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Crossed Andreev reflection in spin-polarized chiral edge states due to the Meissner effect
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We consider a hybrid quantum Hall-superconductor system, where a superconducting finger with oblique
profile is wedged into a two-dimensional electron gas in the presence of a perpendicular magnetic field, as
considered by Lee et al., Nat. Phys. 13, 693 (2017). The electron gas is in the quantum Hall regime at filling factor
ν = 1. Due to the Meissner effect, the perpendicular magnetic field close to the quantum Hall-superconductor
boundary is distorted and gives rise to an in-plane component of the magnetic field. This component enables
nonlocal crossed Andreev reflection between the spin-polarized chiral edge states running on opposite sides of
the superconducting finger, thus opening a gap in the spectrum of the edge states without the need of spin-
orbit interaction or nontrivial magnetic textures. We compute numerically the transport properties of this setup
and show that a negative resistance exists as a consequence of nonlocal Andreev processes. We also obtain
numerically the zero-energy local density of states, which systematically shows peaks stable to disorder. The
latter result is compatible with the emergence of Majorana bound states.
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I. INTRODUCTION

When a superconducting element is inserted between two
normally-conducting regions, nonlocal electron correlations
can be induced [1–5]. In these hybrid junctions, electrons
with an energy below the superconducting gap are trans-
mitted through the superconducting region as holes to the
other normal contact, thus leaving a Cooper pair (CP) in
the superconductor (SC) [6,7]. This mechanism is called
crossed Andreev reflection (CAR) [8,9] and, due to its
nonlocal character, is extremely appealing for potential appli-
cations in quantum communication [10–16]. Several systems
have been proposed as possible candidates to observe CAR
[17–48] and some experimental evidence has been reported
[11–16,49–60].

In this regard, a prominent role is played by hybrid systems
where quantum Hall effect (QHE) and SC correlations coexist
[61–76]. In particular, QHE edge states at filling factor ν = 1,
proximitized via CAR processes, are especially promising for
the field of topological quantum computation, since they are
predicted to host Majorana bound states (MBSs) [77–79].
Usually, one assumes that a single chiral edge state is fully
spin-polarized along the direction of an applied uniform mag-
netic field. However, the CAR mechanism, as long as we
work with s-wave superconductors, is only able to open a
gap if this condition of spin polarization is broken. In order
to achieve this, previous proposals required materials with
strong-spin orbit interaction (SOI) either in the 2DEG or in
the superconductor [37,56,60].

In this paper, we show that CAR processes are obtained
in spin-polarized edge states as a natural consequence of the
geometry of the superconducting element without any need
for SOI or nontrivial magnetic textures. We consider a wedge-
shaped SC finger inserted into a two-dimensional electron
gas (2DEG). We note that the wedge geometry of the super-

conducting element naturally arises in the fabrication process
of hybrid semiconductor-SC or graphene-SC systems where
the 2DEG is encapsulated in a different material, e.g., hBN
[56,60,80]. A perpendicular magnetic field B0 [see Fig. 1(a)]
tunes the 2DEG into the integer quantum Hall regime at
filling factor ν = 1. Due to the Meissner effect [1], mag-
netic field lines are bent close to the SC, thus effectively
generating an in-plane component, as shown in Fig. 1(b).
Importantly, the in-plane component has opposite directions
at the two opposite QHE-SC interfaces. Hence, nonlocal
CAR processes across the finger generate a proximity-induced
superconducting gap in the spectrum of the chiral edge states.
We compute numerically this gap, showing that it exhibits

(a) (b)

FIG. 1. (a) Sketch of the considered setup: A narrow SC finger
wedged into a 2DEG tuned into the QHE regime at filling factor
ν = 1. A single chiral spin-polarized edge state is localized along the
system boundaries and around the SC finger. (b) Side-view schematic
of the oblique cross-section of the SC finger with width Ws at the
level of the 2DEG: The locally distorted magnetic field distribution
B(r) due to the Meissner effect. Owing to the oppositely directed
in-plane component of the field at the opposite sides of the finger
with the counter-propagating chiral (otherwise fully spin-polarized)
edge states, the superconducting gap is induced by proximity in the
spectrum of the edge states due to nonlocal CAR processes.
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an oscillating pattern as a function of the SC region width.
As a consequence of CAR, electrons are converted to holes
when they are transmitted through the SC and a negative resis-
tance is expected [56,78]. By means of the recursive Green’s
function (RGF) method [81–85], we show that in our setup
a negative resistance exists due to the presence of CAR pro-
cesses induced by the Meissner effect without any spin-orbit
interaction. In correspondence with these negative values of
resistance, we compute the zero-energy local density of states
(LDOS). At the open end of the SC finger, we consistently
observe a zero-bias peak which is stable with respect to dis-
order. This result is compatible with the emergence of MBSs
[78]. The second MBS merges with the continuum spectrum
of propagating QHE edge states and cannot be resolved.

