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It is uncontested that a machine learning scheme can
not correctly reproduce physical properties that vary on a
manifold in configuration space if the fingerprint, used as
an input for the machine learning scheme, is constant on
this manifold. In our original paper (Ref.1) we discov-
ered manifolds of quasi-constant fingerprint for SOAP
and ACSF fingerprints for test environments that con-
tain 3 or 4 atoms around the central atom. Standard
parameters were used for both fingerprints. We defined
a quasi constant fingerprint as a fingerprint whose varia-
tion on the manifold is so small that the machine learning
schemes behaves as if it was exactly constant. There is
obviously a threshold for the variation of the fingerprint
on the manifold above which machine learning will again
become possible. In our original paper we found sev-
eral manifolds whose fingerprint variation is sufficiently
small to prevent machine learning based on a standard
training scheme even if configurations on the manifold
are included in the training set.

The authors of the comment claim that structures on
our manifold of quasi constant fingerprint can be machine
learned. While we used a standard training scheme where
the structures used for training are chosen in the usual
way according to physical criteria, the authors of the
comment use an entirely non-standard training scheme
that has never been used before for machine learning of
potential energy surfaces. In this scheme the selection of
the configurations to be fitted is dictated by the deficien-
cies of the SOAP fingerprint, requiring the calculation of
a manifold of quasi constant fingerprint. An empirical
weight coefficient for the terms in the loss function that
contain manifold structures has then to be determined
to give a larger weight to configurations on the mani-
fold during the fitting process. Determining the manifold
and the weights is a cumbersome process that is unlikely
to be ever used in practice. Since this fitting scheme is
constructed with the intention to compensate for the de-
ficiencies of the SOAP fingerprint, we will refer in the
following to this scheme as deficiency-adapted scheme.

For a given set of SOAP parameters one can construct
many manifolds by starting from different initial struc-
tures. Even though manifolds that were constructed from
identical initial configurations but with different param-
eters look similar by eye, they differ considerably in the
central property, namely the variation of the fingerprint.
In our publication we constructed a manifold, with the
SOAP parameters nmax = lmax = 16, σ = 0.3 which are
different from the parameters of nmax = lmax = 8, σ =
0.2 used in the comment. As shown in Fig. 1, the vari-
ation of our fingerprint is about an order of magnitude

smaller than for the manifold used in the comment.

FIG. 1: The variation of the fingerprint for our original
manifold1 (P&G) compared to the variation of the
fingerprint on the manifold of the comment. The

variation along our original manifold is about an order
of magnitude smaller than the one for the manifold of

the comment.

In spite of these important differences, the comment
gives the wrong impression that the manifolds are iden-
tical. So the phrase in the comment ”However, contrary
to what is claimed in Ref. 1, a SOAP-based model can
approximate the energy along the ’quasi-constant’ man-
ifolds” is misleading. It was not to be expected that the
authors of the comment obtain the same result as we did
since they used a milder manifold in connection with a
deficiency-adapted training scheme. Actually in reality
the results of the comment confirm and extend our re-
sults. While we have shown that machine learning based
on standard training fails for tight manifolds of small fin-
gerprint variation, they have shown that it even fails for
milder manifolds with a larger fingerprint variation.

The training of a neural network is a non-convex global
optimization problem that does not have a unique so-
lution. Relatively small changes in the methodology
can therefore lead to different results. To investigate
the purely academic question of whether structures on
a quasi constant manifold can be machine learned if a
sufficiently large effort is made, we therefore performed
some additional tests using the Kernel Ridge Regression
(KRR) method which gives a unique solution by solv-
ing a linear system of equations. For the construction of
a Gaussian kernel matrix only two parameters are nec-
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FIG. 2: Machine learning results obtained with the deficiency-adapted training scheme for our original manifold1.
30’000 ordinary structures were obtained from a molecular dynamics run. Out of them 24’000 were used for the
training set and 6000 for the validation set. In addition we created 16’000 structures that are lying on a single

manifold. Panel a) shows that the manifold can not be learned when 1’000 of the manifold structures are added to
the training set and the remaining 15’000 manifold structures are added to the validation set. This corresponds to a
weight of 5 in the comment. Panel b) shows the result of adding all the 16’000 manifold structures to the training
set, which corresponds to a weight of 80. Even in this case the deficiency-adapted method can only partially learn

the manifold with the type of network training that we used in all previous investigations.

essary. So in contrast to neural network methods the
parameter space can be fully scanned to find the optimal
parameter set. The results based on such a scan are sum-
marized in Fig. 3. Putting more and more weight on the
manifold structures by increasing the number of manifold
structures in the training set to very large values clearly
improves the learnability of manifold structures.

