit (Invitrogen), which allows direct ligation of amplified fragments with

single 3’-A overhangs, was used for cloning PCR products. pBluescript SK(+) (Stratagene)

or pLitmus 28 (NEB) were used for subcloning of DNA fragments. The binary vectors pBI121

(Clontech) and pCambia 1300 (CAMBIA, Canberra, Australia) were used to make constructs

designed to overexpress genes in plants. The concentrations of antibiotics used for each

plasmid are given in Table 2.1.
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Table 2.1.: Concentrations of antibiotics used for standard plasmids.

Plasmid Origin Antibiotic concentration(µg/ml)

pBluescript SK(+) Stratagene Ampicillin 100

pLitmus 28 NEB Ampicillin 100

pBI121 Clontech Kanamycin 50

pCAMBIA 1300 CAMBA, Australia Kanamycin 50

1.3. Bacterial strains

Escherichia coli strain DH5αMCR (Stratagene) was used for the propagation of all plasmids.

Bacteria were grown overnight at 37◦C with shaking at 225 rpm in Luria-Bertani (LB) medium

or grown on solid LB medium plates containing 1% (w/v) agar (Difco-Bacto) at 37◦C. Depend-

ing on the plasmid, 50 g/ml kanamycin or 50 g/ml ampicillin were added to the LB medium.

Agrobacteria strain GV3101 pPM6000 (Bonnard et al., 1989) used for plant transformation

was provided by Barbara Hohn’s laboratory.

1.4. Plant materials and condition of culture

Arabidopsis thaliana plants were grown from seeds on standard soil (GS90) under 20◦C day/

16◦C night; 50% relative humidity day/night; 16 h photoperiod at 250 µmol/m2/s). Brassica

and rice seeds were obtained from Syngenta. Brassica rapa ssp. pekinensis, Brassica

napus ssp. oleifera, and Brassica oleceae var. alboglabra plants grown axenically in liquid

1

2
MS medium were raised at 21◦C (16h 100 µEm-2 s-1 light/ 8h dark). Oryza sativa var.

japonica and Nicotiana benthamiana and Nicotiana tabaccum plants grown in GS90 soil

were raised at 26◦C (16h 300 µE/m2/s light/ 8h dark). Seeds of the T-DNA insertion mutants

were obtained from the SAIL or the SALK collections.

2. Methods

2.1. Cloning and construction of the plasmids

Standard PCR protocols were used to amplify genes of interest using proofreading DNA

polymerases. Oligonucleotides primers used are described in Appendix Table A.2. Un-

less otherwise indicated, the primers used for PCR amplification do not contain restriction

sites and the amplified PCR products were directly cloned in TOPOII vector using TOPO-TA

cloning kit (Invitrogen) according to the manufacturer’s protocol. The genes were sequenced
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and used for subcloning in the appropriate expression vector described in Appendix C. The

ligation of insert and vectors was the same for all plasmids and was performed using the

Rapid DNA ligation kit (Roche). For blunt-end ligations the recipient vector was previously

dephosphorylated using the Antarctic phosphatase from NEB. Bacteria were transformed

with 2 µl of the ligation and incubated on Luria Broth (LB) plates containing the appropriate

antibiotic. The positive bacterial colonies identified by PCR were put in liquid LB culture

and plasmid minipreparation was performed using the alkaline method as described in Sam-

brook and Russell (2001). The right orientation of inserts and open reading frames were

checked by sequencing. T-DNA binary plasmids further used for plant transformation were

introduced in Agrobacterium tumefaciens GV3101 by electroporation using Gene Pulser II

(BioRAD). After incubation on 2xYT plates containing 100 µg/ml Rifampicin and 50 µg/ml

Kanamycin, the positive Agrobacteria colonies were identified by PCR.

2.2. Transformation and agroinfiltration

A. tumefaciens strain GV3101 containing T-DNA binary vectors were cultivated in 2xYT

medium containing Rifampicin (100 µg/ml) and Kanamycin (50 µg/ml) overnight or until an

OD600= 1.0. Agrobacteria were collected by centrifugation and resuspended in transforma-

tion solution which consists of 1

2
MS medium supplemented with 5% sucrose and 0.005%

Silwet L-77(Helena Chemical, Fresno, USA). Plant transformation was carried out using the

floral dip method of Clough et al. (1998). Transformed Arabidopsis seeds were surface

sterilized for 3 min with 70% (v/v) ethanol, 10 min with bleach solution (3% (w/v) NaOCl,

0.05% (w/v) Tween 20, and washed four times with sterile deionized water. A total of 100

sterilized seeds from the second generation after Agrobacterium transformation were sown

on 1

2
MS medium containing 1

2
MS salts (Duchefa), 0.5% (w/v) sucrose, 0.7% (w/v) agar,

pH 5.7, containing 25 µg/ml Hygromycin and 50 µg/ml Claforan/Timentin. After two weeks

the number of non-germinating seeds, rapidly growing Hygromycin-resistant seedlings, and

arrested Hygromycin-sensitive seedlings were scored.

For agroinfiltration, A. tumefaciens was resuspended to an OD600= 1.0 in infiltration medium

which contains 5% (w/v) saccharose, 0.22% MS salt (Duchefa), 0.005% 2-(N-morpholino)

ethanesulfonic (MES) acid buffer (Duchefa), 500 µl Silwet L-77, and the pH adjusted to 5.75

with KOH. The Agrobacteria suspension was infiltrated into leaves of four week-old plants

using a 2 ml syringe.
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2.3. Characterization of T-DNA insertion

The T3 generations obtained from these lines were genotyped by using LBb1 or LB1 left

border primers respectively for SALK and SAIL T-DNA lines and a primer specific for the

gene of interest. Oligonucleotides primers used are described in Appendix Table A.2. The

T-DNA insertion was mapped by using thermal asymmetric interlaced PCR (TAIL-PCR) as

described by Liu et al. (1995).

2.4. Isolation of plant nucleic acids

2.4.1. Isolation of DNA

Plant material was pulverized to fine powder in liquid nitrogen and 1g was used to isolate ge-

nomic DNA using Nucleon plant DNA extraction kit (GE Healthcare) following manufacturer’s

protocol.

2.4.2. Isolation of RNA

All RNA isolations were carried out in an RNase-free environment and using DEPC treated

water (0.1% DEPC). One gram of plant material frozen in liquid nitrogen, ground to fine

powder was resuspended in 10 ml Trizol R© (Invitrogen) and total RNA was extracted following

the manufacturer’s protocol. Isolated total RNA was separated into high- and low-molecular

weight fractions using the RNeasy Midi Kit protocol (Qiagen) as modified by DiSerio et al.

(2001). The high molecular weight were recovered by elution from the column and the small

RNAs were precipitated with one volume of isopropanol and washed with DEPC treated 75%

ethanol.

2.5. Southern analysis

DNA was digested overnight with appropriate restriction endonucleases (5U/µg DNA). Ge-

nomic DNA was separated on a 0.7% agarose gel and prepared for the DNA transfer as

described in Sambrook and Russell (2001). Subsequently, the DNA was transferred to a

HybondTM-N+ nylon transfer membrane (GE Healthcare). Membranes were incubated in a

self made hybridization buffer (0.25M Na-phosphate buffer Na2HPO4/NaH2PO4, 1mM EDTA,

6.6% (w/v) SDS, 10 g/l BSA). DNA probes were radiolabeled with [α32P]-dCTPs using Ran-

dom Labeling kit (Invitrogen). Denatured probes were applied to the hyridization buffer and

incubated at 60◦C overnight. Washes were carried out at 60◦C using a 2x SSC, 0.1% (w/v)

SDS solution after initial brief rinsing in 0.5x SSC, 0.1% (w/v) SDS.
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2.6. RNA blot hybridization

For analysis of high molecular weight RNA, total RNA was mixed with 2x RNA loading

buffer (17% formaldehyde, 50% formamide, 1x MOPS, 5% glycerol, 0.05% bromophenol

blue, 0.05% xylene cyanol, and 10 µg/ml ethidium bromide) and denatured on a 1.2%

agarose/formaldehyde gel. The RNA was transferred to a HybondTM-N+ nylon transfer mem-

brane (GE Healthcare). Probes were radiolabeled with [α32P]-dCTPs using the Random

Labeling kit (Invitrogen). Hybridization using PerfectHybTMPlus buffer (Sigma) and washes

were carried out at according to the manufacturer’s protocol. Exposure to Phospho-Imager

screens and Biomax MS/MR radiofilms (Kodak) were carried out for different times. The

same hybridization buffer and protocol was used for mRNA blot using poly(A+)-RNA.

smRNAs were dried using a SpeedVac and resuspended in 15 µl 5x loading buffer (95%

formamide, 20 mM EDTA, 0.05% (w/v) bromophenol blue and 0.05% (w/v) xylene cyanol)

and separated on a 15% polyacrylamide gel (19:1) (8M urea, 0.1% APS, and 0.1% TEMED

in 1xTBE). Blotting was performed on a HybondTM-N+ nylon membrane (GE Healthcare).

Hybridization and labeling of oligo probes were carried out according to Akbergenov et al.

(2006) except that PerfectHybTMPlus buffer was used.

2.7. RNA ligation mediated rapid amplification of cDNA ends (RLM-RACE)

Total RNA was directly ligated to the provided RNA adapter in the RLM-RACE kit (Ambion)

without applying the mRNA decapping protocol. SuperScriptTMIII RT (Invitrogen) was used

for reverse transcription using primers specific for the 3’ gene UTRs. A first PCR was carried

out using the 5’ RLM-RACE outer primer on the RNA adapter and a gene specific primer

designated upstream of the 3’UTR. A nested PCR was then performed using the 5’ RLM-

RACE inner primer on the RNA adapter and a second inner gene specific primer. PCR

products were gel-purified, cloned into the TOPO-II vector, and at least 10 independent

clones sequenced.

2.8. RT-PCR and quantitative RT-PCR (RT-qPCR)

Total RNA (5 µg) was treated with DNase I (Promega) for 15 minutes. Poly-A RNA was

reverse transcribed using oligo-dT or gene-specific primers and SuperScriptTMIII RT (Invitro-

gen). Second strand synthesis for RT-qPCR was carried out in the presence of the SYBR

green fluorescent dye for quantitative analysis. Oligonucleotides for RT-qPCR were designed

to amplify 80 to 200 nucleotides in the cDNA of interest, if possible spanning an exon-intron

boundary. qPCR reactions were performed in an optical 96-well plate with an ABI PRISM
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7000 Sequence Detection System (Applied Biosystems). Triplet reactions for each sample

contained 12.5 µl SYBR Green Master Mix reagent (Applied Biosystems), 10 µl of cDNA

(0.25 µg/µl), and 2.5 µl of each gene-specific primer (2.5 µM) in a final volume of 25 µl The

standard thermal profile used for all PCR reactions was 50◦C for 2 min, 95◦C for 10 min,

50 cycles of 95◦C for 15 s, and 60◦C for 40 s. Data were analyzed using the SDS 1.1 soft-

ware (Applied Biosystems). Levels of amplified mRNAs were normalized to the TIP41-like

gene (Czechowski et al., 2005) using the comparative CT method (Ramakers et al., 2003).

For semi-quantitative RT-PCR, regular PCR protocols were used. TIP41, ACTIN, eIF4α, or

TUBULIN was amplified as references to detect differences in loading.

2.9. Microarray analysis

RNA purification, cRNA preparation, and hybridization to microarrays were performed by the

FMI Microarray Service. The Affymetrix ATH1 chip used contains probe sets representing

approximately 24,000 genes (www.affymetrix.com). Expression data was analyzed using

Expressionist software 4.5 (GeneData, Basel).

2.10. In situ hybridization (ISH)

For in situ hybridization of AGL16 mRNA, whole mounts leaves were hybridized with DIG-

labeled probes as described by Friml et al. (2003). The probes used were sense and

antisense RNAs complementary to the AGL16 transcript (At3g57230). For miR824 and

miR824*, the hybridization procedure with DIG-labeled miRCURY R© LNA probes (Exiqon

Vedbaek, Denmark) was used (Bhattacharyya et al., 2006). Hybridization signals were

detected by using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP)

staining procedure (Roche).

2.11. Physiological experiments

Surface-sterilized Arabidopsis seeds were grown axenically. One month after germination

liquid MS medium was supplemented with NaCl, abscisic acid (Sigma) or 24-epibrassinolide

(Sigma) at the concentration indicated. The stock solutions used were 5M, 1M, and 0.1M

respectively.

2.12. Staining for β-glucuronidase (GUS) activity

Plant transformed or infiltrated with GUS expression vectors (Appendix Figure A.5-A.8, A.12,

A.13) were assayed by GUS staining according to Jefferson et al. (1987). Samples were
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stored at 4◦C in 90% (v/v) ethanol for imaging.

2.13. Analysis of luciferase (LUC) activity

LUC expression vectors (Appendix Figure A.2-A.4, Kutter et al., 2007) were delivered biolisti-

cally into leaves of three-week old Col-0 plants as described by Klahre et al. (2004). Images

were collected using a N2-cooled CCD camera (Gloor Instruments) and in vivo LUC activity

was measured 48 hours post-bombardment as described by Fritsch et al. (2004).

2.14. Electro mobility shift assays (EMSA)

Standard Electro mobility shift assays (EMSA) was performed according to Sambrook and

Russell, 2001. Radiolabeled double-stranded deoxyoligonuclotides were labeled with [γ32P]-

ATP using polynucleotide kinase (Roche). Oligonucleotides primers used are described in

Appendix Table A.2.

2.15. Imaging experiments

GFP expression in plants transformed with pProMIR824:GFP (Appendix Figure A.9) was im-

aged by confocal laser scanning microscopy (Leica TCS SP2, Leica Microsystem, Wetzlar,

Germany) with excitation at 488 nm. Green fluorescence was detected between 490 nm and

510 nm. Digital images were recorded using the Leica confocal operating system software.

For Scanning Electron Microscopy (SEM) samples were prepared using a Balzers SCU 020

cryopreparation unit. Images were collected with a JEOL JSM 6300 scanning electron mi-

croscope at 15 kV. Comparable regions of epidermis were recorded for each type of plant in

the same experiment.

2.16. Dental resin imprinting technique

Stomatal development was monitored using the dental resin impression method described

by Berger et al. (2000) and Geisler et al. (2000). For the time course of stomatal de-

velopment Coltène R© President Light body dental resin (Coltene/Whaledent AG Altstätten,

Switzerland) was gently applied daily to the abaxial side of the first emerging leaf of a 6-10

day old seedling grown axenically on 1

2
MS agar. After hardening of the resin transparent nail

polish was applied to the imprints. Images of nail-polish copies were collected using a Kappa

CF 8/5 camera and Zeiss Axioplan 2 microscope. The time course of stomatal development

was determined from tracings made of images of the same stomatal complexes. Stomatal
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density, stomatal index and the proportion of primary and higher-order stomatal complexes

were quantified from images of nail polish copies of dental resin imprints of the surfaces of

the fifth rosette leaf. Comparable regions of epidermis were scored for each type of plant in

the same experiment.
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Results
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3. Establishing a Collection of RNA Silencing

Mutants

Contributions to this chapter:

I carried out all experiments and their analysis described in this chapter, if not mentioned

otherwise.
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1. Elucidation of RNA silencing pathways using deficiency mutants

The majority of proteins involved in RNA silencing pathways, e.g. DCL1, HYL1, and HEN1,

were identified in genetic screens aimed to identify mutants impaired in certain aspects of

plant growth, development, and reproduction. Their discovery in those screens indicated the

importance of RNA silencing in a broad range of regulatory functions (Figure 3.1). Biochem-

ical studies are rarely done in plants and RNA silencing pathways have been elucidated

primarily by accessing the effect of deficiency mutants on the expression of smRNA and

their putative targets. None of the known silencing mutants were available in the laboratory

in the beginning of my thesis. Therefore, my first objective was to establish a collection of

deficiency mutants as a tool for detailed studies.

2. Partial Characterization of T-DNA Insertion mutants

In a reverse genetic approach several lines with single T-DNA insertions in genes known to

affect RNA silencing were obtained from the Nottingham Arabidopsis Biological Stock Cen-

tre (NASC) or from the SAIL collection (Syngenta). Segregating T3-generation T-DNA lines

with a NPTII kanamycin resistance gene (SALK) or BASTA resistance cassette (SAIL) were

characterized (Appendix Table D). Characterization of the T-DNA insertion involved determi-

nation of the genotype (homozygosity), the copy number in the genome, and mapping of the

insertion site. Additionally, transcript expression of the gene altered by the T-DNA insertion

site was measured.

Some of the mutants analyzed exhibited different molecular phenotypes indicating that the

alleles differ in expression. When published mutants became available, they were included

in the study as controls. For example the dcl1-x mutant (allele undetermined, Appendix Ta-

ble D) with a T-DNA insertion in the 3’ UTR exhibited normal growth and miRNA formation

and was not impaired in smRNA production (data not shown). dcl1 mutants with point mu-

tations in the RNA helicase domain (dcl1-7 and dcl1-8) or truncation of the second dsRNA

binding domain (dcl1-9) have developmental defects including sterility, late flowering, and

show reduced miRNA accumulation (Park et al., 2002; Reinhart et al., 2002; Schauer et al.,

2002). Initially only heterozygous mutants could be identified for dcl4-2 and rdr6-15 although

alterations in smRNA accumulation were found. TAIL-PCR (Liu et al., 1995) revealed that

the T-DNA insertion was located differently than indicated before. After several generation

of self-fertilization a drug resistance phenotype

Characterized RNA silencing deficient mutants were used routinely for the study of miRNA

biogenesis and function during my thesis and by members of the Meins laboratory. Some of
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xrn4-2

Col-0 dcl1-8

hen1-5 hyl1-2

ago1-3

dcl4-2 dcl2-5 dcl3-1

hasty1 rdr6-15 rdr1-2

rdr2-3 wex2-3

Figure 3.1: Phenotypes of Arabidopsis mutants impaired in smRNA biogenesis.

The wild-type is shown on the left. RNA silencing mutants are shown below. ago1 (argonaute

1), hen1 (hua enhancer 1), hyl1 (hyponastic leaves 1), and hst (hasty ) mutants all have

pleiotropic developmental defects that overlap with those of hypomorphic dcl1 (dicer-like 1)

plants. Although many or all of these developmental defects may result from impaired miRNA

activity, they may also reflect disruption of other pathways in which these genes act, such

as in the generation and function of siRNAs. However, mutations in genes required for the

accumulation of various siRNAs, such as RDR6 (RNA-DEPENDENT RNA POLYMERASE

6), DCL2, DCL3, and DCL4, result in few, if any, developmental abnormalities.

wex, werner syndrome-like exonuclease; xrn4, exoribonuclease 4
42



2. Partial Characterization of T-DNA Insertion mutants Results

these mutants were also used to gain insights in the regulation of other smRNA pathways in

collaboration with other research groups (Akbergenov et al., 2006; Blevins et al., 2006).
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4. Identification and characterization of the

miR824/AGL16 regulatory pathway

Contributions to this chapter:

I carried out all experiments and their analysis described in this chapter often under the su-

pervision of Azeddine Si-Ammour. Hanspeter Schöb cloned smRNAs. Azeddine Si-Ammour

constructed plasmids for plant transformation and made the cleavage assay for AGL16.
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1. Characterization of the miR824 locus

1.1. Identification of miR824 and its precursor

miR824 was originally cloned in the Meins laboratory by Hanspeter Schöb in 2001 using

a smRNA cloning protocol designed to obtain 18 nt to 30 nt RNAs with 5’-phosphate and

3’-hydroxyl groups (Elbashir et al., 2001). An in silico analysis performed in the begin-

ning of my thesis identified miR824 as a potential miRNA. In addition to miR824, sixteen

miRNAs and two known ta-siRNAs were identified from a total of ca. 350 unique small

RNA clones obtained from pooled tissues of Arabidopsis plants at different developmental

stages. Blast searches against the Arabidopsis database (www.arabidopsis.org) revealed a

unique genomic location of miR824 on chromosome IV (NC_003075.3, position 12625136

to 12625157). RNA blot hybridization confirmed that miR824 is a 21 nt long RNA and ubiq-

uitously expressed in stems, leaves, cauline leaves, inflorescences, and roots (Kutter et

al., 2007). It was recently shown that miR824 accumulation in Arabidopsis depends on HY-

PONASTIC LEAVES 1 (HYL1), HUA ENHANCER 1 (HEN1), DICER-LIKE 1 (DCL1), (DCL1)

(Rajagopolan et al., 2006, Kutter et al., 2007), and ARGONAUTE 1 (AGO1) but not on DCL2,

DCL3, DCL4, AGO3, AGO5, AGO7, AGO10, RNA DEPENDENT RNA POLYMERASE 1

(RDR1), RDR2, RDR6, SILENCING DEFECTIVE (SDE3), WERNER SYNDROME-LIKE EX-

ONUCLEASE (WEX-2), or EXORIBONUCLEASE 4 (XRN4) (Figure 4.1 A-C). As shown for

other miRNAs, a passenger miR824* sequence bearing 2 nt 3’ overhang to the comple-

mentary miR824 was identified computationally and by deep pyrophosphate sequencing

(Fahlgren et al., 2007; Rajagopolan et al., 2007). miR824* was detectable at low abundance

with a radio of 4 to 5 molecules of miR824 to 1 molecule of miR824* as quantified by RNA

blot hybridization. miR824* accumulation depends on hyl1-2, hen1-5, dcl1-8, and ago1-3 but

not on dcl2-5, dcl3-1, dcl4-2, or rdr6-15 (Figure 4.1 A). Identification of miR824* indicates ex-

act processing of the miRNA from the hairpin precursor by DCL1-like activity as described by

a previous study (Talmor-Neiman et al., 2006a). Other potential smRNA molecules obtained

by deep sequencing most likely do not act as miR824* sequences because of low comple-

mentarity towards miR824 and their orientation (Table 4.1, Figure 4.2). The minimum free

energy structure for the miR824 locus was analyzed algorithm with a folding temperature

set to 20◦C (Zucker, 2003). This algorithm evaluates paired regions of an RNA secondary

structure and predicts stem loop hairpin structure, a characteristic feature of precursor (pre)-

miRNAs. miR824 is present in the 5’ arm of the stable predicted 689 nt stem-loop hairpin

structure and miR824* is located on the opposite 3’ arm of the foldback structure (Figure 4.3).

The precise ends of the 5’ and 3’ arm could not be mapped by using a method based on
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Table 4.1.: smRNA sequences of miR824 precursor.

name sequence length in nt orientation reference 

AGO4_01585 UAGACCAUUUGUGAGAAGGGAG 22 plus/plus Qi et al., 2006 
Ath_wt_11860 UAGACCAUUUGUGAGAAGGGA 21 plus/plus Qi et al., 2006 
AGO1_1555 UAGACCAUUUGUGAGAAGGGA 21 plus/plus Qi et al., 2006 
AGO4_13392 UAGACCAUUUGUGAGAAGGGA 21 plus/plus Qi et al., 2006 
Ath_wt_04764 AGACCAUUUGUGAGAAGGGA 20 plus/plus Qi et al., 2006 
AGO1_0931 GACCAUUUGUGAGAAGGGA 19 plus/plus Qi et al., 2006 
BarFl4288 UAGACCAUUUGUGAGAAGAGA 21 plus/plus Axtell et al., 2006 
BarRL6665 CAAGGAUUUUUAAAAAGGGUUAGC 24 plus/minus Axtell et al., 2006 
AGO4_03753 CGAAACAAUAAACUAACGAAUCUC 24 plus/minus Qi et al., 2006 
BarFL4394 UGAAGAGAUAUAUUCUCUUGUGGU 24 plus/plus Axtell et al., 2006 
AGO4_07237 AUAUAUUCUCUUGUGGUGGAUGUA 24 plus/plus Qi et al., 2006 
BarSee277 AGAAGGGUUUUUAAAAGUUUAGUA 24 plus/minus Axtell et al., 2006 
BarSil3147 CAAAAUCAUAUAAAACACUUAGAA 24 plus/plus Axtell et al., 2006 
BarSil1431 UCUAAGUGUUUUAUAUGAUUUUG 24 plus/minus Axtell et al., 2006 
AGO4_00058 UCAAAAUCAUAUAUCAUCACCAAC 24 plus/plus Qi et al., 2006 
Ath_wt_17349 CCUUCUCAUCGAUGGUCUAGA 21 plus/plus Qi et al., 2006 
AGO1_4080 CCUUCUCAUCGAUGGUCUAGA 21 plus/plus Qi et al., 2006 

circularization of RNA molecules through self-ligation as used in other studies (e.g., miR163

[Kurihara and Watanabe, 2004] or human let-7 [Basyuk et al., 2003]). Sequence analysis

of the 60 to 70 bp cloned molecules aligned either to the intronic region upstream of the

predicted miR824 precursor or aligned to the region between miR824 and miR824*. These

fragments represent most likely degradation products obtained from precursor processing.

Taken together these data confirm that miR824 is a bona fide miRNA produced exclusively

by the known miRNA pathway and that pre-miR824 is a long precursor, a common feature

of recently evolved Arabidopsis miRNAs.

1.2. Characterization of the MIR824 locus

The stem loop hairpin containing miR824 is encoded by a transcribed gene, designated

MIR824, corresponding to the gene At4g24415.1. The capped, polyadenylated 2897 nt tran-

script, named primary miR824 (pri-miR824), is non-coding, capped, polyadenylated mRNA.