II. MODEL

Inspired by recent experiments [56,60], we consider a setup
consisting of a narrow SC finger wedged into a 2DEG, see
Fig. 1(a). A strong external magnetic field B0 drives the
system into the QHE regime at the filling factor ν = 1. The
magnetic field configuration is strongly affected by the pres-
ence of the SC finger as indicated in Fig. 1(b). We model the
system by the effective strictly two-dimensional Hamiltonian,
which describes the 2DEG and a rectangular SC strip of width
Ws and length Ls,

H = 1

2

∫
d2r

[∑
i=s,n

�
†
i Hi�i + (�†

s T �n + H.c.)

]
, (1)

given in the Bogoliubov-de Gennes (BdG) formalism, ex-
pressed with the basis �i = [ψi,↑, ψi,↓, ψ

†
i,↑, ψ

†
i,↓]T , where

ψi,σ (r) annihilates an electron with spin σ at r = (x, y) in the
SC (i = s) or in the normal (i = n) region, respectively. The
Hamiltonian densities Hs and Hn determine the behavior of
the individual subsystems, while T describes tunnel-coupling
between them on the interface along the perimeter of the
finger.

In the bulk s-wave superconductor, the Hamiltonian den-
sity reads Hs = [−h̄2∇2

r /(2ms) − μs]τz + �sσyτy, with Pauli
matrices σi and τ j acting in spin- and Nambu-space, respec-
tively. The effective mass is given by ms, the Fermi-level is
controlled by the chemical potential μs and the magnitude of
the s-wave pairing is �s. The SC coherence length is defined
as ξs = h̄2kF,s/(ms�s), where kF,s = √

2msμs/h̄ is the Fermi
momentum of the SC.

For the following discussion, a low-energy model, inde-
pendent of the details of the underlying lattice structure, is
sufficient for the description of QHE edge states. In this sense,
a quadratic dispersion is appropriate for both semiconductor-
and graphene-based systems and the QHE region can be de-
scribed by Hn = diag(H̃n,−H̃∗

n ), with

H̃n = − h̄2

2mn

[
∇r + ie

h̄
A(r)

]2

− μn + �Z (r) · σ. (2)

This 2DEG has effective mass mn and charge −e, with e >

0 being the unit charge. Since only the out-of-plane com-
ponent contributes to the orbital effect in 2D, the vector
potential A(r) is associated with the z component of the
magnetic field, i.e., Bz = B0. The out-of-plane component is

homogeneous everywhere in the QHE region and vanishing
inside the SC, see supporting results in Appendix A. Impor-
tantly, the local distortion of the magnetic field induced by the
Meissner effect affects the Zeeman term coefficient. The latter
is conveniently modeled as a vector with a nonuniform in-
plane- and a homogeneous out-of-plane component �Z (r) =
(�‖

Zd(r) exp(−|d(r)|/ζ )/|d(r)|,�⊥
Z ). Here, d(r) is the in-

plane distance vector to the closest point of the QHE-SC
interface and ζ determines the decay of in-plane components
away from the finger [86].

The chemical potential μn, along with B0 and �⊥
Z , are

tuned such that the system is at ν = 1 filling with a single
spin-polarized chiral edge mode. Moreover, we note that the
spin-splitting of the lowest Landau-level is enhanced by ex-
change coupling thanks to the strong Coulomb-interaction
[87]. Thus we can consider larger effective Zeeman ener-
gies than bare g-factors would suggest. Finally, the coupling
between the subsystems over the shared interface boundary
∂S of the finger is modeled as a tunneling term T (r) =∫
∂S dR t̃cτz δ(r − R) with coupling strength t̃c. In order to

study the behavior of the composite system, we solve numeri-
cally the model by means of a finite difference method (details
and used set of parameters in Appendices B and C), which
yields the numerical results presented in the following.

