
 

 
 

RNA Interference: 
A New Tool to Study Gene Functions 
in Adult Mammalian Muscle in vivo 

 
 
 

INAUGURALDISSERTATION 
 
 
 

zur 
Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der  
Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 
 

von 
 

Xian Chu Kong 
aus Nanhai (China) / Sissach (Schweiz) 

 
 
 

Basel, 2003 

Biozentrum der Universität Basel 





 

 

 

 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf 

Antrag der Herren Professoren Markus A. Rüegg und Witold Filipowicz. 

 

 

 

 

Basel, den 21. Oktober 2003 

 

 

Prof. Dr. Marcel Tanner 

Dekan 





 

 

 

 

 

献给 

我的双亲 

和 

献给周格伉俪 

 

 

 

Für 

meine Eltern 

und für 

Gertrud und Hans Zaugg 

 





Contents - 1 - 

Contents 

 

Abbreviation 3 

Summary  5 

Chapter 1 

 General Introduction 9 

  1.1 What is RNAi? 10 

  1.2. How does RNAi work? 11 

  1.3. Does RNAi work in mammals? 13 

  2.1. The neuromuscular junction 14 

  2.2. The core program agrin - MuSK – rapsyn – AChR 16 

  2.3. Gene expression at the neuromuscular junction 18 

  2.4. The mTOR signalling pathway and muscle growth 19 

Chapter 2 

 Inhibition of synapse assembly in mammalian muscle in vivo by 

RNA interference 23 

  1. Abstract 24 

  2. Introduction 25 

  3. Results 26 

  4. Discussion 33 

  5. Methods 35 

  6. Acknowledgments 37 

Chapter 3 

 In vivo synapse disassembly in mouse muscle by expression of 

long hairpin RNA 39 

  1. Abstract 40 

  2. Introduction 41 

  3. Results 44 



Contents - 2 - 

  4. Discussion 47 

  5. Methods 49 

  6. Acknowledgments 51 

Chapter 4 

 RNA interference as a new method to study gene expression 

during agrin induced differentiation in mouse muscle in vivo 53 

  1. Abstract 54 

  2. Introduction 55 

  3. Results 58 

  4. Discussion 63 

  5. Methods 65 

  6. Acknowledgments 66 

Chapter 5 

 General Discussion 67 

Appendix 

 Design and analysis of small hairpin RNAs used to silence the 

expression of mTOR and its putative interactors in mouse muscle 

in vivo  75 

  1. Abstract 76 

  2. Introduction 77 

  3. Results 81 

  4. Discussion 86 

  5. Methods 88 

  6. Acknowledgments 89 

References  91 

Acknowledgements 113 

Curriculum Vitae 115 

 



Abbreviation - 3 - 

Abbreviation 

 

4E-BP   eIF-4E binding protein 

AChR   acetylcholine receptor 

ARIA   AChR inducing activity 

AVO1 or 3  adheres voraciously to TOR2 no. 1 or 3 

CD4   cluster of differentiation 4 

dsRNA   double-stranded RNA 

eIF-4E   eukaryotic initiation factor 4E 

GFP   green fluorescent protein 

mAVO3   mammalian adheres voraciously to TOR2 no. 3 

miRNA   micro RNA 

mLST8   mammalian lethal with sec-thirteen 8 

mRNA   messenger RNA 

mTOR   mammalian target of rapamycin 

MuSK   muscle-specific receptor tyrosine kinase 

N-CAM   neural cell adhesion molecule 

NLS_GFP  nuclear localization signal fused to green fluorescent protein 

NMJ   neuromuscular junction 

nt   nucleotide 

PI3K   phosphatidylinositol 3-kinase 

PIKK   phosphatidylinositol kinase-related protein kinase 

PKD1   3-phosphoinositide-dependent protein kinase-1 

PP2A   protein phosphatase 2A 

PTGS   post-transcriptional gene silencing 

RdRP   RNA-dependent RNA polymerase 

RISC   RNA-dependent silencing complex 

Rheb   Ras homolog enriched in brain 

RNAi   RNA interference 
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shRNA   small hairpin RNA 

S6K   ribosomal S6 protein kinase 

SGCA   sarcoglycan α 

SIN1   sty1 interactor 

siRNA   small interfering RNA 

TSC1 or 2  tuberous sclerosis complex 1 (harmartin) or 2 (tuberin) 
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Summary 

 

RNA interference (RNAi) is a powerful method for sequence-specific post-

transcriptional gene silencing (PTGS), which allows rapid survey of gene functions using 

double-stranded RNA (dsRNA). At the time when we started this work, RNAi was a 

recently developed tool that had been successfully applied to many organisms, in 

particular C. elegans and Drosophila, but not to any mammalian system. It was generally 

doubted that RNAi would also work in mammals in vivo, because the introduction of 

dsRNA can induce general shutdown of translation and apoptosis in several mammalian 

cell types. One excellent model system for investigating this open question is the nerve-

muscle synapse known as the neuromuscular junction (NMJ). 

Characteristic for the NMJ is the precise apposition of the neurotransmitter 

release machinery on the nerve terminal side and the neurotransmitter receptors on the 

muscle fiber membrane. At least two mechanisms underlie the formation and 

maintenance of a postsynaptic apparatus on the muscle fiber membrane. Both 

mechanisms are triggered by the heparan sulfate proteoglycan agrin, which is released 

by the motor neuron. First, neural agrin activates all the cellular mechanisms necessary 

to assemble a fully functional postsynaptic structure including aggregates of acetylcholine 

receptors (AChRs). Besides this redistribution of preexisting molecules, agrin signaling 

restricts the transcription of postsynaptic proteins to myonuclei located in the NMJ. Still 

little is known about the agrin signaling cascade. Therefore, once RNAi could be 

developed for mammals system, it will in turn provide a unique tool to address the role of 

newly identified genes in the postsynaptic differentiation, since there are no tools 

available for the fast and reliable perturbation of gene function in vivo. 

In the first part of this work, we investigated the potential of RNAi in perturbing 

the formation and stability of postsynaptic structures in adult muscle in vivo (chapter 2 

and 3). First, we used the experimental paradigm where neural agrin expressed in non-

junctional regions of rat soleus muscle induces formation of ectopic AChR aggregates. 

Knockout experiments have shown that this agrin activity requires the receptor tyrosine 
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kinase MuSK and the AChR-associated scaffolding molecule rapsyn, but not the 

cytoskeletal proteins sarcoglycan α (SGCA) and utrophin. In our experiments, we show 

that co-injection of dsRNAs derived from MuSK or rapsyn perturbed agrin-induced 

formation of ectopic AChR aggregates, while dsRNAs derived from SGCA or utrophin had 

no significant effect. In a further step, we used RNAi to study the role of MuSK at adult 

NMJs. Here, the electroporation of plasmids encoding short hairpin-based 21-bp small 

interfering RNAs (siRNAs) or long hairpin dsRNAs, which allow global and sustained 

perturbation of MuSK expression, leads to the disassembly of NMJs in adult mice. These 

results are consistent with the finding that auto-antibodies to MuSK, which also lower the 

amount of MuSK protein, cause severe forms of myasthenia gravis. In summary, these 

results demonstrate for the first time the effectiveness of long dsRNA as well as siRNA in 

silencing endogenous genes in adult mammalian muscle in vivo and they provide strong 

evidence that continuous expression MuSK is required to maintain the NMJ. 

The second part of this work aimed to establishing RNAi in adult muscle to study 

the role of newly identified genes in the development of the NMJ and in the growth of 

muscle fibers (chapter 4 and appendix). First, we used RNAi to perturb neural agrin-

induced formation of ectopic AChR aggregates on mouse soleus muscle. We show that 

electroporation of plasmids encoding short hairpin- derived siRNA for MuSK leads to the 

perturbation of ectopic AChR aggregation, regardless whether agrin expression vector or 

recombinant protein was applied to innervated or denervated muscles. These results 

clearly show the reliability of RNAi in adult muscle in vivo and therefore set the stage for 

experiments aimed to study the function of genes, whose expression is altered during the 

formation postsynaptic structures. A protocol was established to identify functional siRNA 

target sites in several genes. Plasmids were designed that encoded short hairpin RNAs 

(shRNAs) derived from different putative effectors of the mammalian target of rapamycin 

(mTOR) signaling pathway. For some candidate effectors, electroporation of the 

corresponding plasmids into mouse soleus muscle leads to altered muscle fiber size. 

These preliminary results are consistent with several reported findings, which indicate 

that the mTOR signaling pathway is a central controller of muscle fiber atrophy and 

hypertrophy. The efficiently induced RNAi in those experiments demonstrates that our 
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protocol is useful for identifying siRNA targets. In summary, these results demonstrate 

that we have successfully established RNAi as a fast and reliable gene knockdown 

method in muscle fibers of mammals. This method will be important for future 

investigation of gene functions in adult mammalian muscle in vivo. 
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Chapter 1 

 

General Introduction 

 

Gene targeting by homologous recombination is commonly used to determine 

gene function in mammals, but this process is costly, time-consuming and where the 

gene in question plays a dual role in development, it can lead to premature death of the 

animals and an inability to study further gene functions. In addition, many organisms are 

not amenable to such methods. Alternatively, the function of many genes can be 

determined by ribozyme and antisense technologies. Although successful in some 

situations, these technologies have proven difficult to apply universally (Sullenger and 

Gilboa, 2002; Kitabwalla and Ruprecht, 2002; Dornburg and Pomerantz, 2000). At the 

time this work was started, RNAi was a recently developed method for gene silencing. 

This tool had allowed rapid and reliable survey of gene functions in many organisms, in 

particular C. elegans and Drosophila (reviewed in Dykxhoorn et al., 2003). These 

significant advantages over the current methods had made RNAi a powerful tool. 

However, in mice, successful use of RNAi had been only observed in oocytes and early 

embryos, but not in adult animals (Wianny and Zernicka-Goetz, 2000; Svoboda et al., 

2000). To investigate the virtue of RNAi in mammals in vivo, the NMJ provided an 

excellent model system. Next to the large size, the relative simplicity and the simple 

accessibility of the nerve-muscle synapse, the easy way to localize the postsynapse 

using a snake toxin - α-bungarotoxin - which binds specifically to AChRs, and the large 

size of the syncytial muscle fibers are the most appreciated experimental advantages of 

this system. In this work, we used these advantages of the NMJ to demonstrate for the 

first time the effectiveness of RNAi in silencing endogenous genes in adult mammalian 

muscle in vivo. This finding allowed us to use RNAi for knocking down gene function in 

muscle fiber. 
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The first part of this chapter will describe the gene silencing phenomenon RNAi 

from its discovery and mechanism to the recent developments that have made RNAi a 

unique tool for gene function studies. In context to the investigation of the virtue of RNAi 

in adult mammalian muscles, the second part will give an introduction into the structural 

and molecular composition of the NMJ, the gene expression at the postsynaptic part of 

the NMJ and the putative function of the mTOR complex in muscle fiber. 

 

 

1.1 What is RNAi? 

 

RNAi is the sequence-specific post-transcriptional gene silencing. This process is 

induced by double stranded RNA (dsRNA) that directs destruction to the homologous 

messenger RNA (mRNA), resulting in the shutdown of the target gene expression, which 

is also known as gene knockdown. In 1998, RNAi was first discovered in C. elegans as a 

response to injection of dsRNA (Fire et al., 1998). This phenomenon has been linked to 

many previously described homology-dependent gene silencing mechanisms such as co-

suppression, transgene-induced silencing and RNA-mediated virus resistance in plants 

(Napoli et al., 1990; van der Krol et al., 1990; Lindbo and Dougherty, 1992) and quelling 

in Neurospora (Romano and Macino, 1992). Genetic and biochemical studies have 

shown that all these phenomena share mechanistic similarities, and that the biological 

pathways underlying dsRNA-induced gene knockdown may exist in many eukaryotic 

organisms. Indeed, the experimental introduction of dsRNA in a variety of organisms, in 

particular in Drosophila (Kennerdell and Carthew, 1998; Kennerdell and Carthew, 2000), 

zebrafish (Li et al., 2000), Xenopus embryos (Zhou et al., 2002), mouse oocytes and 

embryos (Wianny and Zernicka-Goetz, 2000; Svoboda et al., 2000), and chicken embryos 

(Pekarik et al., 2003. Furthermore, the RNA silencing pathways in different organisms 

require a set of related proteins, which are absent in archea and prokaryotes, suggesting 

that the common aspects of the pathways are quite ancient (Zamore, 2002). 
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1.2. How does RNAi work? 

 

The natural function of RNA silencing in plants is very likely the protection against 

virus infection and uncontrolled transposon mobilization (Ahlquist, 2002). Further, an 

animal virus encoding a suppressor of RNAi has been reported (Li et al., 2002), and C. 

elegans, which lost function of genes required for RNAi, show activation of multiple 

transposable elements in the germline (Ketting et al., 1999). These findings indicate that 

RNAi may have an anti-viral and anti-transposon function in animal as well (reviewed in 

Plasterk, 2002 and Zamore, 2002). Here, the ‘classical’ pathway of the RNAi machinery 

guarantees this defense function (Fig. 1): Destruction of messenger RNA (mRNA) 

exposed to the homologous dsRNA. In detail, cytoplasmatical long dsRNA can derived 

from exogenous sources, viral infection, transposon activity or RNA synthesis by 

endogenous RNA-dependent RNA polymerases (RdRPs) using ‘aberrant’ transcripts of 

highly expressed loci as templates (Grishok et al., 2000). These dsRNAs are cleaved by 

Dicer, a RNase III family member, into small interfering RNA (siRNA) in an ATP-

dependent reaction (Bernstein et al., 2001; Nykanen et al., 2001). These siRNAs are 21 

to 23 nucleotide (nt) RNA duplexes with phosphorylated 5’ ends and with two-nucleotides 

overhanging at the non-phosphorylated 3’ ends (Elbashir et al., 2001a; Elbashir et al., 

2001b). After their incorporation into the RNA-dependent silencing complex (RISC), 

siRNAs are unwound in an ATP-dependent step (Hammond et al., 2001; Hammond et al., 

2000; Nykanen et al., 2001). The resulting single-stranded antisense strand then guides 

RISC to mRNA that have a complementary sequence, and the endonuclease in the RISC 

cleaves the target mRNA. Alternatively, in organisms with RdRP activity, such as in C. 

elegans, an additional branch of the pathway with siRNA amplification is suggested (Sijen 

et al., 2001). Here, the binding of the antisense strand of the siRNA to the target mRNA 

would lead to activation of the RdRP, which probably uses the mRNA as a transcription 

template to synthesize a new dsRNA. Like the initial step, this dsRNA would then be 

cleaved by Dicer to generate a new crop of siRNAs, resulting in amplification of the 
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silencing signal. Altogether, both variants of the pathway lead to sequence-specific gene 

silencing mediated by destruction of the target mRNA. 