RT-PCR using primers annealing at the ends of pri-miR824 confirmed expression of two

splice variants: the 1640 nt variant pri-miR824.1 represented and the 1497 nt variant pri-

miR824.2 (Figure 4.4, Kutter et al., 2007). The stem loop is present in the third exon of

the pri-miR824. Transgenic plants expressing only the third and fourth exon driven by the

strong, double-enhancer Cauliflower mosaic virus 35S RNA promoter (Pro2x35S), named

pPro2x35S:MIR824∆E1E2(+), showed increased miR824 expression (Figure 4.5) indicating

that the last two exons are sufficient for the formation of the stem loop structure and miR824

processing. Similar results were obtained by Parizotto et al. (2004) for another miRNA
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Figure 4.1: Expression of miR824 in leaves of Arabidopsis miRNA mutants and other

plant species.

(A-C) RNA blot hybridization of Arabidopsis smRNAs using probes for miR824, miR824*,

miR156, miR165, miR168, TAS1, and siRNA480(+) or with U6 as loading standard. 5S

rRNA and tRNA loading standards are stained with ethidium bromide. The sizes of smRNAs

are indicated on the left. (A) Expression of miR824, miR824*, miR156, miR168, and TAS1

in deficiency mutants dcl1-8, dcl2-4, dcl3-1, dcl4-2, rdr6-15, ago1-3, hyl1-2, hen1-5 and

Brassica rapa, B. napus, B. oleracea, Oryza sativa, Nicotiana tabaccum, and Populus tri-

chocarpa. (B) Expression of miR824 and siRNA480(+) in deficiency mutants rdr1-3, rdr2-3,

wex-2, xrn4-2, and sde3-4. (C) Expression of miR824, miR165, and miR168 in deficiency

mutants rdr3-1, rdr5-1, and ago10-1.
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Figure 4.2: Genomic locations of smRNA sequences of the miR824 precursor. (also

see Table 4.1)

smRNA sequences highlighted in red align in plus (5’ to 3’) and in orange in minus (3’ to 5’)

orientation towards miR824 precursor sequences. Sequences were obtained from the NCBI

Gene Expression Omnibus web site: http://www.ncbi.nlm.nih.gov/geo/ (Barrett et al., 2007).

BLAST search against the miR824 precursor identified smRNAs. smRNA with identification

number (ID) >AGO1_XXXX (GSM149080) and AGO4_XXXX (GSM149081) were isolated

by immunoprecipitation (IP) of smRNAs associated with AGO1 and AG04 complex, respec-

tively. The set used as control without IP (whole extract) was designated >Ath_wtXXXX

(GSM149079) (Qi et al., 2006). smRNA sequences with the ID number “>Bar” derive from

high-throughput sequencing of Arabidopsis thaliana endogenous small RNAs by 454 pyrose-

quencing dataset submitted by Axtell et al. (2006). The following ID were used according to

the library used:

>BarRLXXX: GSM118373: smRNAs from rosette leaves

>BarFLXXX: GSM118372: smRNAs from whole flowers

>BarSeeXXXX: GSM118374: smRNAs from whole seedlings

>BarSilXXXX: GSM118375: smRNAs from whole siliques

689
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Figure 4.3: Fold back structure of miR824 precursor.

5’ to 3’ stem loop hairpin structures of the pre-miR824 predicted for Arabidopsis. The mature

miR824 sequence is indicated in red and the miR824* in green. G:U wobble pairing is shown

by a circle.
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Figure 4.4: Genomic organization of the MIR824 locus.

Schematic presentation of the MIR824 locus on chromosome IV based on the alignment

of ESTs with genomic sequences. The direction of transcription and 5’-3’ orientation of

miR824 are indicated by arrows. Exons (grey boxes for MIR824 and black boxes for gene

accessions), introns (horizontal lines), start of transcription (+1), transcript length, and the

position and orientation of miR824 (short arrows) are indicated. The figure is not drawn to

scale.

showing that only the fold-back pre-miRNA is sufficient for miR171 processing. The first two

exons of MIR824 may function as a proximal promoter enabling transcription of MIR824. A

CT-rich motif CT-rich motif leading to enhancement of gene expression (Pauli et al., 2004)

was found in those regions suggesting that miR824 is encoded at the MIR824 locus as a

polyadenylated pri-miRNA that undergoes splicing and further processing.

BLAST searches of the entire Arabidopsis genome established that the first two exons of

theMIR824 (At4g24415.1) gene are in antisense orientation to the predicted gene At4g24410.

Recent reports demonstrate that endogenous siRNAs derive from the overlapping region of

a pair of natural antisense transcripts (NATs) (Borsani et al., 2005; Katiyar-Agarwal et al.,

2006). No smRNAs deriving from the locus could be detected by RNA blot hybridization

even under stringent hybridization conditions. Furthermore, no smRNAs corresponding to

this region where found in the MPSS database (http://mpss.udel.edu; Lu et al., 2005) and no

methylation signals were (http://mpss.udel.edu; Lu et al., 2005) and no methylation signals

were detected (Lu et al., 2006; Zhang et al., 2006). Reverse transcription with gene-specific

primers followed by PCR analysis of the At4g24415.1 locus (Figure 4.6 A) confirmed that

the in silico predicted gene At4g24410 is a misannotated gene entry in the TAIR database.

Furthermore, no EST derived from this gene locus could be identified. This result shows that
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Figure 4.5: Expression of miR824 in leaves of Col-0 and independent transgenic lines

expressing Pro2x35S:MIR824∆E1E2(+).

RNA blot hybridization probed with miR824. tRNA and 5S rRNA was stained with ethidium

bromide. The size of the smRNA is indicated on the left.

no natural antisense transcript is produced that could give rise to nat-siRNAs acting in cis to

facilitate cleavage of the MIR824 transcript.

The impairment of the miRNA pathway in dcl1-8 and hyl1-1 mutants resulted in increased

steady-state levels of pri-miR824 compared with their corresponding wild-types Col-0 (gl-1)

and No-0 (Figure 4.7). Furthermore, miR824 processing was partially impaired in hyl1-1 but

not in dcl1-8 mutants. In hyl1-1 mutants a shift in a band with lower molecular weight was

observed. Misplaced cleavage of pri-miR163 was previously reported in dcl1-8 and hyl1-2

mutants (Kurihara and Watanabe, 2004; Kurihara et al., 2006). Cloning analysis showed that

the band shift of pri-miR824 in the hyl1-1 mutant (Figure 4.7) was caused by the absence

of the second exon. This data lead to the conclusion that beside the involvement of HYL1

in positioning of the cleavage sites in miRNA processing, another function in splicing of

pri-miR824 and probably other pri-miRNAs can be proposed.

Northern blot analysis and quantitative real time PCR (RT-qPCR) confirmed that DCL1 and

HYL1 but not HEN1, DCL2, DCL4, RDR1, RDR2, RDR6, SDE3, WEX, or XRN4 are involved

in pri-miR824 processing. In the dcl1-8, hyl1-2, ago1-3, and dcl3-1mutant an increase of pri-

miR824 expression of 3.2-, 3.1-, 3.8-, and 2.0- fold was obtained (Figure 4.8). No function for

AGO1 or other DCLs, except DCL1, in miRNA precursor processing is known. Redundancy

of DCLs in Arabidopsis as described previously (Blevins et al., 2006; Deleris et al., 2006;

Henderson et al., 2006; Moissiard and Voinnet, 2006) might explain a DCL3-dependent role

in miR824 formation.

50



1. Characterization of the miR824 locus Results

miR824

5’

5’3’

3’

125 bp 

RF1 F2

F1+
 R

F2+
 R

R
+ 

F2

F1 
F2

+ 
R

F1+
 R

F2+
 R

R
+ 

F2

F1 
 F

2
+ 

R
-DNase +DNase

100 bp 

200 bp 

300 bp 

400 bp 

491 bp 

375 bp 

250 bp 

500 bp 

MIR824 (exon 1 and 2)

At4g24410

MIR824

A

B

Figure 4.6: Genomic organization of the MIR824 locus and the annotated gene

At4g24410.

(A) Schematic presentation of the MIR824 locus with emphasis on the first two exons and

At4g24410 on chromosome IV. The direction of transcription in 5’-3’ orientation is indicated.

White arrow represents location and orientation of miR824. Exons (black boxes) and introns

(horizontal lines) are shown. F1, F2, and R represent forward (F) and reverse (R) primer

and small black arrows their 5’-3’ orientation. Expected length (in bp) of RT-PCR products is

represented by double-headed arrow. The figure is not drawn to scale.

(B) Image of 2% agarose gel electrophoreses showing RT-PCR products with (+) and without

(-) DNase treatment and primer (F and R) combinations stained with ethidium bromide. The

primer in red is used for reverse transcriptase, followed by PCR amplification using primer(s)

in black. Red box demonstrates postulated location of RT-PCR products. The size of the

DNA size marker is indicated on the right. Note: absence of PCR fragments (red box)

indicative for At4g24410.
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Figure 4.7: Expression of MIR824, AGL16, and ACTIN2 in leaves of miRNA mutants

and corresponding wild-type backgrounds.

Image of native 1% agarose gel electrophoreses showing semiquantitative RT-PCR products

ofMIR824, AGL16, and ACTIN2 stained with ethidium bromide in dcl1-8, hyl1-1, and hen1-1

and corresponding wild-type backgrounds gl-1 (Col-0), No-0, and Ler. Primers used amplify

whole gene products. Note: sequence differences in Ler cause that MIR824 is not amplified

by primer pair designed for Col-0. The length of the DNA is determined by the DNA size

marker indicated on the left.
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Figure 4.8: Expression of MIR824 and AGL16 in rosette leaves of 28 day old silencing

mutants.

Quantitative RT-PCR determining fold-change of expression of MIR824 (black column) and

uncleaved target AGL16 (white column) in deficiency mutants hyl1-2, hen1-5, dcl1-8, dcl2-4,

dcl3-1, dcl4-2, ago1-3, xrn4-2, rdr1-3, rdr2-3, rdr6-15, sde3-4, and wex-2. Quantifications

were normalized to TIP41. The values in wild-type plants were arbitrarily fixed to 1.
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1.3. Promoter analysis of MIR824

Functional promoters of other ArabidopsisMIRNA genes contain cis-elements for polymerase

II-type transcription (Xie et al., 2005). The region upstream of the transcription start of pri-

miR824 contains a TATA box with the conserved TATAAA-motif at position -30 (Kutter et

al., 2007) as well as the recently reported CT-repeat microsatellite motifs found in putative

MIRNA promoters (Zhou et al., 2007). Several distal cis-acting elements implicated in tran-

scriptional regulation including a CArG motif with site for AGAMOUS-LIKE 15 (AGL15) (Tang

and Perry, 2003) at position -100, and a low temperature responsive element (LTRE) spe-

cific to specific to the COLD REGULATED 15a promoter (Baker et al., 1994) at position -450

(Figure 4.9 A). MIR824 promoter activity was visualized by expression of the uidA, encoding

the reporter protein β-glucuronidase (GUS) (pProMIR824:GUS) (Figure 4.9 C, C’) infiltrated

into rosette leaves of Brassica rapa. GUS expression controlled by the double 35S promoter

(Pro2x35S) was used as positive control (Figure 4.9 B, B’). No GUS expression was visible in

expression studies using a promoterless construct or truncated versions of the MIR824 pro-

moter. MIR824 promoter activity was also observed in Arabidopsis plants transformed with

ProMIR824:GFP. However, the green fluorescence intensity of the reporter gene was weak

and detectable only in tissues (e.g. roots and petiole) where less chlorophyll interfered with

the GFP excitation. These results show that the region 2954 upstream of pri-miR824 is a

functional promoter probably regulated by abiotic stresses and other environmental factors.

1.4. Characterization of MIR824 T-DNA insertion alleles

Several homozygous and monogenetic T-DNA insertion alleles ofMIR824, designatedm1 to

m4, were identified from the SALK Collection of sequence-indexed T-DNA insertion mutants

(http://signal.salk.edu) (Alonso et al., 2003) (Figure 4.10 A) and characterized (Figure 4.10

B). The T-DNA insertion of the mutants m1 (SALK_007098) and m2 (SALK_000582) are

located downstream of the miR824 precursor and map to the last exon of the precursor and

to the 3’ UTR sequence, respectively. The T-DNA insertions in m3 (SALK_042802) and

m4 (SALK_099968) are positioned upstream of the transcription start to MIR824 (Figure

4.10 A). The mutant lines m1 and m2 showed reduced MIR824 expression and miR824

formation while the m3 and m4 lines enhance MIR824 expression and miR824 formation

(Figure 4.10 C, D). This suggests that T-DNA insertions in those mutants affect miR824

biogenesis. Enhanced expression probably results from read-through transcription because

the T-DNA promoter is in the same orientation as pri-miR824 transcription (Kutter et al.,

2007), as reported by others using the same T-DNA vector (Ren et al., 2004).
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Figure 4.9: Promoter expression studies of MIR824 and AGL16 by leaf infiltration.

(A) Schematic presentation and indication of the localization of predicted promoter motifs

upstream of MIR824. (B-E) Staining of the abaxial epidermis of leaves of Arabidopsis four

week after germination is shown. B’ to E’ represent magnified images of regions (high-

lighted by black square) of B to E, respectively. Region with positive promoter activity appear

blue due to GUS reporter gene expression. Infiltrated plants with (B-B’) pPro2x35S:GUS as

positive control carrying the GUS reporter gene regulated by the Pro2x35S promoter, (C-C’)

pProMIR824:GUS carrying 2954 bp of genomic region upstream of the pri-miR824 start of

transcription fused to the reporter gene. (D-D’) pProAGL16-I1:GUS carrying the full-length ge-

nomic region upstream of the AGL16 start of transcription plus the genomic region up to and

including intron 1 of AGL16 fused to the reporter gene, (E-E’) pProAGL16-I2:GUS carrying the

full-length genomic region upstream of the AGL16 start of transcription plus the genomic

region up to and including intron 2 of AGL16 fused to the reporter gene.

2. miR824 target gene prediction and validation

Plant miRNA target genes show high complementarity in pairing (0-4 mismatches) to the

respective miRNAs. This feature of plant miRNAs facilitated the computational identification

of almost all plant miRNA target genes (Jones-Rhoades and Bartel 2004; Park et al., 2002;

2002; Rhoades et al., 2002). A confirmation or validation of the cleavage site by 5’ RACE
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Figure 4.10: Characterization of mutants with T-DNA insertions in the MIR824 locus.

(A) Schematic presentation of the localization of T-DNA insertions of mutant m1 to m4 in the

MIR824 locus. Black arrows indicate orientation of 35S promoter within the T-DNA insertion.

White arrow represents location and orientation of miR824. Exons (black boxes) and introns

(horizontal lines) are shown. (B) Determination of T-DNA copy number in m2 to m4 mutants:

genomic DNA was prepared from rosette leaves of m2 to m4 mutants, digested with BamHI

and separated by agarose gel electrophoresis. Detection of the NPTII gene by using a
32P-labeled PCR fragment of NPTII as probe for hybridization. The probe does not span

an intron and none of the used enzymes cuts within the probe sequence. The size of the

DNA in kb is indicated by molecular size marker on the left. (C) Detection of miR824 in

rosette leaves of Col-0 and m1 to m4 by RNA blot hybridization. tRNA and 5S rRNA were

strained with ethidium bromide. Size of smRNA is shown on the left. (D) Image of native 1%

agarose gel electrophoreses showing semiquantitative RT-PCR products ofMIR824, AGL16,

and ACTIN2 stained with ethidium bromide in m1 to m4 mutants. The length of the DNA is

determined by the DNA size marker indicated on the left. (E) Representative Col-0 and

m1 to m4 mutant plants grown under the same conditions and photographed 28 days after

germination. Mutants appear normal in growth habit and development. Bar: 1 cm.

55



2. miR824 target gene prediction and validation Results

(also called RNA ligase mediated cDNA ends, RLM-RACE) is indicative of miRNA-mediated

processing and has been described for many of those target genes (Allen et al., 2004; Auk-

erman and Sakai, 2003; Kasschau et al., 2003; Llave et al., 2002b; Mallory et al., 2005;

Mallory et al., 2004a; Palatnik et al., 2003; Park et al., 2002).

2.1. Identification of AGL16 (AGAMOUS-LIKE 16) as the unique miR824 target

gene

Target genes of miR824 were predicted by BLAST searches against the Arabidopsis coding

sequences including introns and untranslated regions. Up to four mismatches, deletions,

or substitutions were allowed and exclude therefore non-biological miRNA targets showing

less than 85% sequence identity with the reverse complement sequence of miR824 (Allen

et al., 2005). Several complementarities to miR824 were identified in exonic sequence of

the genes At3g57230 (AGL16), At1g05930 (hypothetical protein), At1g65370 (neprin and

TRAF homology domain-containing protein), and At1g65150 (neprin and TRAF homology

domain-containing protein) and in intronic sequence of the gene At1g65050 (neprin and

TRAF homology domain-containing protein) (Table 4.2). Previous studies showed that mis-

matches at the 5’ and central regions of the miRNA (Allen et al., 2005; Schwab et al., 2005)

are more disruptive than those at the 3’ region (Mallory et al., 2004). These criteria were

fulfilled only by AGL16 and At1g05930. The base pairing at the site of AGL16 is almost

perfect except for one G:U wobble pairing at the 3’ end of miR824 and has the predicted free

energy of pairing -38.6 kcal/mol (Reeder et al., 2006) (Figure 4.11). miR824 sequence pairs

to At1g05930 with three G:U wobble pairings at position 1, 10, and 15 and with a mismatch

at position 21. The predicted free energy of pairing is therefore increased to -29.5 kcal/mol.

At1g65370, At1g65150, and At1g65050 pair to the miR824 sequence with four mismatches

at position 1, 5, 6, and 15 and have a predicted free energy of pairing -26.7, -26.7, and

-26.4 kcal/mol, respectively. Potential miR824 target genes were validated by RLM-RACE

in which the precise cleavage site was mapped. Fragments with the correct size were only

obtained for AGL16, At1g05930, and At1g65150 after the third round of nested PCR using

gene-specific primers for each of the target genes. All 10 clones sequenced, showed that

cleavage of the AGL16 transcript occurs between nucleotides 10 and 11 of the miR824 pair-

ing (Figure 4.11) like targets of many other miRNAs. None of the 30 clones sequenced

mapped to the predicted target genes At1g05930, At1g65370, At1g65150, or At1g65050.

These results indicate that AGL16 is the only cleaved target gene of miR824.
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Table 4.2.: miR824 target prediction.

AGI protein domain % 
pairing 
identity

sequence alignment in 
plus/minus orientation 

(miR824 [5’-3’] in bold to 
target mRNA [3’-5’]) 

targeting 
sequence 

cleavage 
validation 
by RLM-
RACE 

 G 
[kcal/
mol] 

At3g57230 AGL16
(Agamous-like 
AGL16, MADS-
box containing 
transcription factor 
protein) 

95 uagaccauuugugagaaggga

|||||||||||||||||| ||

uagaccauuugugagaagaga

exon 7 yes -38.6

At1g05930 hypothetical
protein

89 uagaccauuugugagaaggga

 |||||||| |||| ||||| 

gagaccauuggugauaagggu

exon 1 no -29.5

At1g65370 neprin and TRAF 
homology domain-
containing protein 

85 uagaccauuugugagaaggga

 |||  |||||||| ||||||

aagagaauuugugaaaaggga

exon 2 no -26.7

At1g65150 neprin and TRAF 
homology domain-
containing protein 

85 uagaccauuugugagaaggga

|||  |||||||| |||||| 

aagagaauuugugaaaaggga

exon 3 no -26.7

At1g65050 neprin and TRAF 
homology domain-
containing protein 

85 uagaccauuugugagaaggga

|||  |||||||| |||||| 

aagagaauuugugaaaaggga

intron 3 no -26.4

35S

5’ 3’

100 bp

At3g57230 

(AGL16)

3‘ AGGGAAGAGUGUUUACCAGAU 5‘

AAUUCUCUUCUCACAAAUGGUCUAGAC

10/10 clones

AGL16

miR824

SALK_104701 
agl16-1 

5’ 3’

 G = - 38.6 kcal/mol

Figure 4.11: miR824 cleavage of target mRNA and location of agl16-1.

Black boxes symbolize exon, grey boxes UTR, and horizontal lines intron sequences. The

arrow represents transcription start. miR824 binding site is emphasized with the nucleotide

positions relative to the transcription start of AGL16 indicated (dashed line perfect match,

circle represents G:U wobble paring). The frequency of 5’-RACE clones corresponding to

the cleavage site (vertical arrows) is shown. The free energy of binding (∆G) is indicated.

Localization of T-DNA insertion agl16-1 is shown. Black triangle indicates orientation of 35S

promoter within the T-DNA insertion.
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2.2. AGL16 expression in RNA silencing and MIR824 locus mutants

RNA blot hybridization showed that relative to wild-type, AGL16 mRNA consistently accu-

mulated at higher concentrations in the miRNA defective mutants dcl1-8, hyl1-1, hen1-1,

compared to their corresponding wild-types Col-0 (gl-1), No-0, and Ler (Figure 4.12 A) and

ago1-3 (Figure 4.12 B). Slight increases in AGL16 transcripts were also observed in the

XRN4- and RDR1-deficient mutant (Figure 4.12 B). The 5’ to 3’ exoribonuclease activity

of AtXRN4 causes often an accumulation of short 3’ end cleavage fragments in xrn4 mu-

tants (Souret et al., 2004). However, the AGL16 3’ cleavage product of 386 nt could not

be detected. No alterations in AGL16 transcript levels occurred in dcl2-5, dcl3-1, dcl4-2,

rdr2-3, rdr6-15, sde3-4, or wex-2 (Figure 4.12 B). Quantitative RT-PCR with primer pairs

detecting AGL16 transcripts either 5’ upstream or 3’ downstream of the miR824 cleavage

site confirmed the DCL1-, HYL1-, HEN1-, AGO1-, and XRN4-mediated regulation of AGL16

expression. The 5’ transcript levels of AGL16 were increased in the dcl1-8, hyl1-2, hen1-

5, ago1-3, and xrn4-2 mutant by 2.1-, 2.0-, 3.1-, 4.6-, and 2.0-fold, respectively (Figure

4.8). AGL16 transcript levels were slightly increased in the precursor mutants m1 and m2

that show reduced miR824 accumulation and slightly decreased in m3 and m4 that show

enhanced miR824 accumulation (Figure 4.10).

A homozygous, monogenic mutant agl16-1 (Figure 4.13 A) carrying a T-DNA insertion in

the last exon of AGL16 was identified (Figure 4.11). The T-DNA insertion in the last exon

impaired AGL16 accumulation. This mutant showed a ca. 14-fold reduction in AGL16 mRNA

relative to wild-type (Figure 4.13 B). miR824 accumulation remained unchanged since the

insertion is independent of the MIR824 locus (Figure 4.13 C). Taken together, these results

indicate that AGL16 is negatively regulated by miRNA-mediated cleavage as shown for other

miRNA targets (Vazquez et al., 2004).

2.3. miRNA-mediated regulation of other Arabidopsis MADS-box genes

AGL16 is one of the four AGL17 -like subfamily members of the MIKC-type MADS-box genes

encoding eukaryotic transcription factors (Alvarez-Buylla et al., 2000; Bitter et al., 2003).

BLAST analysis of all the known MADS-box genes to the computationally predicted or ex-

perimentally validated Arabidopsis miRNAs was performed. The analysis showed that the

predicted miR426 (Wang et al., 2004) might target other MADS-box genes in addition to

miR824. miR426 shows complementarity to the other members of the AGL17 -like subfamily

ANR1 (At2g14210), AGL17 (At2g22630), and AGL21 (At4g37940) but not AGL16 or any

other MADS-box gene (Table 4.3). RNA blot hybridizations were performed since miR426

58



2. miR824 target gene prediction and validation Results

dc
l1

-8

gl
-1

N
o-

0

hy
l1

-1
Le

r

he
n1

-1

AGL161256 nt

rRNA

C
ol

-0

rd
r1

-3

rd
r2

-3

rd
r6

-1
5

gl
-1 dc
l1

-8
dc

l2
-4

dc
l3

-2
dc

l4
-2

ag
o1

-3

w
ex

-2

xr
n4

-2

sd
e3

-4

AGL16

5’ probe

1256 nt

AGL16

3’ probe

rRNA

1256 nt

1.0 7.4 1.5 1.0 0,9 1.0 3.7 2.2 1.5 1.5 1.1 0.6 1.9

1.0 7.7 1.6 1.0 0,9 1.0 4.3 2.1 1.5 1.5 1.5 1.0 2.0

B

A

Figure 4.12: Expression of AGL16 transcript in rosette leaves of silencing deficient

mutants.

RNA blot hybridization of total RNAs using probes to detect AGL16 (full-length AGL16 coding

region, 5’ and 3’ products of AGL16 coding region after cleavage). rRNA loading standards

are stained with ethidium bromide. The size of the transcript is indicated on the left. (A)

Expression of AGL16 (full-length probe) in deficiency mutants dcl1-8, hyl1-1, and hen1-1

and their corresponding backgrounds Col-0 (gl-1), No-0, and Ler. (B) Expression of AGL16

(5’ and 3’ probe) in deficiency mutants dcl1-8, dcl2-4, dcl3-1, dcl4-2, ago1-3, xrn4-2, wex-2,

sde3-4, rdr6-15, rdr2-3, and rdr1-3. Fold-changes to their backgrounds are indicated below.
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Figure 4.13: Expression of AGL16 transcript in rosette leaves of the AGL16 deficient

mutant.

