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Extended 
Data Fig. 
1 

Hypothalamic and 
POA cell types in 
zebrafish and Mexican 
tetra 

Figure E1 - Hypothalamic 
and POA cell types in 
zebrafish and Mexican 
tetra.eps 

(a) UMAP of zebrafish cells coloured and 
labelled by annotated cell type. (b) UMAP of 
Mexican tetra surface- and cave-morphs 
coloured and labelled by annotated cell type. 
(c) DotPlot of the top 2 maker genes for each 
zebrafish cluster from (a). (d) DotPlot of the 
top 2 marker genes for each Mexican tetra 
cluster from (b). Examples of potentially 
homologous cell types and their top marker 
genes share a colour (blue, green, red) in (c) 
and (d). (e) UMAP of merged but not batch-
corrected zebrafish and Mexican tetra single-
cell datasets. 

Extended 
Data Fig. 
2 

Marker genes for cell 
types shared between 
zebrafish and Mexican 
tetra 

Figure E2. Marker genes for 
cell types shared between 
zebrafish and Mexican 
tetra.eps 

(a) DotPlot of the top 5 marker genes for 
each integrated cluster. (b) Proportion of 
cells from each cluster by species or species-
morph (height of each bar along the x-axis). 
Width of each bar along the y-axis indicates 
the proportion of that cluster in the integrated 
data. Red outlines indicate the Mexican tetra-
specific Ciliated cluster, and the integrated 
Immune clusters which are over-represented 
in the Mexican tetra dataset. (c) Density plot 
of the number of subclusters versus the 
fraction of each subcluster that is either from 
the zebrafish or Mexican tetra dataset. 
Subclusters with the majority of cells from the 
zebrafish dataset are shown in purple, and 
those with the majority of cells from the 
Mexican tetra dataset in yellow. 

Extended 
Data Fig. 
3 

Shared subclusters are 
highly similar due to 
paralogous gene 
expression 

Figure E3. Shared 
subclusters are highly 
similar due to paralogous 
gene expression.eps 

(a) Gene orthology confidence from Ensembl 
for all marker genes, or those marker genes 
which were paralogs of a marker gene in the 
other species. (b) Gene order score from 
Ensembl for all marker genes, or those 
marker genes which were paralogs of a 
marker gene in the other species. (c) The 
percentage of conserved, species-specific, 
and species-specific paralogous subcluster 
marker genes corrected by SCORPiOS 
synteny-correction. (d) The percentage of 
morph-specific marker genes for each 
subcluster which were paralogs of either the 
conserved or opposite species-specific 
marker gene for surface- and cave-morphs of 



 

Mexican tetra. (e) The odds ratio for the 
enrichment of paralogs in the species-
specific genes for each subcluster for 
zebrafish and Mexican tetra. (f) The row-
scaled ∆SI for all subclusters between 
zebrafish and Mexican tetra. Yellow indicates 
the highest ∆SI value between Mexican tetra 
and zebrafish subclusters. For all boxplots, 
box bounds represent the first and third 
quartiles and whiskers 1.5 times the 
interquartile range, thicker line represents the 
median.

Extended 
Data Fig. 
4 

Paralog shifts are 
associated with loss of 
ancestral gene 
expression patterns 

Figure E4. Paralog shifts 
are associated with loss of 
ancestral gene expression 
patterns.eps 

(a-b) Empirical cumulative distribution 
function (ECDF) for expression divergence 
(dT) for paralogous gene pairs. (c-d) ECDF 
of the number of cell types that have 
overlapping expression patterns within 
ancestral cell types for paralogous genes 
pairs (redundancy score, orange highlight in 
b). (e-f) ECDF of the number of non-
ancestral cell types expressing each 
individual paralogous gene. Results for c-e 
are grouped by the age of the duplication 
inferred from the last common ancestor 
(LCA) which had both genes - from the oldest 
(Opisthokonta, yellow), to the most recent 
common ancestor (Otophysi, red), and to 
those gene duplicates which are only found 
in either Danio rerio or Astyanax mexicanus 
(dark red). Results from b, d, and f are 
filtered and grouped by the originating whole 
genome duplication event (WGD), either 
vertebrate (2R) or teleost (3R).  

Extended 
Data Fig. 
5 

Gene regulatory 
networks identified by 
GENIE3/SCENIC 

Figure E5. Gene regulatory 
networks identified by 
GENIE3.eps 

(a) Comparison of the random forest weights 
for orthologous transcription factors in the 
zebrafish (y-axis) and Mexican tetra (x-axis) 
data for example terminal effector genes. 
Colours indicate whether those transcription 
factors are in the top 2% of transcription 
factors for each gene in either zebrafish 
(blue) and Mexican tetra (red), both (yellow), 
or none (black).

Extended 
Data Fig. 
6 

Species-specific 
subcluster identities 
are not dependent on 
species-specific genes 

Figure E6. Species-specific 
subcluster identities are not 
dependent on species-
specific genes.eps 

(a) tSNEs of cells from clusters containing a 
species-specific neuronal subcluster coloured 
by the original subcluster identity. (b) tSNEs 
of cells from clusters containing a species-
specific neuronal subcluster coloured by 
subcluster identity derived from subclustering 
without species-specific genes. (c) Sankey 
diagrams illustrating the relationship between 
original subcluster identities and identities 
from subclustering without species-specific 
genes. Box heights and line widths are 
proportional to the number of cells in each 
subcluster and connection, respectively. 



 

Shaded connections represent cells from 
species-specific subclusters. 

Extended 
Data Fig. 
7 

Comparison of 
subcluster identities 
between independent 
and integrated analysis 

Figure E7. Comparison of 
subcluster identities 
between independent and 
integrated analysis.eps 

(a) Sankey diagram of Mexican tetra surface-
morph specific subclusters and their 
relationship to integrated subclusters, and 
zebrafish subclusters. Box heights and line 
widths are proportional to the number of cells 
in each subcluster and connection, 
respectively. (d) Sankey diagram of Mexican 
tetra cave-morph specific subclusters and 
their relationship to integrated subclusters, 
and zebrafish subclusters. Box heights and 
line widths are proportional to the number of 
cells in each subcluster and connection, 
respectively. (c) Sankey diagram of the 
Zebrafish species-specific subclusters 
(middle) and their relationship to subclusters 
independently identified in the zebrafish 
(right) or Mexican tetra datasets (left). Box 
heights and line widths are proportional to the 
number of cells in each subcluster and 
connection, respectively. (d) Sankey diagram 
of the subclusters shared by, (“Shared 
(147)”) or specific to, surface- and/or cave-
morphs (“Cave-specific” or “Surface-
specific”). The middle column depicts 
whether each subcluster is found in all cave-
morph samples (“All Caves”), different 
combinations of multiple caves, or only in the 
datasets from specific cave-lineages 
(“Pachon” or “Molino”). Box heights and line 
widths are proportional to the number of cells 
in each subcluster and connection, 
respectively.

Extended 
Data Fig. 
8 

Comparison of 
neuropeptides and 
gene regulatory 
networks between 
surface- and cave-
morphs 

Figure E8. Comparison of 
neuropeptides and gene 
regulatory networks 
between surface- and cave-
morphs.eps 

(a) DotPlot showing expression of galn in the 
cells from the galn+ cluster (Neuronal_07), 
and expression of oxt, avp, and 
ENSAMXG00000021172 in the Neuronal_19 
cluster. Cells are grouped by species morph 
and cave-lineage. (b) Similarity Index 
between the transcription factor sets for 
surface- and cave-morphs of Mexican tetra 
for neuropeptides, neurotransmitters, 
synaptic genes, and ion channels. (c-f) 
Random forest weights for orthologous 
transcription factors in the Mexican tetra 
surface-morph (y-axis) and Mexican tetra 
cave-morph (x-axis) data for the 
neuropeptides galn, hcrt, oxt, and avp. 
Colours indicate whether those transcription 
factors are in the top 2% of transcription 
factors for each gene in either surface-
morphs (green) and cave-morphs (yellow), 
both (purple), or none (black). For all 
boxplots, box bounds represent the first and 
third quartiles and whiskers 1.5 times the 



 

interquartile range, thicker line represents the 
median.

Extended 
Data Fig. 
9 

Transcriptional 
signatures of 
neuroinflammation 
resistance in cave-
morphs 

Figure E9. Transcriptional 
signatures of 
neuroinflammation 
resistance in cave 
morphs.eps 

(a) tSNE reduction of immune clusters 
(Tcells, Bcells, Microglia, Macrophages, Mast 
cells, Thrombocytes, Neutrophils, and 
Erythorcytes) from surface- and cave-morph 
Mexican tetra coloured and labelled by 
species-morph. (b) tSNE reduction of 
immune cell types from surface- and cave-
morph Mexican tetra coloured by cluster. (c) 
Marker genes for surface- and cave-morph 
versions of each immune cell type. Red 
outlines indicate differential expression of 
neuroinflammation associated genes in cave-
morph immune cells. Gene expression is 
quantified by both the percentage of cells 
which express each gene (dot size) and the 
average expression in those cells (colour 
scale). (d) tSNE reduction showing 
expression of ccr9a in Mexican tetra immune 
cells. (e) Proportion of cells within each 
immune subcluster which come from Choy 
surface-morphs, or Molino, Tinaja, or Pachon 
cave-morphs.

Extended 
Data Fig. 
10 

A permanent stress-
response in a cave-
morph specific 
neuronal subcluster 

Figure E10. A permanent 
stress-response in a cave-
morph specific neuronal 
subcluster.eps 

(a) tSNE reduction of Neuronal_03 cluster 
from Mexican tetra coloured and labelled by 
subcluster. (b) tSNE reduction of 
Neuronal_03 cluster from Mexican tetra 
coloured by species-morph. (c) DotPlot of the 
top 5 marker genes for each subcluster of the 
Neuronal_03 cell type (x-axis), and their 
expression across all subclusters (y-axis). 
Gene expression is quantified by both the 
percentage of cells which express each gene 
(dot size) and the average expression in 
those cells (colour scale). (d) Dendrogram of 
the Neuronal_03 subclusters based on the 
Variable Features of the Neuronal_03 cluster, 
and the proportion barplot of cells from each 
species-morph per subcluster. (e) GO 
analysis of genes differentially expressed 
between Neuronal_03_1 and 
Neuronal_03_4. (f) tSNE reduction of 
Neuronal_03 cluster from Mexican tetra 
coloured by hspb1 expression. 
Neuronal_03_4 subcluster is highlighted by a 
dotted line. (g) Sankey diagram of the 
relationships between the Mexican tetra 
subclusters (left-hand side), integrated 
subclusters (middle), and zebrafish 
subclusters (right-hand side). Box heights 
and line widths are proportional to the 
number of cells in each subcluster and 
connection, respectively. 
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Supplementary data for Cavefish single-cell sequencing 
publication 
=================================================
======== 
 
This archive contains the supplementary data for the paper “Gene 
family evolution underlies cell type diversification in the 
hypothalamus of teleosts”, which includes all of the raw and 
partially processed data produced by the analyses presented. 
 