Next to this dsRNA-induced defense operating at the post-transcriptional level, 

the RNAi machinery may modulate gene expression in animals through at least two 

additional mechanisms. First, several studies have suggested that in Drosophila and C. 

elegans the RNAi machinery may affect gene expression at the level of chromatin 

structure (Pal-Bhadra et al., 1997; Pal-Bhadra et al., 2002; Tabara et al., 1999; Dudley et 

al., 2002). Finally, in C. elegans, endogenously encoded inducers of the RNAi machinery, 

called micro RNA, operate at the level of translation (Wightman et al., 1993). The 

conservation of at least some targets of these silencing inducers in other organisms 

(Reinhart et al., 2000) indicates that RNAi may be a further common mechanism 

regulating the expression of cellular genes. 

 

 

 

 

Figure 1: 

Overview of 

the 

molecular 

steps in the 

RNAi 

pathway. 

From 

Plasterk, 

2002. 
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1.3. Does RNAi work in mammals? 

 

RNAi induced by the introduction of long dsRNA has been rapidly established in 

various organisms. It provides a fast and reliable method to study function of genes. In 

vertebrates, dsRNA-mediated RNAi has been observed in a few cultured mammalian 

cells (Billy et al., 2001; Gan et al., 2002; Elbashir et al., 2001a), in mouse oocytes 

(Svoboda et al., 2000) and in mouse and chicken embryos during early development. 

(Wianny and Zernicka-Goetz, 2000; Pekarik et al., 2003). However, its applicability is 

limited, since the introduction of dsRNA longer than 30 nt induces a nonspecific interferon 

response (Paddison et al., 2002b; Stark et al., 1998). Interferon triggers the general 

degradation of mRNA and the global shutdown of translation, leading to cell apoptosis. 

This non-specific response can be circumvented by introduction of siRNA that maintain 

their capability to induce RNAi (Elbashir et al., 2001a; Dykxhoorn et al., 2003). This 

finding has led to the widespread application of siRNA to study gene functions in cultured 

mammalian cells and has recently also been show to work in adult animals in vivo (Lewis 

et al., 2002; McCaffrey et al., 2002; Song et al., 2003; reviewed in Dykxhoorn et al., 

2003). Unlike in C. elegans where siRNAs can be amplified, there is no indication of 

signal amplification in mammals (see above), nor have orthologous genes for RdRPs 

been found in the human genome (Zamore, 2002). Therefore, siRNA-induced RNAi in 

mammals is only of transient nature and not suited for long-term studies. To overcome 

this limitation, DNA-vector mediated expression of small hairpin RNA (shRNA), which is 

predominantly driven by the U6 or H1 RNA polymerase III promoter, has been 

established. shRNA is converted into siRNA in vivo and triggers efficiently gene silencing 

(Brummelkamp et al., 2002; McManus et al., 2002; Paddison et al., 2002a; Paddison et 

al., 2002b; Paul et al., 2002; Sui et al., 2002; Yu et al., 2002). In a further advancement of 

the technique, plasmid vectors have been replaced by retrovirus vectors (reviewed in 

Dykxhoorn et al., 2003). Using this system, siRNAs are efficiently delivered into cell lines, 

into which plasmid transfection is difficult or does not work at all. With the use of vectors 

encoding siRNA, it is now possible to generate transgenic mammals that can stably 
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silence gene expression, even in those animals that are not amenable to homology-

directed gene targeting methods (Gordon, 1993; Carmell et al., 2003; Hasuwa et al., 

2002; Lois et al., 2002; Tiscornia et al., 2003). In such knockdown animals, RNAi induced 

by siRNA is stable, heritable and functions in all developmental stages and in all the cell 

and tissue types tested so far. 

 

 

2.1. The neuromuscular junction 

 

 The neuromuscular junction (NMJ) is the site of communication between nerve 

and muscle fiber. This nerve-muscle synapse, responsible for quick and accurate 

transduction of electrical signals from motor neurons to muscle fibers, consists of three 

cell types: motor neuron, Schwann cell and muscle fiber (reviewed in Engel, 1994; Ogata, 

1988; Sanes and Lichtman, 1999; Sanes and Lichtman, 2001) (Fig. 2). At the 

presynapse, the nerve terminal is insulated from the environment by the capping 

Schwann cell. Here, the electrical signal is transformed into a chemical signal by release 

of the neurotransmitter acetylcholine into the synaptic cleft, the space between the nerve 

terminal and the muscle fiber. At the postsynaptic muscle membrane, nicotinic AChRs 

open upon binding of acetylcholine and allow the influx of cations. Voltage-gated Na+ 

channels open in response to the resulting depolarization and generate an action 

potential, leading to a muscle contraction due to release of Ca2+ from the sarcoplasmic 

reticulum (reviewed in Franzini-Amstrong, 1994; Horowitz, 1994). Muscle fibers are long, 

tube-like syncytial cells able to contract along their longitudinal axis. To ensure movement 

generated by muscle tension and contraction, muscle fibers are attached at both ends to 

bone via tendons and the cell’s cytoskeleton is linked to the surrounding basement 

membrane (Anastasi et al., 1998; Pardo et al., 1983). Perturbations of this linkage often 

lead to muscle dystrophies. 

 The synaptic portion of all three cell types are highly specialized, containing high 

concentrations of organelles and molecules found at low concentration extrasynaptically. 
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In particular, the postsynaptic part of the muscle fiber membrane contains an extremely 

high concentration of AChRs (reviewed in Salpeter and Loring, 1985) allowing it to 

respond quickly and reliably to acetylcholine release from the opposed neural terminal. 

Additionally, signaling molecules such as neuregulin and its receptors erbB2, erbB3 and 

erbB4 (Moscoso et al., 1995; Zhu et al., 1995), the muscle-specific tyrosine kinase MuSK 

(Valenzuela et al., 1995) as well as the α1, α7A and α7B integrins are enriched at the 

postsynaptic membrane (Martin et al., 1996). 

 Another feature of the postsynaptic membrane is the junction fold: deep 

invaginations opposing active zones of the nerve terminal, with Na+ channels and the 

neural cell adhesion molecule (N-CAM) concentrated in the depths of the folds, and 

AChRs at the crests of the folds. Intracellulary, rapsyn, utrophin and α-dystrobrevin-1 are 

colocalized with AChRs (Caldwell, 2000; Covault and Sanes, 1986; Flucher and Daniels, 

1989), while ankyrin, α-dystrobrevin-2 and dystrophin are concentrated at the bottom of 

Figure 2: Structure 

and molecular 

composition of the 

NMJ. In boldface: 

proteins for which 

knockout mice have 

been generated. 

From Sanes and 

Lichtman, 1999. 
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the junction folds (Covault and Sanes, 1986; Flucher and Daniels, 1989; Peters et al., 

1998; Sealock et al., 1984; Wood and Slater, 1998). 

 The basement membrane that runs through the synaptic cleft and invades the 

junction folds has the most components identical to those found outside of the NMJ. 

Despite this similarity, distinct isoforms of many molecules are found at the NMJ, in 

particular specific laminin chains like laminin-α4, α5 and β2 (Patton et al., 1997), a 

collagen-tailed form of acetylcholinesterase (Krejci et al., 1997) and as described in 

further detail below, agrin. 

 

 

2.2. The core program agrin - MuSK - rapsyn - AChR 

 

The formation of the NMJ requires the intricate interaction of signals derived from 

the innervating motor neurons and the target muscle fibers (reviewed in Sanes and 

Lichtman, 2001). Among the earliest signs of postsynaptic differentiation is the 

aggregation of AChRs beneath the innervating nerve terminal. Several lines of evidence 

demonstrate that the nerve-derived extracellular matrix protein agrin is necessary and 

sufficient to trigger a signaling cascade resulting in the assembly of the entire 

postsynaptic apparatus (McMahan, 1990; Bezakova and Ruegg, 2003). In particular, in 

agrin-deficient mice, postsynaptic differentiation is profoundly impaired (Gautam et al., 

1996). Conversely, neural agrin deposited on the basement membrane by secretion upon 

intracellular expression plasmids injection or by intramuscular recombinant protein 

injection induces ectopic postsynaptic differentiation in extrasynaptic region of fully 

innervated muscle fibers (Bezakova et al., 2001a; Jones et al., 1997; Meier et al., 1997; 

Cohen et al., 1997; Rimer et al., 1997). 

Agrin is a heparan sulfate proteoglycan (Denzer et al., 1995; Tsen et al., 1995) 

that is released from the nerve terminal and incorporated in the basement membrane of 

the NMJ by binding to laminin (Cohen and Godfrey, 1992; Denzer et al., 1997; Reist et 

al., 1992). Alternative mRNA splicing at the A/y and the B/z sites close to the 3’ end 
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results in agrin isoforms that differ in tissue distribution and postsynapse induction activity 

(reviewed in Bezakova and Ruegg, 2003). Nerve-derived isoforms contain additional 

amino acids at the B/z sites and are active in triggering postsynaptic differentiation, 

whereas those derived from non-neuronal tissue lacking the essential inserts at the B/z 

sites have modest activity. Currently, the function of this so called muscle agrin is 

unknown. 

Downstream of the agrin signaling pathway, two molecules have been identified: 

the transmembrane muscle-specific receptor tyrosine kinase, MuSK and the cytoplasmic 

adaptor molecule, rapsyn (Gautam et al., 1995). Both MuSK and rapsyn are essential for 

the formation of postsynaptic specialization. The findings that MuSK colocalizes with 

AChRs in the postsynaptic membrane (Valenzuela et al., 1995), that MuSK becomes 

rapidly phosphorylated upon addition of neural agrin to cultured myotubes (Glass et al., 

1996) and that MuSK-deficient mice are phenotypically similar to agrin knockout mice 

(DeChiara et al., 1996) indicate that MuSK is very likely part of the agrin receptor, even 

though it does not directly interact with agrin. In addition, based on the discovery that 

auto-antibodies to MuSK cause myasthenia gravis, it has been suggested that MuSK is 

necessary to maintain the integrity of postsynaptic structures (Hoch et al., 2001). 

Downstream of MuSK, the function of rapsyn is critical for the aggregation of postsynaptic 

proteins. Rapsyn and AChRs are exactly colocalized at the crests of the synaptic fold and 

are present in a 1:1stoichiometry (Burden et al., 1983; Noakes et al., 1993; Sealock et al., 

1984). In rapsyn knockout mice, all synaptic proteins except MuSK fail to assemble in the 

postsynaptic membrane (Apel et al., 1997; Gautam et al., 1995), indicating that MuSK is 

activated and clustered by agrin in a primary scaffold and rapsyn is important to recruit 

other synaptic components like AChR to that scaffold. 
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2.3. Gene expression at the neuromuscular junction 

 

In addition to the aggregation of AChRs and other postsynaptic proteins, a 

second important process contributes to NMJ formation: the targeting gene expression to 

synaptic sites. In innervated muscle, transcription of AChR subunits and other synaptic 

genes is far higher in the myonuclei directly beneath the NMJ than all other extrasynaptic 

myonuclei (Duclert and Changeux, 1995). At early non-innervated stages of development, 

AChR subunits transcripts are distributed over the entire muscle fiber. Soon after the 

initial contact between nerve terminal and muscle fibers, transcription of AChR subunits is 

restricted to the postsynaptic site and repressed in extrajunctional regions (Piette et al., 

1993). The expression of the AChRε subunit follows a different pattern. It is switched on 

only around birth (Mishina et al., 1986; Witzemann et al., 1987) and is restricted to 

synaptic sites from the onset (Brenner et al., 1990). In addition, ectopic expression of 

neural agrin in extrasynaptic regions of innervated muscle was shown to induce the 

transcription of the AChRε unit (Jones et al., 1997). 

The transcription of AChR subunits is the first example for reinforced expression 

at the NMJ. Expression of additional synaptic genes may be similarly regulated. 

Neuregulin, which was isolated as factor with AChR inducing activity (ARIA) from brain 

tissues, induces expression of AChRs, but failed to cluster them (Usdin and Fischbach, 

1986). Neuregulin and its receptors, erbB2, erbB3 and erbB4 are accumulated at the 

NMJ (Goodearl et al., 1995; Jo et al., 1995; Moscoso et al., 1995; Zhu et al., 1995). Thus, 

alterations in postsynaptic gene expression are suggested to be an indirect effect of agrin 

affecting the activation of the neuregulin/erbB receptor signaling pathway (Meier et al., 

1998; Rimer et al., 1998; Fischbach and Rosen, 1997). 

Electrical activity plays a central role in the repression of extrasynaptic AChR 

expression during development and in the maintenance of the repressed state in the 

adult. This repression is overcome by denervation, resulting in restoration of the 

transcription of AChR subunit genes in extrasynaptic myonuclei (Merlie et al., 1984; Tsay 

and Schmidt, 1989). Moreover, direct electrical stimulation of denervated muscle prevents 
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or reverses the effects of denervation (Goldman et al., 1988). However, blockade of 

synaptic transmission by Na+ channel blocker tetrodotoxin (TTX) has much lower effect 

on AChR expression (Witzemann et al., 1991). This indicates that additional regulatory 

mechanisms independent of electrical activity contribute to the repression of the 

extrasynaptic AChR genes. Thus, the transcription of postsynaptic genes in innervated 

muscle fibers is regulated by different mechanisms, parallely enhanced at the NMJ and 

repressed at extrasynaptic sites. Stimulation of postsynaptic gene expression is likely 

warranted by provision of agrin to muscle fibers, whereas repression can be mainly 

achieved by electrical activity.  

In the past, evidence has been provided that the principal mechanisms of 

synaptic transmission are identical at the NMJ and CNS synapses. It is very likely that the 

molecular principals govern the formation and the maintenance of synapses are also 

similar. Therefore, the developmental and the preserving mechanisms identified at the 

NMJ could be relevant to other chemical synapses in the CNS (reviewed in Sanes and 

Lichtman, 1999). 

 

 

2.4. The mTOR signalling pathway and muscle growth 

 

Cell growth is the fundamental biological process whereby cells accumulate mass 

and is a crucial determinant of the characteristic sizes of organs and organisms (Conlon 

and Raff, 1999; Dixon and Fordham-Skelton, 1998; Gomer, 2001; Johnston and Gallant, 

2002; Stocker and Hafen, 2000). The mTOR - mammalian ‘target of rapamycin’ - 

signaling pathway is emerging as a critical regulator of growth in proliferating and non-

proliferating cells, such as neurons and muscle fibers, in response to nutrients, hormones 

and growth factors (reviewed in Jacinto and Hall, 2003). 

The key component of the pathway, mTOR, was discovered in assessments of 

the mechanism of action of rapamycin (Brown et al., 1994; Sabatini et al., 1994; Sabers 

et al., 1995), which is clinically applied as immunosuppressant and anti-cancer drug with 
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antiproliferative and antifungal activity (Saunders et al., 2001; Vogt, 2001). mTOR is a 

member of the phosphatidylinositol kinase-related protein kinase (PIKK) family (Keith and 

Schreiber, 1995) and is highly conserved in many organisms (Jacinto and Hall, 2003). It 

controls directly, or indirectly via inhibition of protein phosphatase 2A (PP2A), the 

phosphorylation of at least two regulators of protein synthesis (Figure 3): the translation 

activator S6 protein kinase (S6K) and the eIF-4E binding protein (4E-BP), an inhibitor of 

translation initiation (Brunn et al., 1997; Burnett et al., 1998; Isotani et al., 1999). 