III. CROSSED ANDREEV SUPERCONDUCTING GAP

Let us first focus on a long and narrow SC finger away
from its ends. This is equivalent to working with an infinite
lateral QHE-SC-QHE junction, in which the two chiral edge
states propagate into opposite directions on the two opposite
interfaces with the SC region. For SC widths Ws up to the
SC coherence length ξs, nonlocal CAR processes are avail-
able. Earlier proposals necessitated the presence of SOI in
the SC area to enable this [37,56,60], whereas in our model,
the SC geometry naturally induces an in-plane Zeeman field
component via Meissner effect that is oppositely directed on
the opposite sides of the SC finger [88]. This CAR process
opens the gap �c in the spectrum of the edge states, see
inset of Fig. 2. We note that, in principle, another nonlocal
process (“cotunneling”) could contribute to the gap opening,
whereby an electron from one edge tunnels into the other one
through the SC. Away from the tip of the superconducting
finger, momentum is conserved and cotunneling is always
suppressed compared to CAR. This fact is also confirmed in
our numerical simulations, in which we do not observe any
gap opening in the spectrum of fully spin-polarized edge states
close to the chemical potential.

The main part of Fig. 2 displays the magnitude of �c

as a function of Ws for different strengths of the in-plane
Zeeman component, corresponding to different tilt angles θ =
arctan(�‖

Z/�⊥
Z ) [see Fig. 1(b)]. Note that, due to the geomet-

rical constraint of the considered setup, the angle is limited
to the interval 0 < θ < π/2. If we neglect additional depen-
dence on the magnitude and inhomogeneity of the Zeeman
field, an approximate form of the gap, capturing the essential
physics, can be obtained (see Appendix D):

�c ∝ (t̃c)2�s e−Ws/ξs cos (kF,sWs) sin θ. (3)
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FIG. 2. The proximity-induced CAR gap �c relative to SC par-
ent gap �s as function of SC finger width Ws in units of parent
SC coherence length ξs, for different ratios of in-plane and out-of-
plane components of Zeeman energy, �

‖
Z/�⊥

Z = {1/8, 1/4, 1/2, 1}.
Numerical results are obtained for an infinite QHE-SC-QHE system
with �⊥

Z = 2�s, μs = 5�s, μn = 3.125�s, ms = mn, a Landau gap
in the QHE part of �LL = h̄eB0/mn = 6.28�s, along with a perfect
interface coupling t̃c. (Inset) Low-energy spectrum of the infinite
system at Ws ≈ 1.14ξs and �

‖
Z/�⊥

Z = 1/2, as indicated by yellow
asterisk in main panel. Red (green) lines correspond to SC (edge
states) in the absence of tunneling. Full lines stand for the elec-
tronlike while dash-dotted ones for the holelike parts of the spectra.
Blue circles show the spectrum of a coupled QHE-SC-QHE junction,
where the edge states are gapped due to CAR. This gap �c is shown
as a function of Ws in the main panel.

The dependence on θ is also easily understood as the spin-
overlap of two oppositely canted edge state spins with the spin
singlet of a Cooper pair. In Fig. 3, we confirm numerically
the validity of this approximate form of the gap (see also
Appendix D for further details) by computing the dependence
of �c on the angle θ . The gap starts linearly with small θ .
In addition, the blue dotted line in Fig. 3, corresponding to
a sine function, fits almost exactly the numerical data, thus
justifying the presence of a factor sin θ in the induced gap ex-
pression. Importantly, �c is monotonically increasing with θ

in the interval 0 < θ < π/2. We note that in this calculations,
we kept the magnitude of the magnetic field constant. The
modification of the edge states by the Zeeman term was not
taken into account in Eq. (3), which explains small deviations
from the predicted behavior.

IV. NEGATIVE RESISTANCE

The presence of CAR processes can be tested in the three-
terminal transport setup presented in Fig. 4(a) [56,60,68].
Here, a current I is injected through the left lead (L) and
drained at the grounded SC, while the right lead (R) is a
floating gate. The upstream and downstream potential drops,
called respectively VU and VD, are measured in order to obtain
the upstream and downstream resistances, RU/D = VU/D/I .
[56,60,67].