The archive contains: 
 
1) The raw count data for both the zebrafish (Danio rerio) and 
Mexican tetra (Astyanax mexicanus) single-cell experiments, as 
compressed .csv files. 
2) The Seurat object meta data for the zebrafish (Danio rerio), 
Mexican tetra (Astyanax mexicanus), and integrated Seurat 
objects, containing sample, species, and cell type cluster labels 
for each cell. 



 

3) CSVs for all marker gene lists used in the publication. 
4) CSVs for all pseudobulk expression data for all cell type labels. 
5) The raw data used for calculating the SI for each cluster and 
subcluster identity in the integrated data 
6) Results from SCENIC/GENIE3 analysis, including the Linklists 
and tfModules outputs from SCENIC. 
7) Results of the weir fst analysis between cave and surface 
populations, for both INDELs and SNPs 
8) Ensembl biomart export files for determine paralogy 
relationships between genes within and across species 
9) Results of trinarization of gene expression across all identities, 
an the uniquely expressed genes per identity. These are provided 
as R object files (.rds) 
 
Supplemental_data/3-marker_gene_lists 
=================================================
======== 
 
This folder contains marker gene lists for clusters and subclusters 
(“.sub”), for the zebrafish (“Drerio”), Mexican tetra 
(“Amexicanus”), or integrated (“Integrated”) datasets. 
 
Supplemental_data/4-pseudobulk_expression 
=================================================
======== 
 
This folder contains psuedobulk expression profiles for clusters 
(“Clusters”) and subclusters (“Subclusters”), for the zebrafish 
(“Drerio”),  combined Mexican tetra, and the surface and cave 
morphs of Mexican tetra, and integrated datasets. 
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ABSTRACT: 19 

Hundreds of cell types form the vertebrate brain, but it is largely unknown how similar cellular 20 

repertoires are between or within species or how cell type diversity evolves. To examine cell type diversity 21 

across and within species, we performed single-cell RNA sequencing of ~130,000 hypothalamic cells 22 

from zebrafish (Danio rerio) and surface- and cave-morphs of Mexican tetra (Astyanax mexicanus). We 23 

found that over 75% of cell types were shared between zebrafish and Mexican tetra, which diverged from 24 

a common ancestor over 150 million years ago. Shared cell types displayed shifts in paralog expression 25 



 

that were generated by sub-functionalization after genome duplication. Expression of terminal effector 26 

genes, such as neuropeptides, was more conserved than the expression of their associated 27 

transcriptional regulators. Species-specific cell types were enriched for the expression of species-specific 28 

genes, and characterized by the neo-functionalization of expression patterns of members of recently 29 

expanded or contracted gene families. Comparisons between surface- and cave-morphs revealed 30 

differences in immune repertoires and transcriptional changes in neuropeptidergic cell types associated 31 

with genomic differences. The single-cell atlases presented here are a powerful resource to explore 32 

hypothalamic cell types, and reveal how gene family evolution and shifts in paralog expression contribute 33 

to cellular diversity. 34 

  35 



 

INTRODUCTION: 36 

The homology of neuronal cell types was first revealed by Ramón y Cajal, who observed that 37 

morphologically similar neurons were present in the brains of many species1. Since then, the comparison 38 

of cell types has largely relied on morphological criteria and, more recently, data from select marker 39 

genes2. These studies have led to the definition of major neuronal classes and subclasses2,3 but it is still 40 

unknown how molecularly similar or different brain cell types are between species. Moreover, it is unclear 41 

how cell types diversify during evolution or adaptation to extreme environments. Biological novelty may 42 

arise as a result of gene expansion4, but it is unknown how the evolution of gene families influences the 43 

diversification of cell types in the brain. 44 

Single-cell sequencing has recently emerged as a powerful tool to study and map the cell types of 45 

individual species, and has allowed the identification of hundreds of transcriptionally unique cell types in 46 

vertebrate tissues, including the brain5. Recently, cross-species comparisons using single-cell RNA-seq 47 

have identified shared and species-specific cell types, as well as mechanisms for neuronal evolution5,6. 48 

These studies have identified conserved cell types during vertebrate development7 and mammalian 49 

neurogenesis8,9, as well as primate-specific adaptations10,11. Extension of these approaches to more 50 

diverse phylogenies is necessary for understanding the molecular and evolutionary basis of cell type 51 

conservation and diversification across the tree of life. 52 

A powerful model for comparative studies of biological diversification are the teleosts. This group 53 

of nearly 30,000 described ray-finned fish species represents the largest clade within vertebrates and has 54 

undergone a taxon-specific whole genome duplication (WGD)12,13. It has been hypothesised that the vast 55 

diversification in morphology, physiology, and behaviour observed across teleost species was driven by 56 

gene family expansions associated with the teleost-specific WGD4,12,14. Most duplicated genes lose their 57 

functions through deleterious mutations (non-functionalization), but genes that are retained may undergo 58 

either sub-functionalization (partitioning of functions or gene expression patterns), or neo-functionalization 59 

(gain of novel functions or gene expression patterns). Little is known about the fate of these duplicated 60 

genes in teleosts, their roles in the vertebrate brain, or their links to cellular diversification.  61 

In this study we analyze the conservation and diversification of teleost brain cell types using the 62 

zebrafish (Danio rerio) and the Mexican tetra (Astyanax mexicanus) as model systems. Zebrafish is the 63 

leading fish model system in developmental and neurobiology, whereas Mexican tetra is a powerful 64 

system for comparative studies. Mexican tetra has two morphs, an eyed surface-morph, and an eye-less 65 

and pigment-less cave-morph15–17. Comparisons between species, and between species-morphs 66 

represent two informative evolutionary distances: between distantly related species (150-200 million 67 

years, zebrafish and Mexican tetra), and within a species with large phenotypic differences (250-500 68 

thousand years, species-morphs of Mexican tetra), that have been linked to changes in the development 69 

and gene expression patterns of the nervous syste15,18.  70 

To characterise cell type diversity at a high resolution in both zebrafish and Mexican tetra, we 71 

focus on the hypothalamus. The hypothalamus is a highly conserved forebrain region that is responsible 72 

for the generation and secretion of hormones and neuropeptides involved in diverse behaviours. Within 73 

the hypothalamus these functions are partitioned into specific neuropeptidergic cell populations regulating 74 

sleep/wake (hcrt+ and galn+ neurons), food intake (agrp, npy, pomc), aggression and sexual behaviours 75 

(oxt, avp, npy), and physiological homeostasis19–21. It is thought that hormone-secreting brain centres are 76 

ancient, and were present in the last common ancestor of all metazoans22. However, the level of 77 

homology in the cellular populations of the hypothalamus has not been comprehensively compared 78 

between species.  79 

We used single-cell transcriptomics followed by high resolution clustering and cross-species 80 

integration to systematically identify the molecular similarities in the cellular repertoire of the teleost 81 

hypothalamus. First, we observe high conservation of cell types between species over 150 million years 82 

of evolution. Second, our results suggest that shared cell types have undergone shifts in paralog gene 83 

expression, and  divergence in gene regulatory networks. Third, we link cellular novelty with genetic 84 



 

novelty and the species-specific expression of paralogous genes. Fourth, we identify transcriptional and 85 

genomic differences between surface- and cave-morphs of Mexican tetra that are candidates to be 86 

associated with behavioural phenotypes of cave-adaptation. 87 

 88 

RESULTS 89 

Iterative clustering identifies shared and divergent cell types in the hypothalamus and preoptic 90 

area  of D. rerio and A. mexicanus 91 

To characterise similarities and differences of brain cell types between and within species, we 92 

performed scRNA-seq on ~130,000 cells from the hypothalamus and preoptic area (POA) of D. rerio 93 

(zebrafish), and from surface and 3 different cave species-morphs of A. mexicanus (Mexican tetra) 94 

(Figure 1a-c, Extended Data Figure 1-2, Supplementary Information, and Supplementary Figures 95 

1). To resolve cell populations at high resolution, we performed iterative subclustering resulting in 194 96 

subclusters with distinct gene expression patterns (Figures 1d, see Supplementary Information, 97 

Supplementary Figures 2-4 and Methods for details on our clustering approach and the comparison 98 

between clusters and subclusters). Subclustering resolved rare cell populations such as the hcrt+ 99 

subcluster which also expressed the neuropeptide npvf and the transcription factor lhx9 100 

(Neuronal_01_10) (Supplementary Figure 2e)19,26. The majority of subclusters were shared between 101 

species (151 out of 194 subclusters composed of > 10% of cells from both species), whereas 43 102 

subclusters were specific to either zebrafish or Mexican tetra (species-specific, > 90% of cells from either 103 

species in our analysis) (Figure 1d). Analysis of the similarity between subclusters from each of the cave-104 

morphs reflected the known phylogenetic relationship between surface-morphs, and Pachon, Tinaja, and 105 

Molino cave-morphs (Figure 1e). Thus, subclustering identified both similar and divergent cell types 106 

between zebrafish and Mexican tetra. 107 

In the following sections we analyze this dataset to (1) identify the similarities and differences in 108 

gene expression for cell types shared between zebrafish and Mexican tetra (Figure 2-3), (2) compare 109 

gene regulatory networks across species (Figure 4), (3) define gene expression signatures associated 110 

with species-specific cell types (Figure 5), and (4) examine cell type similarities and differences between 111 

the surface- and cave-morphs of Mexican tetra (Figure 6). We then discuss our findings in relation to the 112 

molecular and evolutionary basis of cell type conservation and diversification. 113 