Phosphorylation of S6K and 4E-BP promotes translation via the ribosomal protein S6 and 

the eukaryotic initiation factor 4E (eIF-4E), respectively. 

In mammalian cells, growth is stimulated by a combination of growth factors and 

nutrients. The mTOR pathway mediates growth factor signaling through the 

phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B)/3-phosphoinositide-dependent 

protein kinase-1 (PKD1) axis, which is also part of the insulin signaling pathway (Jacinto 

and Hall, 2003). Activated Akt phosphorylates the tuberous sclerosis (TSC) complex and 

prevents it to inactivate mTOR (Gao et al., 2002; Inoki et al., 2002; Potter et al., 2002; 

Tee et al., 2002). The TSC complex consists of TSC1 and TSC2. Mutation in either of 

both leads to a tumor-prone syndrome (Sparagana and Roach, 2000). Recently, several 

reports showed that the inhibitory effect of the TSC complex on mTOR is mediated by the 

Figure 3: Cell 

growth initiated 

by signals from 

nutrients and 

growth factors 

via the mTOR 

signaling 

pathway. See 

text for details. 

From Jacinto 

and Hall, 2003. 
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small G protein, Rheb (Ras homolog enriched in brain) (e.g. Garami et al., 2003; Zhang 

et al., 2003; Saucedo et al., 2003). The mTOR pathway is highly sensitive to the levels of 

nutrients, such as amino acids (Hara et al., 1998) and glucose (Dennis et al., 2001; Kim 

et al., 2002), but the mechanisms of how nutrients activate the mTOR complex are still 

unknown. Raptor (regulator associated protein of TOR) and mLST8 (mammalian lethal 

with sec-thirteen 8) are stimulators of mTOR kinase activity (Kim et al., 2003; Kim et al., 

2002). It has been proposed that raptor functions as a scaffold protein that links mTOR to 

S6K and 4E-BP (Hara et al., 2002), and that the interaction between mTOR and raptor is 

nutrient sensitive (Kim et al., 2002) and its formation requires mLST8 (Kim et al., 2003). 

Further investigations are necessary to precisely determine the role of raptor and mLST8 

and probably TSC1 and TSC2 in regulating mTOR activity in response to nutrients. In 

summary, as phosphorylation of S6K and 4E-BP in response to both insulin and nutrients 

is mediated by mTOR, it integrates nutrients and insulin signaling to control cell growth. 

Skeletal muscle mass is controlled by several factors including insulin, amino 

acids and the degree of muscle activity (Baar and Esser, 1999; Bodine et al., 2001; 

Hornberger et al., 2001; Shah et al., 2000). Loss of muscle mass is a hallmark of diabetes 

and is stopped by insulin restoration, which increases muscle protein synthesis (Charlton 

and Nair, 1998; Price et al., 1996; Flaim et al., 1980; Grzelkowska et al., 1999; Pain and 

Garlick, 1974). Certain amino acids, especially branched chain amino acids stimulate 

protein synthesis in muscles (Shah et al., 2000). The effects of both insulin and amino 

acids involve enhanced translation mediated by increasing the mTOR-controlled 

phosphorylation of S6K and 4E-BP (Azpiazu et al., 1996). Increasing the workload on a 

muscle promotes hypertrophy (Roy et al., 1997), and unloading a muscle leads to atrophy 

(Thomason et al., 1987). Muscle hypertrophy requires an increase in the rate of protein 

synthesis and signaling by mTOR and the insulin-growth factor 1 (IGF1) pathways 

(Rommel et al., 2001; Bodine et al., 2001; Musaro et al., 1999; Semsarian et al., 1999). In 

addition to the prominent role of the calcineurin-nuclear factor of activated T cells (NFAT) 

pathway, Akt and mTOR play an important role in muscle hypertrophy. Upon stimulation 

by IGF1, Akt promotes translation by the phosphorylation of the mTOR targets S6K and 

4E-BP (Rommel et al., 2001; Bodine et al., 2001; Pallafacchina et al., 2002) and directly 
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phosphorylates mTOR (Reynolds et al., 2002). Specific overexpression of activated Akt in 

the heart of transgenic mice results in enlarged cardiomyocytes, which are rapamycin-

sensitive, indicating that the effect is mediated by mTOR (Shioi et al., 2002). Taken 

together, the muscle cell growth is critically regulated by the mTOR signaling pathway. 
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Abstract 

 

The formation of the vertebrate neuromuscular junction (NMJ) requires the 

receptor tyrosine kinase MuSK and the adaptor molecule rapsyn. Here, we report that the 

phenotypes of mice deficient of these two molecules can be reproduced by RNA 

interference (RNAi) in rat muscle in vivo. Specifically, double-stranded RNA (dsRNA) 

targeting MuSK and rapsyn inhibited the formation of the NMJ in rat muscle fibers in vivo, 

while dsRNA targeting non-essential proteins did not have any effect. Moreover, plasmids 

encoding short hairpin RNA (shRNA) corresponding to MuSK induced the disassembly of 

existing NMJs. These results thus demonstrate for the first time the functionality of 

dsRNA in silencing endogenous genes in adult mammalian muscle in vivo. Moreover, 

they show that MuSK is also required for the maintenance of the NMJ, offering a 

mechanistic explanation for the myasthenia gravis caused by auto-antibodies to MuSK. 
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Introduction 

 

The molecular mechanisms responsible for the formation of synapses are best 

understood at the NMJ (reviewed in Sanes and Lichtman, 2001). Several lines of 

evidence demonstrate that nerve-derived agrin is required and sufficient for the assembly 

of the entire postsynaptic apparatus (Bezakova and Ruegg, 2003). Moreover, NMJ 

formation requires the muscle-specific receptor tyrosine kinase MuSK (DeChiara et al., 

1996) and the cytoplasmic adaptor molecule rapsyn (Gautam et al., 1995). All these data 

were generated by genetically engineering mice that are deficient of the particular protein.   

 A promising technique that may allow a more straightforward and faster 

assessment of gene function in vivo than current knockout techniques might be RNAi. 

This technique employs long dsRNA or short, 21-23 bp-long short interfering RNA 

(siRNA) that trigger specific silencing of gene expression (Tijsterman et al., 2002). 

However, long dsRNA has not successfully been applied to mammals because it seems 

to induce a general shutdown of translation and apoptosis of the cell (Paddison et al., 

2002b). This unspecific reaction is not observed with siRNA (Elbashir et al., 2001a; 

McCaffrey et al., 2002; Lewis et al., 2002). The disadvantage of siRNA is that only some 

siRNAs are efficient in silencing gene transcription (McManus and Sharp, 2002) and that 

the effect of siRNA lasts only for a few days. In a further advancement of the technique, 

siRNA has been replaced by plasmids encoding shRNA, what enabled prolonged and 

stable suppression of gene expression in vivo (Brummelkamp et al., 2002; Yu et al., 

2002; Rubinson et al., 2003 McCaffrey et al., 2002). Here we demonstrate that long 

dsRNA can be used in adult muscle to perturb the function of endogenous genes and that 

prolonged exposure of muscle fibers to plasmids encoding shRNA for MuSK induces the 

disassembly of existing NMJs. 
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Results 

 

Here we investigated whether dsRNA-mediated RNAi could be used to study the 

function of genes in the formation of postsynaptic structures in muscle fibers in vivo. We 

injected 591- to 686 bp-long dsRNA derived from different genes in conjunction with 

plasmids encoding neural agrin and green fluorescent protein fused to a nuclear 

localization signal (NLS_GFP) into non-synaptic regions of rat soleus muscle (Fig. 1A). 

As described previously (Cohen et al., 1997; Meier et al., 1997), injection of expression 

plasmids coding for neural agrin was sufficient to induce postsynaptic specializations in 

non-synaptic regions (Fig. 1A, right). These specializations are characterized by the 

accumulation of AChRs (red in Fig. 1A) on the surface of injected (GFP-positive; green in 

Fig. 1A) and neighboring non-injected muscle fibers (Fig. 1B). To test whether co-

injection of dsRNA exerts any unspecific effect on protein synthesis, we injected dsRNA 

derived from cDNA encoding CD4 (Benoist and Mathis, 1999). As shown in Figure 1C, 

postsynaptic structures formed in the presence of dsRNACD4 were indistinguishable from 

controls and AChR clusters were found on injected and on neighboring muscle fibers. To 

test whether we could observe specific RNAi, we next co-injected dsRNA corresponding 

to MuSK (dsRNAMuSK). MuSK is an essential signaling component for NMJ formation that 

is activated by neural agrin (Glass et al., 1996). Thus, effective dsRNAMuSK should 

prevent the formation of postsynaptic specializations in response to neural agrin in the 

injected muscle fiber. Indeed, AChR clusters were only rarely detected on injected muscle 

fibers while they were readily detected on neighboring, non-injected muscle fibers (Fig. 

1D). Thus, the effect of dsRNA remains restricted to the injected muscle fibers indicating 

that dsRNA does not cross cell boundaries in mammalian muscle, a phenomenon that 

has been reported in C. elegans (Winston et al., 2002). As a further test for the specificity 

of the inhibitory activity of dsRNAMuSK, we also co-injected dsRNASGCA derived from α-

sarcoglycan, a protein that is highly expressed in muscle fibers but is not necessary for 

the formation of NMJs (Duclos et al., 1998). In this case, AChR clusters were formed both 

on injected and neighboring muscle fibers (Fig. 1E). To test the universality of the 
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method, we also examined the effect of dsRNArapsyn, which was derived from rapsyn, an 

adaptor molecule essential for the clustering of AChRs (Gautam et al., 1995). No AChR 

clusters were detected in dsRNArapsyn-containing muscle fibers while such clusters were 

Figure 1: Inhibition of the formation of postsynaptic structures by dsRNA. (A) Schematic 

representation of the injection of cDNA constructs at non-synaptic regions of single muscle fibers of 

rat soleus muscle (left). Injection pipette containing expression plasmids NLS_GFP and neural 

agrin. dsRNA was added in RNAi experiments. Injected muscle fibers contain GFP-positive 

myonuclei (green) and aggregates of postsynaptic proteins including AChRs (red). The frame 

symbolizes the view shown in B. Postsynaptic structures formed on the surface of the injected and 

on nearby muscle fibers when no dsRNA (B) or dsRNACD4 (C) was included. Injection of dsRNAMuSK

(D) prevents the formation of postsynaptic structures on injected muscle fibers but not on nearby 

fibers. Postsynaptic structures formed on muscle fibers injected with dsRNASGCA (E). Cross-section 

through ectopic postsynaptic structures formed in the presence of dsRNArapsyn (F) and dsRNAutrophin

(G). Outlines in (F) and (G) indicate circumference of injected muscle fibers. Scale bars = 50 µm. 
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found on neighboring fibers (Fig. 1F). Finally, we injected dsRNAutrophin because utrophin 

is highly concentrated at the postsynaptic site of NMJs and at ectopic postsynaptic 

structures (Meier et al., 1997), but its inactivation in mice does not impinge on the initial 

formation of the NMJ (Grady et al., 1997; Deconinck et al., 1997). As expected, AChR 

clusters were still formed on injected muscle fibers (Fig. 1G).  

 For quantification, we counted the number of AChR clusters on injected and on 

neighboring, non-injected muscle fibers of at least three independently injected animals. 

For each injection site, the number of AChR clusters on the individual cross-sections was 

added to yield a total number of AChR clusters per injection site (Fig. 2A). To account for 

variations between individual experiments, the number of AChR clusters in the 

neighboring, non-injected muscle fibers was normalized to 100%. As shown in Fig. 2B, 

this quantification demonstrates that injection of dsRNAMuSK or dsRNArapsyn resulted in a 

Figure 2: Quantification of the number of AChR clusters formed on injected and neighboring muscle 

fibers. (A) Camera Lucida drawing of a cross-section through an injection site, two weeks after 

injection. In this particular case, injection cocktail contained expression constructs for neural agrin 

and NLS_GFP, and dsRNAutrophin. In the cross-section shown, AChR clusters (red) were found along 

the circumference of the injected (GFP-positive nuclei) and of the neighboring, non-injected muscle 

fibers. AChR clusters on injected fiber are marked with solid arrows, AChR clusters on neighboring 

fibers are marked with open arrowheads. Bar = 50 µm. (B) Quantification of three independent 

experiments. Significant differences (p < 0.01; Wilcoxon test) between the number of AChR clusters 

on injected and neighboring muscle fibers are indicated by asterisks.  
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highly significant reduction of AChR clusters in the injected muscle fibers while "no 

dsRNA", dsRNACD4, dsRNASGCA and dsRNAutrophin did not inhibit AChR cluster formation. 

In summary, these results demonstrate that dsRNA, when injected into single, adult 

muscle fibers in vivo, knocks the expression of the targeted protein down to the extent 

that it mimics the phenotype of the corresponding knockout mouse.  

 To measure the effect of dsRNA-induced RNAi on a particular gene directly, we 

next quantified the amount of utrophin and dystrophin found at ectopic postsynapses. As 

shown earlier, agrin-induced formation of postsynaptic specializations at ectopic sites 

requires local transcription of synaptic proteins in the myonuclei underlying these sites 

(Briguet and Ruegg, 2000; Moore et al., 2001). Moreover, agrin-induced ectopic 

postsynaptic structures form de novo, which makes the protein levels at the ectopic sites 

grossly independent of protein turnover. In controls, all postsynaptic structures induced by 

neural agrin contained a high concentration of utrophin (Fig. 3A) while the staining was 

less intense at AChR clusters of muscle fibers injected with dsRNAutrophin (Fig. 3B). When 

we stained for dystrophin, which may compensate for utrophin (Grady et al., 1997; 

Deconinck et al., 1997), we found that staining for dystrophin was very similar in injected 

and neighboring muscle fibers (Fig. 3C & D). Quantification of the fluorescence intensity 

for utrophin and dystrophin in the different experimental paradigms is shown in Fig. 3E. 

No difference between the staining intensity for utrophin at AChR clusters formed on 

injected and on neighboring muscle fibers was observed in controls (no dsRNA). Levels 

of utrophin at AChR clusters of dsRNAutrophin- injected muscle were significantly lower 

(<40%) than at AChR clusters in neighboring fibers. The low level of utrophin that is still 

detected at the ectopic postsynaptic sites of dsRNAutrophin-containing muscle fibers might 

be due to either some utrophin expressed in non-synaptic regions and/or the aggregation 

of utrophin diffused from the NMJ. Note that the level of dystrophin is slightly increased in 

the muscle fibers injected with dsRNAutrophin compared to neighboring fibers. This lends 

support to the idea that dystrophin compensates for the lack of utrophin in the knockout 

mice. 

