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Experimental absence of the non-perovskite
ground state phases of MaPbI3 explained by a
Funnel Hopping Monte Carlo study based on a
neural network potential†

Jonas A. Finkler * and Stefan Goedecker

Methylammonium lead iodide is a material known for its exceptional opto-electronic properties that

make it a promising candidate for many high performance applications, such as light emitting diodes or

solar cells. A recent computational structure search revealed two previously unknown non-perovskite

polymorphs, that are lower in energy than the experimentally observed perovskite phases. To investigate

the elusiveness of the non-perovskite phases in experimental studies, we extended our Funnel Hopping

Monte Carlo (FHMC) method to periodic systems and performed extensive MC simulations driven by a

machine learned potential. FHMC simulations that also include these newly discovered non-perovskite

phases show that above temperatures of 200 K the perovskite phases are thermodynamically preferred.

A comparison with the quasi-harmonic approximation highlights the importance of anharmonic eects

captured by FHMC.

1 Introduction

In recent years, perovskites have gathered a lot of attention due to
their exceptional opto-electronic properties, which make them
suitable for high performance devices, such as solar cells, lasers,
photodetectors or light emitting diodes.1,2 The general structure of
perovskites, given by the formula ABX3, consists of corner sharing
BX6 octahedra arranged in a cubic lattice, that form cuboctahedral
cavities, in which the A species are found. Due to many possible
choices for the A B and X components, perovskites form a large
design space that can be explored to optimizematerial properties.3,4

Many perovskite materials undergo so-called tilting phase
transitions, that are characterized by a cooperative tilting of the
corner sharing octahedra that leaves the internal connectivity
of the B and X atoms intact.5,6 Some materials, such as FaPbI3
and CsPbI3 can even undergo transitions to unwanted non-
perovskite phases and there is ongoing research on stabilizing
the perovskite phases.7,8

Due to the dierent properties of the phases, understanding
and predicting the phase transition behaviour in perovskite
materials is of great interest.

The presumably most widely used tools to study free ener-
getic orderings in materials are the harmonic9 (HA) and quasi-

harmonic10,11 (QHA) approximations. Unfortunately, the
applicability of these methods to perovskites is limited since
the tilting motion of the octahedral structure was found to be
highly anharmonic.12–14

Many perovskites, such as CsSnI3,
13 MaPbI3,

15 or CsSnX3

and CsPbX3
16 can also be found in a high symmetry cubic

phase, that is only stable at high temperatures. The geometries
associated with these cubic phases can be constructed for small
small unit cells but an analysis of their imaginary frequency
phonon modes reveals, that they are dynamically unstable
under collective rotations of the octahedral cages.12,17–19 The
existence of these phases can therefore only be explained by
entropic contributions to the free energy at higher tempera-
tures. Carignano et al.14 found that the cubic symmetry of
MaPbI3, is almost always broken locally and that the cubic
symmetry found in experiments can be interpreted as averaging
of distorted geometries. The HA and QHA are hence not directly
applicable to these phases.

An alternative way to study phase transitions is a direct
simulation of the atomistic dynamics through ab initio

molecular dynamics (MD). Unfortunately, due to the high
computational cost of ab initio methods, the aordable time-
scales are limited. Classical force fields on the other hand
would provide the required performance but their accuracy is
limited by the simple functional form of the interaction poten-
tials. Recently, his gap between performance and accuracy has
been filled by machine learned potentials (MLPs). Once trained
on high accuracy ab initio data, MLPs are able to predict
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energies and forces with almost ab initio accuracy at a fraction
of the computational cost.20,21

In this paper, we developed a MLP to study phase transitions
in methylammonium lead iodide (MaPbI3), where the B and
X sites are formed by lead and iodine atoms and the A sites are
occupied by the organic molecule methylammonium (MA)
(CH3NH3).

Depending on the temperature, MaPbI3 can be found in
three dierent phases in experiment. At low temperatures,
MaPbI3 adapts an orthorhombic phase with Pnma symmetry.
Upon heating above 160 K, MaPbI3 undergoes a first order
phase transition to a tetragonal phase with I4/mcm symmetry.
Under a further increase of the temperature above 330 K, the
material was observed to undergo a second order phase transi-
tion to a cubic phase with Pm%3m symmetry.22

A recent theoretical structure search,23 based on the minima
hopping method,24,25 discovered two additional non-perovskite
polymorphs of MaPbI3 that, according to DFT calculations
based on the strongly constrained and appropriately normed26

(SCAN) density functional, appear to be significantly lower in
energy than the experimentally observed phases. The energeti-
cally lowest polymorph is the double-delta structure, which has a
unit cell containing 48 atoms and consists of edge-sharing
octahedra forming pillars that are surrounded by Ma molecules.
Results based on the random phase approximation (RPA) also
support that the double-delta phase is lower in energy than the
perovskite phases.27,28 The reported delta polymorph is higher in
energy than the double delta phase but has a lower energy than
the perovskite phases and consists of a unit cell containing
24 atoms, where face-sharing octahedra form pillars, arranged in
a hexagonal pattern, that are uniformly surrounded my Ma
molecules. The double-delta phase resembles the d phase
observed in CsPbI3,