 114 

Transcriptional Similarity Index measures gene expression similarities and differences between 115 

cell types 116 

To quantify the similarities and differences in the subclusters shared between species we 117 

developed a transcriptional Similarity Index (SI) that compares the presence or absence of cell type 118 

specific marker genes (Extended Data Figure 2a, Supplementary Information). We calculated the SI 119 

between the marker gene sets for zebrafish and Mexican tetra for each of the 151 shared subclusters 120 

(Figure 2a-b). SI was consistently the highest between shared subclusters, and between subclusters from 121 

the same or related clusters (Figure 2a-b).  122 

Analysis of the patterns of SI between subclusters revealed that progenitor subclusters had 123 

significantly higher levels (average SI of 0.327) than differentiated neuronal cells (average SI of 0.224) 124 

(Figure 2c). The lower divergence for progenitor cells between species could be due to their function in 125 

generating many different cell types, with pleiotropic effects expected from changing gene expression 126 

patterns in progenitor cell types. Indeed, the SI for the larger parental clusters (marker genes shared by 127 

multiple subclusters) was significantly higher than the similarity for subclusters (marker genes specific to 128 

subclusters) also suggesting pleiotropic effects (Figure 2d). For example, the cluster Neuronal_01 had a 129 

SI of 0.305, whereas its subclusters, Neuronal_01_0 - Neuronal_01_11, had SIs between 0.286 and 130 

0.146 (mean of 0.206). To test whether the amount of transcriptional similarity scales with the 131 

evolutionary time between species, we also calculated SI for the same subclusters between cave and 132 

surface morphs of Mexican tetra (Figure 2e). Higher SI was observed for surface versus cave morph cells 133 



 

than between zebrafish and Mexican tetra, indicating that SI reflects divergence time. These results 134 

highlight that the transcriptomes of progenitors (versus differentiated cells), and of cell clusters (versus 135 

subclusters), have changed the least during evolution. 136 

 137 

Expression of paralogous and functionally similar genes contributes to transcriptional divergence 138 

in shared cell types 139 

To determine what factors contribute to the transcriptional divergence of shared cell types, we 140 

compared the identity of marker genes that were specific to one or the other species. Examination of the 141 

zebrafish-specific marker genes revealed that many were paralogs of Mexcian tetra-specific marker 142 

genes, and vice versa. For example, erythrocytes were marked by hbaa2 in Mexican tetra, but its paralog 143 

ba1 in zebrafish. Neuronal_00 cells were marked by zic2b/zic5 in Mexican tetra, but their paralogs 144 

zic1/zic3 in zebrafish (Extended Data Figure 1). The best markers for GABAergic and Glutamatergic cell 145 

types were also paralogs of each other in the two species. Zebrafish cells expressed slc17a6b, and gad2, 146 

whereas Mexican tetra cells expressed the paralogs slc17a6a and gad1b, for Glutamatergic and 147 

GABAergic cells respectively (Supplementary Figure 4). These results suggest that instead of expressing 148 

orthologous genes, shared cell types often express paralogous genes. 149 

To determine how frequent such shifts in paralog expression are, we calculated for each 150 

subcluster the percentage of zebrafish-specific marker genes that were paralogs of either a shared 151 

marker gene or a Mexican tetra-specific marker gene, and vice versa (Figure 2a). Up to 14% of the 152 

species-specific marker genes for each subcluster were paralogous to another gene expressed in the 153 

same subcluster in either species (Figure 2f). These levels represented a 4-15 fold or higher enrichment 154 

for paralogous genes (odds ratio, Fisher’s test) (Figure 2g), and were not due to mis-identification of 155 

orthology/paralogy relationships between genes (Extended Data Figure 3a-c). The vast majority of the 156 

observed changes in paralog expression between zebrafish and Mexican tetra were also conserved 157 

between surface- and cave-morphs of Mexican tetra (Figure 2h). Differences between surface- and cave-158 

morph marker genes were also enriched for paralogous genes (Extended Data Figure 3d-e) Progenitor 159 

cells, which had the least amount of transcriptional divergence, also had the highest enrichment for 160 

paralogous genes (Figure 2i). Additionally, the enrichment for paralog expression was positively 161 

correlated with the SI across all subclusters (Figure 2i). Non-paralogous differentially expressed genes 162 

between species were also enriched for similar gene ontology terms suggesting conservation of function 163 

across species (Supplementary Information and Supplementary Figure 6). To account for shifts in paralog 164 

expression and to produce a more accurate estimation of the similarity of subclusters between species 165 

we calculated a corrected-SI, which considers paralogs as functionally equivalent. We also calculated the 166 

difference between corrected-SI and SI (∆SI) (Extended Data Figure 3f). The mean of the corrected-SI of 167 

subclusters was twice that of the mean of the SI for the same subclusters (Figure 2j). The ∆SI was 168 

highest between shared subclusters (Extended Data Figure 3f). These results indicate that gene 169 

expression differences between shared cell types are largely due to shifts in the expression of functionally 170 

similar paralogs both between species and between species-morphs. 171 

 172 

Enrichment of paralogous genes in shared subclusters is due to gene duplication followed by 173 

differential retention of expression patterns 174 

 Possible explanations for the observed enrichment for paralogous gene expression in shared 175 

subclusters include the differential retention or gain of expression patterns in the two species following 176 

gene duplication. In this scenario, the expression patterns of newly duplicated genes are initially identical 177 

or highly similar, but over time undergo differential sub- or neo-functionalization in gene expression in 178 

different species. Consider the hypothetical Gene X, which is duplicated in the ancestor of Species 1 and 179 

2. After time, expression of Gene Xa is retained in the cell types of interest in Species 1, whereas 180 

expression of Gene Xb may be retained in Species 2 (Figure 3a-c). One prediction of this paralog sub-181 



 

functionalization model is that more recently duplicated genes will have more similar expression patterns 182 

within each species. 183 

We used a previously described metric to calculate the expression divergence (dT) for each pair 184 

of paralogous genes within each species31. We found that paralog gene pairs that were generated 185 

through more recent duplication events showed lower dTs (empirical cumulative distribution function) than 186 

paralogs from more ancient duplication events (Figure 3d-e, and Figure S6b).  To gain further insight 187 

into the divergence patterns of paralogous genes within species we determined putative ancestral gene 188 

expression patterns based on the minimal group of cell types that express either or both paralogs in both 189 

species (ancestral cell types) (Figure S12b’). This analysis revealed that divergence of paralog gene pairs 190 

was predominantly due to loss of co-expression rather than expansion of expression patterns into new 191 

cell types (Extended Data Figure 4 and Supplementary Information).  192 

To test whether genes diverged differentially in zebrafish and Mexican tetra, we compared the dT 193 

for each pair of paralogous genes which were conserved in both species. The expression patterns of 194 

most gene pairs have diverged in both species, but many have diverged in only zebrafish or Mexican 195 

tetra (Figure 3f). The most recently duplicated gene pairs also had dT patterns which were different 196 

between species. For example, 14 of 22 gene pairs that arose in the last common ancestor of zebrafish 197 

and Mexican tetra (Otophysi) have different dT levels and expression patterns in zebrafish and Mexican 198 

tetra (Figure 3g). For example, etv5a is expressed across several glutamatergic neuronal clusters in both 199 

Mexican tetra and zebrafish (Figure 3h). The expression of its paralog etv5b in the same subclusters was 200 

retained in zebrafish, but lost in Mexican tetra (Figure 3h).  201 

For all gene pairs in both species, we determined the correlation of their expression patterns 202 

between zebrafish and Mexican tetra (Figure 3i). The oldest gene pairs examined had the most 203 

correlated expression patterns across species, including those gene pairs which arose prior to the last 204 

common ancestors of vertebrates (Bilateria, Chordata, and Vertebrata) (Figure 3i). No difference was 205 

observed between genes arising from either the 2R or 3R WGDs (Figure 3i). This is consistent with the 206 

functions and expression patterns of older genes having diverged long ago, and are therefore less likely 207 

to change further in more closely related species. These results indicate that the divergence in gene 208 

expression patterns for duplicated genes has occurred differently in zebrafish and Mexican tetra.  209 

 210 

The transcription factors associated with neuropeptide expression have diverged between 211 

species 212 

Our comparison of gene expression signatures in cell types between species revealed 213 

maintenance of cellular function by either reducing transcriptional divergence and/or promoting the 214 

expression of functionally similar and paralogous genes (Figures 2-3). We therefore wondered whether 215 

the upstream regulatory mechanisms controlling the expression of functional terminal effector genes, 216 

such as neuropeptides, were also conserved between zebrafish and Mexican tetra. To test this 217 

hypothesis we identified putative gene regulatory networks using SCENIC/GENIE3 and compared these 218 

between species.  219 

The putative gene regulatory networks (TF sets) for the same terminal effector genes were 220 

different between zebrafish and Mexican tetra, and many of the top TFs for each gene were not shared 221 

between species (Extended Data Figure 5). For example, the neuropeptide vip is highly associated with 222 

the TFs gsx1, otpa, six3a, mllt11, and xbp1 in zebrafish, but with the TFs klf17, id4, nr4a3, hes6, and ets2 223 

in Mexican tetra (Figure 4a). To quantify how similar TF sets were between species, we calculated the SI 224 

between zebrafish and Mexican tetra for the TF sets of each terminal effector gene (Figure 4b). TF sets 225 

associated with neuropeptides had significantly higher SI than TF sets associated with neurotransmitters, 226 

synaptic, or ion channel genes (Figure 4b). Thus, more of the same TFs remain associated with specific 227 

neuropeptides across species compared to other terminal effector genes.  228 

We then quantified the similarity in the relative contribution of each TF (TF weights) for each 229 

terminal effector between species. No statistical difference was observed between the terminal effector 230 



 

classes, and all gene sets had low or negative correlation between species (mean Pearson correlation 231 

between 0 and 0.15) (Figure 4c). For example, the TFs prox1b and id4 appear in the TF sets for vip in 232 

both species, but are more predictive of vip expression in Mexican tetra than in zebrafish (Figure 4a). 233 

These results suggest that even in cases where the same TFs are associated with specific terminal 234 

effector genes across species, their relative contributions to putative target gene expression are not 235 

maintained. 236 

 237 

Transcription factors diverge more than target genes and can be replaced by non-paralogs 238 