 In a further step, we asked whether RNAi could also be used to study the 

requirement of genes for the stability of the nerve-muscle synapse. To address this 
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question, we chose to target MuSK because (i) it is required for the formation of 

postsynapses and (ii) auto-antibodies to MuSK cause myasthenia gravis (Hoch et al., 

2001). This disease is characterized by muscle weakness and loss of AChRs suggesting 

that NMJs might disassemble. Because NMJs represent only 0.1% of the total surface of 

a muscle fiber, dsRNA injection into single muscle fibers did not allow a global and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Staining of ectopic 

postsynaptic structures for 

utrophin and dystrophin. (A) 

No difference in the staining 

intensity for utrophin was 

seen when dsRNA was 

omitted. (B) Although AChR 

clusters were formed on the 

muscle that contained 

dsRNAutrophin (GFP-positive), 

these clusters were often 

devoid of any utrophin. (C) 

Dystrophin was more 

uniformly distributed along the 

entire plasmalemmal 

membrane with only some 

enrichment at AChR clusters. 

(D) In dsRNAutrophin-

expressing muscle fibers, 

dystrophin was found at sites 

of AChR accumulations. (E) 
Quantification of the amount 

of utrophin (green bars) and 

dystrophin (blue bars) in 

neighboring (light colors) and 

injected muscle fibers (dark 

colors). Bars in A-D = 5 µm. 
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Figure 4: Whole mounts of NMJs, six weeks after in vivo electroporation of mouse soleus muscle 

with siRNA-plasmids. Electroporated muscle fibers are marked by NLS_GFP (GFP), AChRs were 

stained to visualize postsynapses and a mixture of antibodies to neurofilament (Nf) and 

synaptophysin (Syn) was used to label the presynaptic motor neurons. (A) NMJs are not altered 

by a siRNA-plasmid to CD4. (B-D) Disassembly of NMJs by siRNA-plasmids to MuSK. See text 

for details. Scale bars = 15 µm. (E) Quantification of the effect of plasmid-mediated siRNA (see 

Methods). CD4, siRNA-plasmid targeting CD4; M1, M2 and M3, three different siRNA-plasmids 

targeting MuSK. Note that M1 does not show any effect, which is consistent with observations by 

others that most but not all siRNA constructs are functional (McManus and Sharp 2002). 
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sustained perturbation of gene expression at NMJs. We therefore used plasmids that 

express functional siRNA (Brummelkamp et al., 2002; Yu et al., 2002) and electroporated 

mouse hindlimb muscles with three different MuSK-shRNA plasmids in conjunction with 

expression plasmids for NLS_GFP. As a control, plasmids derived from CD4 were 

transfected. When examining the electroporated muscles after two weeks, we could not 

detect a clear effect on the structure of their NMJs (data not shown) and we therefore 

concentrated our examination to six weeks. In CD4-targeted muscle fibers, NMJs 

overlying GFP-positive myonuclei were indistinguishable from NMJs on muscle fibers that 

were not transfected (Fig. 4A). The alterations of the postsynaptic structures after 

applying MuSK shRNA plasmids ranged from fragmentation (Fig. 4B) to severe 

disassembly of postsynaptic AChR clusters (Fig. 4C). In response to the abrogation of 

postsynapse integrity, presynaptic nerve terminals began to sprout (arrowheads in Fig. 

4C & D). In some severe cases (Fig. 4D), the entire postsynaptic structure was lost and 

only the remaining motor nerve terminal indicated that a NMJ had been present before. In 

all GFP-negative muscle fibers, NMJs were not different from non-treated animals (data 

not shown). Quantification (see Methods) revealed that NMJs were not altered by 

electroporation of shRNA plasmids directed to CD4 and to one sequence of MuSK (M1). 

Two other shRNA plasmids to MuSK (M2 and M3) showed a clear effect on NMJ 

structure (Fig. 4E). 
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Discussion 

 

 Although dsRNA can mediate RNAi in cultured mammalian cells (Elbashir et al., 

2001a), its specific effect is overwritten by the activation of the dsRNA-dependent 

interferon response, which triggers general inhibition of protein translation and induces 

apoptosis of cells (Paddison et al., 2002b). Here, we used dsRNA and show for the first 

time that dsRNA-induced RNAi is highly reproducible and sequence-specific. For 

example, dsRNA directed to utrophin clearly reduced the amount of utrophin at the 

ectopic postsynapses but it did not affect expression levels of its homologue dystrophin. 

Second, the use of dsRNA did not cause inhibition of protein translation in general 

indicated by the fact the number of AChR clusters formed on muscle fibers injected with 

dsRNA directed to CD4, α-sarcoglycan or utrophin was not different from muscle fibers 

that were not injected with any dsRNA. Third, the effect of dsRNA was confined to the 

injected muscle fiber and did not spread across cell boundaries. This allowed comparing 

perturbed and non-affected muscle fibers in the same muscle and makes this method 

well controllable.  

 We did not investigate why we did not find any evidence for a general silencing of 

translation in dsRNA-injected muscle fibers. It could well be that muscle fibers do not 

respond to dsRNA in this unspecific way. Indeed, vector-mediated delivery of dsRNA has 

also been shown to induce sequence-specific RNAi in cultured C2C12 cells, a cell line 

that forms myotubes. Like in our case, the silencing of endogenous genes was not 

accompanied by a global effect on translation (Yi et al., 2003). Another reason for the 

absence of any unspecific effects on protein translation might be the way we applied 

dsRNA to the muscle fibers. Whereas all other reports used transfection or 

electroporation to introduce dsRNA, we micro-injected dsRNA directly into muscle fibers. 

Such direct application of dsRNA into the cytosol of cells may not trigger dsRNA-

dependent responses (Shuey et al., 2002 for discussion). This method will thus facilitate 

the functional characterization of unknown genes in muscle in vivo, which is a significant 
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advantage over the current methods using conventional gene-targeting techniques in 

mice. 

 Another aspect of our work is that we provide direct evidence that MuSK 

expression is necessary to warrant the integrity of the NMJ. The recent discovery that 

auto-antibodies to MuSK cause myasthenia gravis (Hoch et al., 2001) are suggestive of a 

role of MuSK in warranting the integrity of postsynaptic structures. However, no direct 

evidence has yet been provided. We describe here that MuSK perturbation causes 

pronounced disassembly of the entire NMJ. Interestingly, the fragmentation and 

disassembly of NMJs required several weeks to be detected. MuSK perturbation also 

resulted in the sprouting of the presynaptic nerve terminal, indicating that a compact 

postsynaptic structure is also required to maintain presynaptic integrity. Denervation of 

NMJs may also be secondary consequence in patients who suffer from myasthenia gravis 

caused by MuSK auto-antibodies. 
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Methods 

 

Plasmids and injections. Full-length chick agrin cDNA and the NLS_GFP construct 

have been described previously (Denzer et al., 1995; Jones et al., 1999). Vectors 

encoding shRNAs were constructed according to Yu et al., 2002; using the loop 

sequence TTCAAGAGA (Brummelkamp et al., 2002). The murine 21 nt target sequences 

correspond to nucleotides 125-145 (M1), 352-372 (M2) and 525-545 (M3) of MuSK (NCBI 

accession: NM_010944) and 494-514 of CD4 (M36850). Injection into rat muscle was 

done as described (Meier et al., 1997). 

 

dsRNA preparation. PCR-generated transcription templates contained T7 or T3 

promoter sequences on the 5' end of the sense or antisense template. RNAs were 

synthesized using the Megascripts kit (Ambion) and annealed as described (Wianny and 

Zernicka-Goetz, 2000). The target sequences in rats correspond to nucleotides 5-608 of 

MuSK (U34985), 44-687 of rapsyn according to murine homologue gene (NM_009023), 

114-704 of CD4 (M15768), 55-740 of α-sarcoglycan according to murine homologue 

gene (NM_009161) and 2132-2747 of utrophin (AJ002967). PCR products of rapsyn, α-

sarcoglycan and utrophin were sequenced. 

 

Electroporation of cDNA into muscle fibers. 5-10µl mix of cDNAs (2µg/µl each 

constructs) were injected into soleus muscle of C57BL/6 mice (>6 months). 

Electroporation was done as described previously (Gehl et al., 1999) using an ECM 830 

electroporation system (BTX). Eight pulses were applied for 20ms and at the frequency of 

1Hz. Voltage was set to 200V/cm. After two to six weeks, the electroporated muscle was 

analysed. 

 

Immunohistochemistry and antibodies. AChRs on rat muscles were visualized using 

rhodamine_α-bungarotoxin (Molecular Probes). To stain for AChRs, synaptophysin and 

neurofilament, mouse muscle was fixed by 2% paraformaldehyde and stained with biotin-
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xx conjugated α-bungarotoxin, followed by streptavidin-APC (Molecular Probes). After 

permeabilization (1% Triton X-100), the anti-synaptophysin (DAKO) and anti-

neurofilament polyclonal antibodies (Sigma) were incubated for 2 days at 4°C in PBS, 1% 

BSA. For detection, Cy3-conjugated goat anti-rabbit IgG (Jackson ImmunoResearch) was 

used. For staining of dystrophin or utrophin, 12µm-thick cross-sections were fixed for 5 

min with 1% paraformaldehyde, washed briefly with PBS, and preincubated for 15 min in 

PBS supplemented with 5% horse serum, 1% BSA and 0.01% Triton X-100. After 

overnight incubation with the anti-dystrophin antibody (Novocastra) or the anti-utrophin 

antibody (NCL-DRP2; Novocastra), primary antibodies were detected with Alexa 350-

/Alexa 488-conjugated goat anti-mouse IgG (Molecular Probes).  

 

Quantification. Quantification of AChR clustering using at least 20 muscle fibers for each 

experimental paradigm was done as described (Briguet and Ruegg, 2000). Quantification 

of utrophin and dystrophin protein levels was essentially done as described (Eusebio et 

al., 2003). The extent of NMJ disassembly by plasmid-mediated siRNA was quantified by 

four colleagues who scored each muscle in a double-blind manner for postsynaptic 

fragmentation and presynaptic nerve sprouting using a scale of zero (no fragmentation 

and no nerve sprouting) to two (strong fragmentation and pronounced nerve sprouting). 

For each condition, muscles from four independent experiments were analyzed. Fig. 4E 

shows accumulated values from each observer and each sample after normalization to 

the theoretical maximum value. 



Chapter 2 - 37 - 

Acknowledgement 

 

We thank Drs. G. Bezakova and T. Meier and W. Filipowicz for their comments 

on the manuscript, Dr. S. Lin for his help in the quantification and the current members of 

the laboratory for fruitful discussions. X.C.K. is supported by a Ph.D. fellowship from 

Hoffmann-LaRoche Ltd. Additional support was granted by the Swiss National Science 

Foundation, the Kanton of Basel-Stadt and the Swiss Foundation for Research on Muscle 

Diseases to M.A.R.  

 





Chapter 3 - 39 - 

Chapter 3 

 

 

In vivo synapse disassembly 

in mouse muscle by expression of long hairpin RNA 

 

 

 

 

 

 

Xian Chu Kong and Markus A. Ruegg 



Chapter 3 - 40 - 

Abstract 

 

RNA interference (RNAi) is a powerful method to study gene function in adult 

mammals in vivo. Previously, by using plasmids encoding short interfering RNA (siRNA) 

corresponding to the muscle-specific receptor tyrosine kinase MuSK, we have shown that 

continuous expression of MuSK is required to maintain the neuromuscular junction 

(NMJ). However, choosing an efficient siRNA target sequence is empirical, and siRNAs 

targeting different regions of the same messenger RNA (mRNA) vary strongly in their 

ability to trigger RNAi. Therefore, different siRNA candidates need to be tested for their 

efficiency in gene silencing. This time- and work-consuming process can be overcome by 

the use of long double-stranded RNA (dsRNA), which induces RNAi by presenting 

various siRNAs to the target mRNA. Here, we report that the disassembly of preexisting 

NMJs can be reproduced by plasmid encoding long hairpin RNA targeting to MuSK. This 

result demonstrates for the first time the capability of endogenous expressed dsRNA to 

silence gene expression in adult mouse muscle in vivo. Compared to vector-mediated 

siRNA, long hairpin RNA provides a more straightforward tool to study function of muscle 

genes. 
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Introduction 

 

The availability of sequence information for the entire genome from several 

species including human and mice demands effective reverse genetic methods to access 

the function of thousands identified genes. So far there has been no general method for 

reverse genetic other than gene targeting by homologous recombination, which is costly, 

time consuming and has the risk of embryonic lethality. A highly promising new technique 

that may allow a faster and inexpensive assessment of gene function in vivo is RNA 

interference (RNAi). This technique was first described in C. elegans employing long 

dsRNA, which triggered sequence-specific post-transcriptional gene silencing (Fire et al., 

1998). Subsequent studies showed that long dsRNA was processed into short interfering 

dsRNA (siRNA) of ~22 nt, which guided the degradation to target mRNA (Hamilton and 

Baulcombe, 1999; Zamore et al., 2000; Elbashir et al., 2001b; Yang et al., 2000; Parrish 

et al., 2000; Hammond et al., 2000), and that the direct introduction of siRNA induced the 

degradation of the homologous RNA as well (Elbashir et al., 2001a). These findings led to 

the wide application of siRNA as an inducer of silencing for studying gene function in 

many mammalian systems (reviewed in Dykxhoorn et al., 2003). 

In adult mammals, functional gene silencing is triggered by siRNA delivered into 

somatic tissues by different methods. Direct delivery of siRNA by hydrodynamic injection 

into adult mouse tails successfully silenced the reporter gene luciferase and the 

endogenous gene Fas receptor in several tissues including kidney liver, lung and spleen 

(Lewis et al., 2002; McCaffrey et al., 2002; Song et al., 2003). However, siRNA lasts only 

for a few days due to the lack of siRNA amplification mechanisms. The temporal limitation 

of siRNA is overcome by plasmids- or virus-mediated delivery of small hairpin RNA 

(shRNA), which is subsequently processed into siRNA (Dykxhoorn et al., 2003). This 

system enables prolonged and stable suppression of gene expression in vivo (Rubinson 

et al., 2003; Xia et al., 2002; McCaffrey et al., 2003) and allows the generation of 

transgenic gene knockdown animals (Carmell et al., 2003; Hasuwa et al., 2002; Lois et 

al., 2002; Tiscornia et al., 2003; Kunath et al., 2003). 
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To promote efficient gene silencing using a siRNA homologous to a single site of 

the target mRNA, the siRNA sequence is crucial. siRNAs that targets different regions of 

the same gene can differ strongly in their efficiency to trigger RNAi (Holen et al., 2002; 

Miyagishi and Taira, 2002; Vickers et al., 2003; Hemann et al., 2003). However, choosing 

the siRNA target sequence is an empirical process, since the rules that govern efficient 

siRNA-mediated silencing are still not defined. Based on the sequence analysis of 

targeted genes, different guidelines have been proposed, that aimed to facilitate the 

choice of efficient target sequences (reviewed in Dykxhoorn et al., 2003). But finally, the 

potential of each siRNA has to be tested in real gene silencing experiments. The reported 

rate of efficiency of a particular siRNA sequence can vary from 20% to 100% (McManus 

and Sharp, 2002). 

