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Quasiparticle poisoning in trivial and topological Josephson junctions
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We theoretically study a short single-channel Josephson junction between superconductors in the trivial and
topological phases. The junction is assumed to be biased by a small current and subjected to quasiparticle
poisoning. We find that the presence of quasiparticles leads to a voltage signal from the Josephson junction
that can be observed both in the trivial and topological phases. Quite remarkably, these voltage signatures are
sufficiently different in the two phases such that they can serve as means to clearly distinguish between trivial
Andreev and topological Majorana bound states in the system. Moreover, these voltage signatures, in the trivial
and topological phases, would allow one to directly measure the quasiparticle poisoning rates and test various
approaches for protection against quasiparticle poisoning.
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I. INTRODUCTION

Majorana fermions in condensed matter physics have been
a hot topic in the community ever since the first claim that
these non-Abelian anyons can exist in mesoscopic systems
[1]. Nevertheless, experimental realization of a system sup-
porting Majorana bound states (MBSs) as well as direct
observation of these bound states presents a sophisticated
problem. Despite numerous claims of indirect observation of
MBSs, there have always been concerns that the demonstrated
effects may have different origins. One of the biggest prob-
lems is quasiparticle poisoning (QP), which causes a change
of the fermion parity, while the Majorana qubit is based on
a fixed-parity model, as well as the majority of effects pro-
posed to establish the presence of MBSs in a system, such
as fractional Josephson effect [1–4]. Despite being studied
over the last decade [5–11], QP still requires both theoretical
and experimental attention, as different theoretical approaches
lead to different estimates on the QP rates mostly due to ac-
counting for different sources of quasiparticles. In this paper,
we propose that the high sensitivity of devices with MBSs can
actually be used to indicate the topological phase as well as to
measure the QP rates and to get a better understanding of the
possible mechanisms leading to QP. Moreover, we discuss the
effect of poisoning in case of trivial (single-channel) Joseph-
son junctions (JJs) and show that it is principally different
from the effect in the topological phase, which provides an un-
ambiguous way to distinguish Andreev bound states (ABSs)
in the trivial phase from MBSs in the topological phase.

In this paper, we focus on a short single-channel JJ that
can host MBSs in the topological phase. Different physical
realizations for such JJs have been proposed [3,12–16]. Here
we will assume a JJ based on a nanowire with Rashba spin-
orbit interaction (SOI) in a magnetic field B parallel to the
wire, resulting in the Zeeman energy VZ = 1

2 gμBB (g is Landé
g factor, μB is Bohr magneton). An s-wave superconductor
induces a proximity gap � in the nanowire, which makes the
nanowire an effective one-dimensional superconductor. One
should note that this � in general is decreasing with the field

VZ (and very strong fields destroy superconductivity). While
we focus on explicit calculations on nanowires, our results
are more general and also apply to other JJ platforms such
as topological insulators [12,15,17] and quantum spin Hall
edge systems [3]. A junction is formed in an area of nanowire
not covered by the superconductor. The system is driven in
the topological phase if the Zeeman field is above the critical
value: In a simplified model with the Fermi level in the middle
of the Zeeman gap, the transition occurs at VZ = � [18]. In
the topological phase, a pair of MBSs, localized on the junc-
tion sides, creates an effective channel for single-quasiparticle
tunneling, see Fig. 1. As a result, this tunneling is usually ex-
pected to be characterized by the energy scale EM ∼ √

DN�c

[3,19], corresponding to the overlap of the MBSs on the JJ,
DN is the normal state transmission of the JJ and �c is the
topological bulk gap. As long as we can neglect the overlap
with another pair of MBSs, localized on the outer sides of
the topological part of the system, the only mechanism to
change the parity of the state formed by MBSs on the JJ is to
absorb a quasiparticle. The parity switching events occur on
timescales much shorter than any other process in the system,
which allows us to work in a fixed-parity regime in between
such switching events. The process is usually treated by a
Fokker-Planck equation [20,21]; we can consider the parity
switch to be a random event with characteristic timescale
τqp between two events. Between the switching events, we
can use the fixed-parity model. Topological JJs differ from
anontopological JJs by a 4π -periodic term in the Hamiltonian,
corresponding to single-electron tunneling [3,19]. If the junc-
tion is biased by an electrical current I , the Hamiltonian of the
system takes the form (we put h̄ = 1 throughout)

H = q2

2C
+ U (φ), (1)

U (φ) = −U2π (φ) − U4π (φ) − Iφ/(2e), (2)

where U (φ) is the effective phase potential, consisting of
U2π (φ) and U4π (φ) corresponding to a Cooper pair and a
single electron (due to MBSs) tunneling, respectively, and bias
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current contribution (last term); C is the capacity of the JJ, q
is the charge accumulated on the junction, e is the absolute
value of the electron charge. The sign of the 4π -periodic
term is determined by the fermionic parity [3,22]. In this
paper, we focus on a specific case: We consider the regime
of well-defined phase φ, which requires tunneling terms
to dominate over Coulomb interactions, i.e., EJ + EM �
Ec = e2

2C . Another assumption is that the junction is short
(with the length l � ξ , where ξ is the superconducting co-
herence length) with relatively small cross section S � ξ 2.
The Hamiltonian H defined in Eq. (1) corresponds to an
ideal system without dissipation. To include dissipation into
consideration, we use the resistively shunted junction (RSJ)
model [23,24], which allows us to treat the junction as an ideal
junction shunted by a resistance R, which is defined by quasi-
particle current and depends explicitly on the experimental
setup. We assume an overdamped JJ regime R � RQ as ex-
perimentally relevant, where RQ = 2π/(2e)2 is the resistance
quantum.