29 while the delta phase is similar to the d

phase of FaPbI3.
7,30 The ground state geometries of the two delta

and the three perovskite phases of MaPbI3 are shown in Fig. 1. A
more detailed overview over the unit cells and geometries used for
the simulations presented in this paper can be found in the ESI.†

The delta phase has also previously been investigated by
Thind et al.31 In both CsPbI3 and FaPbI3, a transition to the
non-perovskite d phases can be observed. The stability of the
perovskite phases of MaPbI3 is therefore rather surprising,

given that the newly discovered non-perovskite phases should
be energetically preferred. Understanding this unexpected
behaviour using our MLP is unfortunately not straight forward.
The large structural dierence between the delta and the
perovskite phases, suggests a complex reaction pathway, that
would require unfeasibly long simulation times to explore
through MD. Similarities can be found in the structurally
similar phase transition between the hexagonal delta and cubic
phases of FaPbI3. This transformations shows a complex reac-
tion pathway with high barriers, that result in a large hysteresis
of the transition with respect to temperature.32

To circumvent the problem of the high barriers, we extended
our funnel hopping Monte Carlo (FHMC) method33 to periodic
systems and applied it to MaPbI3 using our newly developed
MLP. Similarly to a MD simulation, FHMC samples the Boltz-
mann distribution at a given temperature. However, it is not
limited to a physical trajectory and carefully designed FHMC
moves allow the Monte Carlo (MC) walker to jump between
dierent phases, that are separated by high free energy barriers,
without violating the detailed balance condition. Sampling of
the true potential energy surface (PES) allows us to obtain
phase transition temperatures without using any approximate
expansion of the PES like in the HA and QHA. Additionally, the
FHMC method is particularly well suited for applications with
MLPs. Due to the global moves, the high energy transition
states are not visited and do not need to be included in the
training data.

2 The FHMC method

Many material properties emerge at finite temperatures due to
the thermal motion of atoms. To compute these properties, an
ensemble of geometries, distributed according to the Boltzmann
distribution, has to be considered instead of a single ground
state geometry. One possibility to generate such an ensemble are
MD simulations coupled with thermostats,34 where Newtons
equations of motion are solved to generate a trajectory. Another
widely used approach are MC simulations that do not generate a
trajectory but instead perform a random walk over the configu-
ration space. In each step, a new configuration is proposed and

Fig. 1 Ground state geometry of the two delta and the three perovskite phases of MaPbI3. The SCAN DFT ground state energy relative to the double-
delta phase is given in parenthesis (meV f.u.1). Note that the cubic geometry shown is only a local minimum in a smaller unit cell. The supercell shown
here corresponds to a saddle point. Additional pictures can be found in the ESI.†

Paper Materials Advances

O
p

en
 A

cc
es

s 
A

rt
ic

le
. 

P
u

b
li

sh
ed

 o
n

 1
7

 N
o

v
em

b
er

 2
0

2
2

. 
D

o
w

n
lo

ad
ed

 o
n

 1
/5

/2
0

2
3

 8
:3

2
:4

7
 P

M
. 

 T
h

is
 a

rt
ic

le
 i

s 
li

ce
n

se
d

 u
n

d
er

 a
 C

re
at

iv
e 

C
o

m
m

o
n

s 
A

tt
ri

b
u

ti
o

n
-N

o
n

C
o

m
m

er
ci

al
 3

.0
 U

n
p

o
rt

ed
 L

ic
en

ce
.

View Article Online



186 |  Mater. Adv., 2023, 4, 184–194 © 2023 The Author(s). Published by the Royal Society of Chemistry

then either accepted or rejected according to the Metropolis–
Hastings criterion,35 which ensures, that the samples obtained
during the random walk are distributed according to the Boltz-
mann distribution. The way new configurations are proposed is
critical. In traditional MC simulations, local MCmoves are used,
where one ormultiple atoms are displaced slightly. Themagnitude
of these displacements has to be chosen carefully. Large displace-
ments are favourable, since they allow for a rapid exploration
through the whole system. However, too large displacements lead
to structures that are, in most cases, high in energy and will result
in a low acceptance rate of theMCmoves. Therefore a trade-off has
to be made to determine the optimal magnitude of the
displacements.

A funnel is a feauture of the PES, where minima that are
close in energy are arranged in a cascading manner towards the
global minimum. Often, multiple funnels can be present, and
the low lying minima from each funnel are separated by very
high energy barriers. Due to the finite displacements, the MC
walker is forced to take several steps across the barrier and
accept some of the high energy transition states, even when the
energy on the other side of the barrier is low. The high barriers in
multi funnel systems can therefore slow down or even comple-
tely prevent complete sampling within feasible simulation times.
This problem is known as broken ergodicity. Even though MC
sampling of the Boltzmann distribution is, in theory, ergodic,
meaning that every point on the PES will eventually be visited
according to its Boltzmann probability, ergodicity can be broken
in finite simulations of multi-funnel systems with high separat-
ing barriers. To overcome this problem, many algorithms, such
as umbrella sampling,36 the stochastic self-consistent harmonic
approximation,37 metadynamics,38 multicanoncial sampling,39

Wang–Landau sampling,40 nested sampling,41 the auxiliary
harmonic superposition method,42 lattice switch MC43,44 or
Boltzmann generators45 have been proposed in the past.
Similarly, thermodynamic integration46 can be used to directly
compute absolute free energies.