The additional expenditure of time and work to identify efficient target sequences 

is not required in using long dsRNA to trigger RNAi. Long dsRNAs are intracellularly 

processed by Dicer, a member of the RNase III family, into various siRNAs (Bernstein et 

al., 2001). Subsequently, these siRNAs guide the degradation to many sites of the target 

mRNA. Silencing by long dsRNA has been used to investigate gene function in many 

organisms including plants, fungi, invertebrates (reviewed in Tijsterman et al., 2002) and 

chicken embryos (Pekarik et al., 2003). The applicability of this technique is limited in 

mammals, as dsRNA longer than 30 nt seems also to be responsible for the induction of 

interferon, which triggers mRNA degradation and general shutdown of translation, 

resulting in cell apoptosis (Paddison et al., 2002b; Stark et al., 1998). However, this non-

specific interferon response is probably absent in some mammalian cell types. Successful 

gene silencing has been observed in several cultured mammalian cell lines and in early 

murine embryos, into which long dsRNA has been delivered by transfection (Billy et al., 

2001; Gan et al., 2002), by microinjection (Svoboda et al., 2000; Wianny and Zernicka-

Goetz, 2000), by vector- (Svoboda et al., 2001; Yi et al., 2003) or transgene-mediated 

(Stein et al., 2003) long hairpin RNA expression. 

Previously, we have shown that long dsRNA, when directly injected into adult 

mouse muscle fibers, induced sequence-specific gene silencing. The formation of the 

neuromuscular junction (NMJ) requires elaborate signaling between the innervating motor 
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neuron and the target muscle fiber (Sanes and Lichtman, 2001). Among the first signs of 

postsynaptic differentiation is the aggregation of acetylcholine receptors (AChRs) beneath 

the innervating nerve terminal. This process crucially depends on the muscle-specific 

receptor tyrosine kinase MuSK. No postsynaptic structure forms in MuSK-deficient mice 

(DeChiara et al., 1996). In our previous study, long dsRNA targeting MuSK prevented the 

aggregation of AChRs. In addition, the discovery that auto-antibodies to MuSK cause 

myasthenia gravis (Hoch et al., 2001) supports the assumption that continuous MuSK 

expression is necessary to warrant the integrity of the NMJ. Myasthenia gravis is a 

disease characterized by severe muscle weakness and loss of AChRs. Consistent with 

the phenotype of this myasthenia gravis, we have reported the pronounced disassembly 

of NMJs upon silencing of MuSK expression by small hairpin-mediated siRNA. 

Although siRNA could be more widely applied to mammalian system than long 

dsRNA, the empirical process in choosing siRNA target sequences is clearly a 

disadvantage. Plasmid-mediated expression of long dsRNA would provide a fast and 

sustained method for gene silencing. In this study, we aimed to establish long hairpin 

RNA-mediated RNAi for the study of postsynaptic maintenance in skeletal muscle fibers 

of adult mouse in vivo. We demonstrate that long hairpin RNA constructs are an efficient 

and straightforward tool to study the function of genes involved in maintenance of 

preexisting NMJs in vivo. 
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Results 

 

Here we investigated whether plasmid-mediated long hairpin RNA could induce 

RNAi to assess the requirement of genes in the maintenance of postsynaptic structures in 

mouse muscle in vivo. To address this question, we designed an expression construct for 

a 604 nt long hairpin RNA targeting the receptor tyrosine kinase MuSK. As by us in the 

previous chapter, MuSK is required for the stability of NMJs. Thus, silencing of MuSK 

should induce disassembly of NMJs. Because expression of long hairpin RNA in cell 

types other than muscle fibers could induce general shutdown of protein translation, we 

chose the muscle-specific creatine kinase (MCK) promoter (Sternberg et al., 1988) to 

drive the expression of the construct. Transcription was terminated by a polyA sequence. 

A mix of the constructs and plasmids encoding green fluorescent protein fused to a 

nuclear localization signal (NLS_GFP) was transformed into mouse soleus muscle by 

electroporation. GFP was used to distinguish between transformed and non-transformed 

muscle fibers. To test whether plasmid-mediated long hairpin RNA could exert any non-

specific effect on protein expression, we transfected a plasmid encoding long hairpin RNA 

derived from CD4. CD4 is only expressed in the immune system (Benoist and Mathis, 

1999). The effect of plasmid-mediated long hairpin RNA to postsynaptic structures was 

examined by staining teased muscle fibers with α-bungarotoxin, a snail toxin that 

specifically binds to AChRs. AChRs are accumulated at the postsynaptic part of a NMJ 

(Sanes and Lichtman, 2001). 

The electroporated muscles were analyzed after six weeks. In CD4-targeted 

muscles, NMJs overlaying GFP-positive myonuclei were not different from NMJs on 

muscle fibers that were not transfected (Fig. 1A). In contrast, the alteration of the 

postsynaptic structures after applying MuSK derived long hairpin RNA plasmids ranged 

from no obvious fragmentation to severe disassembling of postsynaptic AChR clusters 

(Fig. 1B-D). In addition, as a result of the abrogation of postsynapse integrity, few 

presynaptic nerve terminals began to sprout (data not shown). In all GFP-negative 

muscle fibers, NMJs were indistinguishable from those of non-treated muscles. 
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Figure 1: Postsynaptic structures, six weeks after in vivo electroporation of mouse soleus 

muscle with long hairpin RNA-plasmids. Electroporated muscle fibers are marked by NLS_GFP 

(GFP), AChRs were stained to visualize postsynapses (AChR). (A) Postsynapses are not altered 

by long hairpin RNA to CD4. (B-D) Disassembly of postsynapses by long hairpin RNA to MuSK. 

The degree of deterioration ranged from not altered postsynaptic structures (B) to fragmentation 

(C) and severe fragmentation (D). Scale bars = 10 µm. (E) The extent of postsynaptic 

disassembly on each transfected muscle fiber was quantified using a scale of zero (no 

fragmentation), one (fragmentation) to two (severe fragmentation) according the postsynapses 

shown in A, B and C. For each condition, muscles from three independent experiments were 

analyzed. The graphic shows the mean value for each condition. CD4: long hairpin RNA 

targeting CD4; MuSK: long hairpin RNA targeting MuSK. Quantification was done with a 

microscope equipped with epifluorescence (Leica). 
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Quantification (see figure 1E legend) revealed that expression of long hairpin RNA 

directed to MuSK clearly altered postsynaptic structures, while long hairpin RNA targeted 

to CD4 did not have any effect (Fig. 1E). 
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Discussion 

 

Although plasmid-mediated shRNA can be used to study the function of genes in 

mouse muscle in vivo, the selection of an efficient target sequence is a trail and error 

process (Dykxhoorn et al., 2003). Especially in the assessment of a number of genes, this 

process could be very time and work intensive. Such selection of target sequence would 

be unnecessary in using long hairpin RNA to trigger sustained gene silencing. Here, we 

used plasmid-mediated delivery of long hairpin RNA and demonstrate for the first time 

that long hairpin RNA induced RNAi is a sequence-specific and straightforward tool. Long 

hairpin RNA targeted to MuSK clearly induced the fragmentation of postsynaptic 

structures, while postsynapses of CD4 targeted muscle fibers were indistinguishable from 

those of non-treated fibers. 

Compared to our previous study, in which we used plasmid delivered siRNA to 

silence the expression of MuSK under the same conditions (see chapter 2), the 

fragmentation of postsynaptic structures induced by long hairpin RNA directed to MuSK 

was less pronounced, and fewer nerve terminal sprouting was observed, indicating that 

the silencing of MuSK by long hairpin RNA is less efficient. Since long hairpin RNA- and 

shRNA-mediated siRNA are supposed to induce gene silencing via the same pathway 

(Zamore, 2002), and because no interferon response was observed that could interfere in 

different steps of the RNAi pathway and thus inhibit its function, the reduced gene 

silencing effect could be well put down to a diminished number of functional RNAi in 

muscle fibers expressing long hairpin RNA compared to those expressing shRNA. Some 

of the possible explanations of limited generation of functional RNAi are: (1) The MCK 

promoter that governed the transcription of long hairpin constructs could be weaker than 

the U6 promoter, which we used to produce siRNA. This suggestion can be investigated 

by testing expression constructs driven by different promoters. (2) Because of steric 

obstacles, the folding of a long linear transcript to form dsRNA is likely more difficult that 

of a short haipin RNA. (3) The efficiency of processing long hairpin RNA or shRNA into 

siRNA could be different. (4) Finally, although siRNAs derived from processing of long 
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hairpin RNA targeted to a 600 nt region of the mRNA, probably only few of these are 

functional. It has been reported that only a limited number of regions of a mRNA provide 

effective target sites, and in average, three out of four tested potential siRNA were 

effective in inducing RNAi (McManus and Sharp, 2002). Therefore, some or even a big 

part of siRNAs derived from long hairpin RNA could be non-functional. In contrast, every 

transcript from a functional construct provides a functional siRNA. 

In summary, our observation of long dsRNA induced RNAi in muscle fibers 

allowed us to compare the efficiency of both the long hairpin RNA and siRNA in triggering 

gene silencing in vivo. The diminished effect of long hairpin RNA-mediated gene silencing 

could be due to limited production of functional siRNA. Further investigations are 

necessary to optimize long hairpin-mediated RNAi for assessment of function of genes in 

adult mouse muscle in vivo. 
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Methods 

 

Long hairpin constructs. The long hairpin constructs were generated by a two step 

overlapping PCR using the following primers: 

5’ primer of MuSK (M) or CD4 (C): 

M: CCCATCGATGAGAGCTTGTCAACATTCCA 

C: CCCATCGATAGCAGAACTGCCCTGCGAGA 

Middle primer: 

M: GGCACAGCTTACTCCAAACTTCTCTTGAAAGTTTGGAGTAAGCTGTGCC 

C: AACTTTGCAGAGGAAAACGGTCTCTTGAACCGTTTTCCTCTGCAAAGTT 

3’ primer: 

M: CCGCTCGAGGAGAGCTTGTCAACATTCCA 

C: CCGCTCGAGAGCAGAACTGCCCTGCGAGA 

The middle primer containing the loop sequence TTCAAGAGA (Brummelkamp et al., 

2002). Cloning sites Cla1 and Xho1 were introduced at the 5’ and 3’ ends. In the first step 

PCR, the forward and the reverse megaprimers for the second step PCR were produced 

in two separate PCRs using either the 5’ or the 3’ primer in combination with the middle 

primer. PCR products were purified using Geneclean Spin Kit (BIO 101) and mixed in an 

equal amount. Both megaprimers were annealed at 56°C and elongated at 72°C for 5 

cycles. For the second step PCR, both the 5’ and the 3’ primer were added to the mix. 

The final PCR products were purified by gel electrophoresis and extracted with Gel 

Purification Kit (Qiagen). Taq polymerase (Roche) was applied in all steps. The thermo 

cycling condition was set the same for both PCR reactions: denaturation at 94°C for 20s, 

annealing at 55°C for 30s and elongation at 72°C for 30s, totally 35 cycles. The murine 

~600 nt target sequences correspond to nucleotides 5-608 of MuSK (NCBI accession: 

NM_010944) and 150-746 of CD4 (M36850). 

 

Plasmids. The long hairpin constructs were inserted between a MCK transcription 

promoter and a polyA transcription stop sequence in pBluescript II KS+ plasmids. 
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Insertions were verified by restriction enzyme digestions. The NLS_GFP construct 

encoding green fluorescent protein (GFP) with a nuclear localization sequence (NLS) has 

been described previously (Jones et al., 1999). 

 

Electroporation and NMJ visualization. Both were done as described in chapter 2. 
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Abstract 

 

The formation of the vertebrate neuromuscular junction (NMJ) is characterized by 

aggregation of acetylcholine receptors (AChRs) beneath the innervating nerve terminal 

and depends critically on the nerve-derived extracellular matrix protein agrin and the 

muscle specific receptor tyrosine kinase MuSK. Moreover, introduction of neural agrin 

alone into innervated or denervated muscle is sufficient to induce postsynaptic 

differentiation and aggregation of AChRs. The molecular mechanisms underlying the 

signaling induced by agrin are still poorly understood. Here, we report that the AChR 

clustering activity of neural agrin can be inhibited by RNA interference (RNAi) in mouse 

muscle in vivo. By electro-transfecting a plasmid encoding small hairpin RNA (shRNA) 

targeted to MuSK and an expression vector encoding agrin, which induces aggregation of 

AChRs as effective as injection of the recombinant agrin protein, we provide evidence 

that RNAi perturbed specifically postsynaptic differentiation in both innervated and 

denervated mouse muscle fibers. Thus, we established a fast, simple and reliable method 

as how to study the function of genes involved in agrin-induced postsynaptic 

differentiation in adult muscle in vivo. 
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Introduction 

 

Formation of synaptic structures at the vertebrate neuromuscular junction (NMJ) 

depends on the exchange of trophic factors between the presynaptic innervating motor 

neuron and the postsynaptic target muscle fiber (reviewed in Sanes and Lichtman, 2001). 

One of the pronounced signs of postsynaptic differentiation is the aggregation of 

acetylcholine receptors (AChRs) beneath the nerve terminal. While transcription of 

postsynaptic genes like AChR subunits, which are expressed in the whole muscle fiber 

before innervation and after denervation, is selectively maintained in junctional myonuclei, 

it is repressed in the extrasynaptic myonuclei (Duclert and Changeux, 1995; Piette et al., 

1993; Merlie et al., 1984; Tsay and Schmidt, 1989). Ample evidence has demonstrated 

that the heparan sulfate proteoglycan agrin, which is released from the motor neuron and 

binds to postsynaptic basal lamina, is essential and sufficient to trigger and maintain a 

signaling cascade that results in the assembly of the complete postsynaptic apparatus 

(McMahan, 1990; Bezakova and Ruegg, 2003). When neural agrin is introduced into 

muscle by single muscle fiber injection of an expression vector or by intramuscular 

injection of the recombinant protein itself, it elicits formation of postsynapse-like structures 

characterized by clustering of AChRs in extrasynaptic regions of innervated muscle fibers 

or in case of denervation, along muscle fibers (Bezakova et al., 2001a; Cohen et al., 

1997; Jones et al., 1997; Meier et al., 1997). 

The ability of neural agrin to induce postsynaptic differentiation is mediated by the 

activation of the muscle specific receptor tyrosine kinase MuSK, another important 

component in the formation of the NMJs. Postsynaptic differentiation is absent in MuSK-

deficient mice (DeChiara et al., 1996). Activation of MuSK results in re-organization of the 

cytoskeleton at the postsynaptic site and in activation of signaling pathways that are 

responsible for the changes of gene transcription in junctional myonuclei (Sanes and 

Lichtman, 2001). The molecular mechanisms underlying the formation of the NMJ 

downstream of agrin signaling are still not satisfactorily understood. To this end, Dr. 

Gabriela Bezakova in our group successfully performed microarray experiments to 
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analyze gene expression profiles induced by the formation of postsynaptic structures 

upon treatment with neural agrin in vivo (data not yet published). To assess the 

importance of these candidate genes in the NMJ formation, gene silencing based on RNA 

interference (RNAi) could be a suitable method for quick and reliable study of their 

functions in adult muscle in vivo. 