Contrary to what a reader might think now, going
through the painful process of determining a manifold
and adapting the training scheme to it, does not cure
the problem of applying the method to the calculation
of potential energy surfaces. As pointed out in our pub-
lication, there exists a huge number of manifolds and
machine learning one manifold does not mean that any
of the other manifolds can be described correctly. An
example of this is shown in Fig 4 where manifold 1 is the
one from the authors of the comment. Manifold 2 was
constructed from a different initial structure with a larger
four body energy. One can clearly see that including one
manifold does not at all improve the quality of the fit for
the other manifold.

Since in a physical application one needs a machine
learning model that describes correctly all the manifolds,
our statement that the manifolds of quasi constant fin-

gerprint prevent machine learning of four-body energies
is true even in the case of mild manifolds with a relatively
large variation of the fingerprint.

During the motion of the atoms on the manifold the
H-H distances vary considerably. Hence the degeneracy
will be lifted if the atomic environment fingerprints of
all atoms are used to describe the molecule. So torsional
energies might be represented as some long range pair-
wise interactions in machine learning schemes based on
the SOAP fingerprint. It is at present not known how
much such a compensation that is not in agreement with
the standard chemical understanding of the origin of tor-
sional energies will limit the accuracy of machine learned
potential energy surfaces for systems where torsional mo-
tions are important.

While for the ACSFs it is clear that radial basis func-
tions describe two-body terms and angular functions
three-body terms and that therefore higher order terms
are missing, such a connection can not be established for
the SOAP fingerprint. Our analysis shows however that
SOAP has the same intrinsic limitations to three body
terms. Since the ACSF fingerprints are much shorter and
much faster to calculate2 they are probably for most ap-
plications the better compromise between efficiency and
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FIG. 3: Machine learning results obtained with the KRR method for the same data set as in Fig 2. Going from the
left to the right panel and from the top to the bottom line, no structures, 16, 160 and 1600 structures on the

manifold were included in the training set.

accuracy. If torsional terms are expected to be impor-
tant, fingerprints3,4 can be used that allow to include in
a systematic way higher order terms.

The data and the codes on which our conclusions are
based will be made available in the supplementary mate-
rial.
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A. V. Shapeev, A. P. Thompson, M. A. Wood, et al., “Perfor-
mance and cost assessment of machine learning interatomic poten-
tials,” The Journal of Physical Chemistry A 124, 731–745 (2020).

3A. V. Shapeev, “Moment tensor potentials: A class of
systematically improvable interatomic potentials,” Mul-
tiscale Modeling & Simulation 14, 1153–1173 (2016),
https://doi.org/10.1137/15M1054183.

4R. Drautz, “Atomic cluster expansion for accurate and transfer-
able interatomic potentials,” Phys. Rev. B 99, 014104 (2019).



4

FIG. 4: Machine learning results using neural networks for the mild manifold of the comment (manifold 1 with
reference energies of 0.2 to 0.4) in presence of another mild manifold (manifold 2 with reference energies of 0.8 to
1.4), both generated with the parameters of the comment. The red and blue points show the results for the same

ordinary training and validation sets as in Fig. 2. In panel a) no structures from either manifolds were added to the
training set and the manifolds can not be described. In panel b) structures from both manifolds were included in the
training set. They were machine learned according to the deficiency-adapted procedure by adding 24’000 manifold
structures (120 evenly distributed structures repeated 200 times) to the training set. In panel c) only structures

from manifold 1 were included in the training. Manifold 1 can now be over-fitted but there is no improvement for
manifold 2. In panel d) the opposite was done. Only the structures of manifold 2 were included in the training. In

this case manifold 1 is not learned. So even though a single mild manifold can be learned with the
deficiency-adapted procedure, the description of other manifolds is not improved.