(A) Determination of T-DNA copy number in agl16-1 mutants: genomic DNA was prepared

from rosette leaves of agl16-1, digested with BamHI and separated by agarose gel elec-

trophoresis. Detection of the NPTII gene by using a 32P-labeled PCR fragment of NPTII as

probe for hybridization. The probe does not span an intron and none of the used enzymes

cuts within the probe sequence. The size of the DNA in kb is indicated by molecular size

marker on the left. (B) RNA-blot hybridization of 2 µg poly (A+) RNA prepared from Col-0,

m3, and agl16-1 plants. The blot was hybridized with probes for β-TUBULIN mRNA or the

full-length AGL16 coding region. The sizes of transcripts are indicated on the left and the

fold expression of AGL16 mRNA in m3 and agl16-1 relative to Col-0 after normalization for

the β-TUBULIN loading standard is shown below. (C) RNA blot hybridization of miR824 in

20 µg of low molecular weight RNA of Col-0 and agl16-1. tRNA and 5S rRNA were strained

with ethidium bromide. The size of the miRNA is indicated on the left. (D) Representative

Col-0 and agl16-1 plants grown under the same conditions and photographed 28 days after

germination. The agl16-1 mutant appears normal in growth habit and development. Bar: 1

cm
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Table 4.3.: smRNA mediated cleavage of AGL17 clade members.

AGI protein domain sequence alignment in plus/minus 
orientation (miR824 [5’-3’] in bold 

to target mRNA [3’-5’]) 

targeting 
sequence 

cleavage 
validation by 
RLM-RACE 

 G 
[kcal/
mol] 

At3g57230 AGL16 (Agamous-
like AGL16, MADS-
box containing 
transcription factor 
protein) 

miR824
uagaccauuugugagaaggga

|||||||||||||||||| || 

uagaccauuugugagaagaga

exon 7 yes -38.6

At2g14210 ANR1 (Arabidopsis 
nitrate response, 
MADS-box
containing 
transcription factor 
protein) 

miR426
uuuuggaa-auuugucc-uuacg

|||||||  |||||||| ||||| 

uuuuggaugauuugucccuuacg

exon 5 and 
exon 6 
junction 

no -20.4

At2g22630 AGL17 (Agamous-
like AGL17, MADS-
box containing 
transcription factor 
protein) 

miR426
uu—uugg---aaauuugu-ccuuacg

|| ||||   |||||||| ||:| 

uucauugucaaaauuuguucccuuuu

exon 4 and 
exon 5 
junction 

no -12.9

At4g37940 AGL21(Agamous-
like AGL21, MADS-
box containing 
transcription factor 
protein) 

miR426
uu—uug-g--aa-auuugu-ccuuacg

|| ||| |  || |:|||| ||||:|:

uucuugagucuucuguuguuccuuucu

exon 4 and 
exon 5 
junction 

no -16.1

expression was not validated. miR826 could be detected after prolonged exposure in sam-

ples of 80 µg of smRNAs, but not in 20 µg samples (Figure 4.14 A, B). These results and

the finding that miR426 could not be detected in the hyl1-2 mutants suggest that miR426 is

generated by a smRNA pathway, but is far less abundant in rosette leaves than other known

miRNAs. miR426 has 18, 11, and 12 base-pair matches with the putative targets ANR1,

AGL17, and AGL21 respectively. miR426 pairs at the splicing junctions between exon 5 and

exon 6 of ANR1, and between exon 4 and exon 5 for AGL17 and AGL21 (Table 4.3). No

gene-specific cleavage fragments with the correct size were obtained by RLM-RACE for any

of the putative targets tested. This shows that ANR1, AGL17, and AGL21 are not degraded

by miRNA-mediated RNA cleavage. Furthermore, no MPSS smRNA signatures were found

in of ANR1, AGL17, and AGL21 transcribed regions. These findings strongly support my

working hypothesis that AGL16 is the sole member of MADS-box gene family regulated by

miRNA-directed cleavage.

2.4. Analysis of AGL16 expression

Several reports showed that AGL16 is expressed in all aerial parts of the plant and roots

(Alvarez-Buyalla et al., 2000; Gan et al., 2005; Gong et al., 2004; Kofuji et al., 2003; Nawy et
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Figure 4.14: miR426 mediated regulation of AGL17 clade members.

(A and B) RNA blot hybridization probed with miR824 and miR426. tRNA and 5S rRNA was

stained with ethidium bromide. The size of the miRNAs is indicated on the left. (A) RNA

blot hybridization of 20 µg low molecular weight RNA of rosette leaves of dcl1-8, hyl1-1, and

hen1-1 mutants and their corresponding backgrounds Col-0 (gl-1), No-0, and Ler. (B) RNA

blot hybridization of 80 µg low molecular weight RNA of rosette leaves of hyl1-2 and Col-0.

al., 2005). In two independent biological experiments AGL16 transcript levels of six-week-old

Arabidopsis plants were tested by quantitative RT-PCR at this developmental stage AGL16

transcript was highly expressed in stems as well as in rosette and cauline leaves but lower

in roots or inflorescences. Dissection of the rosette leaf showed that AGL16 is similarly

expressed in major vein, leaf blade, and leaf margin (Figure 4.15).

2.5. Promoter regulation of AGL16

To identify the AGL16 gene promoter region, a genomic region 611 bp upstream of the

AGL16 transcription start was fused to a β-glucuronidase (GUS) (pProAGL16:GUS) reporter

gene. While GUS activity was detected after infiltrating leaves of Brassica rapa with the

positive control Pro2x35S:GUS. No activity was detected with (pProAGL16:GUS). Because

regions important for transcription are located within the second intronic region of the re-

lated AGAMOUS gene (Sieburth and Meyerowitz, 1997), the experiment were repeated

with pProAGL16:GUS vectors that included the first (pProAGL16-I1:GUS) or second intron

(pProAGL16-I2:GUS). Only vector pProAGL16-I2:GUS (Figure 4.9 E, E’) but not pProAGL16-I1:GUS

(Figure 4.9 D, D’) gave expression of GUS in B. rapa leaves suggesting that regions in the

second intron are required for high-level transcription of AGL16. Interestingly, CArG mo-

tifs were found in these intronic regions, which are known to be important for regulation by
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Figure 4.15: Expression of AGL16 in different plant organs and parts of the organ of

Arabidopsis.

Quantitative RT-PCR determined absolute (CT) values of AGL16 gene expression in different

organs of the plant. The bar represents the standard error. clv, cauline leaves; rlv, rosette

leaves. Different parts of the leaf used for RT-PCR are illustrated on the right.

5’-upstream sequences in AGL genes.

3. Role of miR824 and AGL16 upon abiotic stress and hormonal

treatment

The response of plants to abiotic and biotic stress is associated with specific, global pat-

terns of changes in gene expression (www.genevestigator.ehz.ch; Zimmermann et al., 2004).

Novel miRNAs have also been associated with abiotic stress (Jones-Rhoades and Bartel,

2004; Sunkar and Zhu, 2004). These reports and the predicted low temperature responsive

element (LTRE) of COLD REGULATED 15a in the promoter region of MIR824 suggested

that miR824 expression might be affected by stress. miR824 expression was tested in re-

sponse to cold, heat, and salt stress as well as in response to hormone treatment. RNA-blot

hybridization showed that, relative to controls, RNA blot analysis was performed on 5-week-

old wild-type plants grown on 1

2
MS-agar plates subjected to cold (6.5oC for 24h), increased

temperature (37oC for 3h), and treated with 0.25 M NaCl (for 3h), 0.1 M abscisic acid (ABA)

(for 3h), or 2 µM 24-epibrassinolide. Control plants were left at 21oC or treated with water

and kept under same light conditions as plants subjected to stress. An increased accumu-

lation of miR824 was observed after exposure to all stress conditions tested (Figure 4.16).

Treatments with hormones ABA and 24-epibrassinolide caused the greatest change of 1.3-
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Figure 4.16: Expression of miR824 in rosette leaves of Arabidopsis plants upon

several stress conditions and hormonal treatments.

RNA blot hybridization of smRNAs using probes for miR824 and siRNA480(+). Labelling

with a U6 probe was used as standard control. The sizes of smRNAs are indicated on

the left and the fold expression of miR824 and siRNA480(+) relative to the untreated Col-0

control after normalization for the U6 loading standard is shown below. Conditions tested:

cold stress (6.5oC for 24h), increased temperature (37oC for 3h), 0.25 M NaCl (for 3h), 0.1

M abscisic acid (ABA) (for 3h), or 2 µM 24-epibrassinolide (Epi).

and 1.6-fold, respectively. miR824 overexpressing m3 plants responded to cold-treatment

like wild-type plants. Both showed a similar fold increase in miR824 relative to controls. The

same pattern of increase with all treatments was observed using siRNA480(+) as control.

These finding suggest that altered miR824 accumulation may be a general effect of abiotic

and hormonal stress on smRNA formation.

Transcript levels of the same plant samples were analyzed by quantitative RT-PCR. Cold

induced the expression of pri-miR824 by 12.2-fold. Salt stress, abscisic acid, and 24-epi-

brassinosteroids caused moderate elevated transcript levels (2.9-, 2.5-, and 2.2-fold, respec-

tively). No changes were observed by 37oC treatment. AGL16 transcripts were altered

upon temperature changes. Like pri-miR824, a 2.7-fold increase of AGL16 transcript was

determined upon cold stress. However, heat stress causes a decrease in AGL16 transcript

(2.5-fold) (Figure 4.17). Induction of precursor accumulation leading to increased miRNA

formation was not correlated with decreased accumulation of the target transcript under the

conditions tested. Thus, it seems likely that cold stress affects stabilization of mRNA tran-

scripts by interfering with the processing machinery as shown for RNA splicing (Lee et al.,

2006).
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Figure 4.17: Expression of MIR824 and AGL16 in rosette leaves of Arabidopsis plants

upon several stress conditions and hormonal treatments.

Quantitative RT-PCR determining fold-change of expression of MIR824 (black column) and

uncleaved target AGL16 (white column). Quantifications were normalized to TIP41. The

values in wild-type plants were arbitrarily fixed to 1. Conditions tested: cold stress (6.5oC for

24h), increased temperature (37oC for 3h), 0.25 M NaCl (for 3h), 0.1 M abscisic acid (ABA)

(for 3h), or 2 µM 24-epibrassinolide (Epi).
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4. Evolutionary conservation of miR824 and AGL16

Most miRNAs are conserved among flowering and non-flowering plants (Axtell and Bartel,

2005). Similarly, homologs of many Arabidopsis miRNA targets have conserved miRNA

complementary site in monocots and eudicots implying that these miRNA-target interactions

have functions since the divergence of monocots and eudicots (Rhoades et al., 2002; Jones-

Rhoades and Bartel, 2004; Sunkar and Zhu, 2004). A BLAST search of all available plant

genome databases detected miR824 sequence only in other Brassicaceae, specifically, B.

rapa, B. napus, and B. oleracea. In each case, this sequence was present on the 5’ arm of

the predicted hairpin structure, which was identical in the subspecies B. napus and B. rapa

(Kutter et al., 2007). RNA-blot hybridization showed that miR824 and miR824* are expressed

in these Brassica species (Kutter et al., 2007). As control, the 21 and 24 nt band of miR158

and the 21 nt band of miR168 was detectable in all Brassica species, rice, tobacco, and

poplar (Figure 4.1 A). As known for other plant species (Axtell and Bartel, 2005), the trans-

acting siRNA480(+) was also not detectable in any of the Brassica species tested, indicating

that TAS1 is Arabidopsis specific. The miRNA miR173 or its target transcript TAS1 itself

might be not present in other plant species beyond Arabidopsis. It is also possible that the

sequence arrangement of the TAS locus varies in other plant species and therefore gives rise

to differently phased ta-siRNA to which the probe used for detection in Arabidopsis does not

hybridize. Taken together, these results suggests that miR824 is a member of the class of

recently evolved Arabidopsis miRNA genes (Allen et al., 2004) that have been conserved in

the same eudicot family, but not in more distantly related eudicots and monocots. In addition,

the highly conserved miR824 pairing region was also identified in B. rapa (AC189325.1), B.

napus (CX281097), and B. oleracea (EH417933) ESTs encoding AGL16 orthologs (Kutter

et al., 2007) but not in any other plant genome sequenced so far suggesting that miR824-

mediated regulation of AGL16 has been conserved in the evolution of the Brassicaceae .
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5. The biological function of the miR824/AGL16

pathway

Contributions to this chapter:

I did most of the experiments described in this chapter often under the supervision of Azed-

dine Si-Ammour. Azeddine Si-Ammour constructed plasmids for plant transformation. Daniel

Mathys at the Basel University Microscopy Center helped with SEM imaging.
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1. Molecular characterization of transgenic lines altered in AGL16

mRNA expression

To determine the biological function of miR824-mediated regulation of AGL16 mRNA, trans-

genics showing decreased AGL16 mRNA expression (agl16-1 and m3), increased ectopic

expression of AGL16 mRNA (AGL16.1/2), and a miRNA-resistant version of AGL16 (AGL16

m1/2) were studied in detail (Kutter et al., 2007). AGL16m transformants carry a miR824-

resistant form of AGL16 generated by seven silent mutations to block cleavage at the miR824

pairing site (Figure 5.1). Several T2 lines were obtained. Two independent lines overexpress-

ing wild-type AGL16 (named AGL16.1/2) in the Col-0 background and the miRNA-resistant

form AGL16m in the Col-0 (named Col-0 AGL16m1/2) and m3 background (named m3

AGL16m1/2) were studied in detail. Quantitative RT-PCR of AGL16 mRNA confirmed that,

relative to wild-type Col-0, AGL16 transcripts were increased by 5- to 7-fold in AGL16.1/2

plants, by 16- to 19-fold in Col-0 AGL16m1/2, and by 14- to 16-fold in m3 AGL16m1/2

whereas the relative accumulation of the unrelated SCL6-III mRNA that is targeted by miR171

was not affected in the AGL16m1/2 and AGL16.1/2 lines (Figure 5.2 A). miR824 and miR171

levels were not altered in the AGL16.1/2 or AGL16m1/2 lines compared to their backgrounds

(Figure 5.2 B), indicating that overexpression of AGL16 and AGL16m does not have a gen-

eral effect on miRNA biogenesis and targeting. Overexpression of miR824, as shown in

m3, leads to degradation of wild-type AGL16 transcripts (Figure 4.13 B). However, elevated

miR824 accumulation is insufficient to cause increased degradation of the miR824-resistant

AGL16 transcript in m3 AGL16m1/2. Because the probe used for RNA blot hybridization

does not distinguish between AGL16 and AGL16m transcripts, AGL16m RNA expression

in the AGL16m transformants were confirmed by treating RT-PCR products with HincII re-

striction endonuclease that only cuts the miRNA resistant form (Figure 5.2 C). Interestingly,

the 163 bp fragment obtained by RT-PCR, representing the endogenous AGL16 transcript,

was reduced in AGL16m lines relative to controls. This might reflect negative regulation of

AGL16 RNA by AGL16m RNA as reported for other miRNA resistant targets (Schwab et al.,

2005; Sunkar et al., 2006). These results show that miR824-mediated regulation of AGL16

mRNA requires complementarity with miR824 and demonstrates that very small sequence

alterations in the miR824 binding site of AGL16 impair miR824 cleavage activity.
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Figure 5.1: Schematic presentation of the AGL16m transgene.

The nucleotide sequence of a resistant version of AGL16 (AGL16m) with silent mutations

in the miR824 recognition site is shown. miR824 pairs to AGL16 RNA at the nucleotide

segment corresponding to the amino acids S197 and L203. The seven mutations introduced to

create AGL16m are shown by underlined nucleotides with predicted free energies of pairing

to miR824 indicated on the left. Vertical lines indicate perfect base pairing; circles indicate

G:U wobble pairing; gray shading indicates the HincII restriction site (GTT/GAC) introduced

into AGL16m.

2. Phenotypical characterization of transgenic lines altered in AGL16

mRNA expression

2.1. Leaf abnormalities

Comparison of flowering plants revealed no differences in the general macroscopic defects in

growth or development in the agl16-1 mutant (Figure 4.13 D). Similar findings were obtained

for the miR824-overexpressing mutant m3 and m4, which showed reduced AGL16 mRNA

accumulation (Figure 4.10 E). Furthermore, the sizes (leaf area) and the forms (length and

width of the leaf blade) of rosette leaves were evaluated and no differences were observed.

This results show that AGL16-deficiency lead to inconspicuous changes in morphology.

A slight upward curling of leaves was observed in the mutant m1 and m2 (Figure 4.10 E),

which showed reduction in miR824-expression but increased AGL16 mRNA accumulation.

These macroscopically visible abnormalities were much more dramatic in the AGL16m trans-

genic lines in both the Col-0 (Figure 5.3 E, F) and m3 backgrounds (Figure 5.3 H, I). The

plants exhibited a bushy growth habit and increased numbers of leaves that were reduced

in size. Distortions in leaf morphology included elongation, increased green pigmentation,

twisting along the apical-basal axis, and upward curling of the margin and lamella (Figure

5.3 E’, F’ and H’, I’). To examine the structure of the internal leaf tissue, semi thin sections
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Figure 5.2: Expression of miR824 and AGL16 mRNA in AGL16.1/2 and AGL16m1/2

rosette leaves.

(A) Steady-state levels of uncleaved target AGL16 mRNA (black bar) and SCL6-III mRNA

(grey bar) in leaves of Col-0, Col-0 AGL16.1/2, Col-0 AGL16m1/2, m3, and m3 AGL16m1/2

determined by RT-qPCR using primers spanning the miR824 and the miR171 complemen-

tary site. Quantifications were normalized to TIP41-like gene (At4g34270). The values in

wild-type Col-0 and m3 were arbitrarily fixed to 1. Bars indicate standard error. (B) RNA blot

hybridization of low molecular weight RNAs. Low molecular weight RNAs were detected by

using probes for miR824 and the unrelated miR171. Equal loading was verified by ethidium

bromide staining of tRNA/5S rRNA. Equal loading was verified by ethidium bromide staining

of rRNA. The size of RNAs is indicated on the left. (C) AGL16 and AGL16m transcripts

were distinguished by HincII digestion, which only digests AGL16m cDNA, after RT-PCR

amplification of endogenous and AGL16m transcripts.

70



2. Phenotypical characterization of transgenic lines altered in AGL16 expression Results

of mature rosette leaves were analyzed by light microscopy. No differences in tissue organi-

zation, cell numbers, or cell sizes could be observed between wild-type and mutants. The

parenchyma is composed of a single layer of adaxial palisade parenchyma and four to five

layers of spongy parenchyma. A rosette leaf thus consists of seven to eight cell layers includ-

ing the abaxial and the adaxial epidermis. As shown by SEM, no apparent abnormalities

were detected in either the shape or dorso-ventral symmetry of parenchyma cells of Col-0

(Figure 5.4 A), AGL16m transformants (Figure 5.4 B, D), m3 (Figure 5.4 C), or agl16-1 (Fig-

ure 5.4 E) that could account for the observed alterations in leaf shape. However, the cellular

structure of epidermal derivates on the leaf surface, like trichomes, was altered. Trichomes

in the AGL16m1/2 lines formed sometimes two branches or, more frequently four branches,

rather than three branches as expected for wild-type Col-0 (Figure 5.4 F-H).

2.2. Alteration in stomatal density

The report that AGL16 mRNA accumulates in guard cells of leaves (Alvarez-Buylla et al.,

2000), suggested that miR824-mediated regulation of AGL16 might have a role in stomatal

development. Mutants altered in stomatal development often exhibit changes in stomatal

density, i.e., the number of stomata per mm2 of epidermis (Bergmann and Sack, 2007) or in

stomatal index (SI) defined as the ratio of the number of stomata to the number of epidermal

cells plus stomata (Berger and Altmann, 2000). Scanning electron microscopy (SEM) of

the abaxial, i.e., lower surface (Figure 5.5) and the adaxial, i.e., upper surface (Figure 5.6)

of the fifth rosette leaf of Col-0, Col-0 AGL16.1/2, Col-0 AGL16m1/2, m3, m3 AGL16m1/2,

and agl16-1 were performed. Both leaf surfaces were investigated in the beginning since it

has been shown that stomatal density can vary in different organs (Bergmann, 2006). Fig-

ure 5.7 A show that the average stomatal densities of the abaxial and adaxial surface of

Col-0 AGL16.1/2 plants did not differ significantly from Col-0. Stomatal density of both sur-

faces was significantly reduced in agl16-1 (abaxial: 1.2-fold, adaxial: 1.3-fold) and in the m3

mutant (abaxial: 1.2-fold, adaxial: 1.7-fold), but was drastically increased in the two inde-

pendent lines of Col-0 AGL16m1/2 (abaxial: 2.2- to 2.9-fold, adaxial: 2.4- to 3.2-fold) and

of m3 AGL16m1 (abaxial: 2.6-fold, adaxial: 1.4- to 2.7-fold). Taken together, these results

show that stomatal density is decreased in mutants with reduced or no AGL16 expression

and increased in AGL16m mutants with increased AGL16 expression on both the abaxial

and adaxial leaf surface. None of the lines altered in AGL16 expression showed dramatic

changes of stomatal index on both the abaxial and adaxial leaf surface (Figure 5.7 B).

In addition, stomatal density of the abaxial and adaxial leaf surface of the fifth rosette

leaf was measured for representative RNA silencing mutants (Figure 5.7 C). Stomatal den-
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Figure 5.3: Phenotypical differences caused by AGL16 overexpression.

Representative images of (A) Col-0, (B and C) Col-0 AGL16.1/2, (D) agl16-1, (E and F) Col-

0 AGL16m1/2, (G) m3, and (H and I) m3 AGL16m1/2 grown under the same conditions and

photographed with roots and inflorescences removed of 28 day old plants. Individual rosette

leaves magnified 1.8 times are shown below. The number corresponds to the plants above.

The representative images show that independent transformants expressing AGL16m RNA

in both the Col-0 and m3 backgrounds consistently exhibit, a bushy growth habit and curled,

abnormal-appearing rosette leaves. Bar: 1 cm.
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AA CC DD EEBBAA DDCC EE
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Figure 5.4: SEM images of mesophyll cells and trichomes of AGL16m transformants

and control plants.

(A-E) Transverse sections of rosette leaves showing adaxial epidermal cells (top), vertically

elongated palisade mesophyll cells directly beneath the adaxial epidermis, and the loosely

packed spongy mesophyll cells with intercellular air spaces directly above the abaxial epi-

dermis (bottom). No conspicuous differences were detected in the arrangement of the mes-

ophyll in (A) Col-0, (B) Col-0 AGL16m1, (C) m3, (D) m3 AGL16m1, or (E) agl16-1 leaves.

(F-H) Morphology of trichomes on the adaxial surface of rosette leaves. (F) Col-0, m3, and

agl16-1 plants (not shown) form unicellular trichomes, almost always with three branches. In

contrast Col-0 AGL16m2 plants develop aberrant trichomes with two branches (G), or more

frequently, four branches (H). Bar: 50 µm.

sity of both surfaces was highly increased in hen1-5 (abaxial/adaxial: 3.3-fold) and dcl1-8

(abaxial/adaxial: 1.6-fold) and moderately in hyl1-2 and dcl4-2 (abaxial/adaxial: 1.1-fold, in

both cases). In these mutants increased AGL16 transcript levels were also detectable, like

in the miR824 resistant AGL16 mutant. However, it is inconclusive whether the increase

in stomatal density is only caused by altered AGL16 mRNA since other miRNA targets are

regulated by HYL1, HEN1, DCL1, and DCL4 as well. The miRNA targets might be involved

in developmentally controlled pathways, making interpretations of the stomatal phenotype of

hyl1-2, hen1-5, dcl1-8, and dcl4-2 difficult.
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Figure 5.5: The positioning of stomatal complexes on the abaxial epidermis of

transgenic Arabidopsis plants altered in AGL16 mRNA expression.

(A-I) Representative low-magnification SEM images of the abaxial surface of rosette leaves

4-6 numbered from the bottom of the plant. (A) Col-0, (B and C) Col-0 AGL16.1/2, (D)

agl16-1, (E and F) Col-0 AGL16m1/2, (G) m3, and (H and I) m3 AGL16m1/2. Bar: 50 µm.
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Figure 5.6: The positioning of stomatal complexes on the adaxial epidermis of

transgenic Arabidopsis plants altered in AGL16 mRNA expression.

(A-I) Representative low-magnification SEM images of the adaxial surface of rosette leaves

4-6 numbered from the bottom of the plant. (A) Col-0, (B and C) Col-0 AGL16.1/2, (D)

agl16-1, (E and F) Col-0 AGL16m1/2, (G) m3, and (H and I) m3 AGL16m1/2. Bar: 50 µm.
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Figure 5.7: Effects of altered AGL16 mRNA expression on stomatal density and

stomatal index.

(A) Average stomatal density and (B) average stomatal index (SI%) ± s.e.m for 3-4 replicates

of the abaxial and adaxial surface of the fifth rosette leaves of Col-0, Col-0 AGL16.1/2, Col-0

AGL16m1/2, m3, and m3 AGL16m1/2 was determined. (C) Average stomatal density for

3-4 replicates of the abaxial and adaxial surface of the fifth rosette leaves of Col-0, hyl1-2,

hen1-5, dcl1-8, dcl4-2. Significance levels (t-test of means) relative to the Col-0 controls:

*p<0.05, **p<0.025, ***p<0.01, and ****p<0.005.
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2.3. Alterations in the density of higher-order stomatal complexes

Three sequential unequal divisions of the initial cell result in the formation of three neighbor-

ing cells that surround the central guard cell mother cell, leading to the Brassicaceae-specific

anisocytic stomatal phenotype. All lines studied have this anisocytic structure. The guard

cell morphology was also normal in AGL16m mutants. Fused stomata (Figure 5.8 A), typical

for stomatal mutants impaired in the symmetric division of guard mother cells, like tmm (Yang

and Sack, 1995) or flp (Geisler et al., 1998), were observed in ca. 2% of Col-0 AGL16m (6

in 285 stomatal complexes) and wild-type (2 in 112 stomatal complexes) plants indicating

that this rare abnormality is not a specific result of the mutation. However, alterations in the

density of higher-order stomatal complexes were observed. Representative SEM images

of individual primary- (Figure 5.9 A) and quaternary-stomatal complexes (Figure 5.9 B) are

demonstrated. Figure 5.9 C shows the percentage of primary, secondary, and higher or-

der stomatal complexes estimated for comparable abaxial regions of the fifth fully expanded

leaves for Col-0, Col-0 AGL16.1/2, Col-0 AGL16m1/2, m3, and agl16-1 plants. Similar re-

sults were obtained in three independent experiments. The proportion of stomatal-complex

types of Col-0 AGL16.1/2 did not differ significantly from that of Col-0 (χ2, df=2, P>0.94).