FIG. 3. The absolute value of the proximity-induced CAR gap
�c relative to SC parent gap �s as a function of the angle θ , obtained
numerically in an infinite QHE-SC-QHE system (see Appendix D
and, in particular, Fig. 10 for further details). The blue and red dotted
curves are analytical fits with a sine function and a linear function,
respectively, of θ .

We calculate numerically the energy-dependent transmis-
sion and reflection coefficients by the RGF method [81], by
adding left and right leads to our system [82–85]. Due to
the chiral nature of the edge states and the insulating bulk
of the QHE part, reflection coefficients are zero and an in-
coming electron is always transmitted from the left to the
right. The electron can either undergo a normal transmission
process, thus remaining an electron, or a CAR process, thus

(a)

(c) (d)

(b)

FIG. 4. (a) Simulated transport measurement arrangement based
on those in experiments [56,60,68]. (b) Andreev transmission coeffi-
cient between the two leads, T A, as a function of the finger width Ws

at different temperatures T , is used to calculate (c) downstream (RD)
and (d) upstream (RU ) resistances. In both figures, dashed lines indi-
cate the theoretically achievable minimum resistances, RD/U = ∓RQ

for ν = 1 filling. Results were obtained for the same parameters as
the yellow curve in Fig. 2 and Ls ≈ 2.85ξs. For details of numerical
simulations, we refer also to Appendix C.
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being converted to a hole. The corresponding normal- and
Andreev-transmission probabilities are indicated as T N and
T A, respectively. We plot the latter quantity as a function of
the SC width in Fig. 4(b). Note that the CAR transmission
exhibits the same oscillating pattern as �c as a function of Ws

in Fig. 2. This is a striking evidence of the relation between
the gap opening and the presence of nonlocal electron-to-
hole converting processes in the system. When temperature
is increased, the broadening of Fermi distribution makes the
conversion of electrons to holes less effective, thus reducing
the CAR transmission probability.

By using the Landauer-Büttiker formula for the three-
terminal current-bias relation in the linear-response regime
[68,89], the upstream and downstream resistances can be
related to transmission probabilities as RU/D = RQ(T N ±
T A)/(νT A), where RQ = h/(2e2) is the quantum of resis-
tance (see Appendix E for detailed calculations). In Fig. 4,
we present the width dependence of the downstream and
upstream resistance as obtained from the transmission proba-
bilities computed numerically. We note that since normal and
Andreev transmission coefficients are related by T N + T A =
ν = 1 [31,68], whenever T A > 0.5, the low-temperature
downstream resistance RD becomes negative. On the contrary,
the upstream resistance is always defined as a positive quan-
tity, satisfying RU = RD + 2RQ/ν. Interestingly, for smaller
widths, at which the CAR processes are more efficient, the
upstream and downstream resistances show dips very close to
theoretical limits ±RQ, respectively. From their expressions
in terms of transmission probabilities, we can read off that
this limit can be exactly achieved only in the case of perfect
CAR, i.e., for T A = 1 [41]. The negative resistance dips at low
temperatures are a direct and clear evidence for the CAR gap
induced by the Meissner effect. Alternative explanations for
the negative resistance dips, such as the formation of Andreev
edge states [61,62,90], are not applicable for edge states at
ν = 1.

As a final comment, we note that negative resistance can
be observed in the quantum Hall edge states at ν = 2 as well.
Nevertheless, for spin-unpolarized edge states at ν = 2, we
interpret the appearance of negative resistance values as a
result of local Andreev reflection processes, as shown in detail
in Appendix F. Moreover, at filling factor ν = 2, no topolog-
ical phase is expected, while at ν = 1, MBSs are expected to
emerge at the two ends of the SC finger [78].