We recently developed a method called Funnel Hopping
Monte Carlo33 (FHMC), that enables ecient MC simulations
for multi funnel systems. The method introduces a global MC
move, that enables the MC walker to jump directly from one
low energy region to another, bypassing the high energy
barriers entirely. Inspired by smart darting MC,47 FHMC takes
advantage of the fact, that global optimization algorithms
such as minima hopping24,25 are much more ecient than
MC simulations in exploring the PES, since they do not have to
generate a Boltzmann distribution. Therefore feedback
mechanisms can be used that rapidly push the system out of
funnels and across high barriers. The knowledge about the
dierent minima can then be used during the MC simulation
to introduce a new type of MC move, that directly targets the
low energy region around other minima. These new moves have
to be designed carefully, such that the detailed balance condi-
tion is not violated and the correct Boltzmann distribution is
sampled by the MC walker. FHMC is therefore related to smart
darting MC and lattice switch MC, which also use local minima
to construct global MC moves. In these two methods, the

atomic displacements from the nearest local minimum are
directly added to the geometry of another local minimum to
obtain the trial configuration. This will in most cases result in a
high energy and hence low acceptance probability of the
proposed move necessitating additional biasing in the case of
lattice switch MC.43,44

The FHMC method therefore employs a dierent method
to construct global MC moves. Gaussian mixtures (GMs)
are used to approximate the Boltzmann distribution around
the local minima. The GMs are fit, to samples obtained
from MC simulations constrained to the region around the
minima using the Expectation–Maximization algorithm.48 Dur-
ing the final MC simulation, global moves are proposed by
sampling trial configurations from these GMs. A good fit of the
GMs hence ensures that the proposed configurations are low in
energy and have a high chance of being accepted.

The FHMC method was originally developed for systems
with free boundary conditions, such as atomic clusters. The
methods performance was demonstrated on the 38 atom
Lennard-Jones (LJ) and 75 atom LJ clusters, which are
known for their double funnel PES. The 75 atom LJ cluster
is a particularly dicult system to treat with MC simula-
tions, since not even parallel tempering49,50 simulations
converge.51,52

In this work, we set out to extend the FHMC method to
periodic systems and apply it to MaPbI3. This requires several
adjustments of the FHMC algorithm that will be explained in
the next sections. Some of the changes were required because
the initial method was proposed for atomic clusters with free
boundary conditions and hence the method needed to be
adopted to periodic boundary conditions. Other changes were
necessary because of the high rotational mobility of the Ma
molecules present in MaPbI3.

2.1 Modification of the method for MaPbI3

2.1.1 Extension to periodic boundary conditions. FHMC
uses Gaussian mixtures (GMs) to approximate the Boltzmann
distribution around local minima. Since atomic systems with
free boundary conditions are invariant under rotation, translation
and permutation of atoms of the same species, the root mean
squared deviation (RMSD) is used to align the current configu-
ration of the MC walker with the reference configuration. This
alignment allows for a basis transformation of the atomic dis-
placements that projects out the 6 degrees of freedom associated
with translation and rotation.

In systems with periodic boundary conditions, only a finite
number of symmetry operations, that preserve the periodic
lattice of the unit cell, have to be considered. Since the maximum
temperature of 400 K used in our FHMC simulations is below
the melting temperature, permutations of atoms do not occur.
We therefore only have to consider a fixed number of symmetry
operation, that can be computed for the reference configura-
tions obtained from minima hopping using spglib.53 For each
operation that we have to consider, we first apply it to the
current configuration of the MC walker. We then find the
translation that minimizes the mass weighted RMSD by
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superimposing the centers of mass of the current configuration
r and the reference R.

X

Nat

i

mi~ri
mtot

¼
X

Nat

i

mi
~Ri

mtot

(1)

The atomic displacement vectors D = r  R, are then projected
onto the basis vectors Bj to obtain a vector representation V of
the current configuration. Here, the vectors r and R contain all
3Nat atomic coordinates of the current and the reference configu-
ration respectively (r = (r1x,r1y,r1z,r2x,. . .,rNatz)

T). The 3Nat 3 basis
vectors Bj are chosen such that they are orthogonal to the three
vectors T1, T2 and T3 which are given below.
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(2)

To obtain the Bj, which are also orthonormal to each other, the
modified Gram–Schmidt process is used. Since the translation of
the configuration has been fixed, the projection of the displace-
ment vector D onto the Ti will always be zero because of eqn (1).
Our Gaussian mixtures, which are formed by a sum of Gaussian
functionsNi weighted by factors ai, live in the space spanned by
the basis vectors Bj. The total probability of the current configu-
ration can then be evaluated as the mean over all Nsym applicable
symmetry operations.

PGMðVÞ ¼
1

Nsym

X

Nsym

i

X

NGM

j

ajNjðViÞg (3)

Here Vi is the vector representation that is obtained after
applying the ith symmetry operation onto the atomic positions
and g is the degeneracy of the unit cell choice. In our FHMC
simulations, we only include one reference for each phase.
However, due to symmetry, some of the phases have a degen-
eracy related to the choice of the unit cell. For example, when the
cubic phase undergoes a transition to the tetragonal phase, three
equivalent possibilities exist in which the symmetry can be
broken. We therefore use the ratio between the numbers of
symmetries of the highest symmetry cubic lattice and the
number of symmetries of each phase for g.