These three lines developed predominantly primary stomatal complexes (69-71%), with con-

siderably lower incidences of higher-order secondary (26-28%), tertiary (3-4%) stomatal

complexes, and no quaternary stomatal complexes. The distributions obtained with agl16-1

and m3 plants deficient in AGL16 mRNA accumulation also differed significantly from that of

Col-0 (χ2, df=1, P<2.7 x 10-5), but unlike AGL16m1/2 showed a higher percentage of primary

complexes relative to Col-0, 91% and 93% respectively, and lacked tertiary complexes. In

contrast, the distributions of Col-0 AGL16m1/2 plants and m3 AGL16m1/2 plants differed

significantly from that of Col-0 (χ2, df=2, P<3.0 x 10-9) and m3 (χ2, df=2, P<3.0 x 10-9) and

consistently showed a dramatic shift to higher-order stomatal complexes in which secondary

and tertiary forms predominate. Moreover, 2-5% of the complexes in Col-0 AGL16m1/2 and

m3 AGL16m1/2 plants were quaternary forms, which were never detected in Col-0 or Col-

0 AGL16.1/2 plants. By performing a time course of stomatal development on the abaxial

surface of the first emerging leaf we showed that reduced AGL16 expression (m3 and agl16-

1) abolishes the formation of satellite meristemoids but did not alter the kinetics of primary

stomatal complex development. Expression of miR824-resistant AGL16m mRNA, on the

other hand, increased the incidence of early meristemoid formation, prolonged the period

of SM initiation, and therefore significantly increased the proportion of higher-order stomatal

complexes (Kutter et al., 2007).

77



2. Phenotypical characterization of transgenic lines altered in AGL16 expression Results

A

C C’ D

E

BS

H

I J

F G

S
IGC

S

IGC

IGC

M

IGC

IGC

M

IGC

M

S

M

GMC

SS
S

S
S

S

Figure 5.8: Promoter expression studies in stomatal complexes of rosette leaves of

transgenic Arabidopsis plants.

(A-J) Staining of the abaxial epidermis of the first true leaves of Arabidopsis thaliana two

week after germination is shown. Region with positive promoter activity appear blue due to

GUS reporter gene expression. (A-B) untransformed wild-type plants, transformed plants

with (C-E) ProMIR824:GUS, (F) ProAGL16:GUS, (G-H) ProAGL16-I:GUS, (I-J) ProAGL16-I2:GUS.

Regions hybridizing with the probe appear dark gray. Mature stomata (S), meristemoids and

satellite meristemoids (M), and immature guard cell (IGC) are indicated. Bar: 10 µm.
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Figure 5.9: Effects of altered AGL16 expression on the proportion of primary and

higher-order stomatal complexes.

(A and B) Representative SEM images of stomatal complexes on the abaxial surface of the

fifth rosette leaf. (A) A primary Col-0 stomatal complex consisting of a central pair of guard

cells (G1 and G2) and stoma surrounded by neighboring cells (E1, E2, and E3). (B) A

quaternary stomatal complex of AGL16m1 with primary, secondary, tertiary, and quaternary

complexes is shown. The numbered arrows indicate the apparent order in which stomata

form. Note that the forth order stomata is at the early, SM stage of development. Bar: 10

µm. (C) The relative proportion of primary (black bars), secondary (white bars), tertiary (gray

bars) and quaternary (vertical-hatched bars) stomatal complexes on the abaxial surface of

the fifth rosette leaf of Col-0, AGL16.1/2, AGL16m1/2, m3 and agl16-1 plants. At least 110

stomatal complexes were scored for each line. Asterisks above the bars indicate distributions

significantly different (P<5 x 10-5) from that of the Col-0 distribution by the χ2 test.
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2.4. Localization studies of miR824 and AGL16 mRNA in different cell types of the

stomatal complex

In situ hybridization (ISH) of whole mounts of B. rapa developing leaves showed that miR824

is expressed in SMs and GMCs, but not in mature guard cells. In contrast, AGL16 mRNA

was only detected in mature guard cells and not in cells of stomatal complexes where

miR824 is localized (Kutter et al., 2007). Whole mount ISH could not be done in Arabidopsis

plants because of technical problems. To better understand the cell-type specific expres-

sion pattern, transgenic Arabidopsis plants were generated by introducing a β-glucuronidase

(GUS) reporter gene fused either to the full-length MIR824 promoter (ProMIR824:GUS), to

the full-length AGL16 promoter (ProAGL16:GUS), to the full-length AGL16 promoter with

the first intron sequence (ProAGL16-I:GUS) or with the first and second intron sequence

(ProAGL16-I:GUS). Reporter expression was analyzed in developing T1 plants. As expected,

no GUS staining was detectable in untransformed wild-type plants (Figure 5.8 A and B). The

reporter signal in ProMIR824:GUS plants was detectable in young leaves at the time when the

stomatal lineage is initiated and was restricted to meristemoids, GMCs, and young guard

cells (Figure 5.8 C-E). Like in infiltration assays in B. rapa, no GUS staining was detected

in transformed plants with ProAGL16:GUS (Figure 5.8 F) or ProAGL16-I:GUS (Figure 5.8 G-H).

GUS activity was detected in mature stomata of ProAGL16-I2:GUS plants (Figure 5.8 I-J). ISH

studies with B. rapa and the GUS reporter gene studies with Arabidopsis lead to the conclu-

sion that although both miR824 and its target are localized in stomatal complexes, they are

never detected in the same cell type.
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6. The molecular basis for AGL16 function

Contributions to this chapter:

I did most of the experiments described in this chapter. Herbert Angelika processed Affymetrix

microarrays. Edward J. Oakeley helped with the experimental design, statistics, and analysis

of the Affymetrix data.
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1. Specific effects of ectopic expression of AGL16 on the plant transcriptome Results

1. Specific effects of ectopic expression of AGL16 on the plant

transcriptome

1.1. Ectopic expression of AGL16 regulates genes with diverse functions

Expression profiling experiments surveying 22,810 Arabidopsis genes were performed to

identify genes regulated downstream of AGL16. AGL16m1 plants ectopically expressing the

miR824-resistant AGL16m transcript and wild-type Col-0 were grown axenically on 1

2
x MS

medium. Leaves from each type of plant were harvested after 25 days. This time point was

selected to minimize non-specific changes due to the faster growth and development of Col-

0 plants. The scatterplot (Figure 6.1 A) shows that 14990 genes are expressed in AGL16m1

and Col-0. About 91% of the expressed genes were identical in both groups, only 126 genes

showed a significant (t-test, P<0.05), 2.0-fold difference in expression in the two genotypes.

Of these, 97 genes were upregulated and 29 genes downregulated in AGL16m1 relative to

wild-type (Figure 6.1 B).

These genes were classified by putative functions based on Arabidopsis Gene Ontology

(GO) annotations in the TIGR and TAIR (version 7.0) database, Affymetrix GO platform. The

functional clusters enriched in AGL16m1 upregulated genes include gene products known to

be induced in response to abiotic or biotic stress. Many genes encoding proteins that regu-

late developmental processes, such as transcription factors, signaling proteins, senescence-

related proteins, and hormone metabolism were also enriched in AGL16m1. Other candidate

genes encode hydrolases, transferases, and kinases that are involved in protein, carbohy-

drate, lipid, and secondary metabolism (Figure 6.1 C, Table 6.1).

Table 6.1.: Biological and molecular function of gene candidates up- and downregu-

lated in AGL16m1.

GO biological and molecular function number best 
candidates

number of genes 
upregulated in 

AGL16m1

number of genes 
downregulated in 

AGL16m1

secondary metabolism & cell wall 10 (8%) 7   (70%) 3 

fatty acid & lipid metabolism, transport 12 (10%) 7   (58%) 5

carbohydrate metabolism 7 (6%) 7 (100%) - 

protein catabolism/metabolism 13 (11%) 9   (69%) 4 

abiotic & biotic stress, signaling 28 (23%) 23  (92%) 5 

transcription factor 13 (11%) 11  (85%) 2

senescence 4 (3%) 4 (100%) - 

unknown functions 39 (31%) 30  (77%) 9
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Figure 6.1: Transcriptional profiling of rosette leaves of Col-0 and Col-0 AGL16m1.

(A) For each chip experiment, overall intensity normalization for the entire probe set was

performed as described by Zhu et al. (2001). Scatterblot comparing signal intensities of

genes in Col-0 (x-axis) and Col-0 AGL16m1 (y-axis). Invalid counts (723) in grey, valid

counts (852) in either Col-0 or Col-0 AGL16m1 in green, and valid counts (13415) in both

Col-0 and Col-0 AGL16m1 in blue. Fold-changes greater than 1.3, 1.7, and 2.0 are marked

by respectively a blue, red, and green line. Expression of AGL16 and SAG12 are indicated

by an arrow. (B) Expression of transcripts in Col-0 and Col-0 AGL16m1 after grouping of

replicates, performing TTEST p<0.05, and expression differences of 2-fold. 14 990 genes

are expressed in both Col-0 and Col-0 AGL16m1 (grey), 29 genes are altered in Col-0 (black),

and 97 genes in AGL16m1. (C) Functional categorization of differential expressed genes.
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Table 6.2.: Expression levels and relevant motifs of genes upregulated in AGL16m1.

Expression
a)

Fold
b)

Motif
c)

Description  AGI

Col-0 AGL16m1 Ratio
AGL16m1

Regulation 
score

CArG-
motif  

TAATG-
motif  

Referen
ce

d)
expression 
gene atlas 

e)

MADS-box protein (AGL16) At3g57230 386.9 5054.1 13.1 13.1 + + 1, 8, 9 lv, ro 

senescence-specific SAG12 protein/ 
putative cysteine proteinase 

At5g45890 21.6 233.3 10.8 10.8 + + 2, 3, 5, 6, 7 sen lv, fl 

putative pathogenesis-related protein At2g19970 26.0 145.3 5.6 5.6 + + lv, ro, em 

expressed protein At1g55265 27.6 124.5 4.5 4.5 + + sen lv, fl 

expressed protein At3g21520 27.0 98.6 3.7 3.7 + + sen lv, em 

glutathione S-transferase, putative At5g62480 23.9 71.1 3.0 3.0 + 10 em, dry se 

putative AP2 domain-containing 
transcription factor 

At4g34410 698.7 230.5 0.3 3.0 + + 9 ro, y lv,  sdl 

expressed protein At1g30135 146.6 46.6 0.3 3.1 + + em, y lv 

MATE efflux family protein At1g61890 6420.5 2040.4 0.3 3.1 + + em, lv, fl 

organic cation transporter family 
protein

At3g20660 206.9 49.6 0.2 4.2 + em, se 

expressed protein At1g73120 375.4 74.7 0.2 5.0 + + dry se 

pectinesterase family protein At4g02330 1427.2 299.5 0.2 4.8 + + 4 lv

putative cytochrome P450 At2g27690 706.0 122.9 0.2 5.7 + + lv, em

expressed protein At5g13220 568.2 86.8 0.2 6.5 + + fl, em 

a)
 Expression value represents mean, normalized expression level for 3 independent plants measured by quantitative PCR.  

b)
 Fold expression relative to Col-0 

c)
Presence (+) or absence(-) in the promote region of the MADS box transcription factor CArG motif and the guard-cell specific TAATG motif. 

d)
 References:  

1)
 Alvarez Buylla et al., 2000; 

2)
Gan & Amasino, 1986; 

3)
 Grbic & Bieecker, 1995 ; 

4)
 Micheli et al., 1998; 

5)
 Noh & Amasino, 1999; 

6)
 Lohman et al., 

1994;
7)

 Otegui et al., 2005; 
8)

 Parenicova et al., 2003; 
9)

Riechmann et al., 2000; 
10)

 Wagner et al., 2002  

dry se, dry seeds; em, embryo; fl, flowers; lv, leaves; ro, roots; sdl, seedlings; se, seeds; sen lv, senescence leaves; y lv, young leaves 
e)

www.genevestigator.ehz.ch (Zimmermann et al., 2004) 

As expected, AGL16 showed the highest induction (13.1-fold) in AGL16m1 (Table 6.2).

The gene showing the second highest induction (10.8-fold) was SAG12 (SENESCENCE

ASSOCIATED GENE 12) encoding a cysteine-protease (At5g45890) that is specifically in-

volved in senescence. Interestingly, SAG12 was shown to be expressed in stress vacuoles

of guard cells (Otegui et al., 2005).

Quantitative PCR was used to measure the expression of the 14 genes showing >3-fold

upregulation in AGL16m1 in the array experiment. For ten of these genes, expression levels

obtained from the array experiment and by quantitative PCR were correlated (Table 6.3) In

general; however, the quantitative PCR values were lower than those from the array experi-

ment. Interestingly, expression of 9 of the genes upregulated in AGL16m1 were unchanged

in AGL16.1. Only AGL16 itself was upregulated in both AGL16m1 (9.3-fold) and AGL16.1

(5.6-fold). Together these results suggest that increased expression of the 9 candidate genes

is a specific effect of increased, ecotopic expression of the miR824-resistant form of AGL16.

1.2. Identification and analysis of promoter motifs of the candidate genes

MADS domain proteins generally bind to a consensus DNA sequence called a CArG motif

with the canonical sequence CC(A/T)6GG (Riechmann et al., 1996) To investigate whether
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Table 6.3.: Comparison of microarray expression values and quantitative RT-PCR ex-

pression values of candidate genes.

RatioDescription  AGI

profiling
AGL16m1

RT-qPCR 
AGL16m1

RT-qPCR 
AGL16.1

match 
to RT-
qPCR

MADS-box protein (AGL16) At3g57230 13.1 9.3 5.6 +++

senescence-specific SAG12 protein At5g45890 10.8 6.4 1.5 +++

putative pathogenesis-related protein At2g19970 5.6 3.7 2.0 +

expressed protein At1g55265 4.5 2.4 1.0 ++

expressed protein At3g21520 3.7 3.7 0.8 +++

putative glutathione S-transferase At5g62480 3.0 2.9 1.9 +

putative AP2 domain-containing 
transcription factor 

At4g34410 0.3 0.7 1.4 -

expressed protein At1g30135 0.3 0.8 0.9 -

MATE efflux family protein At1g61890 0.3 0.5 0.7 +

organic cation transporter family protein At3g20660 0.2 0.9 1.8 -

expressed protein At1g73120 0.2 0.4 0.9 ++

pectinesterase family protein At4g02330 0.2 0.4 0.7 +

putative cytochrome P450 At2g27690 0.2 0.3 1.8 +++

expressed protein At5g13220 0.2 1.0 0.9 -

MIR824 At4g24415 n.d. 1.3 1.1 n.d.

a)
 Fold expression relative to Col-0 (mean, normalized expression level for 3 independent plants 

measured by profiling or quantitative (q) PCR) 
b)

Consensus of profiling and qPCR data are indicated (-, no; +, low; ++, middle; +++ high) 

AGL16 has DNA binding properties and binds to CArG motifs, total protein extracts of Col-

0 and AGL16m1 were tested with an AG- and AGL15-specific CArG sequences and their

mutated versions of binding sites by EMSA (electro mobility shift assay). CArG 1 is an AG-

selected CC-6-GG type motif, CArG 2 is a C-8-G type of motif to which AGL15 preferentially

binds and CArG 3 is a modified form of CArG2 C-8m-G type. A representative EMSA is

shown in Figure 6.2. Protein extracts of Col-0 plants show binding to a AG-specific sequence

but not to AGL15-specific or AGL15-modified sequences. Much higher affinity was obtained

with protein extracts of cleavage-resistant AGL16m1 plant suggesting that these plants might

accumulate more AGL16 proteins than Col-0. These results indicate that AGL16 has CArG

motif binding capacity and prefers CArG motifs with longer AT stretches. This raises the

possibility that AGL16 is a transcription factor that enables expression of genes containing

AG-like or even AG-specific CArG cis-acting elements in their promoter regions.

The 14 candidate genes (Table 6.2) were screened for transcriptional regulatory sequences

in the PLACE database (Higo et al., 1999). The region screen was upstream of the ATG ini-

tiation codon of the candidate to the stop codon of the next upstream genes predicted by
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Figure 6.2: AGL16 binds CArG motifs.

Relative binding affinity of 5 µg (1) and 10 µg (2) total protein extracts of Col-0 and AGL16m1

plants to different CArG motifs are shown by EMSA (electro mobility shift assay). CArG1, AG-

selected CC-6-GG type canonical CArG; CArG2, AGL15-selected C-8-G type CArG; CArG3,

AGL15-mutated C-8m-G type. Cleavage-resistant AGL16 mutants, with presumably higher

AGL16 protein accumulation, showed preferentially binding to a CArG motif with a shorter

A/T-rich core. Shifted probes, corresponding to protein-DNA complexes, are indicated with

an asterisk. All of the shifted bands were exposed to 1.5x106, 1.7x106, or 2.1x106 cpm of

labeled CArG1, CArG2, or CArG3 probes, respectively.

the TAIR (version 7) annotation (Haas et al., 2005). The region 5’ of the transcription start

of all the candidates contained typical promoter regulators such as the TATA box. All can-

didates except the gene encoding a putative glutathione S-transferase (At5g62480) had a

CArG-box known to be binding sites for MADS domain transcription factors (de Folter and

Angenent, 2006; Kaufmann et al., 2005); and, all candidates except the gene encoding an

organic cation transporter family protein (At3g20660) had the TAATG motif sufficient for reg-

ulating guard cell-specific gene transcription (Plesch et al., 2001). The upregulation of the

candidate genes specifically in AGL16m plants, which show increased AGL16 expression

and these findings suggest that AGL16 could bind the CArG-box motifs directly or in com-

bination with other MADS-box domain transcription factors to activate expression of these

candidates. The presence of the guard-cell specific motif in all but one of the candidates is

consistent with the localization and putative function of AGL16 in guard cells.
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7. General Discussion

The first smRNA sequencing efforts in plants (Llave et al., 2002b; Park et al., 2002; Rein-

hart et al., 2002) identified only the most abundant miRNAs. These initially discovered

miRNAs were highly conserved in other plant species, leading to the hypothesis that miR-

NAs are ancient posttranscriptional regulators of plant developmental processes. Recent

high-throughput smRNA sequencing attempts identified miRNAs that are weakly expressed

(Fahlgren et al., 2007; Henderson et al., 2006; Kasschau et al., 2007; Lu et al., 2005, 2006;

Rajagopalan et al., 2006; Zhang et al., 2007). Most of these miRNAs lack identifiable ho-

mologs in other species. The finding presented here and in Kutter et al. (2007) show for

the first time that one member of the class of non-conserved miRNAs, miR824, is impor-

tant for posttranscriptional control of a taxonomically important developmental trait, namely,

stomatal complexes.

1. Evolutionary relevance of miR824 in its biological function

My studies and those of Rajagopolan et al. (2006) lead to the conclusion that miR824 is a

non-conserved miRNA since no miR824 orthologs could be identified in other plant species

even by lowering stringency in BLAST analysis. However, miR824 is conserved in at least

three Brassica species, B. rapa, B. napus, and B. oleracea for which genomic sequences

are available. The target gene AGL16, a member of the MADS-box protein family, is also

highly conserved in the Brassica species tested, and is likely to be present in other Brassi-

caceae as well. Phylogenetic analysis of the miRNA target genes provides insight into the

possible evolutionary significance of miRNA-mediated regulation. For example, the highly

conserved miR169 family members regulates a HAP2 transcription factor that is important

for root nodulation in alfalfa, which is a function specific to the legume clade (Combier et al.,

2006) but is also important for secondary growth in the distantly related species Populus tri-

chocarpa (Ko et al., 2006). This shows that while conserved miRNAs can regulate the same

target gene in different species, these targets have acquired different functions in the course

of evolution. The OsMADS57 gene in rice and PPM1, Pp MADS1, and Phypa1_1 109598

genes in moss encoding MADS-box proteins have been shown to be targeted by miR444
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2. AGL16 is a novel player in stomatal development Discussion

(Sunkar et al., 2005) and miR538 (Arazi et al., 2005; Axtell et al., 2007), respectively; but, no

MIR824 syntenic region in rice and moss or similarity to the MIR444 and MIR538 loci were

detectable suggesting that miRNA sequences may be different in several plant species but

still regulate a gene with a potential similar function. Interestingly, among the miR538 targets

PPM1 has been demonstrated to play a role in moss development. Antisense knockdown of

PPM1 results in delayed gametangia development and aberrant leaf development (Singer et

al., 2007). These findings indicate that miRNA-mediated regulation of MADS-box genes is

distinct for at least three plant lineages.

2. AGL16 is a novel player in stomatal development

Members of the MADS-box proteins family have many established functions in plant growth

and development (Kaufmann et al., 2005). This work shows that a MADS-box protein also

functions in stomatal development and is subjected to miRNA regulation. The MADS-box

gene AGL16 is cleaved at the miR824 recognition site. Decreased accumulation of AGL16

mRNA, both in the agl16-1 deficiency mutant and in the miR824-overexpressing m3 mu-

tant, resulted in a decrease in the density of higher-order stomata. Overexpression of

AGL16m mRNA resistant to miR824-mediated cleavage had the opposite effect: the den-

sity of higher-order stomata was increased. The fact that this increase was not observed

with the AGL16.1/2 lines indicates that this effect depends on miR824 resistance rather than

on ectopic expression of AGL16 mRNA. These results suggest that normal development of

stomatal complexes depends on proper downregulation of AGL16 by miR824.

The incidence of higher-order stomatal complexes depends on the number of entry divi-

sions and subsequent asymmetric divisions that give rise to SMs (von Groll et al., 2001,

Bergmann and Sack, 2007). Reduced AGL16 expression in deficient mutants markedly de-

creased the incidence of higher-order stomata, but did not affect the incidence of primary

stomata, which arise directly from the MMC lineage (Kutter et al., 2007). Therefore, AGL16

is a positive regulator that functions downstream of the entry division in the SM lineage.

AGL16 acts, presumably as a transcription factor, to promote expression of genes required

for continued asymmetric divisions, SM identity, or both processes. Cells with low levels of

AGL16 enter the specification and differentiation pathway leading to GCs. The plane of SM

division is controlled by SDD1 (Berger and Altmann, 2000), EPF1 (Hara et al., 2007), and

TMM (Yang and Sack, 1995). AGL16 seems not to be involved in this process since the

one cell spacing pattern is not disturbed by altered AGL16 transcripts levels. The fact that

AGL16 is expressed in mature stomata and that SM formation occurs on the opposite site
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3. Pleiotropic effects of AGL16 in gene transcription Discussion

of the neighbor cell favors the hypothesis of an AGL16-dependent signal of unknown nature

travelling from the mature stoma to activate cellular programs leading to SM formation. This

type of regulation ensures that new SMs are formed only if the preexisting stoma is mature.

Non destructive methods for example ProMIR824 and ProAGL16-I2 fused to a fluorescent re-

porter gene would allow the study of miR824 on its target gene AGL16 within the stomatal

complex in planta and in time.

Bergmann et al. (2004) identified a set of genes by transcriptome profiling of yda mu-

tants whose pattern of differential expression correlated with known genes that were later

shown to affect stomatal development. Transcriptome profiling study of AGL16m1 did not

show significant changes in any of the stomatal mutants identified so far. This suggests that

AGL16 acts more likely on an unknown stomatal pathway. The subtilisin-like serine protease

SDD1 probably processes a peptide signal perceived by TMM/YDA that activates the MAPK

signaling cascade (Bergmann and Sack, 2007). Interestingly, the most upregulated gene in

AGL16m1 is SAG12, a cysteine protease belonging to the same protease family as SDD1. It

is tempting to speculate that AGL16 is involved in a signaling pathway with SAG12 acting as

a protease for the production of an intercellular peptide signal whereas SDD1 is a protease

processing an extracellular signal peptide. This hypothesis could be tested by phenotypi-

cal studies of sag12 mutants. Additionally, agl16;sag12 double mutants might reveal the

epistatic relationship of AGL16 and SAG12.

It was shown that environmental factors influence stomatal density and distribution. For

example, stomatal density and distribution is increased upon lower temperature (Aronne

and De Micco, 2001). However, it is still unclear how environmental factors can modulate

stomatal developmental pathways. It is possible that the biogenesis and/or formation of

miR824 is affected upon environmental changes and would therefore affect the steady-state

level of AGL16 and thus, stomatal development. It would be interesting to test this hypothesis

by comparing stomatal developmental of AGL16m1 and Col-0 subjected to low temperature

since it was shown that miR824 expression is considerably increased upon cold stress.

3. Pleiotropic effects of AGL16 in gene transcription

Deficiencies in AGL16 mRNA did not have detectable developmental effects other than on

the SM lineage. This suggests there is functional compensation for extra-stomatal deficien-

cies as has been reported for other members of the highly redundant MADS-box protein

family (Ferrandiz et al., 2000; Liljegren et al., 2000; Pinyopich et al., 2003; Ditta et al., 2004;

Gregis et al., 2006). However, increased AGL16 expression in AGL16m lines cause abnor-
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malities in growth habit, leaf shape, and branching of trichomes, which have been reported

to accumulate AGL16 mRNA (Alvarez-Buylla et al., 2000). RNA profiling experiment showed

that most genes having altered mRNA expression in the miR824-resistant line AGL16m1 con-

tain a CArG motif to which AGL16 might bind and therefore facilitates the regulation of gene

expression directly. It is also possible that AGL16 regulates gene expression in a complex

network by heterodimerization to other MADS-box proteins. Both possibilities might lead to

the observed pleiotropic developmental abnormalities. Identification of interaction partners

of AGL16 by yeast-two hybrid system or pull-down experiment will provide information of the

AGL16 interaction network.