The phase potential, in general, can be defined as a ground-
state energy with the fixed parity and phase φ of the many-
body Hamiltonian in its eigenbasis [25],

H (φ) =
∑

b

Eb(φ)

(
nb − 1

2

)
+

∑
i

Ei(φ)

(
ni − 1

2

)
+ H0,

(3)
where Eb(φ) are the bound-state energies—either the ABSs
in the trivial phase, or the bound state formed by two MBSs
in the topological phase—nb is the occupation of each state,
|� − VZ | < Ei(φ) < � are the energies of the continuum
states, ni is the number operator for fermions in each con-
tinuum state, and H0 is the phase-independent contribution.
In a trivial JJ, U2π (φ) is determined by the sum of the
ABSs’ energies, which are formed in the JJ, and continuum
contribution (which is absent without magnetic field); in a
topological JJ, U4π (φ) is given by a single bound-state energy
(which is 4π periodic) and again the 2π -periodic continuum
contribution. The simple cosine phase dependencies of the
bound-state energies are not general but valid for a JJ with low
normal-state transparency. Nevertheless, the phase periodicity
is general: 2π periodicity for the trivial and 4π periodicity for
the topological phase. As long as the occupation of the bound
states is unchanged, one can treat the sum of these terms as
the phase potential. Whenever the occupation of one bound
states changes, the phase dependencies in the phase potential
change, too, which may have a significant effect on the phase
evolution.

II. PARITY SWITCHING

Quasiparticles are created through Cooper pair breaking
in the superconductor. The effect is crucial for the stability
of topological qubits formed by MBSs; several approaches
to estimate it were proposed [5–11,26], however, universal
and experimentally verified estimates still do not exist. It
was shown that, upon creation, quasiparticles rapidly relax
to the continuum edge, while the further process of recom-
bination into Cooper pairs or trapping into subgap states is
relatively slower [27,28]. For temperatures sufficiently lower
than the superconducting critical temperature, the creation of

quasiparticles due to thermal fluctuations [29] is exponentially
suppressed and can be neglected. However, several experi-
ments have reported quasiparticle density saturation at low
temperatures [27,30–32], which indicates other sources for
quasiparticle creation. The observed densities of quasiparti-
cles allow one to estimate the QP rates in various systems; for
semiconducting nanowires proximitized by a bulk supercon-
ductor the estimation shows high decoherence rates [7]: �qp �
1 − 10 MHz. It was shown experimentally that QP in different
superconducting qubits may soon get the dominant source
of contribution for decoherence, as the techniques to reduce
decoherence from other sources are being developed [33–36].
In combination with experimental evidence [34,37], it seems
that the main source of quasiparticles at low temperatures is
radioactivity, specifically radioactive muons and/or gamma
rays. The mechanism of quasiparticle bursts created by muons
was theoretically described in Ref. [38], later optimistic esti-
mations have been made [11], assuming that for small enough
devices (V = 10μm × 200nm × 10nm = 2 × 10−2μm3) the
effect can be neglected (�−1

qp ∼ 10 days); however, the esti-
mates rather contradict the experimentally observed values of
QP rates [27,39] for similar-size superconducting devices. It
is plausible that the main reason for this discrepancy is that
the entire setup, including substrate and connections, con-
tributes to the muon absorption, while the resulting phonons
can easily propagate from anywhere to the superconducting
part of the setup where they create quasiparticle excitations
[34,35]. However, this suggestion requires further investiga-
tion, especially on the specific samples which are expected to
host MBSs.

III. VOLTAGE DUE TO QP IN THE TRIVIAL PHASE

In the trivial phase, nonequilibrium quasiparticles can re-
combine pairwise or relax into a subgap ABS. The latter
effect is usually not easy to observe in a typical SNS-JJ with
n � 1 channels. If a quasiparticle gets trapped in one of the
ABSs, the resulting change of the total Josephson energy is
only of the order EJ/n � EJ , even though state-of-the-art
experimental techniques allow one to observe EJ fluctuations
[40]. However, in a single-channel JJ, which is the system
studied in this paper, this argument is invalid (n = 1). We
provide a detailed analysis of the subgap spectrum in the
limit of strong SOI and low transparency in Appendix A (for
high-transparency limit, see Refs. [25,41]). For small bias
current, I � Ic = 2eEJ , the minima of the phase potential
are slightly shifted from the value corresponding to I = 0:
φmin ≈ 2πk + I

2eEJ
with integer k, which results in a small

energy gap between the continuum edge �c (in the strong SOI
limit �c = min[|� − VZ |,�]) and the bound state given by
ε ≈ I2/(4e2EJ ) � �c at φmin, see Fig. 2. At zero magnetic
field, when the ABSs are degenerate, if a quasiparticle is
trapped in one ABS, the only conducting channel will get poi-
soned, which would result in a running (resistive) state with
voltage V = IR. Subsequently, the system relaxes back to the
localized state due to recombination of the trapped quasipar-
ticle with a quasiparticle from the continuum on a timescale
τr � τ triv

qp (see discussion in Appendix A and Fig. 3). Upon
introducing a magnetic field, the ABSs split as well as the
bulk gap �c getting smaller; the lower-energy ABS touches
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MBS 1D superconductor

junction

FIG. 1. A schematic representation of a topological JJ; 2e tun-
neling between one-dimensional superconductors corresponds to a
trivial Cooper-pair tunneling, while MBSs (marked with red) allow
for a single-electron (e) tunneling through the junction.

the continuum edge �c at φ = 0 and φ = 2π , while the upper
ABS partially merges with the continuum, see Fig. 2. The
amplitude of the lower ABS is getting smaller than the higher
ABS amplitude and the voltage in the running state is decreas-
ing (quadratically in small Zeeman energy VZ ; moreover, it
is slowly varying in time) until no voltage is possible even
with one quasiparticle trapped in the lowest ABS, as local
minima of the phase potential get restored, see Fig. 2 and