V. MAJORANA BOUND STATES

The negative peaks in the downstream resistance are a
clear evidence that the opposite edge states are proximitized
by nonlocal CAR processes. Thus a natural question to ask
is whether MBSs arise in our system. Indeed, the presence
of two counter-propagating edge states with opposite spin
canting and an induced CAR gap constitute all necessary
ingredients to realize a quasi-one-dimensional topological SC
[78,91–97]. In order to verify the presence of zero-energy
MBS peaks in the finite finger geometry, we compute the
LDOS at widths Ws corresponding to RD < 0, i.e., peaks in
�c. We consistently find zero-energy peaks in the LDOS at
the tip of the SC finger, as an example in Fig. 5(a) shows. We
tested the stability of these peaks with respect to disorder in

(a) (b)

FIG. 5. (a) LDOS at zero energy, LDOS(E = 0), in the finite-
geometry finger setup for the same set of parameters as used in
Fig. 4. Note that edge states along the SC finger gap out and a
localized zero-energy MBS forms on the tip of the finger, as well as
its delocalized partner in the lower edge states (away from the finger),
invisible at the scale adapted to the MBS density. (b) A negative
downstream resistance RD for smaller values of �

‖
Z can be achieved

by increasing the SC finger length Ls. The latter reduces the MBS
wave-function overlap (localization characterized by induced CAR
gap �c), and thus also the energy-splitting away from E = 0, render-
ing electron-to-hole conversion through the lower MBS (hybridized
with the edge state) more efficient in the transport. All parameters
are kept unchanged except for Ws = 0.82ξs and T = 0.006�s. For
details of numerical simulations, we refer also to Appendix C.

the superconducting chemical potential μs, finding that they
are remarkably stable even for values of disorder comparable
with the parent SC gap size, �s (see Appendix F). This result
is compatible with the emergence of MBSs in our setup. The
second MBS, expected to appear on the lower end of the
finger, cannot be resolved, since it hybridizes with gapless
QHE edge states away from the finger. Indeed, when CAR
dominates over normal transmission, it is this second MBS
on the lower end that resonantly converts incoming electrons
into outgoing holes, thus yielding dips with values close to the
minimal RD ≈ −RQ [78].

Importantly, the emergence of MBSs indicates that our
system is in a topological phase. According to Eq. (3), this
topological gap cannot be closed at any finite value of the
in-plane magnetic component �

‖
Z , thus proving that our sys-

tem stays in the topological phase even in the case of an
incomplete Meissner effect in type-II superconductors. In-
deed, for finite-size systems, a negative resistance, RD < 0,
can be observed in the simulations even for small �

‖
Z , pro-

vided that the SC finger is long enough to prevent the overlap
between MBSs, see Fig. 5(b). In this regard, we note that the
length used in most of our simulations (Ls ∼ 2.85ξs) is much
smaller than realistic values (Ls ∼ 20ξs in Ref. [56]), except
in Fig. 5(b) where we were able to simulate the transport up
to realistic values Ls ∼ 25ξs.

Finally, we provide a heuristic derivation of the relation
between MBSs and Andreev transmission coefficient. Ideally,
for two MBSs exactly at zero energy, the electron-to-hole
conversion through one of the MBSs is perfect and Andreev
transmission probability becomes 1. Nevertheless, due to the
finite length Ls of the SC finger, the two MBSs always have
a finite overlap that is related to the Majorana localization
length lc and which causes the energy of the modes to split
away from zero [98–102]. In this sense, we can provide an
approximate expression for the transmission coefficient T A,
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tuned off-resonance by the Majorana overlap, when θ  1:

T A ∼ 1 − exp

(
−2Ls

lc

)
, (4)

showing that for longer fingers the value of Andreev trans-
mission is increased. As a consequence, for longer Ls, the
emergence of negative values of downstream resistance is
more likely to occur. This is in agreement with Fig. 5(b).
The Majorana localization length can be related to the in-
duced and parent superconducting gaps by lc/ξs = �s/�c.
For small in-plane component of the magnetic field and us-
ing the approximate expression for the gap in Eq. (D1) for
θ ≈ �

‖
Z/�⊥

Z  1, we can estimate the Andreev transmission
to be

T A ∼ 1 − exp

(
−2Ls

ξs
θ e−Ws/ξs

)
. (5)

We define the critical length L∗
s to be the one at which TA

exceeds 1/2. Then, from the previous equation, we see that
for small in-plane magnetic fields and fixed Ws/ξs, L∗

s ∼ ξs/θ .
This result shows that, for any value of small in-plane com-
ponent, the critical length L∗

s at which T A > 1/2 decreases
linearly with the in-plane component, in accordance with
Fig. 5(b).