Divergence in TF sets between species may be compensated by expression of paralogous TFs, 239 

similar to what we observed for subcluster transcriptomes. For example, the expression of the highly 240 

conserved neuropeptide oxt was correlated with the TFs sim1b, otpa, and otpb in zebrafish, while in 241 

Mexican tetra, oxt was highly correlated with sim1a and otpb (Extended Data Figure 5). sim1b is specific 242 

to the zebrafish genome, indicating that the paralogs sim1a and sim1b underwent sub-functionalisation in 243 

zebrafish, with sim1a losing its function and co-expression with oxt in zebrafish34. In contrast, in the case 244 

of the neuropeptide vip, there were no highly weighted TFs associated with its expression that were 245 

paralogs in the two species (Figure 4a). However, in general we did not observe compensation across 246 

species through the association of paralogous TFs with terminal effectors (Figure 4d).  247 

The above results suggest that the expression patterns of TFs may be less conserved between 248 

species than the expression patterns of their target genes (non-TFs). To test this prediction, we 249 

calculated the SI across all subclusters using all marker genes, only those marker genes that were TFs, 250 

or only those marker genes that were neuropeptides and neurotransmitters (terminal effector genes). SI 251 

was significantly higher for transcription factors compared to all marker genes, and was highest for 252 

neuropeptides and neurotransmitters   (Figure 4e). For example, the neuropeptidergic subclusters of the 253 

Neuronal_01 parent cluster (including the galn+, hcrt+, and oxt+ subclusters) have lower SI when 254 

considering only TFs then when considering NP/NT genes (Figure 4f). All together, both the SCENIC and 255 

SI results suggest that specific classes of genes in specific cell types may be more conserved between 256 

species, and may even be more conserved than the TFs which regulate them. 257 

 258 

Species-specific cellular novelty is associated with species-specific genetic novelty 259 

 We next sought to define which genes were associated with species-specific subclusters. There 260 

were 43 species-specific subclusters in our integrated dataset, each composed of > 90% of cells from one 261 

species. Five of these species-specific subclusters were from the Mexican tetra-specific “Ciliated” cell 262 

type (Figure 1 & Extended Data Figure 2b), 19 were hematopoietic subclusters (see below), and 6 were 263 

from the Oligodendrocyte, Endothelial, and Lymphatic parental clusters. There were 8 Mexican tetra-264 

specific and 5 zebrafish-specific neuronal subclusters, which expressed a variety of genes indicating that 265 

they may represent different temporal or spatial cell states, captured in one species or the other (Figure 266 

5a, Supplementary Information and Supplementary Figure 7).   267 

It has previously been reported that species- or lineage-specific genes may contribute to species- 268 

or lineage-specific morphological and cellular innovations35. Though they may be shared by other species 269 

of fish, for simplicity we refer here to genes that are only found in the genome of zebrafish or Mexican 270 

tetra as species-specific genes. In both zebrafish and Mexican tetra, a higher percentage of the genes 271 

expressed in species-specific subclusters were species-specific, compared to the genes expressed in 272 

shared subclusters (Figure 5b-c). Importantly, all of these subclusters were still identified in the absence 273 

of species-specific genes, suggesting that they have distinct expression patterns of orthologous genes as 274 

well (Extended Data Figure 6). Mexican tetra non-neuronal cells expressed significantly more species-275 

specific genes as compared to neuronal subclusters, with the immune subclusters expressing the highest 276 

percentages (Figure 5d). In contrast, all zebrafish neuronal subclusters expressed more species-specific 277 

genes as compared to non-neuronal subclusters (Figure 5e). 278 



 

Enrichment for species-specific genes was also apparent in the species-specific neuronal 279 

subclusters (Figure 5f). For example, the zebrafish-specific Neuronal_04_7 subcluster was distinguished 280 

by 5 members of the jacalin family of lectins (jac2, jac3, jac6, jac8, and jac9) (Figure 5f). This gene family 281 

has undergone an extensive species-specific gene expansion, resulting in 14 known genes in zebrafish, 282 

compared to only 2 genes in Mexican tetra36. Additionally, the Mexican tetra-specific subcluster 283 

Neuronal_12_5 expressed the neuronal calcium sensor (NCS) HPCAL1, which was generated by a 284 

Mexican tetra-specific duplication (Figure 5f). 37. One subcluster expressed the Mexican tetra-specific 285 

guanylate cyclase ENSAMXG00000017498, and vipb, which is a paralog of the neuropeptide vip that 286 

arose in a common ancestor of teleosts. vip is expressed in several subclusters shared by zebrafish and 287 

Mexican tetra, whereas vipb is expressed only in the Mexican tetra-specific Neuronal_13_2 (Figure 5f). 288 

This result suggests that the expression patterns of vipb and ENSAMXG00000017498 have undergone 289 

neo-functionalization in Mexican tetra, but not zebrafish. 290 

Three other species-specific subclusters were characterized by genes which were duplicated in a 291 

common ancestor of zebrafish and Mexican tetra, but subsequently lost in zebrafish (Figure 5f). These 292 

include Neuronal_10_5, which expresses the c-type lectin COLEC12, and Neuronal_07_0 and 293 

Neuronal_07_5 which both express NPTX1 and PPP3CA (Figure 5f). Altogether, these results suggest 294 

that the main driver of cellular diversification may be species-specific expansion, retention, and neo-295 

functionalization of the expression patterns of gene families. 296 

 297 

Comparisons of cell types between species-morphs 298 

Transcriptional differences in shared neuropeptidergic cell types 299 

Zebrafish and Mexican tetra last shared a common ancestor roughly 200 million years ago, yet 300 

we found that the degree of cell type conservation between these two teleost species was extensive. We 301 

therefore wondered whether the surface- and cave-morphs of Mexican tetra, which shared a common 302 

ancestor 250-500 thousand years ago, had any detectable cell type differences. To identify the repertoire 303 

of cellular diversity in Mexican tetra, we performed subclustering on the Mexican tetra dataset alone, 304 

resulting in 166 subclusters, including 19 subclusters that were species-morph specific, and 147 305 

subclusters shared between species-morphs  (Extended Data Figure 7a-c and Supplementary Figure 8; 306 

See Supplementary Data for the full list of subclusters and associated marker genes for both zebrafish 307 

and Mexican tetra). 308 

Neuronal subclusters shared by cave- and surface-morphs were characterized by low 309 

dendrogram distance, high SI, and a lack of enrichment for genes associated with divergent genomic 310 

windows (Figure 6a). The most transcriptionally different subclusters between morphs were the galn+ and 311 

otpa+/oxt+ subclusters (Figure 6a). Further examination of these subclusters revealed that surface-morph 312 

galn+ cells expressed galn at a significantly higher level than cave-morph cells (Extended Data Figure 8a). 313 

Similarly to what we observed between species (Figure 5), surface- and cave-morph oxt+ cells were 314 

distinguished by the differential expression of gene duplications. Surface-morph oxt+ cells co-expressed 315 

oxt and its paralogs avp and ENSAMXG00000021172, whereas cave-morph oxt+ cells only expressed oxt 316 

(Extended Data Figure 8b). Co-expression of oxt and avp was not observed in zebrafish, with each 317 

neuropeptide expressed in its own subcluster. These results highlight transcriptional changes in 318 

conserved cell types which may be associated with cave-adaptation. 319 

It was recently reported that the expression of the neuropeptide hcrt is upregulated in Pachon 320 

cave-morphs, and is associated with increased sleep/wake activity compared to surface-morphs38,39. 321 

Additionally, our genetic analysis suggested that genes associated with circadian rhythm and 322 

neuropeptidergic cell types were under selection in cave morphs (Supplementary Information and 323 

Supplementary Figure 9). We wondered if we could use our single-cell data to identify changes in the 324 

transcription factors or regulatory network underlying the expression of hcrt and other neuropeptides and 325 

terminal effector genes between morphs. The majority of terminal effector GRNs were more conserved 326 

between species-morphs than between species, including the TFs associated with galn (Extended Data 327 



 

Figure 8c-d). The TFs associated with the hcrt were poorly correlated between species-morphs, with the 328 

TF creb3l1 more highly associated with hcrt expression in surface-morph cells, compared to cave-morph 329 

cells (Extended Data Figure 8e). High association between hcrt and creb3l1 was not observed in the 330 

zebrafish data, indicating that this association may be specific to Mexican tetra, and responsible for the 331 

increased hcrt expression previously observed. This analysis also provided a potential mechanism for the 332 

co-expression of oxt and avp in Mexican-tetra compared to zebrafish. Three of the top TFs associated 333 

with oxt (creb3l1, otpb, and sim1a), were also predictive of avp expression (Extended Data Figure 8f-g). 334 

Differential expression of neuropeptides within conserved cell types may therefore be a common cave 335 

adaptation strategy across morphs.  336 

 337 

Species-morph specific subclusters are species-specific and express cell-state transcriptomes 338 

Of the 19 species-morph specific subclusters, 4 were neuronal, 3 were from glial populations, and 339 

12 were from the hematopoietic lineage (Figure 6a-b and Extended Data Figure 7a-b). The majority 340 

(11/19) of these species-morph specific subclusters mapped to integrated identities that were also 341 

specific to Mexican tetra. This included 3 of the 4 neuronal subclusters and 7 of the 12 immune 342 

subclusters that were species morph-specific (Extended Data Figure 7a-b). This suggests that many of 343 

the cell types specific to Mexican tetra are associated with or were co-opted during adaptation to the cave 344 

environment. Similarly, expression of Mexican tetra-specific genes was enriched in cell types from the 345 

hematopoietic lineage, which represented the majority of the species and species-morph specific 346 

subclusters (Figure 5a). Pachon cave morphs have been reported to have a smaller and less active 347 

immune system than surface morphs40. Though concluding changes in cell type proportions is difficult in 348 

single-cell experiments, we consistently observed fewer immune cells across independent cave-morph 349 

samples than in surface-morph samples (Extended Data Figure 2b, Figure 6a, Extended Data 9). 350 

Furthermore, hematopoietic lineage cells from cave-morphs expressed high levels of ccr9a and sat1b, 351 

and low levels of fabp11a, conditions which have been linked to inflammation resistance (Extended Data 352 

Figure 9c-d)41–44. Altogether, these results suggest that cave-morphs have a reduced immune system that 353 

expresses a neuro-inflammation resistance cell state transcriptome. 354 

Three of the four species-morph specific neuronal subclusters mapped to integrated subclusters 355 

that were also species-specific: surface-morph specific Neuronal_09-4 mapped to Mexican tetra specific 356 