ABS

continuum continuum

MBSs

(b)(a)

running 
    state

(c) (d)

FIG. 2. A schematic of the single-particle spectrum of the JJ in
(a) trivial and (b) topological phases. The red solid line represents
the continuum edge �c. Above-gap quasiparticles can get trapped
in the bound states with the rate �triv

t in the trivial and �
top
t in the

topological phases. When one quasiparticle is trapped in the lower
ABS [solid blue curve in (a); dashed blue curve represents the higher
ABS partially merged with the continuum], it can recombine with a
quasiparticle from the continuum with probability �r � �triv

t . The
second row corresponds to the many-particle spectrum, given by
Eq. (3), in (c) trivial and (d) topological phases with a linear shift
−Iφ/(2e) due to bias current. In the trivial phase (c), trapping a
quasiparticle in an ABS excites the system from the ground state
(blue curve) to a state represented by the green line, which has no
local minima for low fields [for VZ = 0 it is exactly linear, which
is represented by the green dotted line in (c)], which results in the
resistive (running) state. In the topological phase (d), there is only
one bound state for each parity, therefore, excitation due to QP results
in a state with the same amplitude in phase but with shifted local
minima (green curve for even state, violet for odd).

(a)

(b)

FIG. 3. A schematic of voltage pulses on the JJ (a) at low mag-
netic fields (trivial phase) and (b) in the topological phase. The upper
panel (a) shows voltage pulses of size Vtriv, given by Eq. (4), and
length τr = �−1

r and separated by τ triv
qp � τr . These pulses corre-

spond to the running (excited) state. In the lower panel (b), sharp
voltage pulses of length τ2π � τ

top
qp and amplitude Vtop estimated

by Eq. (6) correspond to phase readjustment to the shifted phase
potential after the parity switch. These voltage peaks are separated
by τ

top
qp � τ triv

qp .

discussion in Appendix A. As a result, we expect that it should
be possible to experimentally observe voltage pulses of length
τr and average amplitude (see Appendix C),

Vtriv ≈ R
√

I2 − e2V 2
Z D2

N/16, (4)

separated by τ triv
qp � τr for low fields and no voltage upon

approaching the topological phase transition.

IV. VOLTAGE DUE TO QP IN THE TOPOLOGICAL PHASE

As shown for a short JJ based on a quantum spin Hall
insulator [20,21], deep inside the topological phase, the
phase potential is 4π -periodic (for zero bias current) due
to a fermionic state formed by two MBSs localized on the
sides of the JJ, which is equivalent to U2π = 0 and U4π =
(EM/2) cos(φ/2) in Eq. (1). If the parity of this state is
changed, the corresponding term in the many-body Hamilto-
nian changes signs, which effectively flips the phase potential.
Therefore, if the system is in the ground state (localized in one
of the minima of the phase potential), each parity switching
event should result in a time evolution of this state, in the
case of sufficient dissipation it will be relaxation to the nearby
new minimum. The bias current I tilts the phase potential
and, therefore, introduces asymmetry in the phase evolution.
Then, as mentioned in Ref. [21], each parity switching event
would result in a voltage pulse, as the phase slides by 2π

to a new local minimum. The effect should be general for
any JJ which can undergo a topological phase transition by
varying some parameter (e.g., magnetic field). The situation is
somewhat different close to the topological phase transition:
in the topological phase, the phase potential is 4π periodic
but has a significant 2π -periodic component due to the con-
tribution from the continuum states [25,41,42], which creates
additional odd local minima at φ = 2π (2k + 1), where k is
integer. The change of the bound-state parity would only
change the sign of the 4π -periodic component, therefore,
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shifting even minima up and odd minima down in energy; the
state would remain localized in the same local minimum of
the phase potential. Nevertheless, deep inside the topological
phase the 2π -periodic component is suppressed (EM � EJ )
and voltage pulses would be triggered by each parity switch if
the JJ is biased by a small current.

We illustrate this general discussion with an effective
model given by Hamiltonian H defined in Eq. (1) with co-
sine phase dependencies. The critical current Ic = 2e(EJ +
EM/4) is determined as the maximum current at which the
phase potential Eq. (2) has local minima. If we consider
the low-temperature limit with no quasiparticles, the JJ is
in the perfectly superconducting state and the wave func-
tion is trapped in a local minimum of the tilted washboard
potential, as long as thermal fluctuations can be neglected,
i.e., T � EM . What we are interested in is the trapping of
nonequilibrium above-gap quasiparticles into the bound states
on the JJ. Deep inside the topological phase (EM � EJ ), the
bound-state energy alone is given by E = EM cos(φ/2). In
the regime of strong SOI and in the low-transparency limit
(high-transparency limit was studied in Ref. [25]), we show
that its amplitude scales linearly with DN (see Appendix A):

EM ≈ 2
DN�

VZ
(VZ − �). (5)

This state is separated from the continuum at any phase
φ, which makes it prone to trap quasiparticles. Each parity
switching event effectively shifts the local minima of the
phase potential by 2π , causing the state to relax to this new
minimum and, therefore, resulting in a voltage pulse

Vtop ≈ 1

2e

2π

τ2π

, (6)

where τ2π ≈ (πEMR/RQ)−1 [4,20,43] is the characteristic
time for relaxation in a new 2π -shifted minimum calculated
in the classical limit for an overdamped junction, see Fig. 3.
The asymmetry of the phase evolution after the parity switch
is determined by the bias current I . Then, the average voltage
(averaged over many poisoning events) is given by a simple
expression [21], which does not depend on the bias current as
long as it is small,