To propose a FHMC move, the process outlined above is
reversed. First a random phase j is select and then a sample V0 is
drawn from the respective GM. The sample is then transformed
into an atomic displacement by applying the transformation
from the coordinate system spanned by the basis vectors B

to Cartesian coordinates. To obtain the new configuration,

the displacement is added onto the reference configuration. The
new configuration r0 is then accepted with the probability aFHMC

r!r0
.

aFHMC
r!r0

¼ min 1; exp
EðrÞ Eðr0ðV0ÞÞ

kBT

 

PiðVðrÞÞ

PjðV0Þ

 

(4)

Here E(r) and E(r0) are the energies of the old and new configura-
tions, T is the temperature and kB the Boltzmann constant. Unlike
in standard MC simulations, where the trial step distribution is
symmetric, the probability Pj (V0) of proposing the new configu-
ration and the probability Pi(V) of proposing the inverse move
have to be included into the acceptance/rejection step of eqn (4).

2.1.2 Changes in volume. To allow for thermal expansion,
we included the volume of the unit cell into the vector repre-
sentation. Changes in the shape of the unit cell were not
included, since FHMC moves between the dierent phases
allow already for the simulation to access dierently shaped
unit cells. When a structure is transformed to its vector
representation, it is first scaled to match the size of the
reference unit cell, before the displacement vector is computed.
During the sampling of a new configuration, the structure is
first constructed, as described above, and then rescaled, to
match the volume that is sampled from the GM.

2.1.3 Special treatment of the methylammonium molecules.

Even at lower temperatures, where the MaPbI3 is in a crystalline
phase, the Ma cations can rotate almost freely within the cavities
formed around them by the lead-iodine lattice. This rotational
motion would be extremely dicult to capture even with a large
number of Gaussians included in the GMs. We therefore decided
to only include the center of mass of each Ma molecule into the
GM, like any other atomic position. When a FHMC move is
performed, the Ma molecule is cut out from its original environ-
ment and placed to the position of the new center of mass
sampled from the GM. Since this process is reversible, detailed
balance is preserved.

2.1.4 Replica exchange. Even with the special treatment of
the Ma molecules included into the method, acceptance rates
of the FHMC moves are vanishingly low and only few moves are
accepted during long simulations. This behaviour is due to the
fact that the special treatment of the Ma molecules removes
the ability of the GMs to capture any correlation between the
Ma orientation and its internal configuration as well as the
surrounding lead and iodine atoms positions. This results in a
small overlap between the true Boltzmann distribution and the
approximation of the GMs.

We therefore decided to couple the method with Hamilto-
nian replica exchange MC.54,55 We defined an artificial PES
(APES) using the GMs, such that our FHMC moves are trivially
accepted on the APES. The intermediate replicas will then allow
for an exchange of configurations between the well sampled
APES and the PES.

The GMs approximate the Boltzmann distribution PB as
follows.

PBðrÞ ¼
1

Z
exp

EðrÞ

kBT

 

 PGMðrÞ (5)
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We can reverse this equation to obtain an approximation of the
PES EGM from the GM.

EGM(r) = ln(PGM(V(r)))kBT (6)

As only the center of mass of the Ma molecules enters the GM,
an additional internal energy term EMa is added for each Ma
molecule to obtain the total energy EAPES.

EAPESðrÞ ¼  ln PGMðVðrÞÞð ÞkBT þ
X

NMa

j

EMaj ðrÞ (7)

The energy EMa is obtained from a neural network potential
(NNP) trained to reproduce the energy of a single Ma molecule
in vacuum. Forces can be obtained by dierentiating EAPES with
respect to the atomic coordinates. It should be noted, that

partial derivatives from
dVðrÞ

dr
have to be included because the

center of mass of the structures is fixed. This results in
invariance of EAPES under translation.

As we can see from eqn (4), FHMC moves will always be
accepted on the APES, since the Boltzmann probability of EAPES
is identical to the trial probability of the FHMC moves. The
energy contributions EMaj(r) also cancel out in the FHMC
moves, since the internal geometry of the Ma molecules is left
unchanged by the FHMC moves and hence, the internal energy
remains constant. Therefore, performing an FHMC simulation
on the APES will converge extremely fast, since with every
FHMC move, a new structure is generated which is, up to the
internal geometry of the Ma molecules, completely uncorre-
lated to the previous geometry.

The MC simulation on the physical PES is then coupled to
the APES using replica exchange MC. A series of intermediate
PESs are defined using a parameter l that varies from 0, at the
physical PES, to 1 at the APES.

El(r) = (1  l)E(r) + lEAPES(r) (8)

We also included replicas at dierent temperatures, that are
arranged in a geometric series. Replica exchange moves are there-
fore performed on a 2 dimensional grid in the final simulations.