Neuronal_03_13 (pou4f2 and etv1 positive), cave-morph specific Neuronal_00_1 and Neuronal_03_6 357 

mapped to Mexican tetra specific Neuronal_07_6 (ENSAMXG00000025407+), and Neuronal_12_5 358 

(HPCAL1+) respectively (Extended Data Figure 7a-b). The identity of the cave-specific neuronal 359 

subcluster Neuronal_03_4 was less clear. Cells from this subcluster mapped to a cell type shared 360 

between species, and expressed a set of marker genes that was conserved across species (rtn4rl2a, 361 

rtn4rl2b, cd9b, and penkb) (Extended Data Figure 10a-d). However, Neuronal_03_4 cells also expressed 362 

an additional gene signature, which included the genes rcan1a and prelid3b (Extended Data Figure 10c). 363 

GO analysis of these differentially expressed genes between Neuronal_03_4 and the highly similar 364 

shared Neuronal_03_1 revealed enrichment for terms related to stress response, protein folding, and 365 

translation, including the heat-shock genes hspb1, hspa4a, and prolyl isomerase fkbp4 (Extended Data 366 

Figure 10e-f). These results indicate that an ancestral cell type found in both zebrafish and Mexican tetra 367 

acquired a stress response transcriptional program in the cave lineage, resulting in a morph-specific cell 368 

state (Extended Data Figure 10g). 369 

 370 

DISCUSSION: 371 

How evolution generates and shapes cellular diversity is largely unknown. In this study we used 372 

single-cell transcriptomics, high resolution clustering, and cross-species integration to compare cell types 373 

of the teleost hypothalamus between two divergent teleosts, zebrafish and Mexican tetra. First, we 374 

observe extensive conservation of cell-types across roughly 150 million years of evolution between 375 

zebrafish and Mexican tetra (>75% of all subclusters were shared), providing a high resolution 376 



 

quantification of the molecular similarity between cell types across such a large phylogenetic distance. 377 

Second, we show that cell types conserved between species are characterised by subfunctionalization of 378 

paralogous gene expression patterns and by gene regulatory divergence. Third, we find that species-379 

specific cell types were associated with the evolution of gene families, linking genetic novelty with cellular 380 

novelty. Fourth, we identify transcriptomic, cellular and genomic changes associated with cave-adaptation 381 

in Mexican tetra. 382 

 383 

Shared cell types are characterized by regulatory divergence and shifts in paralog expression 384 

 Hundreds of cell types have been cataloged in the brains of vertebrates, including fish, mice and 385 

humans, but their conservation between species is unclear8,11,23,45. We observed extensive conservation 386 

of 75% of cell-types between zebrafish and Mexican tetra, who last shared a common ancestor more than 387 

150 million years ago, before the break-up of Pangea46,47. In our analysis, shared cell types were even 388 

more similar when taking paralog expression into account. Up to 20% of the transcriptomic divergence of 389 

shared cell types between species was from preferential expression of functionally similar paralogous 390 

genes. These expression pattern differences, or paralog shifts, suggest that shared cell types often 391 

express paralogous genes. Similarity and shifts in paralog expression between species was highest for 392 

progenitor cell types, and for clusters compared to subclusters. Changes to cluster and progenitor 393 

populations would likely have pleiotropic effects that may have prevented transcriptional divergence. A 394 

comparison of single-cell atlases across animal phyla has also demonstrated shifts in paralog expression 395 

for homologous cell types48. In that study the authors argue that paralog shifts may be due to genetic 396 

compensation by paralog substitution. However, our analysis suggests  that divergence patterns of 397 

paralogous genes were mostly due to loss of redundancy, differed between species, and scaled with 398 

evolutionary gene age. This observation suggests that following ancestral gene duplication, expression 399 

patterns of paralogous genes are shifted, caused by independent sub-functionalization of gene 400 

expression patterns in each species. Further work will be necessary to determine the exact evolutionary 401 

and molecular mechanisms that generate paralog shifts in shared and homologous cell types. 402 

We found that the expression patterns of transcription factors and their putative associations with 403 

specific classes of terminal effectors were less conserved than the expression patterns of the terminal 404 

effectors themselves. This observation contrasts with the high inter-species conservation of ‘core’ TFs 405 

expressed during early lineage determination events7. It agrees, however, with the low inter-species 406 

conservation in the expression of TFs ‘re-used’ multiple times in different tissues7. The TF code 407 

associated with specific cell types, such as hypothalamic neurons, may therefore not be highly conserved 408 

between species. Alternatively, the differences in GRNs we observe might be caused by convergence in 409 

the GRNs of non-orthologous cell types to regulate terminal effector genes, as has been postulated for 410 

neurotransmitters in the Drosophila brain52. We note, however, that neuropeptidergic cell types and 411 

effector gene expression patterns were highly conserved between zebrafish and Mexican Tetra. We 412 

therefore favor a process akin to developmental systems drift, where conserved homologous traits 413 

between species can have divergent gene regulatory underpinnings caused by neutral drift53. We 414 

speculate that there might be cellular systems drift, where selection acts to maintain the functional output 415 

of cell types, rather than the regulatory mechanisms which generate or maintain them.  416 

Together, our results paint a picture of the evolutionary history of the hypothalamic cell types in 417 

two teleost species. Cell types are highly conserved between species, yet divergence in paralog 418 

expression and regulatory associations is common. These patterns suggest an interplay between dosage 419 

compensation and subfunctionalization of expression patterns after genome duplication, neutral evolution 420 

causing shifts in paralog expression and regulatory divergence, and stabilizing selection maintaining cell 421 

type functions. 422 

 423 

Species specific cellular novelty is associated with species-specific genetic novelty and paralog 424 

neo-functionalization 425 



 

 Cross-species comparisons using single-cell sequencing data typically only consider orthologous 426 

genes between the species of interest, limiting the identification of species-specific innovations5. Here we 427 

find that the majority of species-specific cell types between zebrafish and Mexican tetra were enriched for 428 

the expression of non-homologous genes between species. This observation extends previous studies 429 

that have linked the evolution and diversification of biological traits with genetic novelty35,54. For example, 430 

expression of human specific genes in radial glia has been linked to cortical evolution and the expansion 431 

of the neocortex in primates55. Indeed, we found that the expression of jacalin lectins, which are specific 432 

to the zebrafish lineage36, are associated with a zebrafish-specific neuronal cell type. These results 433 

illustrate how species-specific genetic novelty underlies species-specific cellular novelty. 434 

Moreover, our results suggest that the generation of new cell types within teleosts may be driven 435 

by species-specific neo-functionalization of paralogous genes. Many of the species-specific cell types 436 

were associated with expression of genes generated by recent duplication events. Furthermore, the loss 437 

of ancestrally duplicated paralogs in zebrafish (HPCAL1, COLEC12, NPTX1, and PPP3CA) was also 438 

associated with Mexican tetra specific cell types. These genes had expression patterns that differed from 439 

their paralogs, suggesting they have gained new functions since their duplication. Previous studies have 440 

suggested that new cell types are generated first through the birth of similar or homologous sister cell 441 

types56. Genetic individuation of sister cell types through the generation of distinct core regulatory 442 

complexes would then allow subsequent divergence through acquisition of different pre-existing gene 443 

modules3. Our results suggest an alternative scenario wherein gene duplication may precede or even 444 

drive the partitioning of cellular functions into distinct cell types (sister cell types). For example, amino 445 

acid substitutions between vip and vipb may have endowed different functionality, promoting the 446 

generation of the vipb subcluster in Mexican tetra. This scenario is reminiscent of the evolution of rod and 447 

cone cells following opsin gene duplication57,58. These observations suggest paralog neo-functionalization 448 

as a basis for cell type diversification. 449 

Similar to the relationships between homologous genes, homologous cell types (shared cell types 450 

or sister-cell types) could refer to populations separated by a speciation event (orthologous cell types), or 451 

through a cell type duplication event (paralogous cell types)56. The shared populations we observed 452 

between zebrafish and Mexican tetra may therefore represent orthologous cell types which were present 453 

in the last common ancestor of both species. Species-specific cell types derived from cell type duplication 454 

events within species may be paralogous to cell types shared between species. Future work will be 455 

necessary to unravel the complicated evolutionary history of gene and cell type diversification. 456 

 457 

Single-cell transcriptomic signatures associated with cave-adaptation 458 

 Mexican tetra Pachon cave-morphs have previously been reported to have a smaller and 459 

differentially active immune system40. Our results extend these observations to the Tinaja and Molino 460 

cave-lineages. In addition, we observe expression of a neuro-inflammation resistance signature in the 461 

immune cells of all three cave-morphs. Inflammation and neurodegeneration are intricately connected, 462 

and associated with aging in many species, including humans59. Negligible senescence has been 463 

reported in cave-morphs compared to surface-morphs60. It is therefore intriguing to speculate that the lack 464 

of immune inflammation in the nervous system may contribute to the lack of age-related senescence in 465 

cave-morphs. 466 

The species-morphs of the Mexican tetra have divergent behavioural phenotypes which have 467 

previously been linked to the hypothalamus38,39,61,62. We observed differences in the expression patterns 468 

of several neuropeptides associated with these behaviours. For example, decreased galn expression in 469 

cave-morphs versus surface-morphs could partially explain the loss of sleep or changes in appetite or 470 

aggression in cave-morphs63–65. Alterations in oxytocin cells might also be linked to changes in appetite, 471 

or the lack of social interactions (schooling) observed in cave-morphs63,66. In the future, the single-cell 472 

atlases presented here will be a powerful resource to explore the behavioural differences between both 473 

species and species-morphs. 474 



 

  475 



 

 476 

METHODS 477 

 478 

Husbandry of zebrafish and Mexican tetra 479 

All animal work was performed at the facilities of Harvard University, Faculty of Arts & Sciences 480 

(HU/FAS). Mexican tetra husbandry was performed as previously described67. This study was approved 481 

by the Harvard University/Faculty of Arts & Sciences Standing Committee on the Use of Animals in 482 

Research & Teaching under Protocol No. 25–08. The HU/FAS animal care and use program maintains 483 

full AAALAC accreditation, is assured with OLAW (A3593-01), and is currently registered with the USDA. 484 