〈V 〉 = 1

2e

2π

τ
top
qp

, (7)

where τ
top
qp is significantly shorter than τ triv

qp in the trivial phase
(see Appendix C),

τ
top
qp

τ triv
qp

≈ I4

(2e)4E2
J (�c − EM )2

� 1, (8)

as the bound state is well separated from the contin-
uum �c − EM � I/(2e). Equation (7) is valid as long as
τ

top
qp < τ2π , otherwise the phase does not readjust to the new

minimum between the QP events; usually the phase relaxation
is expected to be fast enough [21,43]. What is important is
that we do not require a topological protection of the MBSs,
more precisely, there is no need for exponential suppression
of the MBSs overlap with the nanowire length, which might
be hard (or even impossible) to realize due to phonons at any
finite (phonon) temperature [44]. If the resulting anticrossing

[45,46] is sufficiently strong, the phase would slide only by
π to the new minimum at the anticrossing and the resulting
average voltage is reduced by a factor of 2 (see discussion in
Appendix B).

V. MEASUREMENT

An important question is whether the discussed effect can
be measured in a realistic experimental setup. First, there
could be problems with measuring the average voltage in
the topological phase due to QP, since in an ideal case one
can distinguish a voltage of the order of hundred nanovolts,
which requires the average time between the poisoning events
to be of the order of ten nanoseconds or less to see the
voltage given by Eq. (7). On the other hand, it seems that
state-of-the-art experimental techniques should allow one to
distinguish separate voltage peaks; using the estimate pro-
vided in Ref. [21] τ2π ∼ 10 ps, which corresponds to a sharp
peak of hundred μeV hight (which is significantly higher
than a typical noise signal), one can expect the measurement
itself to last longer, however, measurements at frequency νm ∼
1 GHz are feasible, which would result in a value of the order
of Vm ≈ 2πνm/(2e) ∼ 1 μV measured for the phase shift of
2π expected after the parity switch. The voltage pulses in
the topological phase are independent of the bias current in
contrast to the ones in the trivial phase. Moreover, the volt-
age appears in the trivial phase only for low magnetic fields
(parametrically low in I/Ic), while close to the phase transition
there is no voltage signal due to QP. Finally, we show that
the characteristic time between QP events in the topological
phase is much shorter than in the trivial phase τ

top
qp � τ triv

qp .
For a voltage peak in the topological phase the integral of
voltage over time (per peak) is a constant:

∫
Vtop dt = π/e,

while in the trivial phase voltage oscillates around some av-
erage value (or is constant for zero field), while the junction
stays in the excited state. As a result, voltage pulses in the
topological phase are much more frequent, with much larger
amplitude but very short in time. The picture can differ in
the case of significantly modified subgap spectrum, i.e., in
the case of a quantum dot-based junction, when ABSs can
be detached from the continuum, which would increase poi-
soning rates in the trivial phase. However, we expect that in
typical single-channel junctions without additional gating, the
subgap spectrum is qualitatively similar to the toy model we
considered in this paper: in the trivial phase bound states touch
the continuum edge or even merge with it, which makes QP
probability rather low (and dependent on the small bias cur-
rent) in comparison to the topological phase when the bound
state is detached from the continuum edge. In general, we
suggest that the experiment should be performed in the whole
range of magnetic field, which should allow one to observe
the rare current-dependent voltage signals in the trivial phase
at low magnetic field, no signal in the large vicinity of the
phase transition and, finally, sharp current-independent volt-
age peaks deep in the topological phase, if it can be realized
in the experimental setup.

VI. CONCLUSIONS

In summary, we have proposed a set of experiments to
observe the effects of QP in trivial and topological JJs.
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Successful observation of sharp current-independent voltage
pulses in the topological phase would be a reliable way to
distinguish MBSs from ABSs. Moreover, measurements in
both trivial and topological phases would allow one to esti-
mate the rates of QP in each phase. The measurement in the
trivial phase could be performed right away on existing single-
channel junctions. Furthermore, performing experiments in
different setups could be a way to test different sources of QP
and develop efficient methods of protection against QP.
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APPENDIX A: THE LOW-ENERGY SPECTRUM OF A
JOSEPHSON JUNCTION BASED ON A PROXIMITIZED
SEMICONDUCTING NANOWIRE WITH STRONG SOI

CLOSE TO THE PHASE TRANSITION

In this Appendix, we provide a detailed analysis of the low-
energy spectrum of a topological JJ. We analyze the scaling
of the phase potential amplitude (EJ for trivial phase and EM

for topological) with the normal state transmission amplitude
DN to validate our analysis of phase evolution after the parity
switch in the main text. Our starting point is a linearization
procedure [18] with subsequent calculation of the low-energy
spectrum [25,41] for a JJ based on a semiconducting nanowire
with strong Rashba SOI of strength α, as in this regime the
junction is in the Andreev limit (� � EF ∼ mα2, where EF

is the Fermi energy measured from the bottom of the con-
duction band and is set by the characteristic energy of SOI
∼mα2, where m is the effective electron band mass, � is
the proximity gap). Another ingredient is the Zeeman field
VZ = 1

2 gμBB (g is Landé g factor, μB is Bohr magneton);
one should note that the Andreev limit also requires VZ to
be small in comparison to SOI energy, i.e., VZ � mα2. An
additional assumption we make to simplify the analysis is that
the Fermi level is exactly in the middle of the Zeeman gap. Let
us briefly reproduce the main steps following the approach of
Refs. [25,47]. The mean-field many-body Hamiltonian of the
system is [13,22]