Configurations between neighboring simulations are then
exchanged at regular intervals according to the Metropolis–
Hastings criterion. The acceptance probability aRX for replica
exchange moves between two replicas a and b with configurations
ra and rb and energy expressions Ea and Eb at temperatures Ta and
Tb are given as follows.

aRX ¼ min 1; exp
EaðraÞ EaðrbÞ

TakB


EbðraÞ EbðrbÞ

TbkB

  

(9)

2.1.5 Other simulation details. We used hybrid MC56,57

with 20 MD timesteps of 0.8 fs each for the local MC moves.
To avoid large dierences in timescale between the vibrations
of the light hydrogen and heavy lead atoms, we set all masses to
the mass of a hydrogen atom. MC moves changing the volume
were included with a probability of 20%. The GMs were fit to 105

samples using our symmetry adapted version of the Expectation–

Maximization algorithm33 with one Gaussian per symmetry.
FHMC moves were attempted with a probability of 10%. We
used a 2D grid of replicas with 24 different temperatures from
Tmin = 40 K to Tmax = 400 K arranged in a geometric series and
10 different values of l, which results in a total of 240 replicas.
Replica exchange moves were performed between neighboring
replicas in an alternating fashion every 5 MC iterations. We
collected samples from our FHMC simulations during 200 000
iterations after an equilibration period that lasted for 150 000
iteration. We used unit cells containing 8 functional units for
each phase as shown in Fig. 1. Additional details on the choice of
unit cells can be found in the ESI.†

3 Neural network potential

To obtain predictive power, a faithful representation of the PES
is needed. It was previously shown, that density functional
theory using the SCAN density functional is in good agreement
with RPA results28 and experimental results.58 Unfortunately,
performing FHMC simulations on a SCAN-DFT PES is not
feasible due to the high computational cost and the large
number of energy and force calculations that are required.
We therefore decided to train a high dimensional neural network
potential59 (HDNNP) using SCAN-DFT training data. We used the
plane wave code VASP60–64 to perform DFT calculations. Details
on the DFT settings are given in the ESI.† Unlike previously
published machine learned potentials for MaPbI3,

65,66 we also
included the two non-perovskite phases in our training data. The
HDNNP was trained by the RuNNer software67,68 using energies
and forces. For the prediction of energies and forces, we employed
our own code69 in the FHMC simulations and n2p270 in the
MD simulations. Atom centered symmetry functions (ACSFs)71

were applied as atomic environment descriptors. A detailed list of
the parameters of the ACSFs can be found in the ESI.† Neural
networks consisting of two hidden layers with 10 nodes each were
employed for each element, resulting in 3545 free parameters that
were optimized during training. As activation function, the hyper-
bolic tangent and a linear function were used for the hidden and
output layers respectively.

To generate the training dataset, we took an active learning
approach. We first trained a set of HDNNPs on a small set of
structures that were sampled from a MC simulation driven by a
classical force field72 and then recomputed with DFT. We then
performed MC simulations for all 5 crystalline phases on the
HDNNP-PES. The standard deviation between the energies
predicted by the dierent HDNNPs, trained on the same data
but with dierent initializations of the weights and biases, was
applied to estimate the accuracy of the HDNNP’s prediction for
a given structure. The energies and forces of structures with the
lowest accuracy were then recomputed with DFT and added to
the dataset. This process was repeated until a satisfying accuracy
was reached. The final dataset consists of 34400 structures. We
randomly selected 10% of the structures as a test set and used
the remaining structures to train the HDNNPs. The resulting
HDNNPs are highly accurate and can run stable MD simulations

Materials Advances Paper

O
p

en
 A

cc
es

s 
A

rt
ic

le
. 

P
u

b
li

sh
ed

 o
n

 1
7

 N
o

v
em

b
er

 2
0

2
2

. 
D

o
w

n
lo

ad
ed

 o
n

 1
/5

/2
0

2
3

 8
:3

2
:4

7
 P

M
. 

 T
h

is
 a

rt
ic

le
 i

s 
li

ce
n

se
d

 u
n

d
er

 a
 C

re
at

iv
e 

C
o

m
m

o
n

s 
A

tt
ri

b
u

ti
o

n
-N

o
n

C
o

m
m

er
ci

al
 3

.0
 U

n
p

o
rt

ed
 L

ic
en

ce
.

View Article Online



© 2023 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2023, 4, 184–194 |  189

at up to 400 K. However, we found that in some rare cases,
during our FHMC simulations, structures were generated by the
FHMC moves, that would be extremely high in energy due to
unphysically short bond lengths. As the training data for our
HDNNPs was sampled from the Boltzmann distribution, such
high energy structures are not present and the HDNNP predic-
tion will be wrong. In some cases the HDNNPs would severely
underestimate the energy which would lead to the acceptance of
a highly unphysical configuration. To counteract this problem,
we used the average over the predictions of five HDNNPs that
were trained with a dierent weight initialization. A small
positive energy bias was then added to configuration for which
the prediction accuracy was low.