 485 

Processing of samples for scRNA-seq 486 

Wild type adult zebrafish, and wild type adult Mexican tetra surface- and cave-morphs were used 487 

for scRNA-seq analysis. All zebrafish used were approximately 2-3 months old, and all Mexican tetra 488 

were between 1-2 years of age. For all zebrafish samples, tissues from 4-6 individual zebrafish were 489 

pooled for downstream dissociation then split into 4 samples for single-cell encapsulation. As their brains 490 

are much larger, each sample for Mexican tetra was composed of a single individual fish. A total of 16 491 

samples of zebrafish (8 males, 8 females), and 16 individual Mexican tetra were used (8 male, and 8 492 

female), including 8 Choy surface-morphs, 4 Pachon cave-morphs, 2 Tinaja cave-morphs, and 2 Molino 493 

cave-morphs split evenly between males and females. 494 

The same procedure was used to collect and dissociate single-cells from both zebrafish and 495 

Mexican tetra. Animals were sacrificed by first placing them on ice, followed by decapitation. Whole brains 496 

were removed and immediately placed in 4% low-melt agarose mixed 50:50 with Neurobasal media plus 497 

B27 supplement (2% agarose final solution) (Thermofisher). Once solidified, 500 µm sections were 498 

obtained from whole brains mounted in agarose using a vibratome (Leica VT1000S). The hypothalamus 499 

and pre-optic area were then dissected from vibratome sections and dissociated into single cells using 500 

the Papin Dissociation Kit (Worthington) as previously described23. Cells were counted using a 501 

hemocytometer and resuspended at a final concentration of 1000 cells/µl in Neurobasal media 502 

(Thermofisher). Samples were run on the 10X Genomics scRNA-seq platform according to the 503 

manufacturer’s instructions (Single Cell 3’ v2 kit). Libraries were processed according to the 504 

manufacturer’s instructions (Single Cell 3’ v2 kit). Transcriptome libraries were sequenced using Nextera 505 

75 cycle kits at the Bauer Core Facility (Harvard). Protocol for cell dissociation is available at 506 

https://github.com/maxshafer/Cavefish_Paper. 507 

We recovered between 2998 and 5490 cells per sample for the zebrafish dataset, and 3029 and 508 

5919 cells per sample for the Mexican tetra dataset. Samples had a minimum of 18,347 reads per cell 509 

with averages of 31,656 and 29,536 reads per cell for the zebrafish and Mexican tetra datasets, 510 

respectively. Sequencing saturation was between 68%-90%, with means of 78% for zebrafish samples 511 

and 83% for Mexican tetra samples. Between 30% and 60% of reads per sample for both datasets were 512 

mapped confidently to their respective transcriptome (78% - 88% to the genome). 513 

 514 

Bioinformatic processing of raw sequencing data and independent cell type clustering and 515 

subclustering analysis 516 

Transcriptome sequencing data were processed using Cell Ranger 2.1.0 according to the 10X 517 

guidelines to obtain cell by gene expression matrices for each sample. For zebrafish, reads were mapped 518 

to a transcriptome constructed using the GRCz10 genome assembly annotated using the RefSeq 519 

genome annotation for GRCz10 (NCBI). For Mexican tetra, reads were mapped to a transcriptome 520 

constructed using the AstMex102 genome assembly annotated using the Ensembl genome annotation for 521 

AstMex102 (Ensembl). Clustering analysis was performed using Seurat v3.2.024. Due to the lack of a 522 

mitochondrial genome for A. mexicanus, we opted not to remove cells with high mitochondrial content 523 

from the Zebrafish dataset. The following options were used for PCA, knn graph construction, and 524 



 

clustering for both zebrafish and Mexican tetra. Only cells with between 200 and 2500 expressed genes 525 

were used (nFeature_RNA). Variable features were obtained using the mean.var.plot (mvp) selection 526 

method as in Seurat v2.3.4. The identified variable features were used for PCA, and the top 50 PCs were 527 

used for clustering, though similar results were obtained with variable PC numbers. A k of 30 (k.param), 528 

and an error bound of 0.5 (nn.eps) were used for constructing the Shared Nearest Neighbor (SNN) graph. 529 

Clusters were called using a resolution (resolution) of 0.6 using the original Louvain algorithm. Shared 530 

marker genes for each cluster were obtained using Seurat’s FindConservedMarkers function, and 531 

species-specific marker genes were identified by first subsetting the Seurat object by species before 532 

running the FindMarkers function for each cell cluster and subcluster. These genes, as well as genes with 533 

known expression patterns in neuronal and hypothalamic cell types were used to annotate subclusters. 534 

Clusters were identified as GABAergic or Glutaminergic based on which marker genes they expressed 535 

most highly (slc17a6a/slc17a6b or gad1b/gad2). In many cases, clusters expressed markers of both, due 536 

to having both GABAergic and Glutamatergic cells and were therefore all annotated as Neuronal.  537 

Independent subclustering analysis was performed by first subsetting the zebrafish or Mexican 538 

tetra data into individual clusters, then performing all of the steps of Seurat clustering on each cluster 539 

independently, including finding highly variable genes and principal component analysis. Parameters 540 

used for subclustering were the same as for clusters, except we used the resolution 0.4 (resolution) and 541 

15 PCs derived from the variable features of the cells in each cell cluster. Because different sets of 542 

variable genes were used for subclustering and construction of the tSNE projection for the full dataset, 543 

the positions of subcluster labels are not necessarily representative of the true differences between 544 

subclusters. Full analysis scripts for cell type clustering, R objects, and raw sequencing, including all 545 

variables used are available on GitHub (https://github.com/maxshafer/Cavefish_Paper). Raw count data 546 

is available in the Supplemental Data, and raw sequencing data is available on NCBI GEO. 547 

 548 

Dataset integration and integrated clustering and subclustering analysis 549 

Datasets were initially integrated using Seurats’ MergeObjects function. Given the large biological 550 

batch effects between the species, cells first clustered by species, then by cell type. To correct for 551 

species-specific batch effects, and identify shared and species-specific cell types we used Seurat v3.0.0 552 

to integrate the zebrafish and Mexican tetra datasets. Seurat uses Canonical Correlation Analysis (CCA) 553 

to identify correlated changes in the transcriptomes of cell types between species, and identifies the most 554 

similar clusters across species using Mutual Nearest Neighbour (MNN) analysis. This allows identification 555 

of cluster specific batch correction vectors, which are used to correct the expression values of a subset of 556 

genes between species. These genes and their corrected expression values are then used for 557 

dimensionality reduction and clustering analysis. All genes from both datasets were used in the 558 

integration process, and orthologous genes were identified by matching gene names. The best results 559 

were obtained by first clustering using 100 dims, a k.param of 20, a res of 0.15, and an nn.eps of 0, which 560 

segregated all non-neuronal cells into appropriate clusters. Following this, we used expression of the 561 

neuronal marker gene gng3 to identify and combine all neuronal cell clusters together. To cluster the 562 

neuronal cells, we used 10 dims, a k.param of 20, and an nn.eps of 0 which generated the 14 neuronal 563 

populations used in this study. Integrated subclustering analysis was performed by first subsetting the 564 

integrated data into individual clusters, then performing all of the steps of Seurat integration and 565 

clustering on the zebrafish and Mexican tetra cells from each cluster independently. Integration, including 566 

CCA and MNN analysis, was performed independently on each integrated cluster to maximize the gene 567 

information used to identify shared and species-specific cellular heterogeneity. For subclustering we used 568 

between 5 and 50 dims for each cluster depending on the number of cells, and a res of 0.25. Following 569 

integration, several subclusters were identified as aberrant, and expressed marker genes from both non-570 

neuronal and neuronal subclusters. These populations appeared to be created by the integration and 571 

batch correction process, and were derived mainly from Erythrocyte cells from both species. These 572 

subclusters were removed from downstream analysis. 573 



 

 574 

Trinarization of gene expression patterns 575 

 To identify genes robustly expressed by each population (clusters and subclusters) we calculated 576 

trinarization scores for each gene per cluster and subcluster27. Trinarization scores represent the 577 

probability that each gene is actually expressed by each population, based on the detection frequency of 578 

each gene in each population, and the posterior distribution of the underlying population frequency of 579 

expression (�). We used a Bayesian beta-binomial model to trinarized the data and calculate the 580 

posterior distribution (�) using hyperparameter values of 1.5 for a, and 1 for b as previously described27. 581 

We called a gene expressed if P(� > f) > (1 - PEP), where the fraction of cells expressing each gene (f) is 582 

0.1, and the Posterior Error Probability (PEP) of 0.05. Similar results were obtained using values of 0.2 583 

and 0.35 for f. Trinarization scores were calculated for all clusters and subclusters, for the zebrafish, 584 

Mexican tetra, surface-morph, and cave-morph datasets (Supplemental Data). These scores were also 585 

used to determine expression patterns of duplicated genes for the calculation of expression divergence 586 

(dT). 587 

 588 

Marker gene identification and calculation of the transcriptional similarity index (SI) 589 

 To annotate subclusters and identify genes whose expression was enriched within clusters and 590 

subclusters we used Seurat to find marker genes for each population. This was done for all clusters and 591 

subclusters in both the zebrafish and Mexican tetra datasets, as well as for all of the integrated clusters 592 

and subclusters in the combined dataset. For the integrated clusters and subclusters, we used the 593 

uncorrected expression data (DefultAssay(object) <- “RNA”), which allowed the detection of species-594 

specific gene expression patterns. For each population, we identified marker genes independently for the 595 

zebrafish and Mexican tetra cells within that cluster or subcluster. To identify shared marker genes for 596 

each population, we used Seurat’s FindConservedMarkers function, which uses meta analysis of 597 

statistical values for each gene in the marker genes for each species. For all cases we used the following 598 

variables for FindMarkers and FindConservedMarkers; logfc.threshold of 0.25 (default), min.pct of 0.1 599 

(default), min.cells.per.ident of 1000, and “wilcox” for test.use. Species-specific marker genes for each 600 

population were defined as the set difference between the marker genes for one species and conserved 601 

marker genes (Figure 2a). These lists were then used to calculate the Similarity Index (SI) for each cluster 602 

and subcluster between zebrafish and Mexican tetra. SI was calculated with the following equation, where 603 