4. Evolution of species specific miRNA regulation

Many MIRNA loci in plants appear to arise continuously through inverted gene duplication

of a founder gene that can constitute a starting point in the evolution of fold-back structures

found at MIRNA loci (Allen et al., 2004). However, this might be only one possibility of

MIRNA loci evolution. The insertion of transposable elements into new genomic sites also

seems to be one of the driving forces that creates new miRNAs during mammalian, and

perhaps, plant gene evolution (Smalheiser and Torvik, 2005). Some MIRNA genes might

also be occasionally acquired by direct horizontal transfer through genomic integration of

foreign nucleic acids, e.g. several mammalian DNA viruses encode and produce miRNAs

during infection (Sullivan et al., 2005). It is possible that plant viruses or other pathogens

that use nucleic acids to infect plants might use miRNAs as virulence factors and their genes

could integrate into host genomes.

MIR824, like MIR161, MIR163 (Allen et al., 2004; Rajagopalan et al., 2006), MIR778,

MIR780, and MIR856 (Fahlgren et al., 2007), seem to be a rather recently evolved gene

generated by duplication of its unique AGL16 target that probably evolved 12 to 20 million

years ago before the divergence of Brassica and Arabidopsis lineages (Town et al., 2006).

It is likely that MIR824 originated by duplication of AGL16 rather then by insertion of trans-

posable elements into new genomic sites because no repetitive sequences, diagnostic for

transposition were identified in the genomic region of MIR824. Gene duplication events, di-

versification, and/or fixation contributed to the establishment of different MADS-box gene

clades (Alvarez-Buylla et al., 2000; Theissen et al., 1996). Previous studies showed that

after the duplication of an ancestral gene, one copy of the MADS-box gene accumulates

mutations especially in the C-terminal domain (Litt and Irish, 2003; Vandenbusche et al.,

2003). Sequence alignments demonstrated that AGL16 differs the most in the C-terminal
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domain from other members of AGL17 -like MADS-box clade (Becker and Theissen, 2003;

Kofiju et al., 2003). Interestingly, the miR824 binding site is located in this domain of AGL16.

A molecular analysis in Brassica oleracea var. botrytis has shown that the cauliflower phe-

notype is due to a C-terminal non-sense mutation in BoCAL (Kempin et al., 1995; Smith

and King, 2000). This indicates that the C-terminal domain is required for protein function

despite its highest rate of evolutionary change. Other studies lead to the conclusion that

sequence changes, including loss of a C-terminal domain, may indeed be associated with

morphological variation (Galant and Carroll, 2002; Omland, 1997; Ronshaugen et al., 2002).

If these mutations in the coding sequence of the C-terminal domain occurred after the diver-

gence of Brassicaceae, then they may result in Brassicaceae-specific functions. My studies

raise the possibility that the miR824-AGL16 interaction accounts for some Brassica-specific

taxonomic features of stomatal organization. This hypothesis could be tested by functionally

characterizing ortholog and stomatal development in the Capparaceae and Resadaceae,

which are closely related to the Brassicaceae. This experimental approach might identify ad-

ditional links between molecular and morphological diversity explain why no AGL16 ortholog

is present in either rice or poplar.

5. AGL16 might be regulated by both miR824 and miR824*

The miR824 arm aligned best to exon 7 of the AGL16 Interestingly, the miR824* arm also

aligned to the AGL16 gene, but in this case with highest scores corresponding a duplicated

region located within intron 3 of the AGL16 gene At3g57230.1or to intron 2 of splice variant

At3g57230.2. This suggests that during evolution selection might act on both MIR824 arms

(Rajagopolan et al., 2006). It has been reported that some miRNA and miRNA* sequences

are indistinguishable (Rajagopalan et al., 2006). It seems more likely that miR824 is more

efficiently incorporated into the RISC machinery rather than miR824* because the 5’ end of

miR824 (∆G=-15.9 kcal/mol) starts with a U and is less stable than the 5’ end miR824* (∆G=-

16.4 kcal/mol) with a C at the first position. Nevertheless, in principle miR824* could also

guide RISC-mediated cleavage since miR824* is stable and its expression was detectable by

RNA blot hybridization. This hypothesis could be tested by an RLM-RACE detecting cleav-

age activity of miR824* on the AGL16 intronic sequence. AGL16 promoter activity, like that

of several other MADS-box domain genes (Busch et al., 1999; Deyholos and Sieburth, 2000;

Sieburth and Meyerowitz, 1997) depends on cis-regulatory enhancer elements in introns.

miR824* might disrupt any enhancer or repressor elements by targeting the intronic region

of AGL16. It would be important to confirm this by testing AGL16 promoter activity in a trans-
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genic line where a miR824*-cleavage resistant full-length AGL16 gene is fused to a reporter

gene. If confirmed, this would suggest that the AGL16 gene is controlled by miRNAs in two

ways: by transcript degradation and by novel regulation of its own promoter activity.

6. Role of AGO1 in miR824 processing

Biogenesis of miR824 and miR824* depends on DCL1, HYL1, and HEN1 but surprisingly

not on AGO1. In Arabidopsis it is not clear if AGO1 associates with DCL1 to process

miRNAs from the precursor as shown in animal systems (Matranga et al., 2005). If this

is the case, the accumulation of miR824 should be reduced in ago1 mutants. Intriguingly,

miR824 and miR824*, as well as miR156, accumulate in the strong ago1-3 null-mutant.

This can be explained by an inefficient loading of miR824 and/or miR824* into RISC contain-

ing AGO1. Vaucheret et al. (2004) argued that certain miRNAs, such as miR156/157 and

miR167, whose expression is not strongly AGO1-dependent result from inefficient turn-over

of miRNA/miRNA*. However, AGO1 is involved in the RISC-mediated target degradation

(Baumberger and Baulcombe, 2005) since AGL16 transcript accumulated in the ago1-3 mu-

tant. Therefore, the endonucleolytic activity of AGO1 is crucial for RNA cleavage mediated by

miRNAs but it seems unlikely that AGO1 is the only AGO protein that associates with DCL1

to process miRNAs from the precursor. miR824 but not miR824* co-immunoprecipitated with

AGO4 (Qi et al., 2006) suggesting a complex mechanism involving both miRNA processing

and RISC loading. Accumulation of miR824 in mutants being impaired in AGO function

(AGO2 to AGO10) might indicate which AGO protein is associated for miR824 biogenesis.

Redundant function of AGO proteins, as described for DCLs (Blevins et al., 2006; Henderson

et al., 2006; Moissiard and Voinnet, 2006), in miR824 processing can be tested by combina-

torial crosses of ago mutants. Alternatively, functional studies of AGO proteins in vitro may

help to understand the regulatory requirements for RISC assembly and maturation in plants.

miR824 seems to be a good candidate for those studies because of its structural features

and genetic advantages.

93



Part V

Bibliography

i



Bibliography

Achard, P., Herr, A., Baulcombe, D. C., and Harberd, N. P. (2004) Modulation of floral

development by a gibberellin-regulated microRNA. Development 131, 3357-3365.

Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouche, N., Gasciolli, V., and

Vaucheret, H. (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology

through AGO7. Curr Biol 16, 927-932.

Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997) Genes involved in

organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant

Cell 9, 841-857.

Akbergenov, R., Si-Ammour, A., Blevins, T., Amin, I., Kutter, C., Vanderschuren, H.,

Zhang, P., Gruissem, W., Meins, F., Jr., Hohn, T., and Pooggin, M. M. (2006) Molecu-

lar characterization of gemini-virus-derived small RNAs in different plant species. Nucleic

Acids Res. 34, 462-471.

Allen, E., Xie, Z., Gustafson, A. M., and Carrington, J. C. (2005) microRNA-directed phas-

ing during trans-acting siRNA Biogenesis in Plants. Cell 121, 207-221.

Allen, E., Xie, Z., Gustafson, A. M., Sung, G. H., Spatafora, J. W., and Carrington, J. C.

(2004) Evolution of microRNA genes by inverted duplication of target gene sequences in

Arabidopsis thaliana. Nat. Genet. 36, 1282-1290.

Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., Stevenson, D.

K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema,

E., Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M.,

Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P.,

Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E.,

Brogden, D., Zeko, A., Crosby, W. L., Berry, C. C., and Ecker, J. R. (2003) Genome-wide

insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657.

Alvarez-Buylla, E. R., Pelaz, S., Liljegren, S. J., Gold, S. E., Burgeff, C., Ditta, G. S., Ribas

de Pouplana, L., Mart+¡nez-Castilla, L., and Yanofsky, M. F. (2000) An ancestral MADS-

box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad

Sci USA 97, 5328-5333.

Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K., and Hannon, G. J. (2007)

Developmentally regulated piRNA clusters implicate MILI in transposon control. Science

316, 744-747.

Arazi, T., Talmor-Neiman, M., Stav, R., Riese, M., Huijser, P., and Baulcombe, D. C. (2005)

Cloning and characterization of microRNAs > »from moss. Plant J 43, 837-848.

Aronne, G. and De Micco, V. (2001) Seasonal dimorphism in the mediterranean Cistus in-

ii



Bibliography

canus L. subsp. incanus. Ann Bot 87, 789-794.

Aukerman, M. J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity

by a microRNA and its APETALA2-LIKE target genes. Plant Cell 15, 2730-2741.

Axtell, M. J. and Bartel, D. P. (2005) Antiquity of microRNAs and their targets in land plants.

Plant Cell 17, 1658-1673.

Axtell, M. J., Jan, C., Rajagopalan, R., and Bartel, D. P. (2006) A two-hit trigger for siRNA

biogenesis in plants. Cell 127, 565-577.

Baker, C. C., Sieber, P., Wellmer, F., and Meyerowitz, E. M. (2005) The early extra petals1

mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidop-

sis. Curr Biol 15, 303-315. Baker, S. S., Wilhelm, K. S., and Thomashow, M. F. (1994)

The 5’-region of Arabidopsis thaliana COR15a has cis-acting elements that confer cold-,

drought- and ABA-regulated gene expression. Plant Mol Biol 24, 701-713.

Bao, N., Lye, K. W., and Barton, M. K. (2004) MicroRNA binding sites in Arabidopsis class

III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7,

653-662.

Bao, X., Franks, R. G., Levin, J. Z., and Liu, Z. (2004) Repression of AGAMOUS by BELL-

RINGER in floral and inflorescence meristems. Plant Cell 16, 1478-1489.

Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I. F.,

Soboleva, A., Tomashevsky, M., and Edgar, R. (2007) NCBI GEO: mining tens of millions

of expression profiles-database and tools update. Nucleic Acids Res 35, 760-765.

Bartel, B. and Bartel, D. P. (2003) MicroRNAs: at the root of plant development? Plant

Physiol 132, 709-717.

Bartel, D. P. (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116,

281-297.

Basyuk, E., Suavet, F., Doglio, A., Bordonne, R., and Bertrand, E. (2003) Human let-7

stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res 31,

6593-6597.

Baumberger, N. and Baulcombe, D. C. (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer

that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102,

11928-11933.

Becker, A. and Theissen, G. (2003) The major clades of MADS-box genes and their role in

the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29, 464-489.

Bentwich, I. (2005) A postulated role for microRNA in cellular differentiation. FASEB J 19,

875-879.

Benz, B. W. and Martin, C. E. (2006) Foliar trichomes, boundary layers, and gas exchange

in 12 species of epiphytic Tillandsia (Bromeliaceae). J Plant Physiol 163, 648-656.

Berger, D. and Altmann, T. (2000) A subtilisin-like serine protease involved in the regulation

of stomatal density and distribution in Arabidopsis thaliana. Genes Dev. 14, 1119-1131.

iii



Bibliography

Bergmann, D. (2006) Stomatal development: from neighborly to global communication. Curr

Opin Plant Biol 9, 478-483.

Bergmann, D. C., Lukowitz, W., and Somerville, C. R. (2004) Stomatal development and

pattern controlled by a MAPKK Kinase. Science 304, 1494-1497.

Bergmann, D. C. and Sack, F. D. (2007) Stomatal Development. Annu. Rev. Plant Biol. 58,

163-181.

Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., Mills, A.

A., Elledge, S. J., Anderson, K. V., and Hannon, G. J. (2003) Dicer is essential for mouse

development. Nat Genet 35, 215-217.

Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I., and Filipowicz, W. (2006)

Relief of microRNA-mediated translational repression in human cells subjected to stress.

Cell 125, 1111-1124.

Billoud, B., De Paepe, R., Baulcombe, D., and Boccara, M. (2005) Identification of new

small non-coding RNAs from tobacco and Arabidopsis. Biochimie 87, 905-910.

Blevins, T., Rajeswaran, R., Shivaprasad, P. V., Beknazariants, D., Si-Ammour, A., Park,

H. S., Vazquez, F., Robertson, D., Meins, F., Hohn, T., and Pooggin, M. M. (2006) Four

plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic

Acids Res 34, 6233-6246.

Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K. D., Ovcharenko, I., Pachter, L., and

Rubin, E. M. (2003) Phylogenetic shadowing of primate sequences to find functional regions

of the human genome. Science 299, 1391-1394.

Bollman, K. M., Aukerman, M. J., Park, M. Y., Hunter, C., Berardini, T. Z., and Poethig,

R. S. (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change

and morphogenesis. Development 130, 1493-1504.

Bonnard, G., Vincent, F., and Otten, L. (1989) Sequence and distribution of IS866, a novel T

region-associated insertion sequence from Agrobacterium tumefaciens. Plasmid 22, 70-81.

Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R., and Zhu, J. K. (2005a) Endogenous

siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in

Arabidopsis. Cell 123, 1279-1291.

Bowman, J. L., Drews, G. N., and Meyerowitz, E. M. (1991a) Expression of the Arabidopsis

floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development.

Plant Cell 3, 749-758.

Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. (1991b) Genetic interactions among

floral homeotic genes of Arabidopsis. Development 112, 1-20.

Bowman, J. L., Eshed, Y., and Baum, S. F. (2002) Establishment of polarity in angiosperm

lateral organs. Trends Genet 18, 134-141.

Bradford, K. J., Sharkey, T. D., and Farquhar, G. D. (1983) Gas exchange, stomatal behavior,

and delta C values of the flacca tomato mutant in relation to abscisic acid. Plant Physiol 72,

245-250.

iv



Bibliography

Bradley, D., Carpenter, R., Sommer, H., Hartley, N., and Coen, E. (1993) Complementary

floral homeotic phenotypes result from opposite orientations of a transposon at the plena

locus of Antirrhinum. Cell 72, 85-95.

Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and

Hannon, G. J. (2007) Discrete small RNA-generating loci as master regulators of transposon

activity in Drosophila. Cell 128, 1089-1103.

Busch, M. A., Bomblies, K., and Weigel, D. (1999) Activation of a floral homeotic gene in

Arabidopsis. Science 285, 585-587.

Carmell, M. A., Girard, A., van de Kant, H. J. G., Bourchis, D., Bestor, T. H., de Rooij,

D. G., and Hannon, G. J. (2007) MIWI2 is essential for spermatogenesis and repression of

transposons in the mouse male germline. Dev Cell 12, 503-514.

Carpenter, K. J. (2005) Stomatal architecture and evolution in basal angiosperms. Amer. J.

Bot. 92, 1595-1615.

Cary, A. J., Che, P., and HOWELL, S. H. (2002) Developmental events and shoot apical

meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant

J 32, 867-877.

Causier, B., Castillo, R., Zhou, J., Ingram, R., Xue, Y., Schwarz-Sommer, Z., and Davies,

B. (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr

Biol 15, 1508-1512.

Cerutti, H. and Casas-Mollano, J. A. (2006) On the origin and functions of RNA-mediated

silencing: from protists to man. Curr Genet 50, 81-99.

Chen, J., Li, W. X., Xie, D., Peng, J. R., and Ding, S. W. (2004) Viral virulence protein

suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host

gene expression. Plant Cell 16, 1302-1313.

Chen, K. and Rajewsky, N. (2007) The evolution of gene regulation by transcription factors

and microRNAs. Nat Rev Genet 8, 93-9103.

Chen, X. (2003) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower

development. Science 303, 2022-2025.

Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura,

K., and Shiekhattar, R. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA

processing and gene silencing. Nature 436, 740-744.

Chiou, T. J. (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30,

323-332.

Chuck, G., Cigan, A. M., Saeteurn, K., and Hake, S. (2007) The heterochronic maize mutant

Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39, 544-549.

Coen, E. S. and Meyerowitz, E. M. (1991) The war of the whorls: genetic interactions control-

ling flower development. Nature 353, 31-37.

Combier, J. P., Frugier, F., de Billy, F., Boualem, A., El Yahyaoui, F., Moreau, S., Vernie, T.,

v



Bibliography

Ott, T., Gamas, P., Crespi, M., and Niebel, A. (2006) MtHAP2-1 is a key transcriptional reg-

ulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula.

Genes Dev 20, 3084-3088.

Croxdale, J. L. (2000) Stomatal patterning in angiosperms. Amer. J. Bot. 87, 1069-1080.

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., and Scheible, W. R. (2005) Genome-

wide identification and testing of superior reference genes for transcript normalization in

Arabidopsis. Plant Physiol. 139, 5-17.

Dai, Q., Peng, S., Chavez, A. Q., and Vergara, B. S. (1995) Effects of UV-B radiation on

stomatal density and opening in rice (Oryza sativa L.). Ann Bot 76, 65-70.

Dalmay, T., Hamilton, A., Rudd, S., Angell, S., and Baulcombe, D. C. (2000) An RNA-

dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene

silencing mediated by a transgene but not by a virus. Cell 101, 543-553.

Dalmay, T., Horsefield, R., Braunstein, T. H., and Baulcombe, D. C. (2001) SDE3 encodes

an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J 20,

2069-2078.

Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1999)

PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum

MADS-box factors controlling flower development. EMBO J 18, 4023-4034.

de Folter, S., Immink, R. G. H., Kieffer, M., Parenicov+í, L., Henz, S. R., Weigel, D., Buss-

cher, M., Kooiker, M., Colombo, L., Kater, M. M., Davies, B., and Angenent, G. C. (2005)

Comprehensive interaction map of the Arabidopsis MADS-box transcription factors. Plant

Cell 17, 1424-1433.

de Folter, S. and Angenent, G. C. (2006) Trans meets cis in MADS science. Trends Plant

Sci 11, 224-231.

Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C., and Voin-

net, O. (2006) Hierarchical action and inhibition of plant Dicer-Like proteins in antiviral de-

fense. Science 313, 68-71.

Denli, A. M., Tops, B. B. J., Plasterk, R. H. A., Ketting, R. F., and Hannon, G. J. (2004)

Processing of primary microRNAs by the microprocessor complex. Nature 432, 231-235.

Deyholos, M. K. and Sieburth, L. E. (2000) Separable whorl-specific expression and neg-

ative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12,

1799-1810.

Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005) The F-box protein TIR1 is an auxin

receptor. Nature 435, 441-445.

Di Serio, F., Schöb, H., Iglesias, A., Tarina, C., Bouldoires, E., and Meins, F. Jr. (2001)

Sense- and antisense-mediated gene silencing in tobacco is inhibited by the same viral

suppressors and is associated with accumulation of small RNAs. Proc. Natl. Acad. Sci.

USA 98, 6506-6510.

Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M. F. (2004) The SEP4 gene

vi



Bibliography

of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935-

1940.

Dunoyer, P., Himber, C., and Voinnet, O. (2005) DICER-LIKE 4 is required for RNA interfer-

ence and produces the 21-nucleotide small interfering RNA component of the plant cell-to-

cell silencing signal. Nat Genet 37, 1356-1360.

Egea-Cortines, M., Saedler, H., and Sommer, H. (1999) Ternary complex formation between

the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control

of floral architecture in Antirrhinum majus. EMBO J 18, 5370-5379.

Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21

and 22 nt RNAs. Genes Dev. 15, 188-200.

Emery, J. F., Floyd, S. K., Alvarez, J., Eshed, Y., Hawker, N. P., Izhaki, A., Baum, S. F.,

and Bowman, J. L. (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and

KANADI genes. Curr. Biol. 13, 1768-1774.

Esau, K. (1965) Fixation images of sieve elements plastids in Beta. Proc Natl Acad Sci USA

54, 429-437.

Espinosa-Soto, C., Padilla-Longoria, P., and Alvarez-Buylla, E. R. (2004) A gene regu-

latory network model for cell-fate determination during Arabidopsis thaliana flower devel-

opment that is robust and recovers experimental gene expression profiles. Plant Cell 16,

2923-2939.

Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J.

S., Givan, S. A., Law, T. F., Grant, S. R., Dangl, J. L., and Carrington, J. C. (2007) High-

throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of

MIRNA genes. PLoS ONE 2, e219.

Fahlgren, N., Montgomery, T. A., Howell, M. D., Allen, E., Dvorak, S. K., Alexander, A.

L., and Carrington, J. C. (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3

ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16, 939-944.

Farh, K. K. H., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., Lim, L. P., Burge, C.

B., and Bartel, D. P. (2005) The widespread impact of mammalian microRNAs on mRNA

repression and evolution. Science 310, 1817-1821.

Forstemann, K., Tomari, Y., Du, T., Vagin, V. V., Denli, A. M., Bratu, D. P., Klattenhoff, C.,

Theurkauf, W. E., and Zamore, P. D. (2005) Normal microRNA maturation and germ-line

stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein.

PLoS Biol 3.

Franks, P. J. and Farquhar, G. D. (2001) The effect of exogenous abscisic acid on stomatal

development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant

Physiol 125, 935-942.

Friml, J., Benkova, E., Mayer, U., Palme, K., and Muster, G. (2003) Automated whole mount

localisation techniques for plant seedlings. Plant J. 34, 115-124.

Fritsch, O., Benvenuto, G., Bowler, C., Molinier, J., and Hohn, B. (2004) The INO80 protein

vii



Bibliography

controls homologous recombination in Arabidopsis thaliana. Mol. Cell 16, 479-485.

Fujii, H., Chiou, T. J., Lin, S. I., Aung, K., and Zhu, J. K. (2005) A miRNA involved in

phosphate-starvation response in Arabidopsis. Curr Biol 15, 2038-2043.

Galant, R. and Carroll, S. B. (2002) Evolution of a transcriptional repression domain in an

insect Hox protein. Nature 415, 910-913.

Gamboa, A., Paz-Valencia, J., Acevedo, G. F., Vízquez-Moreno, L., and Alvarez-Buylla,

R. E. (2001) Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat

and an acid phosphatase protein complex. Biochem Biophys Res Commun 288, 1018-1026.

Gan, Y., Filleur, S., Rahman, A., Gotensparre, S., and Forde, B. G. (2005) Nutritional reg-

ulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta

222, 730-742.

Gandikota, M., Birkenbihl, R. P., Hohmann, S., Cardon, G. H., Saedler, H., and Huijser,

P. (2007) The miRNA156/157 recognition element in the 3’ UTR of the Arabidopsis SBP

box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49,

683-693.

Gasciolli, V., Mallory, A. C., Bartel, D. P., and Vaucheret, H. (2005) Partially redundant

functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting

siRNAs. Curr Biol 15, 1494-1500.

Gassmann, A. J. and Hare, J. D. (2005) Indirect cost of a defensive trait: variation in trichome

type affects the natural enemies of herbivorous insects on Datura wrightii. Oecologia 144,

62-71.

Geisler, M., Nadeau, J., and Sack, F. D. (2000) Oriented asymmetric divisions that generate

the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation.

Plant Cell 12, 2075-2086.

Geisler, M., Yang, M., and Sack, F. D. (1998) Divergent regulation of stomatal initiation and

patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and

four lips. Planta 205, 522-530.

Girard, A., Sachidanandam, R., Hannon, G. J., and Carmell, M. A. (2006) A germline-

specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199-202.

Golden, T. A., Schauer, S. E., Lang, J. D., Pien, S., Mushegian, A. R., Grossniklaus,

U., Meinke, D. W., and Ray, A. (2002) SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL

FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in

Arabidopsis. PLANT PHYSIOL 130, 808-822.

Gomez-Mena, C., de Folter, S., Costa, M. M., Angenent, G. C., and Sablowski, R. (2005)

Transcriptional program controlled by the floral homeotic gene AGAMOUS during early

organogenesis. Development 132, 429-438.

Gong W., Shen Y. P., Ma L. G., Pan Y., Du Y. L., Wang D. H., Yang J. Y., Hu L. D., Liu X. F.,

Dong C. X., Ma L., Chen Y. H., Yang X. Y., Gao Y., Zhu D., Tan X., Mu J. Y., Zhang D. B.,

Liu Y. L., Dinesh-Kumar S. P., Li Y., Wang X. P., Gu H. Y., Qu L. J., Bai S. N., Lu Y. T., Li

viii



Bibliography

J. Y., Zhao J. D., Zuo J., Huang H., Deng X. W., Zhu Y. X. (2004) Genome-wide ORFeome

cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol. 135, 773-782.

Goto, K., Kyozuka, J., and Bowman, J. L. (2001) Turning floral organs into leaves, leaves

into floral organs. Curr Opin Genet Dev 11, 449-456.

Goto, K. and Meyerowitz, E. M. (1994) Function and regulation of the Arabidopsis floral

homeotic gene PISTILLATA. Genes Dev. 8, 1548-1560.

Gray, J. E., Holroyd, G. H., van der Lee, F. M., Bahrami, A. R., Sijmons, P. C., Woodward,

F. I., Schuch, W., and Hetherington, A. M. (2000) The HIC signalling pathway links CO2

perception to stomatal development. Nature 408, 713-716.

Gray, W. M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001) Auxin regulates

SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414, 271-276.