RNAi is a powerful experimental tool for post-transcriptional gene silencing 

induced by double-stranded RNA (dsRNA). Experimental introduction of dsRNA triggers 

sequence-specific degradation of the homologous target mRNA and enables so a rapid 

survey of gene function (reviewed in Dykxhoorn et al., 2003). First described in C. 

elegans (Fire et al., 1998), RNAi has been widely applied to many organisms (Tijsterman 

et al., 2002). In mammalian system, short dsRNA (∼22bp) called small interfering RNA 

(siRNA) induces effectively gene silencing of transient nature (Elbashir et al., 2001a). To 

generate long lasting suppression of gene expression in vitro and in vivo, plasmid- or 

virus-mediated delivery of small hairpin RNA (shRNA), which is subsequently processed 

into siRNA, has been developed (McManus and Sharp, 2002). Previously, we have 

shown that prolonged exposure of muscle fibers to an expression vector encoding shRNA 

for MuSK results in disassembly of existing NMJs (see chapter 2). This finding provides 

the first indication that plasmid-mediated shRNA can be used to induce sequence-specific 

and stable silencing of genes in muscle fibers in vivo. 

In this study, we aimed to establish a fast and reliable system in adult mouse 

muscle in vivo to study the function of genes identified in the screen outlined above. Both, 

single fiber injection of expression vectors or intramuscular injection of recombinant 

protein are useful in vivo approaches to deliver neural agrin into muscles. However, 

single fiber injection allows only a limited number of fibers to be transfected and 

intramuscular injection of agrin requires a preceding process of protein synthesis and 

purification, which is time and work intensive. Here, we demonstrate that in vivo electro-

transfection of a full-length rat neural agrin expression vector into muscle fibers can 

effectively induce postsynaptic differentiation. In a further step, we targeted the 

expression of MuSK by using the shRNA construct, whose functionality has been 

demonstrated in our previous study. The formation of postsynaptic structures in response 



Chapter 4 - 57 - 

to either eletro-transfecetion of neural agrin cDNAs or injection of recombinant neural 

agrin protein was effectively inhibited by vector-delivered shRNAs in innervated and 

denervated muscles. 
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Results 

 

Electroporation of agrin cDNA effectively induced AChR aggregation 

To examine whether electro-transfecting agrin cDNA into fully innervated mouse 

soleus muscles could efficiently induce postsynaptic differentiation, we electroporated a 

mix of expression constructs encoding full-length rat neural agrin and green fluorescent 

protein, which contained a nuclear localization signal (NLS_GFP). As a control, no agrin-

plasmids were included in the electroporation mix and recombinant full-length chick 

neural agrin was applied subsequently by intramuscular injection. Four days after 

electroporation, half of the transfected muscles were denervated. After two additional 

weeks, all muscles were analyzed. As described previously (Bezakova et al., 2001a), 

injection of recombinant agrin protein resulted in formation of postsynaptic structures in 

extrasynaptic regions, closed to the myotendinous junction of innervated muscle fibers, 

and in the denervated muscles, numerous small postsynaptic structures were formed 

along muscle fibers. These findings were confirmed by electroporating agrin-plasmids 

(Fig. 1). Postsynaptic structures are characterized by the aggregation of AChRs. When 

recombinant protein has been injected into muscle, aggregates were found randomly 

distributed on the surface of transfected (GFP-positive myonuclei) and non-transfected 

muscle fibers, while electro-transfecting muscle fibers by agrin-plasmids resulted in local 

secretion of neural agrin and induces aggregates mainly formed on transfected and 

neighboring non-transfected muscle fibers. No difference in number, shape and size was 

observed between ectopic AChR aggregates induced either by local secretion of agrin or 

by injection of recombinant agrin protein. 

 

Perturbation of AChR clustering in innervated muscle by shRNA 

Next, we investigated the potential of RNAi mediated by shRNA in studying the 

requirement of genes for the formation of postsynaptic structures induced by application 

of neural agrin in fully innervated mouse muscle in vivo. To address this question, we 

chose to target the MuSK expression, because MuSK is clearly involved in neural agrin 
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triggered postsynaptic differentiation: it is activated by agrin (Glass et al., 1996) and it is 

required for the formation of postsynapse (DeChiara et al., 1996). Thus, effective 

silencing of Musk expression by shRNA would inhibit agrin induced postsynaptic 

differentiation. As a control, we chose CD4, a protein that is not expressed in muscle 

(Benoist and Mathis, 1999). Targeting CD4 would test whether shRNA exerts any non-

Figure 1: Staining of postsynaptic structures formed after intramuscular injection of recombinant 

neural agrin protein (A&C) or electro-transfecting an expression constructs for neural agrin 

(B&D). To rule out effects mediated by in vivo electroporation, all muscles were electroporated 

with an expression construct for NLS_GFP. AChRs were stained to visualize postsynapses 

(AChR). Delivery of neural agrin either by injection of recombinant protein or by electroporation of 

agrin cDNA induced the formation of postsynaptic structures on the surface of electroporated and 

nearby muscle fibers of innervated (A&B) or denervated muscles (C&D). Scale bars = 50 µm. 



Chapter 4 - 60 - 

specific interference on the general protein translation. Plasmids encoding shRNA 

derived from MuSK or CD4 were electroporated in conjunction with NLS_GFP plasmids 

into fully innervated mouse soleus muscle. The effectiveness of the MuSK-shRNA 

construct in silencing MuSK expression has been demonstrated in our previous study 

(see chapter 2). Neural agrin was delivered by local secretion upon co-transfection of 

neural agrin expression constructs or by injection of the recombinant neural agrin itself. 

Because the half-life of MuSK as well as the time between electroporation and 

established gene silencing is unknown, delayed delivery of neural agrin as induced by 

expression vector would allow silencing the basal MuSK level. Therefore, injection of 

recombinant neural agrin followed four days after electroporation of shRNA constructs. All 

muscles were analyzed two weeks after the last experimental treatment. In CD4 targeted 

muscle, postsynaptic structures were found on transfected and neighboring non-

transfected muscle fibers (Fig. 2A) and they were indistinguishable from those formed in 

experiments with no shRNA-plasmids electroporated (Fig. 1A). In contrast, when the 

MuSK-shRNA construct was applied, postsynaptic structures were only detected on 

neighboring non-transfected (GFP-negative) muscle fibers, but were rarely found on 

transfected (GFP-positive) muscle fibers (Fig. 2B). 

 

Global inhibition of AChR aggregation in denervated muscle 

In a further step, we asked whether shRNA-mediated RNAi could also be used to 

perturb neural agrin induced formation of postsynaptic structures on denervated mouse 

muscle in vivo. Denervation results in generally increased synthesis of AChRs also in 

non-synaptic regions (Merlie et al., 1984; Tsay and Schmidt, 1989). Upon delivery of 

neural agrin, AChRs aggregate in numerous small clusters along whole muscle fibers 

(Bezakova et al., 2001a; Cohen et al., 1997). To test whether shRNA-mediated gene 

silencing is sufficient to inhibit this global process of AChR aggregation, we 

electroporated the expression constructs encoding either MuSK or CD4 in conjunction 

with the NLS_GFP plasmid into mouse soleus muscle. Two days after electroporation, 
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Figure 2: Staining of ectopic postsynaptic structures on innervated (A&B) and denervated (C&D)

muscles. Innervated mouse soleus muscle was analyzed two weeks after in vivo electroporation. 

The electroporation cocktail contained expression constructs for neural agrin, NLS_GFP, and 

shRNA derived either from MuSK or CD4. In denervation experiments, soleus muscle was 

electro-transfected with shRNA-plasmids in combination with NLS_GFP constructs. After four 

days, intramuscular injection of recombinant neural agrin protein and denervation were 

performed. Analysis followed after two additional weeks. (A&C) In CD4-targeted muscle, AChR 

aggregates (red) are found along the surface of transfected (GFP positive nuclei) and nearby non-

transfected muscle fibers. (B&D) Electroporation of the plasmid encoding MuSK-shRNA inhibits 

the formation of postsynaptic structures on transfected muscle fibers but not on nearby muscle 

fibers. Scale bars = 50 µm. 
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intracellular injection of recombinant neural agrin and denervation were performed. 

Muscles were analyzed after two additional weeks. In the presence of the CD4-shRNA 

plasmid, postsynaptic structures formed were indistinguishable from those formed in 

experiments with no shRNA-plasmids included (Fig. 1B) and AChR clusters were found 

on both transfected and neighboring non-transfected muscle fibers (Fig. 2C). In MuSK 

targeted muscle, no postsynaptic structures were found on transfected muscle fibers, 

while such structures were readily detected on neighboring non-transfected muscle fibers 

(Fig. 2D). 
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Discussion 

 

Agrin is a nerve-released factor that can induce the formation of NMJs, but the 

molecular mechanisms underlying signaling by agrin are still poorly understood. Using 

microarray technique to analyze gene expression profiles, which were induced by the 

formation of postsynaptic structures upon neural agrin delivery, candidate genes have 

been identified (data not yet published), whose function at the NMJ are unknown. Here, 

we establish two ways as how to assess the requirement of these candidate genes for the 

formation of NMJ. 

First, although single fiber injection of agrin cDNA or intramuscular injection of 

recombinant protein are useful methods to deliver neural agrin into muscle (Bezakova et 

al., 2001a; Cohen et al., 1997; Jones et al., 1997; Meier et al., 1997), the one approach is 

limited to a few muscle fibers per muscle and the other is combined with the time- and 

work-consuming process of protein synthesis and purification. Here, we overcome these 

disadvantages by in vivo electro-transfecting agrin cDNA and show that this new 

approach is as effective as injecting recombinant protein in the induction of global AChR 

aggregation. 

Second, we delivered shRNA via plasmid and demonstrate that RNAi induced by 

shRNA is a fast and specific tool to perturb agrin-mediated formation of postsynaptic 

structures in vivo. In particular, targeting shRNA to MuSK efficiently inhibited the 

formation of numerous small AChRs aggregates, which were induced by delivery of 

neural agrin to denervated muscles. This effect is limited to transfected muscle fibers, 

while no inhibition was observed on non-transfected muscle fibers, indicating that shRNA-

mediated gene silencing in adult muscle is strong and reliable. 

In summary, using electro-transfection of neural agrin expression constructs and 

RNAi mediated by shRNA, we established a rapid, simple and reliable system that is 

suitable for studying the function of genes involved in the formation of postsynaptic 

structures in response to agrin signaling. This experimental paradigm will be important in 
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future studies aimed at investigating the function of candidate genes identified in the 

screen outlined above. 
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Methods 

 

Plasmids. The expression construct encoding full-length rat neural agrin and the 

NLS_GFP construct encoding green fluorescent protein (GFP) with a nuclear localization 

sequence (NLS) has been described elsewhere (Hashemolhosseini et al., 2000; Jones et 

al., 1999). Vectors encoding shRNAs were described in chapter 2. The murine 21 nt 

target sequences correspond to nucleotides 525-545 (construct M2 in chapter 2) of MuSK 

(NCBI accession: NM_010944) and 494-514 of CD4 (M36850). 

 

Electroporation of cDNA into muscle fibers. Electroporation was done as described in 

chapter 2. All experimental procedures in vivo were performed under general anesthesia 

by a mix of 0.5ml Ketalar (PARKE-DAVIS), 0.25ml Rompun (BAYER) and 2ml 0.9% NaCl 

(0.1ml/10g body weight) injected i.p. Every 12 hours in the following two days, animals 

were treated with a mix of 1ml Temgesic (ESSEX) and 0.65ml 0.9% NaCl (50µl/mouse) 

by i.p. injection. 

 

Injection of recombinant agrin. Recombinant full-length chick neural agrin was provided 

by Dr. G. Bezakova (Bezakova et al., 2001b; Gesemann et al., 1995). Four days after 

electroporation, ∼20µl of recombinant agrin were injected into the transfected soleus 

muscle. 

 

Denervation. Immediately after the last experimental manipulation, denervation was 

performed as described previously (Bezakova et al., 2001b). Briefly, denervation of the 

soleus muscle was carried out in the surgically opened thigh by removing a piece of 

~5mm of the sciatic nerve. 

 

AChR visualization. AChR staining with was done as described in chapter 2. 
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Chapter 5 

 

General Discussion 

 

RNA interference (RNAi) is the sequence-specific posttranscriptional gene 

silencing mediated by double stranded RNA (dsRNA) homologue to the target gene 

(McManus and Sharp, 2002; Dykxhoorn et al., 2003). This natural process precedes gene 

silencing in a two-step mechanism (Zamore et al., 2000). First, long dsRNAs are cleaved 

by the ribonuclease Dicer, generating small interfering RNAs (siRNA) of ~22 nucleotides 

(nt), the key effector of the RNAi pathway (Ketting et al., 2001; Bernstein et al., 2001). 

Subsequently, the antisense strand of these siRNAs associates with the RNA-inducing 

silencing complex (RISC), a nuclease complex, and directs degradation to the target 

mRNA by homologous recognition (Hammond et al., 2000; Martinez et al., 2002). RNAi is 

highly conserved among eukaryotes and has been suggested to act as the immune 

system of the genome by defending against viral pathogens or uncontrolled transposon 

mobilization (Plasterk, 2002). The advantages of the remarkable potency and efficiency of 

RNAi led to its experimental establishment as a powerful gene knockdown tool in many 

organisms (e.g. Baulcombe, 1999; Sanchez Alvarado and Newmark, 1999; Lohmann et 

al., 1999; Ngo et al., 1998; Kennerdell and Carthew, 1998; Misquitta and Paterson, 1999; 

Caplen et al., 2002; Dykxhoorn et al., 2003; Pekarik et al., 2003; Tijsterman et al., 2002). 

 

 

Gene profiling – and then? 

 

In light of the availability of sequence information for the entire genome from 

several species including human and mice and the technological advances in genomics, 

the identification of large number of candidate genes with unknown functions requires 

efficient methods for reverse genetic assessment. Currently, our group is analyzing gene 

expression profiles induced by the formation of postsynaptic structures responding to 



Chapter 5 - 68 - 

delivery of neural agrin in adult mammalian muscle in vivo. We are now on the stage of 

devising experimental paradigms that allow us to study the function of candidate genes in 

vivo. There are number of technologies that may offer the potential for specific gene 

targeting in mammals including gene knockout technologies, antisense technologies, 

ribozymes or DNAzymes and RNAi. 

Conventional or tissue-specific gene targeting by homologous recombination is 

commonly used to determine gene function in mice, but this is a time-consuming, 

expensive and labor-intensive process. Furthermore, the function of targeted genes may 

not be determined by this approach owing to embryonic lethality or redundant 

phenotypes. 

Alternatively, the function of genes can be determined by gene silencing. A 

common strategy is the use of homologous antisense RNA, DNA or chemically modified 

nucleic acids that inhibit gene expression by translational blockade and induction of target 

mRNA degradation, primarily through the action of RNase H ribonuclease (Kurreck, 

2003). Although this approach is useful in certain experimental contexts, it is rarely 

sufficiently efficient and specific in mammalian systems (Bernstein et al., 2001; Hammond 

et al., 2000; Martinez et al., 2002; Elbashir et al., 2001a). Recently, by genome-wide 

investigation of antisense oligonucleotide treatment, “off-target effects” have been clearly 

demonstrated (Cho-Chung and Becker, 2003). 