GT is the shared set of marker genes, and GA and GB are the total number of marker genes for species A 604 

and B, including both species-specific and shared marker genes68. 605 

	ܫܵ 606  = 1 −	ඨ(1 − (஻ܩ்ܩ ∗ (1 − 	(஺ܩ்ܩ
The same procedure was used to identify species-morph specific marker genes, and marker 607 

genes conserved between species-morphs for each population within the Mexican tetra data for 608 

calculation of the SI between species-morphs. To calculate SI between across all sets of integrated 609 

clusters and subclusters, we used the conserved marker genes for each population, and compared their 610 

p-values using the same procedure as in Seurat’s FindConservedMarkers function - using the minimump 611 

function from metap package - to determine shared marker genes for each pair of cluster or subclusters. 612 

We then calculated SI as above. All marker gene sets were filtered to contain only those genes which 613 

also passed the trinarization threshold for that population, and for each dataset, prior to calculation of SI.  614 

 615 

Paralog Identification and enrichment analysis across species 616 

 Paralogous gene pairs and orthology confidence and gene order scores were identified using the 617 

Ensembl BioMart service, and accessed using the biomaRt R package69. For each gene that was 618 



 

specifically expressed in one species, we identified all corresponding paralogous genes and determined if 619 

any of these genes were present in the conserved marker genes, or the marker genes specific to the 620 

other species (Figure 2a). This was done for all clusters and subclusters shared between zebrafish and 621 

Mexican tetra. Fisher’s exact test was performed to calculate statistical enrichment for paralogous genes 622 

for each cluster and subcluster using the fdrtool R package70. The remaining species specific genes 623 

(those that were not paralogs of a conserved, or opposite species-specific gene) were then subjected to 624 

gene ontology analysis. Species-specific marker genes for each subcluster were pooled by cluster, and 625 

the RDAVIDWebService R package was used to submit each list for GO analysis by DAVID71. 626 

 627 

Calculation of expression divergence (dT), redundancy, and gene expression expansion 628 

 For both zebrafish and Mexican tetra, we used Ensembl’s Biomart tool to identify paralogous 629 

gene pairs in both species,and the last common ancestor which shares each gene duplication 630 

(Supplemental Data). To calculate the expression divergence for paralogous gene pairs, we calculated 631 

the following for each paralogous gene pair in each species. The subclusters which expressed each gene 632 

above the trinarization threshold were used as input for the calculation of expression divergence (dT) as 633 

previously described31. Expression divergence was calculated for both zebrafish and Mexican tetra 634 

separately by comparing the number of subclusters that express either paralog (ntu) to the number of 635 

subclusters that express both paralogs (nti), with the following equation.  636 

 637 ݀ܶ	 = (݊௧௨ − ݊௧௜)݊௨௜ 	
Gene pairs where neither gene was expressed in our datasets were not included in this analysis 638 

To determine the expression pattern of the ancestral gene prior to duplication in the common ancestor of 639 

zebrafish and Mexican tetra (putative ancestral gene expression patterns), we used the intersection of the 640 

subclusters that expressed either or both paralogs in both species (Figure 3c)  Redundancy of 641 

expression for paralogous gene pairs was calculated as 1 - dT within ancestral cell types, representing 642 

how much of the ancestral gene expression pattern was conserved between paralog gene pairs. The 643 

number of non-ancestral subclusters which only expressed either or both paralogs in only one species 644 

was used to determine the amount of expansion of paralogous gene expression patterns. Importantly, 645 

these metrics cannot account for the possibility that ancestral expression in one or more cell types was 646 

lost for both paralogs in one species, but retained for at least one paralog in the other. Paralogous genes 647 

generated by the vertebrate 2R or teleost 3R whole genome duplication events (Ohnologs) were 648 

identified from the OHNOLOG repository using the “Strict 2R” and “Strict 3R” datasets for zebrafish (D. 649 

rerio) (https://ohnologs.curie.fr)72. 650 

 651 

Identification and analysis of putative gene regulatory networks using SCENIC/GENIE3 652 

 We used SCENIC/GENIE3 to identify transcription factors (TFs) that were predictive of the 653 

expression of terminal effector genes associated with the functions of the hypothalamus, including 654 

neuropeptides, neurotransmitter or synapse associated genes, and ion channel genes33,34. This 655 

analysis outputs numerical weights for the association between each TF and each terminal effector gene 656 

in the two species, which are used to determine TF sets for each terminal effector gene. We 657 

downsampled the zebrafish and Mexican tetra datasets to ensure equal cell numbers across subclusters. 658 

This analysis uses single-cell information, but is independent of cell cluster and subcluster identities. Lists 659 

of transcription factors, neuropeptides, neurotransmitter related, synaptic, and ion channel genes were 660 

identified using ZebrafishMine, and used to identify orthologous genes in Mexican tetra with the same 661 

ontology73. Gene lists used in this study are available at (https://github.com/maxshafer/Cavefish_Paper). 662 

For the list of transcription factors, we used search terms “transcription” and “transcription factor activity”, 663 

which resulted in a combined list of 3141 unique gene names. Datasets were first downsampled such that 664 



 

the same number of cells from each subcluster were included to reduce the effects of differential 665 

subcluster abundances between species on the GRN analysis. Cutoff values for minSamples and 666 

minCountsPerGene for the geneFiltering function used to filter out lowly detected or expressed genes 667 

were determined such that hcrt was included in all analyses. SCENIC then uses the GENIE3 algorithm to 668 

generate random forest weights for each transcription factor and target gene, based on the predictive 669 

power of each transcription factor in determining the expression level for each target gene. The lists of 670 

transcription factors and their corresponding weights for each target gene were used in downstream 671 

analysis. We used the “top50” cutoff from SCENIC to determine transcription factors to calculate the SI 672 

between species or species-morphs. The same procedure was used for analysis of Mexican tetra 673 

surface- and cave-morphs. We used customized versions of some SCENIC functions, including 674 

geneFiltering, runGenie3, and runSCENIC_1_coexNetwork2modules, to allow use of our gene lists, and 675 

to allow easier implementation on a laptop (specifically the ability to stop and restart the analysis). 676 

 To test whether divergence in all TF sets were mitigated by association with paralogous TFs, we 677 

calculated paralog enrichment in the species-specific TFs for each terminal effector gene as done 678 

previously (Figure 2). The majority of TF sets (260 out of 435, 60%) were composed of roughly the 679 

number of paralogs expected by random chance (odds ratio ~ 1), and 26 terminal effector genes had 680 

significantly fewer paralogs than expected (Figure 4d). Therefore, divergence in the gene regulatory 681 

networks of neuropeptides and other terminal effector classes is not compensated through the expression 682 

of paralogous TFs. 683 

 684 

Analysis of species-specific cell types and identification of species-specific genes 685 

Clusters which were specific to either a species or a species-morph were identified by calculating 686 

the proportion of cells which came from each species or species-morph for each cluster or subcluster. 687 

Clusters which were composed of 90% or more cells from one species or species-morph were considered 688 

specific to that species. Cells belonging to other species or species-morphs in those clusters were likely 689 

incorrectly assigned due to the limited gene information used for integrated clustering and subclustering 690 

analysis. These subclusters were not enriched for technical artifacts due to the encapsulation or 691 

clustering methods used (Supplementary Figure 7). We examined the genes that differentiated each 692 

species-specific subcluster from the other cells in the same parent cluster for clues to their origins or 693 

functions (Figure 5). Two of these subclusters were distinguished by the expression of unique TFs 694 

(Neuronal_03_13 and Neuronal_04_5). For example, the zebrafish-specific Neuronal_04_5 subcluster 695 

expressed meis1b, six6a, and six6b in addition to the parent cluster marker genes cbln1 and adcyap1b. 696 

Other species-specific neuronal subclusters were characterized by cell cycle genes (Neuronal_02_3), 697 

genes related to axonal guidance or remodelling (Neuronal_04_6), or expressed different 698 

neurotransmitters (Neuronal_05_0 and Neuronal_05_1) (Figure 5). These subclusters may therefore 699 

reflect different temporal or spatial cell states, captured in one species or the other. The presence, 700 

absence, and orthology of the specific duplicated genes discussed in the current report, including vipb, 701 

HPCAL1, and the jacalin lectin genes, was confirmed using the most recent Ensembl release (Ensembl 702 

Release 101), which includes newer versions of both the zebrafish (GRCz11) and Mexican tetra 703 

(Astyanax_mexicanus-2.0) genome assemblies34. For analysis of subclustering in the absence of non-704 

homologous genes, all non-homologous genes were removed from the Variable Features for each cluster 705 

prior to subclustering using the same parameters as above. 706 

 707 

 708 

Construction of Sankey diagrams and other plots 709 

 Sankey diagrams were constructed using the networkD3 R package. We used the Seurat 710 

wrappers for ggplot2 functions to construct tSNE graphs and DotPlots of expression values across 711 

clusters or subclusters. Custom R scripts were used to construct the rest of the plots using ggplot2, 712 

including the gene ontology analysis, and the multi-layered circular plots (Figure 6a). Graphical tables 713 



 

were constructed using the formatabble R package. All scripts used to construct figures are available on 714 

GitHub (https://github.com/maxshafer/Cavefish_Paper). Final figures were assembled using Affinity 715 

Designer (Serif Europe). 716 

 Species and species-morph dendrograms, as well as subcluster dendrograms were constructed 717 

using both the Seurat, ggtree, and phylogram R packages24,77,78. Pseudo-bulk expression data for each 718 

cluster and subcluster were used to calculate the dendrogram dissimilarity values for Figure 6a. For 719 

calculation of the similarity between species and species-morph, pseudo-bulk expression data was 720 

generated for zebrafish, Choy surface, and Pachon, Tinaja, and Molino cave-morph samples by 721 

averaging the expression of each gene across all cells within each cluster and subcluster. Species and 722 

species-morph dendrograms were then generated for each population, based on the similarity in whole 723 

transcriptomes using the BuildClusterTree function in Seurat. The ggtree package was used to construct 724 

the density dendrogram, where the colour of the edges corresponds to the number of subclusters which 725 

support each arrangement of the dendrogram. The distance between surface- and cave-morph versions 726 

of each subcluster on the dendrogram was used for plotting. 727 

 728 

DATA AVAILABILITY 729 

 Processed single-cell RNAseq counts and metadata, marker gene lists, trinarized gene lists, SI 730 

results, SCENIC results, results from genetic analysis, and GO lists are available as supplementary data. 731 