Ĥ = 1

2

∫
dx �̂†(x)H�̂(x), (A1)

where �̂T = (ψ̂↑, ψ̂↓, ψ̂
†
↓,−ψ̂

†
↑ ) with ψ̂↓ and ψ̂↑ being an-

nihilation operators of an electron with spin down and up,
respectively. The Bogoliubov-de Gennes Hamiltonian is given
by

H =
(

− ∂2
x

2m
− iα∂xσz − μ + V (x)

)
τz − VZσx + �(x)τx,

(A2)
where τν are the corresponding Nambu space Pauli matrices,
μ the chemical potential measured from the middle of the

Zeeman gap at k = 0, m is the effective electron mass and
σν are the Pauli matrices acting in spin space. For simplicity,
we proceed with μ = 0, corresponding to the optimal point
to enter the topological phase as it corresponds to the lowest
phase transition field V c

z = �. Next we perform a procedure
of linearization of the spectrum around the Fermi points
[18]: k = 0 for inner modes and k = ±2mα = ±2kso for the
outer modes (here we have introduced the SOI momentum
kso = mα). As a result, electron fields �̂ can be presented in
terms of slowly varying right �̂R(x) and left �̂L(x) movers:

�̂(x) = �̂R(x)eiksox(1−σz ) + �̂L(x)e−iksox(1+σz ). (A3)

If we use this decomposition and average out all fast oscillat-
ing terms ∼ exp(−2ksox), we get

(−iασxτz − Vzσx + �(x)τx )�i(x) = E�i(x) (A4)

for the inner mode wave function and

(iασxτz + �(x)τx )�o(x) = E�o(x) (A5)

for the outer mode wave function. The provided equa-
tions work in the whole structure except for the short junction
region itself. To solve the equations, one needs to supplement
them with suitable boundary condition at the short junction
x = 0,

�(0+) = T �(0−), (A6)

where T is the transfer matrix, defined by the scattering po-
tential V (x) of the junction. In such a system, transfer-matrix
formalism is more convenient than scattering-matrix formal-
ism [47] due to the fact that we cannot neglect the effect of
the magnetic field in the wires (as it determines the transition
we study). For simplicity, we would proceed with the case of
pointlike potential V (x) = V0δ(x), which gives [25]

T = 1 − i
V0

α
sz + V0

α
sy, (A7)

where sx,y,z are the Pauli matrices acting in the space of left
and right movers. We can introduce a transmission probability
through the junction in the normal state [25]

DN = 1

1 + (V0/α)2
, (A8)

which is useful to write the boundary conditions:

�i(0
+) = eiγ σz

√
DN

[�i(0
−) + e−iβσz

√
1 − DN�o(0−)], (A9)

�o(0+) = e−iγ σz

√
DN

[�o(0−) + eiβσz
√

1 − DN�i(0
−)]. (A10)

One can notice that these expressions contain two additional
phases: γ is the forward-scattering phase in the normal state, β
is the reflection phase in the normal state. However, perform-
ing a unitary transformation �o → eiβσz�o the latter can be
eliminated from equations, while for a delta function barrier
the forward-scattering phase is given by [25]

γ = − arctan

√
1 − DN

DN
. (A11)

Now combining Eqs. (A4) and (A5) with the boundary condi-
tions, one can write an equation determining the bound states
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in the form [25]

�(E , φ, DN ,VZ ) = 0, (A12)

where � is given by

�(E , φ, DN ,VZ ) = �0(E , φ,VZ ) + (1 − DN )�1(E , φ,VZ ) + (1 − DN )2�2(E , φ,VZ ) + DN�γ (E , φ,VZ ) sin2 γ ; (A13)

�0(E , φ,VZ ) =
[
�2 cos2 φ

2
− E2

][√
�2− − E2

√
�2+ − E2

(
1 + cos2 φ

2

)
− (E2 + �−�+) sin2 φ

2

]
, (A14)

�1(E , φ,VZ ) =
[(

E2 + �−�+
)(

2�2 cos2 φ

2
− E2

)
− 2�2E2

]
sin2 φ

2

+
√

�2 − E2
√

�2− − E2

[
��+ cos2 φ

2
− E2

]
+

√
�2 − E2

√
�2+ − E2

[
��− cos2 φ

2
− E2

]

−
√

�2− − E2
√

�2+ − E2

[
2�2 cos4 φ

2
− E2

(
1 + cos2 φ

2

)]
, (A15)

�2(E , φ, B) = �2
(
E2 + �−�+

)
sin4 φ

2
+ 1

2

(
�−�+ − E2

)
[�2 cos φ − E2]

− 1

2
B2E2 − 1

2

√
�2 − E2

√
�2− − E2

[
��+ cos φ − E2

] − 1

2

√
�2 − E2

√
�2+ − E2[��− cos φ − E2]

+ 1

2

√
�2− − E2

√
�2+ − E2

[
�2

(
1 − 1

2
sin2 φ

)
− E2

]
, (A16)

�γ (E , φ,VZ ) =
[
�2 cos2 φ

2
− E2

]
[−

√
�2− − E2

√
�2+ − E2 + �−�+ − E2]. (A17)

Here �− = |� − VZ |, the gap of the system, and �+ = � +
VZ are introduced for simplicity, γ is the forward scattering
phase; for the toy model of a pointlike potential, it is given by
Eq. (A11).

In this system, the continuum consisting of the scattering
states above |� − VZ | (or, more generally, the smallest gap in
the system min[|� − VZ |,�]) should be taken into account,
as it possesses a phase dependence (one can see it as a bound
state merged into the continuum) and, therefore, affects the
spectrum of the system already starting from the ground state,
see Eq. (3). This phase-dependent contribution to the density
of states in the continuum can be calculated via the same �

expression [25]:

δρ(E , φ) = 1

2π i

∂

∂E

�∗(E , φ, DN ,VZ )

�(E , φ, DN ,VZ )
. (A18)

The spectrum in the high-transparency limit was analyzed in
Refs. [25,41].