Gregis, V., Sessa, A., Colombo, L., and Kater, M. M. (2006) AGL24, SHORT VEGETATIVE

PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower devel-

opment in Arabidopsis. Plant Cell 18, 1373-1382.

Griffith-Jones, S. A. M., Grocock, R. J., van Dongen, S., Bateman, A., and Enright, A. J.

(2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.

34, D140-D144.

Grivna, S. T., Beyret, E., Wang, Z., and Lin, H. (2006) A novel class of small RNAs in mouse

spermatogenic cells. Genes Dev 20, 1709-1714.

Gunawardane, L. S., Saito, K., Nishida, K. M., Miyoshi, K., Kawamura, Y., Nagami, T.,

Siomi, H., and Siomi, M. C. (2007) A slicer-mediated mechanism for repeat-associated

siRNA 5’ end formation in Drosophila. Science 315, 1587-1590.

Guo, H. S., Xie, Q., Fei, J. F., and Chua, N. H. (2005) MicroRNA directs mRNA cleavage

of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root

development. Plant Cell 17, 1376-1386.

Gutierrez, R. A., Ewing, R. M., Cherry, J. M., and Green, P. J. (2002) Identification of un-

stable transcripts in Arabidopsis by cDNA microarray analysis: Rapid decay is associated

with a group of touch- and specific clock-controlled genes. Proc. Natl. Acad. Sci. USA 99,

11513-11518.

Haas, B. J., Wortman, J. R., Ronning, C. M., Hannick, L. I., Smith, R. K., Maiti, R., Chan,

A. P., Yu, C., Farzad, M., Wu, D., White, O., and Town, C. D. (2005) Complete reannotation

of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 3, 7.

Haase, A. D., Jaskiewicz, L., Zhang, H., Laine, S., Sack, R., Gatignol, A., and Filipowicz,

W. (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer

and functions in RNA silencing. EMBO Rep 6, 961-967.

Hamilton, A., Voinnet, O., Chappell, L., and Baulcombe, D. (2002) Two classes of short

interfering RNA in RNA silencing. EMBO J. 21, 4671-4679.

Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., and Kim, V. N. (2004) The Drosha-DGCR8

complex in primary microRNA processing. Genes Dev 18, 3016-3027.

ix



Bibliography

Hara, K., Kajita, R., Torii, K. U., Bergmann, D. C., and Kakimoto, T. (2007) The secretory

peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21, 1720-1725.

Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H., and Huijser, P.

(2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis.

Plant J 21, 351-360.

Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003) Adaptation of

photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719-722.

Heck, G. R., Perry, S. E., Nichols, K. W., and Fernandez, D. E. (1995) AGL15, a MADS

domain protein expressed in developing embryos. Plant Cell 7, 1271-1282.

Henderson, I. R., Zhang, X., Lu, C., Johnson, L., Meyers, B. C., Green, P. J., and Jacob-

sen, S. E. (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing,

gene silencing and DNA methylation patterning. Nat Genet 38, 721-725.

Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Munster, T., and Theissen, G. (2002)

Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella

patens. Mol Biol Evol 19, 801-814.

Hernandez, M. L., Passas, H. J., and Smith, L. G. (1999) Clonal analysis of epidermal

patterning during maize leaf development. Dev Biol 216, 646-658.

Herr, A. J., Jensen, M. B., Dalmay, T., and Baulcombe, D. C. (2005) RNA polymerase IV

directs silencing of endogenous DNA. Science 308, 118-120.

Hetherington, A. M. and Woodward, F. I. (2003) The role of stomata in sensing and driving

environmental change. Nature 424, 901-908.

Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999) Plant cis-acting regulatory DNA

elements (PLACE) database: 1999. Nucleic Acids Res 27, 297-300.

Hikosaka, A., Takaya, K., Jinno, M., and Kawahara, A. (2007) Identification and expression-

profiling of Xenopus tropicalis miRNAs including plant miRNA-like RNAs at metamorphosis.

FEBS Lett 581, 3013-3018.

Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C., and Voinnet, O. (2003) Transitivity-

dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22, 4523-

4533.

Hiraguri, A., Itoh, R., Kondo, N., Nomura, Y., Aizawa, D., Murai, Y., Koiwa, H., Seki, M.,

Shinozaki, K., and Fukuhara, T. (2005) Specific interactions between Dicer-like proteins

and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 57,

173-188.

Hirsch, J., Lefort, V., Vankersschaver, M., Boualem, A., Lucas, A., Thermes, C.,

d’Aubenton-Carafa, Y., and Crespi, M. (2006) Characterization of 43 non-protein-coding

mRNA genes in Arabidopsis, including the MIR162a-derived transcripts. Plant Physiol 140,

1192-1204.

Holroyd, G. H., Hetherington, A. M., and Gray, J. E. (2002) A role for the cuticular waxes in

the environmental control of stomatal development. New Phytologist 153, 433-439.

x



Bibliography

Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D. (2003) Regulatory elements of

the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

Plant Cell 15, 1296-1309.

Honma, T. and Goto, K. (2000) The Arabidopsis floral homeotic gene PISTILLATAis regulated

by discrete cis-elements responsive to induction and maintenance signals. Development

127, 2021-2030.

Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert

leaves into floral organs. Nature 409, 525-529.

Horwich, M. D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P., and Zamore, P. D.

(2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and

single-stranded siRNAs in RISC. Curr Biol 17, 1265-1272.

Houwing, S., Kamminga, L. M., Berezikov, E., Cronembold, D., Girard, A., van den Elst,

H., Filippov, D. V., Blaser, H., Raz, E., Moens, C. B., Plasterk, R. H. A., Hannon, G. J.,

Draper, B. W., and Ketting, R. F. (2007) A role for Piwi and piRNAs in germ cell mainte-

nance and transposon silencing in Zebrafish. Cell 129, 69-82.

Huang, T., Bohlenius, H., Eriksson, S., Parcy, F., and Nilsson, O. (2005) The mRNA of the

Arabidopsis gene FT moves > »from leaf to shoot apex and induces flowering. Science 309,

1694-1696.

Hunter, C., Sun, H., and Poethig, R. S. (2003a) The Arabidopsis heterochronic gene ZIPPY

is an ARGONAUTE family member. Curr. Biol. 13, 1734-1739.

Hunter, C. A., Aukerman, M. J., Sun, H., Fokina, M., and Poethig, R. S. (2003b) PAUSED

encodes the Arabidopsis exportin-t ortholog. Plant Physiol 132, 2135-2143.

Irish, V. F. (2003) The evolution of floral homeotic gene function. BioEssays 25, 637-646.

Jack, T., Brockman, L. L., and Meyerowitz, E. M. (1992) The homeotic gene APETALA3 of

Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell 68,

683-697.

John, B., Sander, C., and Marks, D. S. (2006) Prediction of human microRNA targets. Meth-

ods Mol Biol 342, 101-113.

Jones-Rhoades, M. W. and Bartel, D. P. (2004) Computational identification of plant microR-

NAs and their targets, including a stress-induced miRNA. Mol. Cell 14, 787-799.

Jones-Rhoades, M. W., Bartel, D. P., and Bartel, B. (2006) MicroRNAs and their regulatory

roles in plants. Ann. Rev. Plant Biol. 57, 19-53.

Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., and Carring-

ton, J. C. (2003) P1/HC-Pro, a viral Suppressor of RNA silencing, interferes with Arabidopsis

development and miRNA function. Developmental Cell 4, 205-217.

Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D., Borsani, O., Villegas, A., Zhu, J. K.,

Staskawicz, B. J., and Jin, H. (2006) A pathogen-inducible endogenous siRNA in plant

immunity. Proc Natl Acad Sci USA 103, 18002-18007.

xi



Bibliography

Kaufmann, K., Anfang, N., Saedler, H., and Theissen, G. (2005a) Mutant analysis, protein-

protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.

Mol Genet Genomics 274, 103-118.

Kaufmann, K., Melzer, R., and Theissen, G. (2005b) MIKC-type MADS-domain proteins:

structural modularity, protein interactions and network evolution in land plants. Gene 347,

183-198.

Kempin, S. A., Savidge, B., and Yanofsky, M. F. (1995) Molecular basis of the cauliflower

phenotype in Arabidopsis. Science 267, 522-525.

Kepinski, S. and Leyser, O. (2002) Ubiquitination and auxin signaling: a degrading story.

Plant Cell 14, 81-95.

Kepinski, S. and Leyser, O. (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor.

Nature 435, 446-451.

Kim, J., Jung, J. H., Reyes, J. L., Kim, Y. S., Kim, S. Y., Chung, K. S., Kim, J. A., Lee, M.,

Lee, Y., Narry Kim, V., Chua, N. H., and Park, C. M. (2005) microRNA-directed cleavage of

ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant

J 42, 84-94.

Klahre, U. and Meins, F. Jr. (2004) RNA silencing in plants- biolistic delivery of RNAi reagents.

In gene silencing by RNA interference: Technology and application, M. Sohail, ed (Boca

Raton, FL: CRC Press), pp. 343-355.

Ko, J. H., Prassinos, C., and Han, K. H. (2006) Developmental and seasonal expression

of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with

secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol

169, 469-478.

Kofuji, R., Sumikawa, N., Yamasaki, M., Kondo, K., Ueda, K., Ito, M., and Hasebe, M.

(2003) Evolution and divergence of the MADS-box gene family based on genome-wide ex-

pression analyses. Mol Biol Evol 20, 1963-1977.

Kok, K. H., Ng, M. H. J., Ching, Y. P., and Jin, D. Y. (2007) Human TRBP and PACT di-

rectly interact with each other and associate with dicer to facilitate the production of small

interfering RNA. J Biol Chem 282, 17649-17657.

Koornneef, M., Alonso-Blanco, C., Peeters, A. J. M., and Soppe, W. (1998) Genetic control

of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49, 345-370.

Kouwenberg, L. L. R., Kurschner, W. M., and Visscher, H. (2004) Changes in stomatal

frequency and size during elongation of Tsuga heterophylla needles. Ann Bot (Lond) 94,

561-569.

Kramer, E. M., Jaramillo, M. A., and Di Stilio, V. S. (2004) Patterns of gene duplication

and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box

genes in angiosperms. Genetics 166, 1011-1023.

Krizek, B. A. and Meyerowitz, E. M. (1996a) Mapping the protein regions responsible for the

functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc Natl

xii



Bibliography

Acad Sci USA 93, 4063-4070.

Krizek, B. A. and Meyerowitz, E. M. (1996b) The Arabidopsis homeotic genes APETALA3

and PISTILLATA are sufficient to provide the B class organ identity function. Development

122, 11-22.

Kurihara, Y. and Watanabe, Y. (2004) Arabidopsis microRNA biogenesis through Dicer-like

1 protein functions. Proc Natl Acad Sci USA 101, 12753-12758.

Kurihara, Y., Takashi, Y., and Watanabe, Y. (2006) The interaction between DCL1 and HYL1

is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.

RNA 12, 206-212.

Kutter, C., Schob, H., Stadler, M., Meins, F., and Si-Ammour, A. (2007) MicroRNA-

mediated regulation of stomatal development in Arabidopsis. Plant Cell PMID: 17704216.

Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T.

(2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739.

Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003) New

microRNAs from mouse and human. RNA 9, 175-179.

Lai, L. B., Nadeau, J. A., Lucas, J., Lee, E. K., Nakagawa, T., Zhao, L., Geisler, M., and

Sack, F. D. (2005) The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict

divisions late in the stomatal cell lineage. Plant Cell 17, 2754-2767.

Lake, J. A., Woodward, F. I., and Quick, W. P. (2002) Long-distance CO(2) signalling in

plants. J Exp Bot 53, 183-193.

Lamb, R. S. and Irish, V. F. (2003) Functional divergence within the APETALA3/PISTILLATA

floral homeotic gene lineages. Proc Natl Acad Sci USA 100, 6558-6563.

Larkin, J. C., Brown, M. L., and Schiefelbein, J. (2003) How do cells know what they want to

be when they grow up? Lessons from epidermal patterning in Arabidopsis. Ann. Rev. Plant

Biol. 54, 403-430.

Lau, N. C., Seto, A. G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D. P., and

Kingston, R. E. (2006) Characterization of the piRNA complex from rat testes. Science 313,

363-367.

Laufs, P., Peaucelle, A., Morin, H., and Traas, J. (2004) MicroRNA regulation of the CUC

genes is required for boundary size control in Arabidopsis meristems. Development 131,

4311-4322.

Lee, B. h., Kapoor, A., Zhu, J., and Zhu, J. K. (2006a) STABILIZED1, a stress-upregulated

nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in

Arabidopsis. Plant Cell 18, 1736-1749.

Lee, M. M. and Schiefelbein, J. (2002) Cell pattern in the Arabidopsis root epidermis deter-

mined by lateral inhibition with feedback. Plant Cell 14, 611-618.

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochromic gene

lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.

xiii



Bibliography

Lee, Y., Hur, I., Park, S. Y., Kim, Y. K., Suh, M. R., and Kim, V. N. (2006b) The role of PACT

in the RNA silencing pathway. EMBO J 25, 522-532.

Lehti-Shiu, M. D., Adamczyk, B. J., and Fernandez, D. E. (2005) Expression of MADS-box

genes during the embryonic phase in Arabidopsis. Plant Mol Biol 58, 89-8107.

Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X. (2005) Methylation protects miRNAs and siRNAs

from a 3’-end uridylation activity in Arabidopsis. Curr Biol 15, 1501-1507.

Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., and Yanofsky, M. F.

(2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature

404, 766-770.

Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. (2003) Structure and nucleic-acid bind-

ing of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465-469.

Lippman, Z., Gendrel, A. V., Black, M., Vaughn, M. W., Dedhia, N., Richard McCombie,

W., Lavine, K., Mittal, V., May, B., Kasschau, K. D., Carrington, J. C., Doerge, R. W.,

Colot, V., and Martienssen, R. (2004) Role of transposable elements in heterochromatin

and epigenetic control. Nature 430, 471-476.

Litt, A. and Irish, V. F. (2003) Duplication and diversification in the APETALA1/FRUITFULL

floral homeotic gene lineage: implications for the evolution of floral development. Genetics

165, 821-833.

Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J. J., Ham-

mond, S. M., Joshua-Tor, L., and Hannon, G. J. (2004) Argonaute2 is the catalytic engine

of mammalian RNAi. Science 305, 1437-1441.

Liu, P. P., Montgomery, T. A., Fahlgren, N., Kasschau, K. D., Nonogaki, H., and Carring-

ton, J. C. (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical

for seed germination and post-germination stages. Plant J.

Liu, Q., Rand, T. A., Kalidas, S., Du, F., Kim, H. E., Smith, D. P., and Wang, X. (2003) R2D2,

a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science

301, 1921-1925.

Liu-Gitz, L., Britz, S. J., and Wergin, W. P. (2000) Blue light inhibits stomatal development

in soybean isolines containing kaempferol-3-O-2G-glycosyl-gentiobioside (K9), a unique

flavonoid glycoside. Plant, Cell & Environment 23, 883-891.

Llave, C., Xie, Z., Kasschau, K. D., and Carrington, J. C. (2002) Cleavage of Scarecrow-like

mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053-2056.

Lobbes, D., Rallapalli, G., Schmidt, D. D., Martin, C., and Clarke, J. (2006) SERRATE: a

new player on the plant microRNA scene. EMBO Rep 7, 1052-1058.

Lohmann, J. U., Hong, R. L., Hobe, M., Busch, M. A., Parcy, F., Simon, R., and Weigel,

D. (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis.

Cell 105, 793-803.

Lu, C., Kulkarni, K., Souret, F. F., MuthuValliappan, R., Tej, S. S., Poethig, R. S., Hender-

son, I. R., Jacobsen, S. E., Wang, W., Green, P. J., and Meyers, B. C. (2006) MicroRNAs

xiv



Bibliography

and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mu-

tant. Genome Res 16, 1276-1288.

Lu, C., Tej, S. S., Luo, S., Haudenschild, C. D., Meyers, B. C., and Green, P. J. (2005)

Elucidation of the small RNA component of the transcriptome. Science 309, 1567-1569.

MacAlister, C. A., Ohashi-Ito, K., and Bergmann, D. C. (2007) Transcription factor control

of asymmetric cell divisions that establish the stomatal lineage. Nature 445, 537-540.

Malcomber, S. T. and Kellogg, E. A. (2005) SEPALLATA gene diversification: brave new

whorls. Trends Plant Sci 10, 427-435.

Mallory, A. C., Dugas, D. V., Bartel, D. P., and Bartel, B. (2004) MicroRNA regulation of

NAC-domain targets is required for proper formation and separation of adjacent embryonic,

vegetative, and floral organs. Curr. Biol. 14, 1035-1106.

Mallory, A. C., Bartel, D. P., and Bartel, B. (2005) MicroRNA-directed regulation of Arabidop-

sis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates ex-

pression of early auxin response genes. Plant Cell 17, 1360-1375.

Mandel, M. A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M. F. (1992) Molecular

characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273-277.

Mandel, M. A. and Yanofsky, M. F. (1995) A gene triggering flower formation in Arabidopsis.

Nature 377, 522-524.

Martienssen, R. and Irish, V. (1999) Copying out our ABCs: the role of gene redundancy in

interpreting genetic hierarchies. Trends Genet 15, 435-437.

Martinez-Zapater, J. M. and Somerville, C. R. (1990) Effect of Light quality and vernalization

on late-flowering mutants of Arabidopsis thaliana. Plant Physiol 92, 770-776.

Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., and Zamore, P. D. (2005) Passenger-strand

cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell

123, 607-620.

McConnell, J. R. and Barton, M. K. (1998) Leaf polarity and meristem formation in Arabidop-

sis. Development 125, 2935-2942.

McConnell, J. R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M. K. (2001)

Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature

411, 709-713.

Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004)

Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15,

185-197.

Metcalfe CR, Chalk L. Anatomy of the dicotyledons. (1950). Oxford: Clarendon Press. Ref

Type: Generic

Meyerowitz, E. M. (2002) Plants compared to animals: the broadest comparative study of

development. Science 295, 1482-1485.

xv



Bibliography

Michaels, S. D. and Amasino, R. M. (1999) FLOWERING LOCUS C encodes a novel MADS

domain protein that acts as a repressor of flowering. Plant Cell 11, 949-956.

Millar, A. A. and Gubler, F. (2005) The ArabidopsisGAMYB-LIKE genes,MYB33 andMYB65,

are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17,

705-721.

Mizukami, Y., Huang, H., Tudor, M., Hu, Y., and Ma, H. (1996) Functional domains of the

floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of

dominant negative mutations. Plant Cell 8, 831-845.

Moissiard, G., Parizotto, E. A., Himber, C., and Voinnet, O. (2007) Transitivity in Arabidopsis

can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and

is compromised by viral-encoded suppressor proteins. RNA 13, 1268-1278.

Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C., and Baulcombe, D. C.

(2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii.

Nature 447, 1126-1129.

Moon, J., Suh, S. S., Lee, H., Choi, K. R., Hong, C. B., Paek, N. C., Kim, S. G., and

Lee, I. (2003) The SOC1MADS-box gene integrates vernalization and gibberellin signals for

flowering in Arabidopsis. Plant J 35, 613-623.

Mourrain, P., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. -B., Jouette, D.,

Lacombe, A. -M., Nikic, S., Picault, N., Rémoué, K., Sanial, M., Vo, T. -A., and Vaucheret,

H. (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene

silencing and natural virus resistance. Cell 101, 533-542.

Nadeau, J. A. and Sack, F. D. (2002) Control of stomatal distribution on the Arabidopsis leaf

surface. Science 296, 1697-1700.

Nam, J., Kim, J., Lee, S., An, G., Ma, H., and Nei, M. (2004) Type I MADS-box genes have

experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms.

Proc Natl Acad Sci USA 101, 1910-1915.

Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and

Jones, J. D. G. (2006) A plant miRNA contributes to antibacterial resistance by repressing

auxin signaling. Science 312, 436-439.

Nawy, T., Lee, J. Y., Colinas, J., Wang, J. Y., Thongrod, S. C., Malamy, J. E., Birnbaum,

K., and Benfey, P. N. (2005) Transcriptional profile of the Arabidopsis root quiescent center.

Plant Cell 17, 1908-1925.

Nogueira, F. T. S., Sarkar, A. K., Chitwood, D. H., and Timmermans, M. C. P. (2006) Organ

polarity in plants is specified through the opposing activity of two distinct small regulatory

RNAs. Cold Spring Harb Symp Quant Biol 71, 157-164.

Norman, C., Runswick, M., Pollock, R., and Treisman, R. (1988) Isolation and properties

of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response

element. Cell 55, 989-981003.

O’Donnell, K. A. and Boeke, J. D. (2007) Mighty Piwis defend the germline against genome

xvi



Bibliography

intruders. Cell 129, 37-44.

Ohashi-Ito, K. and Bergmann, D. C. (2006) Arabidopsis FAMA controls the final prolifera-

tion/differentiation switch during stomatal development. Plant Cell 18, 2493-2505.

Omland, K. E. (1997) Correlated rates of molecular and morphological evolution. Evolution

51, 1381-1393.

Onodera, Y., Haag, J. R., Ream, T., Nunes, P. C., Pontes, O., and Pikaard, C. S. (2005)

Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent hete-

rochromatin formation. Cell 120, 613-622.

Onouchi, H., Igeno, M. I., Perilleux, C., Graves, K., and Coupland, G. (2000) Mutagenesis

of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis

flowering-time genes. Plant Cell 12, 885-900.

Otegui, M. S., Noh, Y. S., Martinez, D. E., Vila Petroff, M. G., Staehelin, L. A., Amasino,

R. M., and Guiamet, J. J. (2005) Senescence-associated vacuoles with intense proteolytic

activity develop in leaves of Arabidopsis and soybean. Plant J 41, 831-844.

Paakkonen, E. and Holopainen, T. (1995) Influence of nitrogen supply on the response of

clones of birch (Betula pendula Roth. ) to ozone. New Phytologist 129, 595-603.

Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., and Weigel,

D. (2003) Control of leaf morphogenesis by microRNAs. Nature 425, 257-263.

Palatnik, J. F., Wollmann, H., Schommer, C., Schwab, R., Boisbouvier, J., Rodriguez,

R., Warthmann, N., Allen, E., Dezulian, T., Huson, D., Carrington, J. C., and Weigel, D.

(2007) Sequence and expression differences underlie functional specialization of Arabidop-

sis microRNAs miR159 and miR319. Dev Cell 13, 115-125.

Pant, D. D. (1965) On the ontogeny of stomata and other homologous structures. PI. Set.

Allahabad 1, 1-24.

Pant, D. D. and Kidwai, P. F. (1967) Development of stomata in some Cruciferae. Ann. Bot.

31, 513-521.

Parenicova, L., de Folter, S., Kieffer, M., Horner, D. S., Favalli, C., Busscher, J., Cook, H.

E., Ingram, R. M., Kater, M. M., Davies, B., Angenent, G. C., and Colombo, L. (2003)

Molecular and phylogenetic analyses of the complete MADS-box transcription factor family

in Arabidopsis: new openings to the MADS world. Plant Cell 15, 1538-1551.

Parizotto, E. A., Dunoyer, P., Rahm, N., Himber, C., and Voinnet, O. (2004) In vivo investi-

gation of the transcription, processing, endonucleolytic activity, and functional relevance of

the spatial distribution of a plant miRNA. Genes Dev 18, 2237-2242.

Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002) CARPEL FACTORY, a Dicer

homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana.

Curr Biol 12, 1484-1495.

Passmore, S., Elble, R., and Tye, B. K. (1989) A protein involved in minichromosome main-

tenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes Dev 3,

921-935.

xvii



Bibliography

Pauli, S., Rothnie, H. M., Chen, G., He, X., and Hohn, T. (2004) The cauliflower mosaic virus

35S promoter extends into the transcribed region. J Virol 78, 12120-12128.

Pelaz, S., Gustafson-Brown, C., Kohalmi, S. E., Crosby, W. L., and Yanofsky, M. F. (2001)

APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26, 385-394.

Pellegrini, L., Tan, S., and Richmond, T. J. (1995) Structure of serum response factor core

bound to DNA. Nature 376, 490-498.

Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L., and Poethig, R. S. (2004) SGS3 and

SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting

siRNAs in Arabidopsis. Genes Dev. 18, 2368-2379.

Pillitteri, L. J., Sloan, D. B., Bogenschutz, N. L., and Torii, K. U. (2007a) Termination of

asymmetric cell division and differentiation of stomata. Nature 445, 501-505.

Pillitteri, L. J. and Torii, K. U. (2007b) Breaking the silence: three bHLH proteins direct cell-

fate decisions during stomatal development. BioEssays 29, 861-870.

Pinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., and

Yanofsky, M. F. (2003) Assessing the redundancy of MADS-box genes during carpel and

ovule development. Nature 424, 85-88.

Plesch, G., Ehrhardt, T., and Mueller-Roeber, B. (2001) Involvement of TAAAG elements

suggests a role for DOF transcription factors in guard cell-specific gene expression. Plant J

28, 455-464.

Pontes, O., Li, C. F., Nunes, P. C., Haag, J., Ream, T., Vitins, A., Jacobsen, S. E., and

Pikaard, C. S. (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves

a nucleolar RNA processing center. Cell 126, 79-92.

Pontier, D., Yahubyan, G., Vega, D., Bulski, A., Saez-Vasquez, J., Hakimi, M. A., Lerbs-

Mache, S., Colot, V., and Lagrange, T. (2005) Reinforcement of silencing at transposons

and highly repeated sequences requires the concerted action of two distinct RNA poly-

merases IV in Arabidopsis. Genes Dev 19, 2030-2040.

Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995) The CONSTANS

gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc

finger transcription factors. Cell 80, 847-857.