VI. DISCUSSION

The expulsion of magnetic flux from the superconductor
below its critical temperature and critical magnetic field is
the well-known Meissner effect [103]. However, most super-
conductors in practical applications (e.g., NbN) are type II,
meaning that a finite magnetic flux can enter the bulk SC
through formation of vortices. The vortex formation is driven
by the free energy difference between the vortex core energy
and the diamagnetic energy of the penetrating superconduct-
ing flux quantum �0 = h

2e [1]. Note that the core of the vortex
is smaller than the London penetration length λ of the mag-
netic field, i.e., ξs <

√
2λ. Therefore, if the width Ws of the

superconductor is comparable to the diameter of the vortex
core (∼ξs), the formation of the vortex is energetically not
favorable any more. Here, we restricted our discussion to such
a scenario, and assume that the flux penetration in the thin SC
finger can be modeled by a finite diamagnetic susceptibility
χSC < 0, that is still significantly larger than the susceptibility
of normal diamagnetic materials.

Furthermore, we note that the ratio of in- and out-of-plane
magnetic fields is B‖/B⊥ ∼ 0.05 even for a susceptibility
value as low as χSC ∼ −0.16 [see Fig. 7(c) in Appendix A]
confirming that a negative downstream resistance RD can be
observed even if the flux penetration into the SC is relatively
large [56].

Finally, we observe that the values of negative resistance
obtained in our simulations are of the order of the quantum
of resistance RQ ∼ 13 k�, while the value measured in ex-
periments is RD ∼ 50 � [56], i.e., roughly 200 times smaller.
This implies that possible detrimental effects, such as an in-
complete Meissner effect, would not invalidate the qualitative
behavior of our prediction.

(a) (b)

FIG. 6. (a) SC finger (red) and the in-plane component of the ex-
pelled magnetic field due to the Meissner effect. (b) Cross section of
the wedge-shaped SC finger and the corresponding dimensions cho-
sen in the simulations. The dashed line, where the width of the SC
is Ws = 125 nm, indicates the plane of the graphene sheet that lies
75 nm away from the bottom of the wedge.

VII. CONCLUSIONS

We studied a hybrid QHE-SC system formed by a su-
perconductor finger wedged into a two-dimensional electron
gas subjected to a strong out-of-plane magnetic field. We
focused on the integer QHE regime at filling factor ν = 1.
This finger geometry was inspired by recent experimental
works [56,60]. Due to the geometrical shape of the super-
conducting element, Meissner effect bends the magnetic field
lines close to the superconductor. By simulating this setup
with a two-dimensional discrete model, we computed nu-
merically the gap opened by the nonlocal superconducting
correlations induced in the two opposite chiral edges by CAR
processes. In a three-terminal biased configuration, we nu-
merically evaluated the upstream and downstream resistances
and showed that the latter can be negative due to the pres-
ence of CAR processes induced by the Meissner effect. In
correspondence with these negative values of downstream re-
sistance, the zero-energy local density of states systematically
presents disorder-stable peaks, which are compatible with the
formation of Majorana bound states. Compared to previous
proposals, our setup represents a rather simple implementa-
tion of MBSs, since it does not require additional ingredients
such as spin-orbit interactions or magnets with nontrivial
textures.

The actual experiments on this type of platforms in-
volve the measurement of the downstream resistance to
assess the presence of CAR. Nevertheless, by using this
type of measurement, one cannot obtain conclusive evi-
dence for the presence of Majorana bound states. Different
kinds of measurement schemes can be proposed in this
direction in analogy with recent developments in other se-
tups, such as noise [104–107] and entropy measurements
[108–110].