E = Ē + as2 (10)

Here Ē is the mean of the five energy predictions and s the
standard deviation. The parameter a was set to 2.0 Ha1. This
energy bias comes at little cost, since the computationally most
expensive part of the HDNNP evaluation, the computation of
the ACSFs, has to be performed only once. During a typical
FHMC simulation, the average value of s at the simulation on
the true PES (l = 0) is around 14.9 meV (0.15 meV per atom). The
maximum value was found at 63.3 meV (0.66 meV per atom),
which results in an energy bias of 0.29 meV (0.003 meV per
atom). Only at replicas with l 4 0 a significant influence of the
energy biasing is present. The total energy and force RMSD of
our fit is 0.885 meV per atom and 118.4 meV Å1 on the training
set and 1.032 meV per atom and 120.0 meV Å1 on the test set.
Correlation plots can be found in the ESI.† The training dataset
and the final parameters for the trained HDNNPs were pub-
lished online.73

Table 1 shows the energy of the local minimum configu-
ration for all phases considered in this paper. Energies per
functional unit are given for DFT optimized geometries, the
energy predicted by the NNP for the same geometry and the
NNP energy after the lattice and atom positions were further
relaxed on the NNP PES. The lattice parameters of the orthor-
hombic phase predicted by the NNP are in close agreement
with the values obtained from DFT and experimental results22

at 10 K as can be seen in Table 2.
The values for the cubic phase were obtained using a small

unit cell containing only a single functional unit. When
expanded to a 2  2  2 super cell, the cubic geometry is not
a minimum anymore, but a saddle point.

We used a radial cuto of 12 Bohr for our ACSFs. This
distance is roughly equal to the distance between neighboring

lead-iodine octahedra in the perovskite phases. It is important
to note, that the HDNNP is able to describe interactions with a
range of up to twice the maximum cuto distance of the ACSFs,
as atoms that are present in between the interacting atoms
include both atoms inside their cuto radius. To confirm, that
the interaction between neighbouring Ma cations is adequately
described by our HDNNPs, we placed two Ma molecules inside
neighboring lead-iodine cages. The Pb and I atoms were placed
at their high symmetry positions from the cubic phase. This
way, the local environment of the Pb I cage, as seen by the Ma
cation, is completely symmetric and invariant when a point
symmetry operation is applied to the Ma cation through the
cage center. We then compared the energies of the two cases,
where both Ma cations were in parallel and anti-parallel con-
figurations with DFT references. Due to the symmetry, the only
dierence in the environments of the Ma molecules is the Ma
molecule in the neighboring cage. This allows us to test if the
interaction between neighbouring Ma molecules is adequately
described, by eliminating the interaction between the Ma
molecules and the surrounding cage. The HDNNPs predict that
on average, the parallel configuration is preferred by 61.3 meV
which agrees well with the DFT result of 71.6 meV.

4 Results
4.1 FHMC study of the experimentally known phases

In a first step we ran FHMC simulation that only included the
three experimentally known phases of MaPbI3. We also per-
formed MD simulations using lammps74 and the HDNNP code
n2p270 to validate our FHMC results. As we used variable cell
shape MD, the determination of the phase from the lattice
parameters is dicult. The variability of the lattice during the
MD is close in magnitude to the variability between the dierent
phases. This problem is not present in the FHMC simulations,
since there the ratio between the lattice parameters is kept fixed
to the value of the optimized unit cell and only the volume is
allowed to change. However, an identification of a given phase
using the lattice parameters is also not always possible. We
observed, that sometimes geometries in one lattice are present,
that show a tilting of the lead-iodine octahedra that is typical
for another phase. This eect is especially pronounced for
the tetragonal and cubic phases that have very similar lattice
constants. We therefore used an order parameter, to determine
the phase transition temperatures between the orthorhombic,
tetragonal and cubic phases. This order parameter is given by
the mean absolute value of the normalized dot product between
vectors that span the three diagonals of neighboring lead-iodine

Table 1 Energies (meV f.u.1) of the phases, computed with DFT and the
NNP. All energies are relative with respect to the DFT energy of the
double-delta phase

Phase SCAN NNP NNP relaxed

Double-delta 0.0 1.5 2.2
Delta 12.3 20.6 11.1
Orthorhombic 26.3 28.7 26.1
Tetragonal 46.4 59.2 49.6
Cubic 130.2 138.3 124.7

Table 2 Lattice parameters (a, b and c) [Å] and volume [Å3] of the
orthorhombic phase obtained from DFT, the NNP and experiment22 at
10 K

a b c Volume

SCAN 8.99073 12.71980 8.62164 985.973
NNP 9.00764 12.69012 8.59005 981.912
Experiment 8.81155(6) 12.58714(9) 8.55975(6) 949.38(1)
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octahedra pointing along the same axis. We hence obtain three
order parameter values (one per diagonal of the octahedron) for
each configuration, that indicate the tilting between neighboring
lead-iodine octahedra. The mathematical details of the order
parameter and an illustration of the vectors used to compute it
can be found in the ESI.†

In Fig. 2, histograms of the order parameter for dierent
temperatures are shown. The MD simulations were performed
at temperatures ranging from 25 K to 400 K with a spacing of
25 K. The order parameters were computed for a duration of
25 000 ps after an equilibration period that lasted for the same
duration. MD simulations that were initialized with a tetrago-
nal or cubic geometry would only extremely rarely undergo a
phase transition to the orthorhombic phase at temperatures
close to the phase transition temperature, while the reverse
transition was readily observed. We therefore initialized our
simulation with the orthorhombic ground state geometry. Our
FHMC simulations however, converge to the same relative
probability of the dierent phases, independent of the phase
that was used during initialization, since the FHMCmoves allow
for direct transitions between phases and are not hindered by
energetic or dynamics barriers.