Raw sequencing results are available at the Sequence Read Archive (SRA) under BioProject ID 732 

PRJNA754013. 733 
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 755 

FIGURE LEGENDS 756 

 757 

Figure 1. Integration of zebrafish and Mexican tetra single-cell data reveals extensive conservation 758 

of cell types 759 

(a) UMAP reduction of integrated zebrafish and Mexican tetra cells coloured by species. Datasets were 760 

integrated with Mutual Nearest Neighbour (MNN) and Canonical Correlation Analysis (CCA) using Seurat. 761 

(b) UMAP reduction of integrated zebrafish and Mexican tetra cells coloured by annotated cell type. (c) 762 



 

Sankey diagram of relationships between zebrafish, integrated, and Mexican tetra annotated clusters 763 

from Figure S3. Heights of squares and thickness of connecting lines are relative to the number of cells 764 

per identity or connection, respectively. (d) Circular heatmap of the proportion of zebrafish (dark blue), or 765 

Mexican tetra (yellow) cells per integrated subcluster. Subclusters are grouped first by cluster, and 766 

clusters are arranged by the dendrogram of cluster similarity, shown in the center of the circular heatmap. 767 

Red outlines indicate subclusters with > 90% of cells from one species (species-specific). (e) Density 768 

dendrogram for all shared subclusters across species and species-morphs. The density dendrogram was 769 

constructed using dendrograms for the similarity between species and species-morph versions of each 770 

subcluster identity shared between zebrafish and Mexican tetra. Darkness of lines indicate the level of 771 

support for each branch. 772 

 773 

Figure 2. Shared subclusters are highly similar between species and express paralogous genes 774 

(a) Diagram illustrating the relationships between gene sets for each subcluster used in the current study 775 

for calculation of the Similarity Index (SI). GA and GB represent the total marker gene sets in the two 776 

species examined. GT are genes that are found in both GA and GB. Species-specific marker genes are 777 

those which do not overlap with the other species (GA or GB minus GT), though may be paralogs of a 778 

marker gene from the other species. (b) The row-scaled SI for all subclusters between zebrafish and 779 

Mexican tetra based on marker genes filtered for genes which pass the trinarization threshold. Yellow 780 

indicates the highest SI value among Mexican tetra subclusters for each Zebrafish subcluster. (c) The 781 

Similarity Index (SI) for progenitor and differentiated neuronal subclusters between zebrafish and Mexican 782 

tetra based on marker genes filtered for genes which pass the trinarization threshold. Two sample t-test 783 

p-value = 0.007661. (d) The SI for clusters and the mean of the SI for subclusters grouped by cluster 784 

between zebrafish and Mexican tetra coloured by cluster based on marker genes filtered for genes which 785 

pass the trinarization threshold. Paired t-test p-value = 0.003012. (e) Comparison of the SI for the same 786 

subclusters between species (purple), and between species-morphs (yellow), calculated using marker 787 

gene sets. (f) The percentage of species-specific marker genes for each subcluster which were paralogs 788 

of either the conserved or opposite species-specific marker gene for zebrafish and Mexican tetra. (g) The 789 

odds ratio for the enrichment of paralogs in the species-specific genes for each subcluster for zebrafish 790 

and Mexican tetra. (h) The percentage of paralog shifting events shared by both surface- and cave-791 

morphs of Mexican tetra. Paralog shifts are separated by whether they were from the zebrafish or 792 

Mexican tetra species-specific marker genes. (i) Relationship between the Similarity Index and the mean 793 

of the percentage paralogs (for zebrafish and Mexican tetra) for each subcluster. (j) Comparison of the SI 794 

(blue) and corrected-SI (yellow) for subclusters between zebrafish and Mexican tetra. For all boxplots, 795 

box bounds represent the first and third quartiles and whiskers 1.5 times the interquartile range, thicker 796 

line represents the median. 797 

 798 

Figure 3. Paralog shifts are due to differential divergence after duplication between species 799 

(a) Example gene tree for a gene that is duplicated once in the common ancestor of two extant species 800 

(Species 1 and Species 2). (b) Model for paralog gene expression pattern divergence after gene 801 

duplication in a common ancestor. Over time (c), expression of Gene Xa is retained in the cell types of 802 

interest (filled rectangles) in Species 1 and Gene Xb is lost (empty rectangles), whereas expression of 803 

only Gene Xb is retained in the same cell types in Species 2. Ancestral cell types are defined as any cell 804 

type that expresses either paralog in both species (yellow highlight). Gene expression pattern expansion 805 

is represented by cell types that express only 1 paralog in 1 species (green highlight). (d) Empirical 806 

cumulative distribution function (ECDF) for expression divergence (dT) for gene pairs grouped by their 807 

last common ancestor in zebrafish. From the oldest (Opisthokonta, yellow), to the most recent common 808 

ancestor (Otophysi, red), and to those gene duplicates which are only found in Danio rerio (dark red). (e) 809 

ECDF for expression divergence (dT) for gene pairs grouped by their last common ancestor in Mexican 810 

tetra. From the oldest (Opisthokonta, yellow), to the most recent common ancestor (Otophysi, red), and to 811 



 

those gene duplicates which are only found in Astyanax mexicanus (dark red). (f) Relationship between 812 

the expression divergence (dT) for gene pairs in zebrafish and the expression divergence (dT) for gene 813 

pairs in Mexican tetra for all gene pairs (black dots). (g) Relationship between the expression divergence 814 

(dT) for gene pairs which arose in the last common ancestor of zebrafish and Mexican tetra (Otophysi, 815 

pink). (h) DotPlot of the expression of the paralog pairs etv5a / etv5b in zebrafish (top) and Mexican tetra 816 

(bottom) across cell clusters. (i) Ridge plots of the Pearson correlation of the binarized expression 817 

patterns across subclusters for gene pairs shared by zebrafish and Mexican tetra grouped by their last 818 

common ancestor or by their originating WGD event. 819 

 820 

Figure 4. Divergence of gene regulatory networks underlying neuronal genes 821 

(a) Random forest weight for orthologous transcription factors in the zebrafish (y-axis) and Mexican tetra 822 

(x-axis) data for the neuropeptide vip. Colours indicate whether those transcription factors are in the top 823 

2% of transcription factors for each gene in either zebrafish (blue) and Mexican tetra (red), both (yellow), 824 

or none (black). (b) Similarity Index between the transcription factor sets for zebrafish and Mexican tetra 825 

for neuropeptides, neurotransmitters, synaptic genes, and ion channels. (c) Correlation between the 826 

random forest weights for transcription factor sets associated with each for neuropeptide, 827 

neurotransmitter, synaptic, or ion channel genes between zebrafish and Mexican tetra. (d) Odds ratio 828 

from Fisher’s exact test for the enrichment for paralogous genes in the transcription factors associated 829 

with each gene, red dots indicated significant enrichment. (e) Similarity Index for all subclusters shared 830 

between zebrafish and Mexican tetra using either only neuropeptides and neurotransmitter related genes 831 

(purple), only transcription factors (green), or all marker genes (yellow). (f) Similarity Index for individual 832 

neuropeptidergic GABA_1 subclusters between zebrafish and Mexican tetra using either only 833 

neuropeptides and neurotransmitter related genes (purple), only transcription factors (yellow), or all 834 

marker genes. For all boxplots, box bounds represent the first and third quartiles and whiskers 1.5 times 835 

the interquartile range, thicker line represents the median. 836 

 837 

Figure 5. Species-specific subclusters are associated with species-specific genes 838 

(a) Sankey diagram of shared and species-specific subclusters, indicating the species (zebrafish or 839 

Mexican tetra) and the cellular lineage they belong to (Ciliated, Glial, Hematopoietic, or Neuronal). (b) 840 

The percentage of expressed genes (counts > 10) in each zebrafish subcluster which are non-841 

homologous genes between species in shared or species specific cell subclusters. (c) The percentage of 842 

expressed genes (counts > 10) in each Mexican tetra subcluster which are non-homologous genes 843 

between species in shared or species specific cell subclusters. (d) The percentage of expressed genes 844 

(counts > 10) in each zebrafish subcluster which are non-homologous genes between species in neuronal 845 

or non-neuronal subclusters. (e) The percentage of expressed genes (counts > 10) in each Mexican tetra 846 

subcluster which are non-homologous genes between species in neuronal or non-neuronal subclusters.  847 

(c) DotPlot of the species-specific subcluster marker genes (y-axis) across subclusters (x-axis). Blue 848 

boxes highlight expression of specific paralogous genes in different subclusters. Gene expression is 849 

quantified by both the percentage of cells which express each gene (dot size) and the average 850 

expression in those cells (colour scale). For all boxplots, box bounds represent the first and third quartiles 851 

and whiskers 1.5 times the interquartile range, thicker line represents the median. 852 

 853 

Figure 6. Divergence in subcluster repertoires and transcriptomes across Pachon, Tinaja, and 854 

Molino cave-morphs 855 

(a) Graphical summary of subcluster and transcriptional differences between Mexican tetra surface- and 856 

cave-morphs, and between Pachon, Tinaja, and Molino cave-morphs. The first layer indicates the cluster 857 

identity (from Figure S2b), and the text label indicates the subcluster (from Figure S8). The second layer 858 

indicates the proportion of cells in each subcluster that come from a surface-morph (green) or a cave-859 

morph (yellow). Red outlines indicate morph-specific subclusters (> 90% of cells from either surface- or 860 



 

cave-morphs). Third layer indicates the proportion of cave-morph cells from each subcluster that come 861 

from the Pachon (orange), Tinaja (blue), or Molino (green) cave-morph samples. The fourth layer displays 862 

the Similarity Index between the surface-morph, cave-morph for shared marker genes for each 863 

subcluster. The fifth layer displays the percentage of marker genes for each subcluster that is also 864 

associated with a divergent genomic window (FST genes). Finally, the sixth layer displays the Dendrogram 865 

Distance, which is the distance between the surface- and cave-morph versions of each subcluster on a 866 

dendrogram based on the subcluster transcriptomes. (b) Dendrogram of the relationships between 867 

species and species-morphs in this study coloured by the number of cell type changes normalized by the 868 

evolutionary time determined from18.  869 
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