In this paper, we complement the analyses provided
in previous works discussed above by studying the low-
transparency limit, as it allows us to perform some estimations
due to the simple cosine dependencies on the phase (tunneling
regime). To begin, we expand

sin2 γ = 1 − DN

4
+ O

(
D2

N

)
. (A19)

Searching for the zeros of �(E , φ, DN ,VZ ) numerically, we
see that the lowest ABS sticks to the gap, as expected, while
the second ABS is completely merged with the continuum,
see Fig. 4. The remaining ABS does not scale linearly with
DN , as in a trivial spin-degenerate ABS, but rapidly decays
to zero with increase of VZ . For each transmission amplitude

DN , there is a value V bs
Z , starting from which there is no bound

state in the trivial phase, this value can be found as a solution
of the equation:

�
(
� − V bs

Z , π, DN ,V bs
Z

) = 0. (A20)

From the numerical analysis, we can conclude that in the
low-transparency case, the system has no bound states in a
large vicinity of the phase transition, i.e., for DN = 0.3 the
bound state already disappears at VZ = 0.4328�. Therefore,
we state that in a large vicinity of the transition, all the phase
dependencies of the low-energy spectrum are determined by
the phase-dependent density of states of the continuum, which
allows us to state (in the main text) that there are no effects due
to QP around the phase transition. Moreover, what is also in-
teresting is that the total contribution (ABSs plus continuum)
to the ground state in the trivial phase has a weak dependence
on the magnetic field, which can be seen as if the continuum
is acquiring a phase-dependent contribution from the ABSs
merged into it. On the contrary, in the topological phase, the
only bound-state amplitude scales as DN at low transparency,
as the continuum is gapped away from the bound state. We
have calculated the amplitude in the low transparency limit ex-
panding �(E , φ, DN ,VZ ) analytically in DN and E/(VZ − �)
(see green and orange lines in Fig. 5),

E ≈ 2
DN�

VZ
(VZ − �) cos

φ

2
, (A21)

which is Eq. (5) in the main text. What is a bit counterintuitive
at first is the linear scaling with DN , as naively it is expected
to be the same as in Ref. [3] ∼√

DN , which corresponds to
the single electron tunneling amplitude. The reason for this
is that in Ref. [3] the edge states are supposed to carry only
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FIG. 4. Upper panels (a)–(d) show the single-particle spectrum at different values of Zeeman field VZ as function of phase φ, corresponding
to (a) trivial phase, (b) topological phase transition, and (c), (d) topological phase. The color over |VZ − �| indicates the local density of states,
while the black line below the gap corresponds to the bound state. (c), (d) In the topological phase, the dashed line corresponds to our analytical
solution; we note that both parity solutions are depicted, one before π another one after π . (a) In the trivial phase, the bound state is absent
for small DN = 0.3. The lower panels (e)–(h) show the many-body spectrum of the junction versus φ at different values of VZ ; the solid red
line represents the ground state, the grey area is the continuum, and the dotted line represents an odd-parity state. (e) In the trivial state (at
VZ/� = 0.7), the spectrum consists of the ground state and no discrete excited states up to the continuum (since there are no bound states);
panel (f) shows the gapless spectrum at the phase transition; panel (g) corresponds to the topological phase at VZ/� = 1.3, each second local
minimum of the ground state is suppressed by a 4π -periodic contribution, and panel (h) corresponds to the topological phase at VZ/� = 1.9,
where only 4π -periodic local minima remain.

two helical modes, which is valid only at large Zeeman fields
VZ � � [25], where our formula is not applicable, as the SOI
energy is no longer the largest energy scale in the system.

FIG. 5. Dependence of the bound-state amplitude on transmis-
sion amplitude DN . The orange branch corresponds to the topological
phase VZ = 1.3�, green dashed line is the analytical solution for low
transparency given by Eq. (5); blue curve represents lowest ABS
energy amplitude in the trivial phase for VZ = 0.7� (difference of
ABS energy at φ = 0, when it touches the gap, and at φ = π , when
it is minimal). One can see that there is no ABS for low DN , then
starting from some value of transmission the bound state amplitude
grows to the bulk gap size �c = � − VZ .

Now, we can write the many-body spectrum of the system.
For the low-energy states, it is described by the occupation
of bound states and continuum states below the superconduct-
ing gap �: From the numerical solution, we deduce that a
parity switch close to the phase transition can only slightly
modify the phase dependence of the system energy, as Eb

is suppressed for small DN or absent completely (all ABSs
merging with continuum) and the main contribution to the
low-energy spectrum comes from the scattering states in the
continuum between the system gap � − VZ and supercon-
ducting gap �. On the other side, deep inside the topological
phase, a 4π -periodic bound state contribution dominates over
the continuum contribution and, therefore, each parity switch-
ing event significantly changes the phase dependence of the
system energy. The full picture of the spectrum evolution with
Zeeman field can be seen in Fig. 4.

In a junction based on proximitized semiconducting
nanowires with weak SOI, the Andreev limit is violated.
Therefore, the regime is very hard to analyze analytically,
however, we expect the qualitative behavior of the system to
remain the same. At zero Zeeman field, two degenerate ABSs
are present, the significant difference with strong SOI regime
is the absence of zero-energy crossings at φ = π even for
perfect transparency of the junction DN = 1. In the presence
of an external magnetic field, the ABSs split and get different
amplitudes in the phase, as well as phase-dependent contri-
butions from the continuum appear. Close to the topological
phase transition, the continuum contribution to the ground
state is dominating (on both sides of the transition). In the
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topological phase, one would get 4π -periodic term due to
hybridization of the two MBSs on the junction, however, the
amplitude is determined not by the superconducting gap and
Zeeman field �c = VZ − �, as in the strong SOI limit, but
also by the SOI energy scale ESO = mα2/2 [18,48]:

�c ≈ 2

√
ESO

VZ
�. (A22)

Nevertheless, deep inside the topological phase, the MBS con-
tribution is again dominating in the phase potential, therefore,
the spectrum has the same features which are crucial for the
observation of the effects discussed in the main text.