The phase transition from the orthorhombic to the tetra-
gonal phase can clearly be identified in both, the FHMC and
the MD results, around 130 K by the disappearance of order
parameter values around 0.95. The transition between the
tetragonal and cubic phase is less clearly identifiable and occurs
around 300 K in the MD simulation, where the two peaks in the
order parameter histogram merge into a single peak. The FHMC
results appear to show a slightly lower tetragonal cubic transition
temperature. This is because of the high sensitivity of the transi-
tion to the lattice parameters.58 With increasing temperature, the
ratio between the two lattice parameters of the tetragonal phase
will get closer to one. Since this ratio is kept fixed to the ratio of
the ground state geometry in our FHMC simulations, the tetra-
gonal phase will necessarily be slightly strained at higher tem-
peratures. Using the average lattice parameters of the tetragonal
phase at 250 K obtained from variable cell shape MD in our
FHMC simulations, we obtain a higher transition temperature
that agrees extremely well with the MD results. The order para-
meter histogram of this simulation can be found in the ESI.† To
keep our simulations consistent and to not introduce any bias by
picking lattice parameters from dierent temperatures, we
decided to use lattice parameters from ground state geometries.

4.2 FHMC study including the two delta phases

After confirming that FHMC is able to reproduce results
obtained from MD simulations for the three experimental
perovskite phases, we continue our investigation by performing
FHMC simulations that include the two delta phases in addition
to the three perovskite phases. Phase transitions involving the
delta phases cannot be simulated using classical MD simula-
tions. Both delta phases appear to be stable at our maximum
simulation temperature of 400 K. We would therefore need to go
to even higher temperatures or longer timescales to access the
transition states, that connect the delta phases with the perovsite
phases. Due to the large structural dierence between the
phases, complex transition states, that are not included in
the training data of our HDNNPs are expected, rendering our
HDNNPs inaccurate. Furthermore, we expect that the timescales
needed for such transitions would be prohibitively large. This is
supported by the fact, that even transitions between the structu-
rally very similar orthorhombic and tetragonal phases are hard
to observe in our MD simulations. Chen et al.32 experimentally
investigated the structurally similar transition between the delta
and cubic phases of FaPbI3 and found a large energetic barrier
and reported complete kinetic trapping of the material in the
higher energy cubic phase after cooling the material from 400 K
to 200 K within 80 minutes. Clearly, such timescales are not
accessible by any form of MD simulations. A large hysteresis of
the transition between heating and cooling further supports the
high free energy barrier and complex transition pathway.

FHMC simulations can avoid this problem of high barriers
and allow us to determine phase transition temperatures
involving the delta phases without the need to also
explore the large configuration space of transition states while
still taking anharmonic eects into account without any
approximation.

Fig. 2 Histogram of the order parameter versus temperature obtained
from MD and FHMC simulation. The orthorhombic phase can be identified
by the presence of an order parameter value around 0.95. In the tetragonal
phase this order parameter value disappears and values close to 1 are
present. At higher temperatures the two distinct peaks in the order
parameter merge into a single peak which marks the transition to the
cubic phase.
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Unlike for the experimental phases, no transition from a
delta phase to any other phase within the same lattice configu-
ration was ever observed in our FHMC and MD simulations. We
can therefore directly use the lattice configuration as an indi-
cator of the non-perovskite phase.

A plot showing the probability of finding the system in the
double-delta, delta, or a perovskite phase versus temperature is
shown in Fig. 3. At low temperatures, the double delta phase is
dominant. The delta phase has only for a small temperature
window a significantly non-zero probability. At higher tempera-
tures above 200 K, the system is most likely to be found in the
perovskite phases.

We also computed free energies using the HA and QHA for
all phases, except the cubic phase using the phonopy code75

and our HDNNP. We excluded the cubic phase, since it does not
relate to a minimum on the PES. Both, the HA and QHA, free
energies are in qualitative agreement, indicating that eects of
thermal expansion are not the main reason of the anharmoni-
city of the system. The relative free energies as well as plots of
the phonon density of state for all phases are included in the
ESI.†

We found, that even for the non-cubic phases, extremely
tight settings, such as tight geometry optimization thresholds
and small displacements for the calculation of the force con-
stants through finite dierences were necessary to avoid ima-
ginary frequency modes. Similar finding were also reported by
Marronnier et al.76 Compared to a DFT PES, where noise is
present smaller displacements are not problematic on our
HDNNP PES, since it is an analytical function, that can be
evaluated with almost machine precision. Geometry optimiza-
tions were performed using the vc-SQNM algorithm.77

We then used the free energies computed within the QHA to
calculate probabilities of finding the system in a given phase
for the same unit cells that were used for the FHMC and MD
simulations. The results are shown in Fig. 4.

At low temperatures, the double-delta phase is most stable.
Above 180 K the orthorhombic phase is predicted by the QHA to
be thermodynamically more stable. This is surprisingly close to
our FHMC results, that predict that the double-delta phase is

only preferred up to a temperature of 200 K. However, the HA
and QHA further predict, that the orthorhombic phase is
preferred over the tetragonal phase up to a temperature of
380 K, which is inconsistent with experimental results as well es
our FHMC and MD results. The correct prediction of the
disappearing of the double delta phase above 200 K by the
QHA, is therefore most likely an accidental result caused by
error cancellation.