Another gene silencing approach is the exploitation of a number of naturally 

occurring RNA-based enzymes, known as ribozymes that regulate gene expression 

through sequence-specific cleavage of the target mRNA (Freelove and Zheng, 2002; 

Khan and Lal, 2003). The advantages of ribozymes for gene silencing are their catalytic 

property to cleave many mRNAs per enzyme molecule and their high specificity. The 

vulnerability of ribozymes to ribonuclease degradation can be overcome by synthetic 

DNAzymes, DNA counterparts to ribozymes with similar structural and functional 

properties (Breaker and Joyce, 1994). Successfully use of nucleic acid enzymes has 

been reported (reviewed by Khan and Lal, 2003 and Kurreck, 2003), however, diverse 

requirements of intracellular environment are critical for an optimal function of variant 

enzymes types. It has been suggested that each and every cell line and tissue may be 
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unique in their variation in respect to structural requirements for optimal uptake, activity 

and stability of ribozymes (Khan and Lal, 2003). This great diversity, coupled with their 

use, makes ribozymes and DNAzymes difficult to be applied universally. 

By contrast, a promising technique allowing a more straightforward and faster but 

less costly investigation of gene function in vivo might be dsRNA-mediated RNAi. At the 

time when this work was started, dsRNA had successfully been used for sequence-

specific silencing of genes in many organisms as plants, fungi and invertebrates but not in 

adult mammals (Tijsterman et al., 2002). RNAi-mediated gene silencing has the potential 

to allow the determination of the function of each gene that is expressed in a time-, cell-

type- and pathway-specific manner. Moreover, RNAi allows the silencing of genes that 

are pathogenic to the host organism. A recent direct comparison of RNAi with antisense 

strategy attested to the superior potency and efficiency of RNAi (Hough et al., 2003; 

Miyagishi et al., 2003). To make use of these advantages in mammals, we investigated 

the potential of RNAi in perturbing gene expression in adult muscle in vivo. In our 

approach, we demonstrated for the first time that long dsRNA - either directly injected or 

delivered by expression constructs - and short hairpin RNA (shRNA) efficiently induces 

the silencing of endogenous gene expression in adult rodents and the mechanism 

underlying this process is sequence-specific. Our results thus provide a powerful method 

for knockdown genes in adult mammalian muscle. This method will be particularly 

important for large-scale investigation of candidate genes identified in gene expression 

profiling. 

 

 

Long dsRNA and long hairpin RNA as inducer of RNAi 

 

 In the first part of this work, we show that long dsRNA can efficiently trigger gene 

silencing in vivo. Micro-injection of long dsRNAs into adult rat muscle fibers enabled to 

reproduce phenotypes of loss-of-functions mutation. This method is highly reproducible 

and sequence-specific but of transient nature. The replacement of long dsRNA by 

plasmids encoding long hairpin RNA enabled prolonged and stable suppression of gene 
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expression. The significant advantage of long dsRNA and long hairpin RNA is the 

possibility to bypass the necessity to validate the efficiency of each selected target site on 

the directed mRNA for its degradation in experimental approach, which is absolutely 

required for the experimental use of siRNAs. However, directly comparing long hairpin 

RNA to small hairpin encoded siRNAs in postsynaptic gene silencing experiments 

revealed the superior potency of the latter, indicating the diminished ability of those long 

hairpin RNA constructs to mediate RNAi. This finding is most likely due to a limited 

production of functional siRNAs, the key intermediate of RNAi via long hairpin RNA, 

though additional experiments are required to confirm this hypothesis. Therefore, further 

investigation is necessary to optimize the efficiency of long hairpin RNA constructs in the 

suppression of gene expression in vivo. 

 

 

Small hairpin RNA-mediated RNAi in vivo 

 

 So far, successful use of long dsRNA or long hairpin RNA to mediate RNAi in 

adult mammals in vivo has not yet been reported. In contrast, several recent reports have 

demonstrated the functionality of siRNA and shRNA to silence gene expression in mice 

and rats by using different experimental paradigms including hydrodynamic injection of 

siRNA (Lewis et al., 2002; McCaffrey et al., 2002; Song et al., 2003), viral vector-

mediated delivery of shRNA (Xia et al., 2002; McCaffrey et al., 2003; Rubinson et al., 

2003) or generation of transgenic animals (Carmell et al., 2003; Hasuwa et al., 2002; Lois 

et al., 2002; Tiscornia et al., 2003). In our experimental approach, we used in vivo 

electroporation (Gehl et al., 1999), a well established tool that enables the transfection of 

muscle fibers with cDNA plasmids. With the vector-based shRNA delivery, we 

demonstrated the sequence-specific perturbation of agrin-mediated postsynaptic 

differentiation in adult murine muscles, thus providing a useful system to assess the 

function of candidate genes involved in the formation of postsynaptic structures upon 

agrin signaling. As mentioned above, to promote efficient gene silencing using a shRNA 

to a single site in the target mRNA, the selection of potential target sites is particularly 
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important. A protocol containing a set of guidelines that aimed to narrow the choices of 

efficient target sequences and to facilitate the design of shRNA-expressing constructs is 

presented in the appendix of this work. The soundness of these guidelines in promoting 

efficient gene knockdown was preliminarily demonstrated in a large-scale study, in which 

the requirement of six different putative effectors of the mTOR signaling pathway in 

regulation of the muscle size was investigated (see appendix). 

 

Specificity of RNA duplex-mediated gene silencing in mammalian muscle 

 

 The utility of RNA duplexes including long dsRNA, long or short hairpin RNA 

depends critically on its specificity, i.e., the ability to specifically silence the target gene 

without interfering the expression or function of other genes or proteins. In cultured cell-

based knockout experiments, reports of dsRNA-mediated effects are still very 

controversial. Studies aimed to characterize the specificity of siRNA by using gene 

expression profiling have revealed either high specificity of siRNA-mediated gene 

silencing (Semizarov et al., 2003; Chi et al., 2003) or off-target gene regulation by siRNA 

(Sledz et al., 2003; Jackson et al., 2003). In addition to other possible explanations, the 

various ability of different cultured cell lines to elicit interferon response to dsRNA (Stojdl 

et al., 2000) and the variable specificity of different siRNAs (Semizarov et al., 2003) may 

critically contribute to these contradictory observations. In adult mammalian muscle, there 

are several non-specific effects that could be induced by the application of long dsRNA or 

expression constructs encoding long or short hairpin RNA, including interferon response, 

cross-hybridization, aptamer effect and micro RNA (miRNA) effect. In the following part, 

the possible occurrence of such non-specific effects in muscle is discussed. 

Unlike in many organisms including plants (Baulcombe, 1999), C. elegans 

(Tijsterman et al., 2002) and Drosophila (Kennerdell and Carthew, 1998; Misquitta and 

Paterson, 1999), where RNAi mediated by the introduction of long dsRNA allows the 

study of gene functions, long dsRNA has been replaced by siRNA in many mammalian 

systems (Elbashir et al., 2001a) because the introduction of dsRNA longer than 30 nt 

induces non-specific interferon responses (Stark et al., 1998), which overrides the 
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specific effect of long dsRNA by triggering general inhibition of mRNA translation 

(Paddison et al., 2002b). However, recent reports have shown that introduction of siRNA 

(Sledz et al., 2003) or vectors encoding shRNA (Bridge et al., 2003) into cultured 

mammalian cells can induce interferon responses as well. In this work, we used the 

experimental system of transfecting only a limited number of muscle fibers, which allows 

the direct comparison between the experimental and the non-transfected, therefore 

control muscle fibers within the same muscle. This advantage is particularly important to 

assure that the observed silencing effect is selective for the target gene. We observed no 

general or gradual inhibition of protein synthesis accompanied with the use of long 

dsRNA and constructs encoding long or short hairpin RNA, indicating that muscle fibers 

may not respond to dsRNA and DNA plasmids in this sequence independent way. Like in 

our case, vector encoding long hairpin RNA has been shown to induce sequence-specific 

gene silencing but does not interfere the global translation in C2C12 cells (Yi et al., 2003), 

a cultured cell lines that can fuse to myotubes upon induction (Yaffe and Saxel, 1977). 

Cross-hybridization with transcripts containing partial identity to the sequence of 

siRNAs, the final processing product of all applied RNA duplexes, may elicit phenotypes 

reflecting silencing of unintended transcripts in addition to the target gene. The aptamer 

effect is the binding of siRNA duplex or its single strands to cellular proteins in a 

sequence-specific manner, which may influence the gene knockdown phenotype as it has 

been reported for gene silencing experiments mediated by antisense oligonucleotides 

(Brukner and Tremblay, 2000). In addition, siRNA may behave like miRNA by binding to 

transcripts with as many as 3-4 base mismatches (Saxena et al., 2003) and causing 

translational repression of off-target mRNAs (Doench et al., 2003). The use of long 

dsRNA or long hairpin RNA might reduce the intensity of off-target effects, because long 

RNA duplexes are processed into numerous subsets of siRNAs with identical sequence. 

Each subset is lowly concentrated and therefore may elicit less pronouced non-specific 

effects. However, the various siRNAs could elicit wide-spread non-specific effects. In 

contrast, shRNAs to a single site in the target mRNA give only identical siRNAs that may 

elicit limited but pronounced non-specificity. On the other hand, the use of shRNA 

provides the possibility to control cross-hybridization as a source of non-specificity. Unlike 
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aptamer and miRNA effects, off-target silencing mediated by cross-hybridization can be 

minimized by following stringent shRNA design rules as we did in our experiments. 

Especially the limitation of unwanted match was particularly important. A recent report 

has shown that siRNAs sharing 15 continuous nucleotide sequence identity is sufficient to 

silence non-targeted transcripts (Jackson et al., 2003), indicating that our guideline to limit 

unwanted match <16 nt is useful, but still not sufficiently stringent (see appendix). The 

recent suggest of maximizing the difference of the melting temperature between the 

intended interfering RNA - target mRNA interaction and the most likely off-target 

interactions is plausible (Semizarov et al., 2003). As siRNAs of different sequences are 

supposed to vary in their non-specificity, a simple way to eliminate off-target silencing is 

the use of two or more functional shRNAs that target different sites of the same mRNA. 

 

In summary, this work demonstrates that RNAi is a powerful method to silence 

gene expression in adult mammalian muscle in vivo. The high specificity observed in this 

work increases the confidence with which phenotypes observed by dsRNA-mediated 

gene knockdown can be ascribed to the targeted genes. Many questions related to RNAi 

in adult mammalian muscle remain to be addressed. For example, the observed absence 

of an interferon response to long RNA duplexes is a surprising phenomenon, which 

requires an immunological explanation. Furthermore, improvement of the potency of long 

dsRNA to trigger gene silencing would provide an even more straightforward reverse 

genetic method compared to the use of siRNAs. Nevertheless, the functionality of RNAi 

demonstrated in this work established dsRNA-mediated gene silencing as a fast and 

valuable approach for large-scale screening of gene function in muscle in vivo. Moreover, 

this method may also be beneficial for future studies aimed at the treatment of particular 

muscular diseases. 
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and analysis of those experiments, which were done by Dr. Shuo Lin. 
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Abstract 

 

RNA interference (RNAi) initiated by expression constructs encoding small 

hairpin RNA (shRNA) is a reliable and sustained method for sequence-specific gene 

silencing, which allows rapid survey of gene function in adult mammalian muscles in vivo. 

The key effector in the RNAi pathway is the ~21 nt small interfering RNA (siRNA), the 

processed product of shRNA, which directs degradation to mRNA by recognizing the 

homologous target site. The selection of the siRNA sequence is crucial, because siRNAs 

targeting different regions of the same mRNA vary strongly in their inability to trigger 

RNAi. The mechanism underlying this variation is still unknown. Here, we present a 

protocol that aimed at promoting the selection of effective siRNA sequences. By using 

this protocol, we designed shRNA expression vectors targeting the expression of mTOR 

and its putative interactors mLST8, SIN1, mAVO3, TSC1 and TSC2. The mTOR signaling 

pathway is suggested to control the growth of muscle fibers in mammals. Indeed, our 

preliminary results show that upon electro-transfection into denervated mouse muscles, 

every second shRNA constructs effectively altered the recovery of muscle fiber size. 

Analysis of these shRNAs shows that the efficient target sites along the mRNA coding 

sequence is mostly located in >300 nucleotides distance to the start codon, offering an 

useful guideline to narrow down the selection of site for siRNA. 
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Introduction 

 

Small interfering RNAs (siRNAs) are ~21 nucleotides (nt) double-stranded RNAs 

(dsRNAs). The evidence that siRNA can knockdown gene expression by directing the 

sequence-specific degradation of the target mRNA in a process that is known as RNA 

interference (RNAi) (Elbashir et al., 2001a), has lead to the rapid development of a 

powerful reverse genetic method, allowing fast and reliable assessment of gene functions 

in mammalian systems. Direct application of siRNA induces gene silencing of transient 

nature, while subsequently developed DNA-vector-based delivery systems prolong the 

silencing effect indefinitely (reviewed in Dykxhoorn et al., 2003). Most of these expression 

systems take the advantage of the RNase III enzyme Dicer to process small hairpin RNA 

(shRNA) into siRNA, the core element in silencing the target gene (McManus and Sharp, 

2002). These new technologies have enabled it to carry out stable gene silencing 

experiments in mammalian systems in vitro and in vivo, as well as to generate transgenic 

gene knockdown animals. 

siRNA triggers degradation of the mRNA target by recognizing a single 

homologous sequence. To promote efficient gene silencing, consideration of the siRNA 

sequence is absolutely important, because siRNAs that target different sites of the same 

mRNA vary strongly in their effectiveness (Holen et al., 2002; Miyagishi and Taira, 2002; 

Vickers et al., 2003; Hemann et al., 2003). Next to the base composition of a siRNA 

sequence, different factors including the secondary structure of the target mRNA and the 

presence of RNA-binding proteins could determine its effectiveness (Kretschmer-Kazemi 

Far and Sczakiel, 2003; Elbashir et al., 2002). Significant correlation between RNase H 

sensitive regions and regions that provide efficient siRNA-directed mRNA degradation 

has been reported (Vickers et al., 2003; Yang et al., 2002). However, the precise rules 

governing the efficiency of siRNAs to silence genes are still not defined, and the selection 

of potential siRNAs remains a trial and error process. In mammalian cultured cell lines, 20 

to 100% of selected siRNAs are functional depending on the study (reviewed in McManus 

and Sharp, 2002). To narrow the choices of potential siRNAs, a set of guidelines has 
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been proposed (Dykxhoorn et al., 2003; Elbashir et al., 2002). They mainly suggest that 

the selection of the target sequence should avoid regions of the mRNA which might bind 

RNA regulatory proteins, such as 5’ and 3’ UTR and the region proximal to the start site 

(<50-100 nt, with the start codon refers as 1). Between position 50-100 and the stop 

codon, 23 nt sequences conforming to several proposed consensus (see Dykxhoorn et 

al., 2003) and consisting of approximately 50% GC should be selected from the mRNA 

sequence. Sequences of <30% or >70% GC content or sequences with stretches of any 

single nucleotides (especially G) should be avoided. In a further step, the selected siRNA 

sequences should be BLAST searched against sequence databases to ensure that a 

single gene is targeted. 