APPENDIX B: FINITE-SIZE EFFECTS
IN THE TOPOLOGICAL PHASE

Here we analyze finite-size effects in the setup discussed
in the main text and show that they do not significantly affect
the proposed measurement. If there is a finite overlap with the
MBSs on the outer edges of the topological part of the system,
crossings at φ ≈ (2k + 1)π turn into anticrossings [45,46].
Strictly speaking, there are now four energy levels instead of
two:

Ee
± = ±1

2

√
E2

M cos2 φ

2
+ (δL + δR)2, (B1)

Eo
± = ±1

2

√
E2

M cos2 φ

2
+ (δL − δR)2, (B2)

where the superscript e (o) stands for even (odd) parity solu-
tion, δL (δR) is the coupling with the MBS on the left (right)
edge of the topological nanowire. What is important now is
that the parity is the parity of the superposition of all four
MBSs. Another issue worth mentioning is that δR and δL

depend on the exact geometry of the nanowires forming the
junction and can be both positive or negative. However, for
each parity (which is fixed between parity switching events),
the spectrum consist of two branches with fixed anticrossing
δ = |δL ± δR| (the sign of it being defined by the parity). If
the phase evolution (relaxation) is fast enough in compari-
son to the splitting δ at the anticrossing, τ−1

2π � δ2/(2EM ),
a Landau-Zener transition (LZT) would let the system reach
the lower branch and relax to a new 2π -shifted minimum
as in the perfectly 4π -periodic case, see Fig. 6. However,
if R/RQ � δ2/E2

M , which can be the case for strongly over-
damped junctions and for finite δ, no LZT occurs and the state
stays in the upper branch, thereby relaxing to the minimum
at the anticrossing, giving rise to a voltage pulse of size
V = 1

2e
π
τπ

, where τπ is the characteristic time for relaxation
to a new π -shifted minimum. The next QP event will transfer
the state to the lower branch with subsequent relaxation to a
minimum, which also results in a π phase shift. Therefore, the
average voltage will be twice smaller than in the 4π -periodic
case [Eq. (6) in the main text]:

〈V 〉 ≈ 1

2e

π

τ
top
qp

. (B3)

If one can fine tune the overlap of the MBSs so in one
parity state the splitting δ is large enough to suppress LZT
and in another parity state it is very small (i.e., δL ≈ δR and

FIG. 6. The phase potential U for two different parities (solid
red line for even parity and dashed blue for odd) as function of
phase φ. Here we have chosen smaller splittings in the odd state
than in the even state δo < δe, however, this does not need to be
the case in general. Arrows correspond to phase evolution: vertical
arrows marked with PS correspond to parity switches, arrows along
the phase potential branches represent phase relaxation, LZT repre-
sents Landau-Zener transitions at the anticrossings. All solid arrows
correspond to phase evolution in the even state (or starting in even
state for phase switch), dashed arrows to that of the odd state.

R/RQ � 4δ2
L/E2

M), then it is possible to achieve an intermedi-
ate regime, where the average voltage is

〈V 〉 ≈ 1

2e

3π

2τ
top
qp

, (B4)

as after the parity switch the phase will relax by π or 2π

depending on the parity.

APPENDIX C: VOLTAGE PULSES IN THE TRIVIAL PHASE

In this Appendix, we provide a detailed description of the
QP effect in the trivial phase to supplement the discussion of
the effect in the main text. If the junction is in the trivial phase,
quasiparticles can be trapped in ABSs or recombine pair-
wise into the condensate of Cooper pairs. Both processes are
rather slow (in comparison to getting trapped in the topolog-
ical phase). Recombination is slow, since the recombination
rate depends on the quasiparticle density quadratically (∼x2

qp,
where xqp = nqp/nCp � 1 is the ratio of quasiparticle density
and Cooper pair density), while the trapping rate to an ABS
is low due to the small energy gap between the ABS energy
and the continuum edge. If the bias current is zero, I = 0, the
bound states touch the continuum edge at the phase values cor-
responding to the minima of the phase potential φmin = 2πk
(k is integer), therefore, a quasiparticle cannot be trapped. For
small bias current, I � Ic, the minima of the phase potential
are slightly shifted, i.e., φmin ≈ 2πk + I

2eEJ
, which results in a

small energy gap between the continuum edge and the bound
state ε = I2/(4e2EJ ) � � at φmin, which allows quasiparticle
trapping in the bound states. As a result, at zero magnetic
field, when a quasiparticle is trapped in an ABS, the only
conducting channel will get poisoned, which would result in
a running (resistive) state with voltage V = IR. Subsequently,
the system will relax back to the ground state due to recom-
bination of the trapped quasiparticle with a quasiparticle from
the continuum on a timescale τr � τ triv

qp . What is essential here
is that the recombination rate of a quasiparticle trapped in the
bound state with a quasiparticle from the continuum is linear
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in the quasiparticle density ∼xqp, as only one quasiparicle
from the continuum is required. Therefore, the rate of such
a recombination is sufficiently larger than the recombination
rate for quasiparticle pairs from the continuum. At the same
time, this recombination process releases the energy ∼� (in
the form of a phonon), which makes it significantly more
probable than the trapping of another quasiparticle from the
continuum into the second ABS (releasing a phonon with
much smaller energy ε � �), as normally at low energies the
phonon density of states is increasing with energy (usually
for metals it is quadratic νph ∼ E2). This can be seen from a
simple estimate of the rate for a quasiparticle getting trapped
into an ABS with energy EA using a simplified model of a bulk
superconductor [40],