Qi, Y., Denli, A. M., and Hannon, G. J. (2005) Biochemical specialization within Arabidopsis

RNA silencing pathways. Mol Cell 19, 421-428.

Qi, Y., He, X., Wang, X. J., Kohany, O., Jurka, J., and Hannon, G. J. (2006) Distinct catalytic

and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443,

1008-1012.

Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D. P. (2006) A diverse and evolution-

arily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407-3425.

Rajewsky, N. (2006) Lousy miRNA targets? Nat Struct Mol Biol 13, 754-755.

Ramakers, C., Ruijter, J. M., Deprez, R. H. L., and Moorman, A. F. M. (2003) Assumption-

xviii



Bibliography

free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett.

339, 62-66.

Ramsay, N. A. and Glover, B. J. (2005) MYB-bHLH-WD40 protein complex and the evolution

of cellular diversity. Trends Plant Sci 10, 63-70.

Reeder, J., Hochsmann, M., Rehmsmeier, M., Voss, B., and Giegerich, R. (2006) Beyond

mfold: recent advances in RNA bioinformatics. J. Biotechnol. 124, 41-55.

Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002)

MicroRNAs in plants. Genes Dev. 16, 1616-1626.

Remenyi, A., Schoeler, H. R., and Wilmanns, M. (2004) Combinatorial control of gene ex-

pression. Nat Struct Mol Biol 11, 812-815.

Ren, S., Johnston, J. S., Shippen, D. E., and McKnight, T. D. (2004) TELOMERASE AC-

TIVATOR1 induces telomerase activity and potentiates responses to auxin in Arabidopsis.

Plant Cell 16, 2910-2922.

Reyes, J. L. and Chua, N. H. (2007) ABA induction of miR159 controls transcript levels of two

MYB factors during Arabidopsis seed germination. Plant J 49, 592-606.

Rhoades, M. W. (2002) Prediction of plant microRNA targets. Cell 110, 513-520.

Riechmann, J. L., Krizek, B. A., and Meyerowitz, E. M. (1996) Dimerization specificity of

Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AG-

AMOUS. Proc Natl Acad Sci USA 93, 4793-4798.

Riechmann, J. L. and Meyerowitz, E. M. (1997) Determination of floral organ identity by

Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their

DNA-binding specificity. Mol Biol Cell 8, 1243-1259.

Riechmann, J. L. and Ratcliffe, O. J. (2000) A genomic perspective on plant transcription

factors. Curr Opin Plant Biol 3, 423-434.

Robertson, H. D., Webster, R. E., and Zinder, N. D. (1968) Purification and properties of

ribonuclease III from Escherichia coli. J Biol Chem 243, 82-91.

Rogg, L. E. and Bartel, B. (2001) Auxin signaling: derepression through regulated proteolysis.

Dev Cell 1, 595-604.

Ronshaugen, M., McGinnis, N., and McGinnis, W. (2002) Hox protein mutation and

macroevolution of the insect body plan. Nature 415, 914-917.

Rounsley, S. D., Ditta, G. S., and Yanofsky, M. F. (1995) Diverse roles for MADS box genes

in Arabidopsis development. Plant Cell 7, 1259-1269.

Ru, P., Xu, L., Ma, H., and Huang, H. (2006) Plant fertility defects induced by the enhanced

expression of microRNA167. Cell Res 16, 457-465.

Saito, K., Sakaguchi, Y., Suzuki, T., Suzuki, T., Siomi, H., and Siomi, M. C. (2007) Pimet,

the Drosophila homolog of HEN1, mediates 2’-O-methylation of Piwi- interacting RNAs at

their 3’ ends. Genes Dev 21, 1603-1608.

xix



Bibliography

Samach, A., Onouchi, H., Gold, S. E., Ditta, G. S., Schwarz-Sommer, Z., Yanofsky, M.

F., and Coupland, G. (2000) Distinct roles of CONSTANS target genes in reproductive

development of Arabidopsis. Science 288, 1613-1616.

Sambrook, J. and Russell, D. W. (2000) Molecular cloning. A laboratory manual. Cold Spring

Harbor, NY: Cold Spring Harbor Lab. Press.

Schmid, M., Uhlenhaut, N. H., Godard, F., Demar, M., Bressan, R., Weigel, D., and

Lohmann, J. U. (2003) Dissection of floral induction pathways using global expression anal-

ysis. Development 130, 6001-6012.

Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., and Weigel, D. (2005)

Specific effects of microRNAs on the plant transcriptome. Dev Cell 8, 517-527.

Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P. J., Hansen, R., Tetens, F., Lonnig, W.

E., Saedler, H., and Sommer, H. (1992) Characterization of the Antirrhinum floral homeotic

MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent

expression throughout flower development. EMBO J 11, 251-263.

Serna, L. and Fenoll, C. (1997) Tracing the ontogeny of stomatal clusters in Arabidopsis with

molecular markers. Plant J. 12, 747-755.

Shannon, S. and Meeks-Wagner, D. R. (1991) A Mutation in the Arabidopsis TFL1 Gene

Affects Inflorescence Meristem Development. Plant Cell 3, 877-892.

Sheldon, C. C., Conn, A. B., Dennis, E. S., and Peacock, W. J. (2002) Different regulatory

regions are required for the vernalization-induced repression of FLOWERING LOCUS C and

for the epigenetic maintenance of repression. Plant Cell 14, 2527-2537.

Shpak, E. D., McAbee, J. M., Pillitteri, L. J., and Torii, K. U. (2005) Stomatal patterning and

differentiation by synergistic interactions of receptor kinases. Science 309, 290-293.

Sieburth, L. E. and Meyerowitz, E. M. (1997) Molecular dissection of the AGAMOUS control

region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9,

355-365.

Singer, S. D., Krogan, N. T., and Ashton, N. W. (2007) Clues about the ancestral roles of

plant MADS-box genes from a functional analysis of moss homologues. Plant Cell Rep 26,

1155-1169.

Singleton, W. R. (1951) Inheritance of com grass, a macromutation in maize, and its possible

significance as an ancestral type. Am. Nat. 85, 81-96.

Smalheiser, N. R. and Torvik, V. I. (2005) Mammalian microRNAs derived from genomic

repeats. Trends Genet 21, 322-326.

Smith, L. B. and King, G. J. (2000) The distribution of BoCAL-a alleles in Brassica oleracea

is consistent with a genetic model for curd development and domestication of the cauliflower.

Mol. Breed. 6, 603-613.

Sommer, H., Beltroín, J. P., Huijser, P., Pape, H., Lonnig, W. E., Saedler, H., and Schwarz-

Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogen-

esis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9,

xx



Bibliography

605-613.

Song, J. J., Liu, J., Tolia, N. H., Schneiderman, J., Smith, S. K., Martienssen, R. A.,

Hannon, G. J., and Joshua-Tor, L. (2003) The crystal structure of the Argonaute2 PAZ

domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10, 1026-

1032.

Song, J. J., Smith, S. K., Hannon, G. J., and Joshua-Tor, L. (2004) Crystal structure of

Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437.

Song, L., Han, M. H., Lesicka, J., and Fedoroff, N. (2007) Arabidopsis primary microRNA

processing proteins HYL1 and DCL1 define a nuclear body distinct from the cajal body. Proc

Natl Acad Sci USA 104, 5437-5442.

Souret, F. F., Kastenmayer, J. P., and Green, P. J. (2004) AtXRN4 degrades mRNA in Ara-

bidopsis and its substrates include selected miRNA targets. Mol Cell 15, 173-83.

Sridhar, V. V., Surendrarao, A., and Liu, Z. (2006) APETALA1 and SEPALLATA3 interact

with SEUSS to mediate transcription repression during flower development. Development

133, 3159-3166.

Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M., and Ganem, D. (2005) SV40-

encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T

cells. Nature

Sunkar, R. and Zhu, J. K. (2004) Novel and stress-regulated microRNAs and other small

RNAs from Arabidopsis. Plant Cell 16, 2001-2019. textbf435, 682-686.

Sunkar, R., Kapoor, A., and Zhu, J. K. (2006) Posttranscriptional induction of two Cu/Zn

superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and

important for oxidative stress tolerance. Plant Cell 18, 2051-2065.

Svensson, M. E., Johannesson, H., and Engstrom, P. (2000) The LAMB1 gene from the

clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in

sporogenic structures. Gene 253, 31-43

Takada, S., Hibara, K., Ishida, T., and Tasaka, M. (2001) The CUP-SHAPED COTYLEDON1

gene of Arabidopsis regulates shoot apical meristem formation. Development 128, 1127-

1135.

Talmor-Neiman, M., Stav, R., Frank, W., Voss, B., and Arazi, T. (2006a) Novel micro-RNAs

and intermediates of micro-RNA biogenesis > »from moss. Plant J 47, 25-37.

Talmor-Neiman, M., Stav, R., Klipcan, L., Buxdorf, K., Baulcombe, D. C., and Arazi, T.

(2006b) Identification of trans-acting siRNAs in moss and an RNA-dependent RNA poly-

merase required for their biogenesis. Plant J 48, 511-521.

Teichmann, S. A. and Babu, M. M. (2004) Gene regulatory network growth by duplication.

Nat Genet 36, 492-496.

Theissen, G. (2001) Development of floral organ identity: stories from the MADS house. Curr

Opin Plant Biol 4, 75-85.

xxi



Bibliography

Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J. T., Munster, T., Winter, K. U.,

and Saedler, H. (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42,

115-149.

Theissen, G., Kim, J. T., and Saedler, H. (1996) Classification and phylogeny of the MADS-

box multigene family suggest defined roles of MADS-box gene subfamilies in the morpholog-

ical evolution of eukaryotes. J Mol Evol 43, 484-516.

Theissen, G. and Saedler, H. (2001) Plant biology. Floral quartets. Nature 409, 469-471.

Tomari, Y., Matranga, C., Haley, B., Martinez, N., and Zamore, P. D. (2004) A protein sensor

for siRNA asymmetry. Science 306, 1377-1380.

Tomari, Y. and Zamore, P. D. (2005) MicroRNA biogenesis: drosha can’t cut it without a

partner. Curr Biol 15, 61-64.

Torii, K. U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R. F., and

Komeda, Y. (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein

kinase with extracellular leucine-rich repeats. Plant Cell 8, 735-746.

Town, C. D., Cheung, F., Maiti, R., Crabtree, J., Haas, B. J., Wortman, J. R., Hine, E.

E., Althoff, R., Arbogast, T. S., Tallon, L. J., Vigouroux, M., Trick, M., and Bancroft, I.

(2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene

loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348-1359.

Treisman, R. (1990) The SRE: a growth factor responsive transcriptional regulator. Semin

Cancer Biol 1, 47-58.

Troebner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Loennig, W. E., Saedler, H.,

Sommer, H., and Schwarz-Sommer, Z. (1992) globosa a homeotic gene which interacts

with deficiens in the control of Antirrhinum floral organogenesis. EMBO J. 11, 4693-4704.

Ueno, Y., Ishikawa, T., Watanabe, K., Terakura, S., Iwakawa, H., Okada, K., Machida, C.,

and Machida, Y. (2007) Histone deacetylases and ASYMMETRIC LEAVES2 are involved

in the establishment of polarity in leaves of Arabidopsis. Plant Cell 19, 445-457.

Ulmasov, T., Hagen, G., and Guilfoyle, T. J. (1997a) ARF1, a transcription factor that binds

to auxin response elements. Science 276, 1865-1868.

Ulmasov, T., Hagen, G., and Guilfoyle, T. J. (1999a) Activation and repression of transcrip-

tion by auxin-response factors. Proc Natl Acad Sci USA 96, 5844-5849.

Ulmasov, T., Hagen, G., and Guilfoyle, T. J. (1999b) Dimerization and DNA binding of auxin

response factors. Plant J 19, 309-319.

Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T. J. (1997b) Aux/IAA proteins repress

expression of reporter genes containing natural and highly active synthetic auxin response

elements. Plant Cell 9, 1963-1971.

Upchurch, G. R. (1984) Cuticular evolution in early cretaceous angiosperms from the po-

tomac group of Virginia and Maryland. Ann. Missouri Bot. Garden 71, 518-546.

Vagin, V. V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., and Zamore, P. D. (2006) A distinct

xxii



Bibliography

small RNA pathway silences selfish genetic elements in the germline. Science 313, 320-324.

Vandenbussche, M., Theissen, G., Van de Peer, Y., and Gerats, T. (2003) Structural di-

versification and neo-functionalization during floral MADS-box gene evolution by C-terminal

frameshift mutations. Nucleic Acids Res 31, 4401-4409.

Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D. P. (2004) The action of ARGONAUTE1

in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant devel-

opment. Genes Dev. 18, 1187-117.

Vaucheret, H., Mallory, A. C., and Bartel, D. P. (2006) AGO1 homeostasis entails coexpres-

sion of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22,

129-136.

Vazquez, F. Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL,

Bartel DP, Crete P. (2004a) Endogenous trans-acting siRNAs regulate the accumulation of

Arabidopsis mRNAs. Mol. Cell 16, 69-79.

Vazquez, F., Gasciolli, V., Crete, P., and Vaucheret, H. (2004b) The nuclear dsRNA bind-

ing protein HYL1 is required for microRNA accumulation and plant development, but not

posttranscriptional transgene silencing. Curr. Biol. 14, 346-351.

von Groll, U. and Altmann, T. (2001) Stomatal cell biology. Curr. Opin. Plant Biol. 4, 555-

560.

Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C., and Zhang, S. (2007) Stomatal develop-

ment and patterning are regulated by environmentally responsive mitogen-activated protein

kinases in Arabidopsis. Plant Cell 19, 63-73.

Wang, J. F., Zhou, H., Chen, Y. Q., Luo, Q. J., and Qu, L. H. (2004) Identification of 20

microRNAs from Oryza sativa. Nucleic Acids Res 32, 1688-1695.

Wang, J. W., Wang, L. J., Mao, Y. B., Cai, W. J., Xue, H. W., and Chen, X. Y. (2005) Control

of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant

Cell 17, 2204-2216.

Wang, X. J., Reyes, J., Chua, N. H., and Gaasterland, T. (2004) Prediction and identification

of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biology 5, R65.

Watanabe, T., Takeda, A., Tsukiyama, T., Mise, K., Okuno, T., Sasaki, H., Minami, N., and

Imai, H. (2006) Identification and characterization of two novel classes of small RNAs in the

mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in

testes. Genes Dev 20, 1732-1743.

Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., and Meyerowitz, E. M. (1992) LEAFY

controls floral meristem identity in Arabidopsis. Cell 69, 843-859.

West, A. G., Causier, B. E., Davies, B., and Sharrocks, A. D. (1998) DNA binding and

dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucleic

Acids Res 26, 5277-5287.

West, A. G. and Sharrocks, A. D. (1999) MADS-box transcription factors adopt alternative

mechanisms for bending DNA. J Mol Biol 286, 1311-1323.

xxiii



Bibliography

Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the hete-

rochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75,

855-862.

Williams, L., Grigg, S. P., Xie, M., Christensen, S., and Fletcher, J. C. (2005) Regulation of

Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and

its AtHD-ZIP target genes. Development 132, 3657-3668.

Wu, G. and Poethig, R. S. (2006) Temporal regulation of shoot development in Arabidopsis

thaliana by miR156 and its target SPL3. Development 133, 3539-3547.

Wu, M. F., Tian, Q., and Reed, J. W. (2006) Arabidopsis microRNA167 controls patterns of

ARF6 and ARF8 expression, and regulates both female and male reproduction. Develop-

ment 133, 4211-4218.

Xie, Z., Kasschau, K. D., and Carrington, J. C. (2003) Negative feedback regulation of Dicer-

like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13, 784-789.

Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman,

D., Jacobsen, S. E., and Carrington, J. C. (2004) Genetic and functional diversification of

small RNA pathways in plants. PLOS Biol. 2, 1-11.

Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S. A., and Carrington, J. C. (2005)

Expression of Arabidopsis MIRNA Genes. Plant Physiol. 138, 2145-2154.

Yamasaki, H., Abdel-Ghany, S. E., Cohu, C. M., Kobayashi, Y., Shikanai, T., and Pilon, M.

(2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282,

16369-16378.

Yan, K. S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M. M. (2003) Structure and

conserved RNA binding of the PAZ domain. Nature 426, 468-474.

Yang, L., Liu, Z., Lu, F., Dong, A., and Huang, H. (2006) SERRATE is a novel nuclear

regulator in primary microRNA processing in Arabidopsis. Plant J. 47, 841-850.

Yang, M. and Sack, F. D. (1995) The too many mouths and four lips mutations affect stomatal

production in Arabidopsis. Plant Cell 7, 2227-2239.

Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., and Meyerowitz,

E. M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles

transcription factors. Nature 346, 35-39.

Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., Steward, R., and Chen, X.

(2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932-935.

Yu, D., Fan, B., MacFarlane, S. A., and Chen, Z. (2003) Analysis of the involvement of

an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol Plant

Microbe Interact 16, 206-216.

Zachgo, S., Silva, E., Motte, P., Trobner, W., Saedler, H., and Schwarz-Sommer, Z. (1995)

Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro

by using a temperature-sensitive mutant. Development 121, 2861-2875.

xxiv



Bibliography

Zachgo, S., Saedler, H., and Schwarz-Sommer, Z. (1997) Pollen-specific expression of

DEFH125, a MADS-box transcription factor in Antirrhinum with unusual features. Plant J

11, 1043-1050.

Zamore, P. D. and Haley, B. (2005) Ribo-gnome: the big world of small RNAs. Science 309,

1519-1524.

Zhang, B., Pan, X., Cannon, C. H., Cobb, G. P., and Anderson, T. A. (2006a) Conservation

and divergence of plant microRNA genes. Plant J. 46, 243-259.

Zhang, B., Wang, Q., Wang, K., Pan, X., Liu, F., Guo, T., Cobb, G. P., and Anderson, T. A.

(2007) Identification of cotton microRNAs and their targets. Gene 397, 26-37.

Zhang, B. H., Pan, X. P., Wang, Q. L., Cobb, G. P., and Anderson, T. A. (2005) Identification

and characterization of new plant microRNAs using EST analysis. Cell Res 15, 336-360.

Zhang, H. and Forde, B. G. (1998) An Arabidopsis MADS-box gene that controls nutrient-

induced changes in root architecture. Science 279, 407-409.

Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W. L., Chen, H., Henderson,

I. R., Shinn, P., Pellegrini, M., Jacobsen, S. E., and Ecker, J. R. (2006b) Genome-wide

high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126,

1189-1201.

Zhao, T., Li, G., Mi, S., Li, S., Hannon, G. J., Wang, X. J., and Qi, Y. (2007) A complex

system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev

21, 1190-1203.

Zhong, R. and Ye, Z. H. (2004) amphivasal vascular bundle 1, a gain-of-function mutation

of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and

carpels. Plant Cell Physiol 45, 369-385.

Zhou, X., Ruan, J., Wang, G., and Zhang, W. (2007) Characterization and identification of

microRNA core promoters in four model species. PLoS Comput Biol 3.

Zhu, C. and Perry, S. E. (2005) Control of expression and autoregulation of AGL15, a member

of the MADS-box family. Plant J 41, 583-594.

Zhu, T., Budworth, P., Han, B., Brown, D., Chang, H. S., and Wang, X. (2001) Toward

elucidating the global gene expression patterns of developing Arabidopsis: Parallel analysis

of 8300 genes by a high-density oligonucleotide probe array. Plant Physiol. Biochem. 39,

221-242.

Zilberman, D., Cao, X., Johansen, L. K., Xie, Z., Carrington, J. C., and Jacobsen, S. E.

(2004) Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by

inverted repeats. Curr Biol 14, 1214-1220.

Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004) GENEVES-

TIGATOR. Arabidopsis microarray database and analysis toolbox. PLANT PHYSIOL 136,

2621-2632.

Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic

Acids Res. 31, 3406-3415.

xxv



Part VI

Appendices

A



A. Supplemental Data

A. Arabidopsis microRNA families and their target genes

B



Appendices

Table A.1.: Arabidopsis microRNA families and their target genes.
miRNA 
family

a
Number 
of loci 

Putative or validated target gene  family
b

References
c

miR156/157  12 Squamosa-promoter binding protein-like (SPL) 7, 11, 12, 13, 16 

miR158 2 Pentatricopeptide repeat (PPR) 7, 11, 12, 13, 16 

miR159/319  6 MYB transcription factor, TCP transcription factor 7, 8, 9, 11, 12, 13, 16 

miR160 3 Auxin response factor (ARF) 7, 11, 12, 13, 16 

miR161 1 Pentatricopeptide repeat (PPR) 7, 11, 12, 13, 16 

miR162 2 Dicer-like (DCL1) 7, 11, 12, 13, 16 

miR163 1 S-adenosylmethionine-dependent methyltransferase (SAMT) 7, 11, 12, 16 

miR164 3 NAC domain transcription factor 7, 11, 12, 13, 16 

miR165/166  9 HD-ZIPIII transcription factor 7, 11, 12, 13 

miR167 4 Auxin response factor (ARF) 6, 11 

miR168 2 Argonaute (AGO1) 7, 11, 12, 13, 16 

miR169 14 HAP2 transcription factor 6, 7, 11, 16 

miR170/171  4 Scarecrow-like transcription factor (SCL) 7, 11, 12, 13, 16 

miR172 5 Apetala2-like transcription factor (AP2) 7, 11, 12, 13, 16 

miR173 1 TAS1, TAS2 7, 10, 11, 16 

miR390/391  3 TAS3 1, 5, 7, 11, 16 

miR393 2 Auxin receptors (TIR1, AFBs), bHLH transcription factor 6, 7, 11, 14, 15 

miR394 2 F-box 6, 7, 11, 16 

miR395 6 ATP-sulfurylase (APS), Sulfate transporter (AST) 6, 7, 11 

miR396 2 Growth regulating factor (GRF) 6, 7, 11, 16 

miR397 2 Laccase (LAC) 6, 7, 11, 14, 16 

miR398 3 Copper superoxide dismutase (CSD) , Cytochrome-c oxidase 6, 7, 11, 14 

miR399 6 Phosphate transporter, E2 ubiquiting-conjugating protein (E2-UBC) 6, 7, 11 

miR400 1 Pentatricopeptide repeat (PPR) 7, 11, 14 

miR401 1 Unknown 14

miR402 1 ROS1-like, putative DNA glycosylase 7, 11, 14 

miR403 1 Argonaute (AGO2) 7, 11, 14, 16 

miR404 1 LRR-TM protein kinase 14

miR405 3 Unknown 14

miR406 1 Spliceosomal proteins 14

miR407 1 Short-chain dehydrogenase/reductase 14

miR408 1 Laccase (LAC), Plantacyanin-like (PCL) 7, 11, 14 

miR413 1 Splicing factor, MYB transcription factor, PPR 15

miR414 1 DEAD box RNA helicase (DRH1), F-box, nucleosome assembly protein 15

miR415 1 Cellulose synthase family, PPR 15

miR416 1 F-box 15

miR417 1 RNA-directed RNA polymerase, auxin response transcription factor 15

miR418 1 Homeobox protein 15

miR419 1 ABC transporter family protein,  No apical meristem (NAM), histidine kinase 15

miR420 1 None predicted 15

miR426 1 None predicted 15

miR447 3 2-phosphoglycerate kinase-related (2-PGK) 2, 11, 16 

miR472 1 CC-NBS-LRR 7, 11, 14 

miR771 1 None predicted 7, 11, 14 

miR773 1 DNA (cytosine-5-)-methyltransfearse 4, 7 

miR774 1 F-box 4, 7 

miR775 1 Galactosyltransferase Avr9 elicitor 4, 7, 11 

miR776 1 Serine/threonine kinase 4, 7

miR777 1 None predicted 4, 7, 11 

miR778 1 SET-domain 4, 7 

miR779 1 None predicted 4, 7, 11 

miR780 1 Cation/hydrogen exchanger 4, 7 

miR781 1 CD2-binding, MCM 4, 7 

miR782 1 Pseudogene 7

miR783 1 Extra-large G-protein-related 7

miR822 1 DC1 domain 11

miR823 1 Chromomethylase, CMT3 4, 11 

miR824 1 AGL16 MADS-box  4, 11 

miR825 1 Remorin, zinc finger homeobox family, frataxin-related 4, 11 

miR826 1 AOP2 11

C



Appendices

Table A.1 continued

A endix A1 continued 
miR827 1 SPX domain/C3CH4-type RING zinc finger 4, 11 

miR828 1 MYB  transcription factor 11 

miR829 1 AP2 domain ethylene response factor 4, 11 

miR830 1 RanBP1 domain, kinesin motor-related 4, 11 

miR831 1 None predicted 11 

miR832 1 Unknown  11 

miR833 1 F-box 4, 11 

miR834 1 COP1-interacting protein 11 

miR835 1 MYB trabscription factor 11 

miR836 1 None predicted 11 

miR837 1 GIF transcription factor 11 

miR838 1 Armadillo/ -catenin 11 

miR839 1 None predicted 11 

miR840 1 WHIRLY3 4, 11 

miR841 1 Histone H2A.F/Z 11 

miR842 1 Jacalin lectin 4, 11 

miR843 1 F-box 4, 11 

miR844 1 Kinase 4, 11 

miR845 2 None predicted 4, 11 

miR846 1 Jacalin lectin 4, 11 

miR847 1 Cyclophilin-RNA interacting protein 11 

miR848 1 None predicted 11 

miR849 1 None predicted 11 

miR850 1 None predicted 11 

miR851 1 None predicted 4, 11 

miR852 1 ATPase 4, 11 

miR853 1 None predicted 4, 11 

miR854 4 UBP1b 3’UTR 3 

miR855 1 UBP1b 3’UTR 3 

miR856 1 Cation/hydrogen exchanger, Zinc transporter 4 

miR857 1 Laccase 4 

miR858 1 MYB transcription factor 4 

miR859 1 F-box 4 

miR860 1 Histone deacetylase, ferrochelatase, RNA recognition motif 4 

miR861 1 None predicted 4 

miR862 1 None predicted 4 

miR863 1 None predicted 4 

miR864 1 Triacylglycerol lipase 4 

miR865 1 Serine carboxypeptidase, sulfate transporter 4 

miR866 1 Expressed protein, C2-domain containing protein 4 

miR867 1 PHD finger-related/SET domain, kinase, phospholipase/carboxylesterase 4 

miR868 1 None predicted 4 

miR869 1 None predicted 4 

miR870 1 None predicted 4 
a
 Family number according to miRBase Release 10.0 

b
 Genes for which miRNA-mediated cleavage was demonstrated experimentally are indicated in bold. 

