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It is uncontested that a machine learning scheme cannot
correctly reproduce physical properties that vary on a manifold
in configuration space if the fingerprint, used as an input for the
machine learning scheme, is constant on this manifold. In our
original paper (Ref. 1), we discovered manifolds of quasi-constant
fingerprint for Smooth Overlap of Atomic Positions (SOAP) and
Atom-Centered Symmetry Functions (ACSF) fingerprints for test
environments that contain three or four atoms around the cen-
tral atom. Standard parameters were used for both fingerprints. We
defined a quasi-constant fingerprint as a fingerprint whose varia-
tion on the manifold is so small that the machine learning schemes
behaves as if it was exactly constant. There is obviously a thresh-
old for the variation of the fingerprint on the manifold above
which machine learning will again become possible. In our origi-
nal paper, we found several manifolds whose fingerprint variation is
sufficiently small to prevent machine learning based on a standard
training scheme even if some 40 configurations on the manifold are
included in the training set.

The authors of the Comment2 show that in combination with
some kind of oversampling approach, structures on our original
manifold of quasi-constant fingerprint can be machine learned.
While we used a standard training scheme where the structures
used for training are chosen in the usual way according to physical
criteria (e.g., from a MD run) and then held fixed, the authors of the
Comment2 use a non-standard training scheme that has never been
used before for machine learning of potential energy surfaces. In this
scheme, the selection of the configurations to be fitted is dictated by
the deficiencies of the SOAP fingerprint, requiring the calculation of

a manifold of quasi-constant fingerprint. The configurational space
on the manifold has then to be oversampled sufficiently to enable
machine learning. This oversampling can be done by including a
sufficiently large number of configurations on the manifold in the
training set. Determining the manifold and the necessary degree of
oversampling is a cumbersome process that is unlikely to be ever
used in practice. Since this fitting scheme is constructed with the
intention to compensate for the deficiencies of the SOAP fingerprint,
we will refer in the following to this scheme as deficiency-adapted
scheme.

Even though manifolds that were constructed from identical
initial configurations but with different parameters look similar by
eye, they differ considerably in the central property, namely, the
variation of the fingerprint. In our publication, we constructed a
manifold with SOAP parameters nmax = lmax = 16, σ = 0.3. The same
value for σ and similar values for nmax and lmax (nmax = lmax = 8)
were used in the Comment.2 As shown in Fig. 1, the variation of
the fingerprint becomes larger for smaller values of σ. It is, there-
fore, to be expected that a weaker oversampling will be required.
However, reducing σ from the standard range of 0.3–0.5 to much
smaller values makes the resulting fingerprint much slower since
nmax and lmax have also to be increased for a balanced description.
Hence, σ cannot be made arbitrarily small in practice. Even for a
given set of SOAP parameters one can actually construct many man-
ifolds with different fingerprint variation by starting from different
initial structures.

The training of a neural network is a non-convex global opti-
mization problem that does not have a unique solution. Relatively

J. Chem. Phys. 157, 177102 (2022); doi: 10.1063/5.0099525 157, 177102-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0099525
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0099525
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0099525&domain=pdf&date_stamp=2022-November-2
https://doi.org/10.1063/5.0099525
https://orcid.org/0000-0002-3580-4186
mailto:stefan.goedecker@unibas.ch
https://doi.org/10.1063/5.0099525


The Journal
of Chemical Physics RESPONSE scitation.org/journal/jcp

FIG. 1. Comparison of the variation of the fingerprint for our original manifold1

(P & G) with σ = 0.3 compared to the variation of the fingerprint on another
manifold with a smaller value of σ = 0.1.

small changes in the methodology can, therefore, lead to different
results. To investigate the purely academic question of whether
structures on a single quasi-constant manifold can be machine
learned in a general machine learning context using a sufficiently
strong oversampling, we therefore performed some additional tests
using the Kernel Ridge Regression (KRR) method, which gives a
unique solution by solving a linear system of equations. For the
construction of a Gaussian kernel matrix only two parameters are
necessary. So in contrast to neural network methods, the para-
meter space can be fully scanned to find the optimal parameter
set. The results based on such a scan are summarized in Fig. 2.
Putting more and more weight on the manifold structures by
increasing the number of manifold structures in the training set
to very large values clearly improves the learnability of manifold
structures.

Unfortunately, the ability to machine learn a single manifold
with the deficiency adapted scheme does not cure the problem of
applying the method to the calculation of potential energy surfaces.

FIG. 2. Machine learning results obtained with the KRR method for the (P & G) manifold constructed with σ = 0.3. Going from the left to the right panel and from the top to
the bottom line, no structures and 16, 160, and 1600 structures on the manifold were included in the training set.
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As stressed in our publication and also acknowledged in the Com-
ment,2 there exist a huge number of manifolds and machine learning
one manifold does not mean that any of the other manifolds can be
described correctly. A detailed example of this is shown in Fig. 3,
where manifold 1 is from the authors of the Comment.2 Manifold 2
was constructed from a different initial structure with a larger four

body energy. One can clearly see that including one manifold in the
fitting data does not at all improve the quality of the fit for the other
manifold.

Since in a physical application one needs a machine learn-
ing model that describes correctly all the manifolds, our state-
ment that the manifolds of quasi-constant fingerprint prevent

FIG. 3. Machine learning results using neural networks for two mild manifolds with σ = 0.2. The red and blue points show the results for the training and validation sets.
In panel (a), no structures from either manifolds were added to the training set and the manifolds cannot be described. In panel (b), structures from both manifolds were
included in the training set. They were machine learned according to the deficiency-adapted procedure by adding 24 000 manifold structures (120 evenly distributed
structures repeated 200 times) to the training set. In panel (c), only structures from manifold 1 were included in the training. Manifold 1 can now be over-fitted, but there is
no improvement for manifold 2. In panel (d), the opposite was done. Only the structures of manifold 2 were included in the training. In this case, manifold 1 is not learned.
So even though a single mild manifold can be learned with the deficiency-adapted procedure, the description of other manifolds is not improved.
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machine learning of four-body energies is true even in the
case of mild manifolds with a relatively large variation of the
fingerprint.

During the motion of the atoms on the manifold, the H–H
distances vary considerably. Hence, the degeneracy will be lifted
if the atomic environment fingerprints of all atoms are used to
describe the molecule. So torsional energies might be represented as
some long range pairwise interactions in machine learning schemes
based on the SOAP fingerprint. It is at present not known how
much such a compensation that is not in agreement with the stan-
dard chemical understanding of the origin of torsional energies
will limit the accuracy of machine learned potential energy
surfaces for systems where torsional motions are important. If
torsional terms are expected to be important, fingerprints3,4 can
be used that allow to include in a systematic way higher order
terms.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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