�t (ε) = πxqp�α2
e−phνph(� − EA),

where αe−ph is the electron-phonon interaction matrix ele-
ment. For recombination processes, when one quasiparticle is
trapped to an ABS and another one comes from the continuum
edge, one can use the same formula for the recombination
rate �r , except replacing the phonon energy � − EA = ε

by � + EA ≈ 2� � ε. Under the assumption of a quadratic
dependence of the phonon density of states on energy, one
gets the ratio

�r/�
triv
t ≈ (2�)2

ε2
� 1. (C1)

A similar formula can be used to estimate the ratio be-
tween quasiparticle trapping rates in the trivial and topological
phases, which corresponds to Eq. (8) in the main text:

�
top
t /�triv

t ≈ (min[VZ − �,�] − EM )2

ε2

≈ (2e)4E2
J (1 − DN )2�2

I4
� 1, (C2)

since deep in the topological phase (VZ > 2�) the bound
state is always separated from the continuum (except for the
case of perfect transparency), while the energy gap between
the ABS and the continuum in the trivial phase is small:
ε ≈ I2/(4e2EJ ) � �. We should note that QP rates in the
topological phase, �

top
t , and relaxation rates in the trivial

phase, �r , (due to recombination of the trapped quasiparticle)
can be of the same order, since the released phonons carry
away energy of the order of the gap in both cases.

Turning on a magnetic field lowers the continuum edge
(� − VZ ) as well as splitting the ABSs. As a result, with
one quasiparticle being trapped in one of the ABSs, the
phase potential is no longer linear. According to numeri-
cal results provided in Refs. [25,41] for low fields a good
approximation is to represent the energetically higher ABS
plus continuum just as an effective higher ABS (which is
merged in the continuum between � − B and �). Then,
we can represent the lower ABS energy as EA2 = (� −
VZ ) − EJ2(1 − cos φ), while the combination of a higher ABS
and continuum contribution is given by EA1 = � − EJ1(1 −
cos φ). Moreover, in the Andreev limit we can express
the amplitudes through the transmission coefficient DN (as,

in general, EA = �

√
1 − DN sin2 φ

2 ≈ � − �DN
4 (1 − cos φ)).

Then, EJ2 ≈ DN (� − VZ )/4, EJ1 ≈ DN�/4. As a result, we

FIG. 7. A schematic of the average voltage dependence on the
applied magnetic field (Zeeman field VZ ) in the running state (exci-
tation due to absorption of one quasiparticle). The blue dashed line
is given by Eq. (4). The deviation from the dashed line is caused by
thermal fluctuations, such as thermally activated phase slips, when
the local minima of the phase potential are shallow.

can use EJ1 − EJ2 ≈ DNVZ/4 for the low-transparency limit
(in the high-transparency limit it is given by EA1(π ) −
EA2(π ) ≈ VZ , which is also linear in VZ ). Then, in leading
order the difference between the amplitudes of the ABSs
is determined by the Zeeman term VZ . The effective phase
potential takes the form:

U (φ) = −1

2
(EJ1 + (−1)nEJ2) cos φ − Iφ

2e
, (C3)

which corresponds to Eq. (2) of the main text with the 4π -
periodic term set to zero (no MBSs). Here n = 0, 1 denotes
the occupation of the energetically lower lying ABS; we as-
sume the occupation of the higher ABS to be constant (it sticks
to the continuum edge in some vicinity of φ = 2πk). Then,
for n = 0, the potential has deep enough local minima to keep
the phase localized, as we assume small currents I � e(EJ1 +
EJ2) ≈ eDN�/2. However, the first excited state n = 1 may
not have local minima, depending on the ratio I/(eVZDN ). At
low fields, the system is in the running state (no local minima).
The effective critical current depends on the amplitude of
the phase potential: Ic = e(EJ1 − EJ2) ≈ eDNVZ/4. For the
running state in the RSJ model, the phase evolution is given
by the classical equation of motion:

dφ

dt
= 2eIcR

( I

Ic
− sin φ

)
. (C4)

The known solution for the average voltage in the running
state is [24]

〈V 〉 = R
√

I2 − I2
c = R

√
I2 − e2V 2

Z D2
N/16

≈ IR − e2D2
NV 2

Z

32I
R, (C5)

which corresponds to Eq. (4); the last approximation is an
expansion in small magnetic field. One should note that now
it is the average voltage in the running state, as it is varying
in time, which can be easily seen from a simple model of a
particle sliding down a one-dimensional washboard potential
(without local minima) with friction. The higher the field, the
longer the system spends in the lower voltage regime (i.e., the
flatter parts of the washboard potential) with short intervals
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of voltages exceeding the average value (steeper parts of the
phase potential). Moreover, we expect a smearing around
VZ = 4I/(eDN ), where the voltage goes to zero according to
the formula Eq. (C5) (without expansion in small magnetic
filed) due to thermal fluctuations (thermally activated phase
slips for shallow local minima of the phase potential), see
Fig 7.

As a result, in the trivial state with low magnetic fields,
QP would result in rare switching to the running state with
an average voltage given by Eq. (C5) and lasting for a short
time τr = 1/�r � τ triv

qp , where τ triv
qp = 1/�t is the character-

istic time between QP events (quasiparticles getting trapped
in the lower ABS). However, for larger magnetic fields, VZ �
4I/(eDN ), no voltage will develop in the trivial phase.
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