c
 References are indicated according to miRBase Release 10.0 

1
 Adai et al., 2005; 

2
 Allen et al., 2005; 

3
 Arteaga-Vazquez et al., 2006; 

4
 Fahlgren et al., 2007; 

5
 Gustafson et al., 2005;  

6
 Jones-Rhoades et al., 2004; 

7
 Lu et al., 2006; 

8
 Mette et al., 2002; 

9
 Palatnik et al., 2003; 

10
 Park et al., 2002; 

11
 Rajagopalan 

2006; 
12

 Reinhart et al., 2002; 
13

 Rhoades et al., 2002; 
14

 Sunkar et al., 2004; 
15

 Wang et al., 2004; 
16

 Xie et al., 2005 
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B. Applied primers

Table A.2.: Applied primers.
Primer by application Sequence 5’-3’

a Description

ProMIR824 Vectors

F-275RAFL GCTTCATCTGTGTTTGCAGTC Cloning of MIR824 Exon 3 and 4

R-275RAFL TTAGAGAGAAACCTACTTGTATATCTATTCC Cloning of MIR824 Exon 3 and 4

F-promofull/Hind III CCCAAGCTTCTGATTTGAATACGGTCTGATGCGATGATCC Cloning of ProMIR824

R-promofull/BamH I CCGGGATCCGTCGGAAAAAGCCGTGATGTGAGG Cloning of ProMIR824

F-promo-LTRE/Hind III CCGGGATCCTACCCTAACACTTATATTTTTGCCTTCCATAG Cloning of ProMIR824 -LTRE

F-MON60/Xba I GCTCTAGAATGGGCAAGGGCGAGGAAC Cloning of the GFP S65T

R-MON60/Sac I CGAGCTCTCACTTGTAGAGTTCATCCATGCCATGCG Cloning of the GFP S65T

ProAGL16 Vectors

F-AGL16/Bam HI GGATCCATGGGAAGGGGCAAGATCGCGATTAAG Cloning of AGL16 ORF

R-AGL16HA/Bam HI GGATCCTCAAGCGTAATCTGGAACATCGTATGGGTATGCAAT

GAAGGAAAAATAGTTGAGTTGG

Cloning of AGL16 ORF

F-proAGL16/Xho I CCGCTCGAGAGAACAAATTTGTCTTGGAATTTAAATTTAACTA Cloning ProAGL16

R-proAGL16/Xba I TGCTCTAGACTTGCCCCTTCCAATTTCTGCTTCTATCA Cloning ProAGL16

R-proAGL16In2/Xba I GCTCTAGACGCAGCCTCCTTTTGCCAGAA Cloning ProAGL16_I2

Probes cDNA

F-SCL6-III GAATAATGCGGAAGCTGCTACGAG Probe to detect SCL6-III

R-SCL6-III AAACGTGATCTAACCCAAATTGAAAAGC Probe to detect SCL6-III

F1-AGL16 ATGGGAAGGGGCAAGATCGCGATTAAG Probe to detect AGL16

R1-AGL16 TTATGCAATGAAGGAAAAATAGTTGAGTTGG Probe to detect AGL16

Probes oligos

miR824 TCCCTTCTCACAAATGGTCTA Oligoprobe to detect miR824 sense 

miR824* TAGACCATTTGTGAGAAGGGA Oligoprobe to detect miR824*

miR171a GATATTGGCGCGGCTCAATCA Oligoprobe to detect miR171 sense

miR426 CGTAAGGACAAATTTCCAAAA Oligoprobe to detect miR426 sense

miR156 GTGCTCACTCTCTTCTGTCA Oligoprobe to detect miR156 sense

miR168 TTCCCGACCTGCACCAAGCGA Oligoprobe to detect miR168 sense

miR165 GGGGGATGAAGCCTGGTCCGA Oligoprobe to detect miR165 sense

siR480(+) TACGCTATGTTGGACTTAGAA Oligoprobe to detect ta-siRNA sense

RLM-RACE

RLMAGL16 AACATAAGTGTGTTGGCACACCG Primer for RT specific for AGL16 3’

AGL16GSP ATGCAATGAAGGAAAAATAGTTGAGTTGGATAGC Primer specific for AGL16 CDS

GSP1_At1g05930 AATTGCCCCAACTTAGCCGGC Primer specific for At1g05930 CDS

GSP2_At1g05930 AAGACAGATGTCGTCGCCAGC Primer specific for At1g05930 CDS

GSP3_At1g05930 TAGGATACTCCGCTCCTCAGGC Primer specific for At1g05930 CDS

GSP1_At1g65370 AGTCCTAGAGTAGTAGACATGGCATG Primer specific for At1g65370 CDS

GSP2_At1g65370 TACCCCTCGCTTTGGTCGCTG Primer specific for At1g65370 CDS

GSP3_At1g65370 AAGCCCTTAGTTGTGCTCGCAC Primer specific for At1g65370 CDS

GSP1_At1g65150 AGTCCCAGACTCTAGAGTAGTAGACC Primer specific for At1g65150 CDS

GSP2_At1g65150 TGTTAGGTGATTGGATCCACGCG Primer specific for At1g65150 CDS

GSP3_At1g65150 TGTCATCTGCCTCAGAGTCCCC Primer specific for At1g65150 CDS

GSP1_At1g65050 ACTTTAGAGTAGTAGACATGGCATGG Primer specific for At1g65050 CDS

GSP2_At1g65050 AGTCCCTTCACGGTCCAAGTAAGC Primer specific for At1g65050 CDS

GSP3_At1g65050 ATGCTGGGATAACTTGTCATCTGCC Primer specific for At1g65050 CDS

GSP1_ANR1 TTGCCTTCAATCGCATTTGTTCTTCC Primer specific for ANR1 CDS

GSP2_ANR1 TATGAGTTGAAGTTGCGGTGGTGC Primer specific for ANR1 CDS

GSP3_ANR1 CTAGGAAAGTTGTAGCCCTAGTCTGA Primer specific for ANR1 CDS

GSP1_AGL17 GTACTTTTCTCGACAATTCGAGGTT Primer specific for AGL17 CDS

GSP2_AGL17 TCTACTAGCTCATGATGTCCCAATCC Primer specific for AGL17 CDS

GSP3_AGL17 AAGATGTCTTATAATGGGACTGCTCAGGC Primer specific for AGL17 CDS

GSP1_AGL21 AGAGCTCCACATTTTCTTGATGAATCC Primer specific for AGL21 CDS

GSP2_AGL21 ATCTGAGTGTGTGATTCATCATCCGC Primer specific for AGL21 CDS

GSP3_AGL21 TATTCGTTTGCTCTTGGTGGAGTGTC Primer specific for AGL21 CDS

qPCR

F-qPCRAGL16 ACCTCCACAAGAAAGTAAACCTAATGC Real time PCR specific for AGL16

R-qPCRAGL16 TGGCTGAGCTGAAGATGGACATG Real time PCR specific for AGL16

F-qPCRTIP41 AGAGTTGATGGTGTGCTTATGAGATTG Real time PCR specific for TIP41 -li

R-qPCRTIP41 TGGATACCCTTTCGCAGATAGAGAC Real time PCR specific for TIP41 -li
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Table A.2 continued

RT-PCR

F1-AGL16 ATGGGAAGGGGCAAGATCGCGATTAAG RT-PCR specific for AGL16 

R1-AGL16 TTATGCAATGAAGGAAAAATAGTTGAGTTGG RT-PCR specific for AGL16

F2-AGL16 GCTTGCGATTCTCTGCGATGC RT-PCR specific for AGL16

R2-AGL16 TTTCTGAACTGGTTTCTCCTTTGGC RT-PCR specific for AGL16

F-SCL6-III GAATAATGCGGAAGCTGCTACGAG RT-PCR specific for SCL6-III

R-SCL6-III AAACGTGATCTAACCCAAATTGAAAAGC RT-PCR specific for SCL6-III

F- -TUBULIN CGTGGATCACAGCAATACAGAGCC RT-PCR specific for  -TUBULIN

R- -TUBULIN CCTCCTGCACTTCCACTTCGTCTTC RT-PCR specific for  -TUBULIN

F-pri-miR824 TAATCATCACTGCTCTCTTCTCCAT RT-PCR specific for pri-miR824

R-pri-miR824 AAACTCTTTTATTTTTTATTTAGAGAGAAACCTACTT RT-PCR specific for pri-miR824

F-At4g24415 TAATCATCACTGCTCTCTTCTCCATC RT-PCR specific for At4g24415

R-At4g24415 AAACTCTTTTATTTTTTATTTAGAGAGAAACCTACTTGTATA RT-PCR specific for At4g24416

F1-At4g24410 AATCATCACTGCTCTCTTCTCCATC RT-PCR specific for At4g24410

F2-At4g24410 ATTTCAATGGGATCTCGTGACGG RT-PCR specific for At4g24410

R1-At4g24410 CTCAATACATGAGACAGGTCCACT RT-PCR specific for At4g24410

EMSA

CArG1s TTTCCTAATTAGGACA CArG box motif 1 AG binding

CArG1as TGTCCTAATTAGGAAA CArG box motif 1 AG binding

CArG2s & as TTACTATATATAGTAA CArG box motif 2 AGL15 binding

CArG3s & as TTAGTATATATACTAA CArG box motif 3 AGL15 binding mut

T-DNA genotyping

F-AGL16geno CCGAGAGGTGGGACTATGGTT Genotyping of agl16-1

R-AGL16geno TCTCCATGCATTTTCGGTTTT Genotyping of agl16-1

F-M1geno TTGCAGCAGTGACTTTGTTGCC Genotyping of m1

R-M1geno TTTGTGTTCTTTGCAGACCTGA Genotyping of m1

F-M2geno AGCCAATGTATGATAAGACCAAA Genotyping of m2

R-M2geno ATCGGTTTCAGGGTGTCTCCG Genotyping of m2

F-M3geno TGATCCGTGTGGTCCTTCAA Genotyping of m3, m4

R-M3geno GTCGGAAAAAGCCGTGATGTG Genotyping of m3, m4

F-RDR6geno ATGGGGTCAGAGGGAAATATGAA Genotyping of rdr6-15

R-RDR6geno TTGCACGTGTTGTCAAAAGGATC Genotyping of rdr6-15

LB1 Left Border GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC Genotyping of all SAIL T-DNA lines

pROK2 Left Border GCGTGGACCGCTTGCTGCAACT Genotyping of all SALK T-DNA lines
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C. Vector maps

Figure A.1: Vector map of pPro2x35S:MIR824∆E1E2(+) (Bacteria: KanR, Plant: HygR) with

relevant restriction sites indicated.

The third and a part of the fourth exon of MIR824 were amplified using primers F-275RAFL

and R-275RAFL (oligonucleotide primers Appendix Table A.2) and the 1677 bp PCR frag-

ment cloned into TOPOII vector. The insert was subcloned in a modified 1300 pCambia

binary vector downstream of the double 35S promoter using BamHI/SacI restriction sites.
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Figure A.2: Vector map of pProMIR824:Luc (AmpR) with relevant restriction sites indicated.

Construction of this vector is described in Kutter et al. (2007) supplemental methods. The

vector backbone is pLitmus 28 (Invitrogen).
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Figure A.3: Vector map of pPro2x35S:Luc (AmpR) with relevant restriction sites indicated.

The cassette containing the Pro2x35S:LUC and 35S terminator was excised from the plasmid

pGN35Sluc+ (Molinier et al., 2004) and subcloned in pLitmus 28 (Invitrogen) as described in

Kutter et al. (2007) supplemental methods.
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Figure A.4: Vector map of p∆:Luc (AmpR) with relevant restriction sites indicated.

The cassette containing the promoterless LUC and 35S terminator was excised from the

plasmid pGN35Sluc+ (Molinier et al. 2004) and subcloned in pLitmus 28 (Invitrogen) as

described in Kutter et al. (2007) supplemental methods.
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Figure A.5: Vector map of pPro∆:GUS (Bacteria: KanR, Plant: HygR) with relevant

restriction sites indicated.

A cassette containing a GUS gene and the nos terminator was excised from pBI121 (Clon-

tech) plasmid using Hind III and EcoRI restriction sites and inserted in a pCambia 1300

binary vector using the same restriction sites.
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Figure A.6: Vector map of pProMIR824:GUS (Bacteria: KanR, Plant: HygR) with relevant

restriction sites indicated.

The genomic region downstream of the 3’UTR of At4g24400 and upstream of MIR824

(At4g24415) was amplified using primers F-promofull/Hind III and R-promofull/BamHI

(oligonucleotide primers Appendix Table A.2) containing respectively a Hind III and a BamHI

restriction site. The 2.9 kb PCR fragment was subcloned in the pPro∆:GUS vector (Appendix

Figure A.5) using the same restriction enzymes.
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Figure A.7: Vector map of pProMIR824-LTRE:GUS (Bacteria: KanR, Plant: HygR) with

relevant restriction sites indicated.

The genomic region upstream ofMIR824 (At4g24415) lacking the cold responsive cis-acting

element (LTRE) was amplified using primers F-promo-LTRE/Hind III and R-promofull/BamHI

(oligonucleotide primers Appendix Table A.2) containing respectively a Hind III and a BamHI

restriction site. The 501 bp PCR fragment was subcloned in the pPro∆:GUS vector (Ap-

pendix Figure A.5) using the same restriction enzymes.
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Figure A.8: Vector map of pPro2x35S:GUS (Bacteria: KanR, Plant: HygR) with relevant

restriction sites indicated.

The vector backbone is a 1300 pCambia binary vector in which the cassette containing a

2x35S:GUS and nos terminator from pBI121 (Clontech) was cloned using Hind III/EcoRI

combination.
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Figure A.9: Vector map of pProMIR824:GFP Bacteria: KanR, Plant: HygR) with relevant

restriction sites indicated.

The genomic region downstream of the 3’UTR of At4g24400 and upstream of MIR824

(At4g24415) was amplified using primers F-promofull/Hind III and R-promofull/BamHI

(oligonucleotide primers Appendix Table A.2) containing respectively a Hind III and a BamHI

restriction site. The 2.9 kb PCR fragment was subcloned in place of the double 35S in the

pPro2x35S:GUS vector (Appendix Figure A.5) using the same restriction enzymes. The GFP

was amplified from pMON30060 (Pang et al. 1996) using the primers F-MON60/XbaI and

R-MON60/SacI and cloned in place of the GUS gene.
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Figure A.10: Vector map of pPro2x35S:AGL16 Bacteria: KanR, Plant: HygR) with relevant

restriction sites indicated.

The wild-type AGL16 containing an HA-tag at the 3’ end was cloned downstream of the

double 35S promoter as a BamHI/BamHI fragment as described in details in Kutter et al.

(2007), supplemental methods.
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Figure A.11: Vector map of pPro2x35S:AGL16m (Bacteria: KanR, Plant: HygR) with

relevant restriction sites indicated.

The mutated AGL16 containing an HA-tag at the 3’ end was cloned downstream of the

double 35S promoter as a BamHI/BamHI fragment as described in details in Kutter et al.

(2007), supplemental methods.
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At3g57230 

(AGL16)

5’UTR 3’UTR3’UTR

At3g57220
ATG

*

ProAGL16

At3g57230 

(AGL16)

5’UTR 3’UTR3’UTR

At3g57220
ATG

*

ProAGL16

                            (611 bp) 

Figure A.12: Vector map of pProAGL16:GUS (Bacteria: KanR, Plant: HygR) with relevant

restriction sites indicated.

The genomic region downstream of the 3’UTR end of At3g57220 and upstream of AGL16

(At3g57230) was amplified using primers F-proAGL16/XhoI and R-proAGL16/XbaI contain-

ing respectively a XhoI and a XbaI restriction site. The 501 bp PCR fragment was subcloned

in the pPro∆:GUS vector (Appendix Figure A.5) digested with Sal I and XbaI.
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At3g57230 

(AGL16)

5’UTR 3’UTR3’UTR

At3g57220
ATG

*

ProAGL16_I2

At3g57230 

(AGL16)

5’UTR 3’UTR3’UTR

At3g57220
ATG

*

ProAGL16_I2

                                                 (2486 bp) 

Figure A.13: Vector map of pProAGL16:GUS (Bacteria: KanR, Plant: HygR) with relevant

restriction sites indicated.

The genomic region downstream of the 3’UTR end of At3g57220 and upstream of AGL16

(At3g57230) was amplified using primers F-proAGL16/XhoI and R-proAGL16In2/XbaI con-

taining respectively a XhoI and a XbaI restriction site. The 501 bp PCR fragment was sub-

cloned in the pPro∆:GUS vector (Appendix Figure A.5) digested with Sal I and XbaI.
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D. Characterization of mutant lines

Table A.3.: Characterization of mutant lines.

Note: mutants highlighted in grey were provided by other groups

Name AGI mutant ecotype mutation number reference

RNA silencing mutants 

ago1-3 Col-0 EMS Garlic_371_C09 Bohmert et al, 1998 

ago1-x Col-0 T-DNA N576191   

ago1-y Col-0 T-DNA N617308   

AGO1 At1g48410

ago1-z Col-0 T-DNA N569180   

ago2-x Col-0 T-DNA N508590   AGO2 At1g31280

ago2-y Col-0 T-DNA N537548   

ago3-x Col-0 T-DNA N501761   AGO3 At1g31290

ago3-y Col-0 T-DNA N505335   

AGO4 At2g27040 ago4 Col-0 T-DNA N571772   

ago5-x Col-0 T-DNA N571808   AGO5 At2g27880

ago5-y Col-0 T-DNA N563806   

ago6-x Col-0 T-DNA N531553   AGO6 At2g32940

ago6-y Col-0 T-DNA N522133   

ago7-1 Col-0 T-DNA N537458 Vazquez et al., 2004 

ago7-x Col-0 T-DNA N580533   

AGO7 At1g69440

ago7-y Col-0 T-DNA N586842   

ago8-x Col-0 T-DNA N510860   AGO8 At5g21030

ago8-y Col-0 T-DNA N614640   

ago9-x Col-0 T-DNA N626176   AGO9 At5g21150

ago9-y Col-0 T-DNA N627358   

ago10-y Col-0 T-DNA N500457   AGO10 At5g43810

ago10-x Col-0 T-DNA N500460   

hyl1-1 No-0 Ds Lu & Fedoroff, 2000 HYL1 At1g09700

hyl1-2 Col-0 T-DNA N564863 Vazquez et al., 2004 

hyl1-1 Ler EMS Chen et al, 2002 HEN1 At4g20910

hen1-5 Col-0 T-DNA N549197 Vazquez et al., 2004 

se-1 Col-0 T-DNA N3257 Redei, 1965 

se-3 Col-0 T-DNA N683196 Grigg et al, 2005 

se-x Col-0 T-DNA N550410   

se-y Col-0 T-DNA N559424   

SE At2g27100

se-z Col-0 T-DNA N338653   

dcl1-7
(sin1-1)

gl-1 EMS Golden et al., 2002; 
Schauer et al., 2002 

dcl1-8
(sin1-2)

gl-1 EMS Golden et al., 2002; 
Schauer et al., 2003 

dcl1-9 Ler EMS Golden et al., 2002; 
Schauer et al., 2004 

DCL1 At1g01040

dcl1-x Col-0 T-DNA Garlic_1293_D08   

dcl2-1 Col-0 T-DNA N564627 Xie et al., 2003 

dcl2-2/
dcl2-5

Col-0 T-DNA N623586 Kurihara and 
Watanabe, 2004; 
Akbergenov et al, 
2006; Blevins et al., 
2006

dcl2-3 Col-0 T-DNA N595069 Vazquez et al, 2004 

DCL2 At3g03300

dcl2-6 Col-0 T-DNA N516557   

dcl3-1 Col-0 T-DNA N505512 Xie et al., 2003 DCL3 At3g43920

dcl3-2 Col-0 T-DNA Garlic_327_D02 Akbergenov et al, 
2006; Blevins et al, 
2006

DCL4 dcl4-2 Col-0 T-DNA Garlic_510_A03 Xie et al, 2005; 
Blevins et al., 2006 

RNase III At3g20420 dcl5-x Col-0 T-DNA N567855   

rdr1-1 Col-0 T-DNA Garlic_672_F11   RDR1 At1g14790

rdr1-2 Col-0 T-DNA N507638 Vazquez et al, 2004 

T
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Table A.3 continued

RDR2 At4g11130 rdr2-1 Col-0 T-DNA Garlic_1277_H08 Xie et al., 2004; 
Blevins et al., 2006 

RDR6 At3g49500 rdr6-15 Col-0 T-DNA Garlic_617_H07 Allen et al., 2004; 
Akbergenov et al, 
2006

sgs3-x Col-0 T-DNA Garlic_436_D09   SGS3 At5g23570

sgs3-y Col-0 T-DNA N501377   

sde3-x Col-0 T-DNA Garlic_447_D01   

sde3-y Col-0 T-DNA N503347   

SDE3 At1g05460

sde3-4 Col-0 T-DNA N592019 Vazquez et al, 2004 

hst-x Col-0 T-DNA N579289   HASTY At3g05040

hst15 Col-0 T-DNA N579290 Allen et al, 2005 

XRN4 At1g54490 xrn4-3 Col-0 T-DNA N514209 Gazzani et al., 2004 

wex-2 Col-0 T-DNA N503278 Vazquez et al, 2004 

wex-3 Col-0 T-DNA N618757   

wex-4 Col-0 T-DNA Garlic_506_F09   

wex-5 Col-0 T-DNA Garlic_450_C02   

WEX At4g13870

wex-6 Col-0 EMS tilling

miR824 locus mutants 

m1 At4g24415 m1 Col-0 T-DNA N500582   

m2 At4g24415 m2 Col-0 T-DNA N507098   

m3 At4g24415 m3 Col-0 T-DNA N542802   

m4 At4g24415 m4 Col-0 T-DNA N599968   

m5 At4g24415 m5 Col-0 T-DNA N638988   

m6 At4g24415 m6 Col-0 T-DNA N638986   

miR824 target

agl16-1 Col-0 T-DNA N604701   

agl16-w Col-0 T-DNA N591008   

agl16-x Col-0 T-DNA N604714   

agl16-y Col-0 T-DNA N555648   

AGL16 At3g57230

agl16-z Col-0 T-DNA N634080   

AGL16 clade members 

AGL15 At5g13790 agl15-x Col-0 T-DNA N576234   

AGL17 At2g22630 agl17-x Col-0 T-DNA N551003   

AGL21 At4g37940 agl21-x Col-0 T-DNA N511370   

anr1-x Col-0 T-DNA N549283   ANR1 At2g14210

anr1-y Col-0 T-DNA N543618   

other potential miR824 target mutants 

tm1-y Col-0 T-DNA N563375   At1g05930 At1g05930

tm1-z Col-0 T-DNA N593929   

tm2-y Col-0 T-DNA N604078   At1g65370 At1g65370

tm2-z Col-0 T-DNA N544365   

tm3-y Col-0 T-DNA N535507   At1g65150 At1g65150

tm3-z Col-0 T-DNA N648395   

stomatal mutants 

yda-1 Col-0 EMS N6392 Bergmann et al., 
2003

yda-2 Col-0 EMS N6393 Bergmann et al., 
2003

YODA At1g63700

yda-x Col-0 T-DNA N553981   

ER At2g26330 er-x Col-0 T-DNA N326027   

U
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Table A.3 continued

erl1-x Col-0 T-DNA N519567   ERL1 At5g62230

erl1-y Col-0 T-DNA N581669   

erl2-x Col-0 T-DNA N326261   ERL2 At5g07180

erl2-y Col-0 T-DNA N507643   

sdd1-x Col-0 T-DNA N343957   SDD1 At1g04110

sdd1-y Col-0 T-DNA N535559   

FLP At5g33970 flp-x Col-0 T-DNA N533970   

FMA At1g32585 fma-x Col-0 T-DNA N373701   

TMM At1g80080 tmm-x Col-4 T-DNA N528664   

candidates by profiling Col-0 vs. dcl3-1

pap25-x Col-0 T-DNA N525921   PAP25 At4g36350 

pap25-y Col-0 T-DNA N619551   

pap5-x Col-0 T-DNA N544236   PAP5 At1g52940 

pap5-y Col-0 T-DNA N581481   

ros1-x Col-0 T-DNA N545303   

ros1-y Col-0 T-DNA N564264   

ROS1 At2g36490

ros1-z Col-0 T-DNA N510549   

candidates by profiling Col-0 vs. wex-1

ARF-GAP At1g08680 arf-x Col-0 T-DNA N545055   

SNF2 At1g05120 snf2-x Col-0 T-DNA N630522   

LSD1-like At4g21610 lsd1-x Col-0 T-DNA N552918   

3'5'EXO At2g25910 exo-x Col-0 T-DNA N516153   

ENDONUCLEASE At4g21600 endo-x Col-0 T-DNA N542421   

ppr-x Col-0 T-DNA N530976   PPR At4g19220

ppr-y Col-0 T-DNA N530968   

RT-put At4g04000 rt1-x Col-0 T-DNA N550715   

KINASE At2g31880 kin1-x Col-0 T-DNA Garlic_623_D08   
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