We also devised an additional test to further investigate the
anharmonicity of the vibrational modes found by the HA. For
this, we made an estimate ofit of each vibrational frequency,
that is not based on the second derivative of the potential
energy at the local minimum but instead uses a quadratic fit of
the potential energy through points placed further away from
the minimum along the vibrational mode. These points were
chosen such that they represent a realistic displacement from
the local minimum as it could be observed during a finite
temperature simulation. We first used the harmonic approxi-
mation to estimate the magnitude of the displacements, at

which an energy of
1

2
kBT above the local minimum energy

should be expected. This procedure was then repeated multiple
times using the fitted curvature of the potential energy instead of
the HA, such that a consistent fit was obtained. The converged
fits were then used to estimate the vibrational frequencies ofit.
The ration between the ofit calculated for a temperature of 300 K
and the harmonic frequencies oHA serves as a rough measure of
the anharmonicity of each vibrational mode and are shown in
Fig. 5. The results show the presence of anharmonic modes in all
four phases. Interestingly, there seem to be fewer anharmonic
modes in the double delta and the orthorhombic phase than in
the delta and tetragonal phase. This might be an indication as to
why the HA performs better for these two phases.

In general, however, it is not known, up to which tempera-
tures the HA can be trusted and how strong the influence of the
anharmonicity is in the final results. For example, Thind et al.31

also calculated free energies using the QHA for the delta and
cubic phases and found a transition temperature of 750 K. This
again is inconsistent with our FHMC results, which suggest a
much lower transition temperature. Furthermore, it was also

Fig. 3 Probability of finding the FHMC walker in a given lattice configu-
ration versus temperature.

Fig. 4 Probability of finding the system in a given phase, computed using
the quasi-harmonic approximation.
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reported that the HA and QHA fail to assign the lowest free
energy to the experimentally found tetragonal phase of the
structurally similar system of CsSnI3.

78

These results underline the high anharmonicity of the PES of
perovskite materials and show, that methods beyond the HA and
QHA are needed to obtain reliable phase transition temperatures.

5 Conclusions

We developed a highly accurate and reliable NNP for MaPbI3,
that is trained on data including all three experimentally
observed perovskite phases as well as the two theoretically
predicted non-perovskite polymorphs. We studied phase tran-
sitions in MaPbI3 using MD, as well as FHMC, which we
extended to periodic systems. The complicated nature of the
PES required further modifications of the method, such as a
special treatment of the Ma molecules and coupling FHMC
with replica exchange MC. The final version of our FHMC
method constructs an artificial PES (APES), based on Gaussian
mixtures, on which all FHMC moves are accepted. These global
MC moves, that directly jump from one phase to another,
without violating detailed balance, allow for an extremely
ecient sampling of the APES. We then couple a simulation
on the proper machine learned PES to this APES through
replica exchange. The eciency of the method is further
increased by including replica exchange moves between dierent
temperatures. FHMC directly circumvents the high energy bar-
riers, which makes it particularly well suited for applications
based on machine learned potentials, since the complicated
transition states do not need to be included in the training
dataset.

We validated the method by simulating the phase transi-
tions between the three perovskite phases and comparing our

results to long timescale MD simulations. An order parameter,
that measures the tilting between neighboring lead iodine
octahedra allows us to clearly identify the transition tempera-
ture between the orthorhombic and tetragonal phase at 130 K.

FHMC simulations including the delta and double delta
phases, which have a lower potential energy than the perovskite
phases, reveal, that above 200 K, the perovskite phases are
thermodynamically favoured. This could explain the elusive-
ness of the delta phases in experiments. At room temperature
MaPbI3 will readily form the perovskite phases and the low
transition temperature combined with the high free energy
barriers to the delta phases lead to kinetic trapping when the
material is cooled down. A synthesis of the delta phases can
therefore be expected to be very challenging and might only be
possible under special conditions, such as high pressures as
suggested by Flores et al.23 and very slow cooling rates.

A comparison with the QHA supports previous reports of the
high anharmonicity of perovskite materials. While the QHA’s
prediction agrees with our FHMC results, in that the delta
phase is only free energetically favoured at low temperatures, it
fails to give a reasonable prediction for the orthorhombic to
tetragonal phase transition temperature. This suggests, that the
QHA’s prediction of the delta to orthorhombic phase transition
temperature is caused by accidental error cancellation. Furthermore,
the QHA cannot directly be applied to the cubic phase, which
does not correspond to a local minimum in the PES. Accurate
predictions of transition temperatures, therefore require the
use of methods beyond the harmonic approximation, such as
our FHMC method.

Due to the rotational degrees of freedom of the Ma mole-
cules, MaPbI3 turned out to be a particularly challenging
system for the application of FHMC. This rare feature of
MaPbI3 required an additional adaption of the FHMC method,
which is a special treatment of the Ma molecules during FHMC
moves. With this adaption the FHMC method should be
similarly applicable to other perovskite materials with molecu-
lar cations, such as MaPbBr3 or FaPbX3. For many other
perovskites, such as CsPbX3, as well as many other materials
FHMC can be directly applied without this adaption. We there-
fore expect that the method is applicable to a large range of
strongly anharmonic systems, such as other perovskite materi-
als, silicates79 or superionic conductors.80
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Fig. 5 Ratio between the vibrational frequencies ofit and oHA. Unlike the
HA, which is based on the second derivatives of the potential energy at the
local minimum, the fitted frequencies are obtained from fitting a quadratic
approximation of the potential energy using larger displacements along
vibrational modes.
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