Similar guidelines have been proposed for the selection of potential shRNA 

sequences (Dykxhoorn et al., 2003; Paddison and Hannon, 2002). Different to the critical 

length of siRNAs, shRNAs with double stranded hairpin stem lengths of 19-29 nt have 

been shown to silence genes effectively (Brummelkamp et al., 2002; McManus et al., 

2002; Paddison et al., 2002a; Paddison et al., 2002b; Paul et al., 2002; Sui et al., 2002; 

Yu et al., 2002), which indicates that the stem length is not the main parameter governing 

effective target-gene silencing. Stems of 29 nt work 10%-40% more efficiently than stems 

of 19 nt, however longer stems could increase the possibility of “off-target effects” 

(Paddison and Hannon, 2002). In addition, the selection of the shRNA sequences is 

limited by the choice of the transcriptional promoter. Predominantly, two members of RNA 

polymerase III promoters have been used: the human and mouse U6-snRNA or the 

human RNase P [H1] promoter (Dykxhoorn et al., 2003). The U6 promoter requires a G 

residue for efficient transcription initiation, whereas the H1 promoter is much more 

permissive. Transcriptional termination is initiated by a stretch of four to five A residues. 

The hairpin loop length seems unlikely to be a main parameter governing effective target-

gene silencing, because loop size ranging from 2 to 23-nt have been described (reviewed 

in McManus and Sharp, 2002). In a direct comparison of 5-, 7- and 9-nt loops using a 19 

nt duplex, the 9 nt loop (5’-UUCAAGAGA-3’) was the most efficient silencer 

(Brummelkamp et al., 2002). Finally, it has been suggested that 3-6 selected shRNA 
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sequences per gene should be tested to identify the most effective one (Paddison and 

Hannon, 2002). 

Previously, by using in vivo electro-transfection of shRNA expression constructs, 

we have established RNAi as a fast and reliable method in adult rodent muscle for 

studying the requirement of unknown genes. Aimed to promote the efficiency of shRNA-

mediated gene silencing in vivo, we present here a protocol for the selection of potential 

siRNA sequences and subsequently the incorporation of those sequences into shRNA 

expressing constructs. By using this protocol, we designed shRNA constructs targeting 

the expression of mTOR (mammalian target of rapamycin) and its putative interactors 

mLST8 (mammalian lethal with sec-thirteen 8), SIN1 (sty1 interactor), mAVO3 

(mammalian adheres voraciously to TOR2 no.3), TSC1 and TSC2 (tuberous sclerosis 

complex 1 and 2) in mouse muscle. mTOR - a highly conserved member of the 

phosphatidylinositol kinase-related protein kinase (PIKK) family (Keith and Schreiber, 

1995) – controls protein synthesis via regulating the phosphorylation of the translation 

activator S6K (ribosomal S6 kinase) and the translation inhibitor 4E-BP (eukaryotic 

initiation factor 4E-binding protein) (Brunn et al., 1997; Burnett et al., 1998; Isotani et al., 

1999). Several lines of evidence have indicated that the mTOR signaling pathway 

controls the growth of muscle fibers in response to nutrients, growth factors and the 

degree of muscle activity (Jacinto and Hall, 2003). The mechanisms through which 

mTOR signals and how the activity of mTOR is regulated in skeletal muscle are still 

unknown. Experiments carried out in mammalian cultured cells and in yeast have 

demonstrated that mLST8 interacts directly with mTOR and positively stimulates its 

kinase activity (Kim et al., 2003). In contrast, binding of the TSC1-TSC2 complex to 

mTOR has an inhibition effect (Gao et al., 2002; Inoki et al., 2002; Tee et al., 2002). SIN1 

and mAVO3 are mammalian homologues of yeast AVO1 and AVO3; respectively, the 

functions of which in mammals is unknown (Jacinto and Hall, 2003; and personal 

communication with Dr. M. N. Hall). In yeast, AVO1 and AVO3 are associated in the TOR 

complex 2 that mediates actin cytoskeleton organization. Our preliminary results show 

that in re-innervated muscles, recovery of muscle size was perturbed by shRNAs 

targeting mTOR or SIN1, while targeting mAVO3 or TSC1 or TSC2 initiates muscle 
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hypertrophy. Silencing mLST8 expression has no effect. Subsequent analysis show that 

the target sites of those shRNAs, which efficiently induced alteration of the muscle fiber 

size, are preferentially located in distance to the start codon along the mRNA coding 

sequence, providing an additional useful guideline for the selection of potential shRNAs. 
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Results 

 

Considering the requirements in the selection of potential target sequences for 

effective gene silencing and in the insertion of those sequences into expression 

constructs, we designed the following protocol for the design of shRNAs destined for use 

in adult mouse muscle. This protocol is based on a combination of guidelines described 

above (Dykxhoorn et al., 2003; Paddison and Hannon, 2002; Elbashir et al., 2002) and 

experience collected during our previous RNAi experiments in vivo (see chapter 2 and 4). 

It was established for the U6 promoter driven shRNA expression system and consists of 

two parts: 

 

1. Selection of the target sequence 

Select for 21 nt target sequences from the mRNA coding sequence between 

base position 50-100 (downstream of the start codon) and the stop codon conforming to 

the following requirements: 

- Sequences should begin with AAG and end with less than 2 T residues in a row. 

- Search for sequences with balanced representation of all nucleotides, stretches of a 

single nucleotide, especially >3 A or T or G residues in a raw should be avoided. 

- Sequences that may form high temperature-resistant loops should be avoided. 

To ensure that the selected sequences target only the intended gene, BLAST-

search the selected sequences against EST libraries and mRNA sequences of the 

respective organism using the National Center for Biotechnology Information (NCBI) 

website. Minimize the maximal length of the homologous region with the best unwanted 

match <16 nt. 

From all target sequences that fulfill the above criteria, we chose three 

candidates per gene. Taken that one out of two randomly-selected target sequences is 

functional (Elbashir et al., 2002), we operated with a calculated success rate of 80-90% 

for obtaining a functional target site. To control for the specificity of the gene silencing 
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experiments, we targeted the expression of CD4, which is an protein specific to the 

immune system (Benoist and Mathis, 1999). 

 

2. Designing the shRNA expression construct 

The mouse U6 promoter was cloned into the pBluescript II KS+ vector according 

to method previously described (Yu et al., 2002). An introduced Bbs1 cloning site enables 

the insertion of shRNA sequences at the first nucleotide of the U6 transcript. shRNA 

sequences were synthesized as two complementary DNA oligonucleotides, annealed and 

inserted between the cloning sites Bbs1 and Xba1. 

 

I. Designing the sense strand of a shRNA construct: 

- replace the 2 A residues at the 5’ end by 3 T (the Bbs1 cloning site);  

- add the loop sequence TTCAAGAGA, which has been found to give more potent 

shRNAs compared to other loop sequences (Brummelkamp et al., 2002), followed by 

the antisense strand of the target sequence and finally 3 T residues to the 3’ end; the 

cluster of totally 5 T bases at the new 3’ end terminates the transcription. 

 

II. Designing the antisense strand of a shRNA construct: 

- add the Xho1 cloning sequence CTAG to the 5’ end of the sequence complementary 

to the sense strand of the shRNA construct; 

- remove the sequence CAAA from the 3’ end. 

 

DNA oligonucleotides of both strands were mixed, boiled and slowly cooled down 

for annealing. Preparation of cDNA was done with endotoxin-free reagents. shRNA 

expressing constructs in conjunction with plasmids encoding green fluorescent protein 

fused to a nuclear localization signal (NLS-GFP), which labeled the nuclei of transfected 

muscle fibers (Jones et al., 1999), were electroporated into adult mouse soleus muscle in 

vivo (Gehl et al., 1999). 

 In this study, we used the protocol to design shRNA constructs targeting the 

expression of mTOR and its putative interactors mLST8, SIN1, mAVO3, TSC1 and TSC2 
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in mouse muscle (Table 1). The TOR signaling pathway is a central controller of cell 

growth (Jacinto and Hall, 2003). In mammalian systems, silencing the expression of 

mTOR or mLST8, both positive elements of the mTOR pathway, in cultured cell lines 

results in reduced cell size (Kim et al., 2003; Kim et al., 2002), while loss of function 

mutations in the genes encoding the negative elements TSC1 or TSC2 causes tumorous 

cell growth (Goncharova et al., 2002; Kwiatkowski et al., 2002). The function of SIN1 and 

mAVO3 in mammals is unknown, their homologue in yeast, AVO1 and AVO3, are 

involved in the organization of the actin cytoskeleton (Loewith et al., 2002). In mammals, 

the size of muscle fibers depends critically on the contact of motor neuron. Denervation 

causes muscle atrophy and re-innervation leads to recovery of muscle size. The 

molecular mechanisms of these changes are still not understood. Here, we asked 

whether the translation products of these six candidate genes are required in the recovery 

of muscle mass upon re-innervation. To this end, we denervated mouse soleus muscles 

by crushing the sciatic nerve. Subsequently, electro-transfecting of shRNA expression 

constructs into denervated muscles was performed. After six week, re-innervated 

muscles were examined. Our preliminary results show that targeting the expression of 

CD4 as a control, the size of shRNA constructs transfected muscle fibers was 

indistinguishable from that of the non-transfected muscle fibers (these and the following 

data are shown by Dr. Shuo Lin). In contrast, the mTOR or SIN1 targeted muscle fibers 

had significantly reduced size, whereas the AVO1, TSC1 or TSC2 targeted muscle fibers 

clearly increased their size compared to that of the non-transfected muscle fibers on the 

same muscle. When targeting the expression of mLST8, no effect on the muscle fibers 

size was observed. 

Subsequently, we analyzed all the target sequences that effectively mediated 

gene silencing concerning to their location in the appropriate mRNA coding sequence 

(Table 1). Excluded from this analysis were 3 target sequences, which induced either a 

clear effect or no effect in independent experiments, and the 3 constructs targeting to the 

mLST8 expression, which caused no effect because either they were non-functional or 

mLST8 is non-essential in controlling of the muscle fiber size. 6 out of 12 shRNA 

expression constructs tested were effective. Among these constructs we found that the 
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target sequences were located on the mRNA in minimum 361 nt and an average of 700 

nt downstream of the start codon. There was no correlation observed between the 

location of a target site and the length of the mRNA coding sequence. 
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Discussion 

 

RNAi is a recently developed powerful reverse genetic method based on siRNA 

directed cleavage of the homologue target sequence on the mRNA (Dykxhoorn et al., 

2003). Among other open questions concerning this new technology, the observation that 

different target regions on the same mRNA vary strongly in their susceptibility to siRNA-

mediated degradation is still an obstacle. Therefore, the selection of potential target 

sequences remains an empiric process. Here, we present a protocol for the design of 

potential shRNA expression constructs destined to induce RNAi in adult mouse muscle in 

vivo. We used this protocol to design shRNA constructs targeting the expression of 

mTOR and its putative interactors. Half of the tested constructs were efficient in inducing 

gene silencing in all experiments and one fourth were effective in some experiments. 

Compared to the suggestion of testing 3-6 selected shRNAs per gene to identify potential 

target sites (Paddison and Hannon, 2002), our preliminary result provides a likelihood of 

at least 50% given a set of 3 selected target sequences, indicating that the protocol 

presented in this work is useful for selecting efficient shRNA candidates. Although it has 

been suggested that target sequences should be selected in the coding region 50-100 nt 

downstream of the start codon (Elbashir et al., 2002), our preliminary result demonstrates 

that the effective target sites are localized in greater distance - in mean 700 nt and in 

minimum 361 nt - to the start codon, which is consistent with the report of biased location 

of efficient target sequences towards the 3’ portion of the mRNA (Dykxhoorn et al., 2003). 

To optimize the protocol for future experiments, this finding may provide an additional 

guideline for narrowing down the selection of potential target sequences. However, 

additional studies are required to substantiate the information about regions of mRNA for 

RNAi targeting. 

Another aspect of this work is that our preliminary results provide direct evidence 

that the mTOR signaling pathway is a crucial controller of the muscle mass. The findings 

that hypertrophic growth of skeletal muscles upon increased workload is rapamycin 

sensitive and that increase of signaling by mTOR and phosphorylation of mTOR itself is 
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associated with muscle hypertrophy (Rommel et al., 2001; Bodine et al., 2001; 

Pallafacchina et al., 2002; Reynolds et al., 2002; Baar and Esser, 1999) indicate that the 

mTOR pathway is involved in positive regulation of the muscle size. However, no direct 

evidence has been yet provided. Here, we demonstrate that in re-innervating muscles, 

silencing the expression of mTOR results in inhibition of muscle size recovery, while 

silencing the expression of TSC1 or TSC2, which are negative elements of the pathway, 

caused muscle hypertrophy. Interestingly, targeting the expression of SIN1 or mAVO3 

results in opposite growth effects. Perturbation of SIN1 leads to reduced muscle fiber 

size, while increased muscle fiber size was observed in response to mAVO3 silencing. 

This finding is notable since the yeast homologue of both proteins have no function in cell 

growth (Loewith et al., 2002), indicating that SIN1 and mAVO3 may play a different role in 

the control muscle mass. Finally, in mLST8 targeted muscles, no alteration of muscle 

mass was observed. This finding clearly differs from the report of reduced cell size upon 

silencing of mLST8 in cultured cell lines (Kim et al., 2003). The absence of an effect 

indicates that either mLST8 is non-essential for the regulation of muscle fiber growth in 

re-innervated muscle or the applied shRNA constructs are ineffective in inducing gene 

silencing. Future quantification of mLST8 transcript or translational product in transfected 

muscle fibers will rule out one of the possibilities. 
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Methods 

 

Plasmids. The NLS_GFP expression construct encoding green fluorescent protein (GFP) 

with a nuclear localization sequence (NLS) has been described elsewhere (Jones et al., 

1999). Vectors encoding shRNAs were described in result part (Table 1). The murine 

CD4 siRNA target sequences corresponding to nucleotides 494-514 of CD4 (M36850) 

was described in chapter 2. Sense and antisense oligonucleotides were annealed by 

boiling at 95°C for 5min and slowly cooling down to RT. Annealing buffer: 5mM EDTA, 

50mM NaCl, pH=7.4; Endotoxin free kit used for preparation of cDNA was purchased 

from Qiagen. 

 

Electroporation of cDNA into muscle fibers. Electroporation was done as described in 

chapter 2. Experiments were carried out in denervated mouse soleus muscles. All 

experimental procedures in vivo were performed as described in chapter 4. Muscles were 

analyzed six weeks after electroporation. 

 

Denervation, electroporation and quantification of muscle fiber size were done by Dr. 

Shuo Lin. Paper in preparation. 
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