We believe that the presence of the Meissner effect can
be assessed directly by means of magnetic scanning tech-
niques, e.g., with NV centers [111]. Moreover, one can
envisage an experiment tailored to distinguish between the
two mechanisms. In this experiment, one realizes several
samples where the superconducting wedges have a differ-
ent angle θ and measures the downstream resistance. If the
observed values of resistance depend on the angle θ , it
implies that CAR is significantly affected by the Meissner
effect.
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(a) (b) (c)

FIG. 7. (a) The in-plane magnetic field B‖/B0 as a function of the x coordinate along the line determined by the dashed line in Fig. 6(b) for
six different magnetic susceptibilities ranging from the perfect diamagnet χSC = −1 to zero magnetic response χSC = 0. The in-plane
component B‖ is maximum for the perfect diamagnet and is absent if the Meissner effect is neglected. (b) The out-of-plane component of
the magnetic field B⊥/B0 along the same line. The values of B⊥ are only slightly modified close to the interface between the SC and the
2DEG. Thus one can argue that the spatial distribution of the edge state is only slightly affected. (c) The ratio of the in-plane and out-of-plane
components as a function of magnetic susceptibility at x = 65 nm. For a perfect diamagnet, the ratio could be as large as B‖/B0 ≈ 1/2 in this
geometry, giving a tilt angle θ ≈ π/4.
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APPENDIX A: MEISSNER EFFECT OF THE SC FINGER

We simulated the Meissner effect using the AC/DC mod-
ule of COMSOL Multipysics� [112]. After setting up the
geometry as shown in Fig. 6, we defined the boundary con-
ditions such that the magnetic field H(r) is homogeneous far
away from the SC finger, e.g.,

n × H(r) = n × H0 = 0, (A1)

where H0 = H0ẑ, with H0 = 107 A/m is the asymptotic mag-
netic field and n ‖ x̂ is the surface normal of the planes at x =
±500 nm, where the boundary condition has been imposed.
We note, however, that increasing this value further does not
affect the magnetic field close to the SC. Furthermore, peri-
odic boundary conditions were used in the z direction imposed
on surfaces far away.

In the program, we have chosen a “Physics-controlled
mesh” with “Extremely fine” resolution. The software then
solved Maxwell’s equations without source terms, e.g.,

∇ × H(r) = 0, ∇ · B(r) = 0, (A2)

using a finite element differential equation solver (stationary
solver, with relative tolerance 0.01, and linearity is set to
“Automatic”), where B(r) = μ0[1 + χ (r)]H(r) with

χ (r) =
{
χSC, if r ∈ Dfinger,

0, if r �∈ Dfinger.
(A3)

Furthermore, we have neglected the magnetic response of h-
BN, since its magnetic susceptibility [113] χhBN

⊥ = −4.57 ×

10−4 and χhBN
‖ = −1.27 × 10−5 is negligible compared to the

diamagnetic susceptibility of the SC finger.
We performed the calculation in a 3D model with a finger

length of 1.2 μm and the same wedge angle in the front
end as along the sides. The results are shown in Fig. 6(a).
Since the in-plane magnetic field changes only near the end
of the finger, we have performed the rest of the simulations in
two dimensions along the cross section of the finger with an
increased mesh resolution.

The parallel (in-plane) and perpendicular (out-of-plane)
components of the magnetic field as a function of x coordi-
nate are shown in Figs. 7(a) and 7(b), where B0 = μ0H0 ∼
12.57 T is the strength of the asymptotic out-of-plane B
field. We find that the in-plane component decays rapidly
and the out-of-plane component is constant outside the SC
to a good approximation, which indicates insignificant out-
of-plane flux-focusing, thus edge states in the QHE are not
pushed away from the SC and can remain close to the
SC-QHE interface. The effect of the in-plane Zeeman field
is only relevant close to the SC-QHE interface where the
QHE edge state resides. The localization length of edge
states is �B ∼ 7 nm. In this region, we model the spatial
dependence of the in-plane Zeeman field with an exponen-
tial decay towards the bulk QHE system as explained in the
main text.

APPENDIX B: TIGHT-BINDING DISCRETIZATION
OF THE QHE-SC HYBRID SYSTEM

In order to study the behavior of the hybrid QHE-SC sys-
tem described in the main text, we discretize the continuous
Hamiltonian given in Eq. (1) on a square lattice with lattice
constant a and solve it numerically.

In the main text, we only describe the CAR mechanism be-
tween ν = 1 QHE spin-polarized chiral edges enabled by the
presence of in-plane magnetic field components �

‖
Z �= 0 as a

new, alternative possibility in contrast to the earlier proposed
mechanism based on SOI in the SC or the underlying 2DEG
substrate. Here, we add the Rashba-type α(k × σ) SOI with
α ‖ ez (out of the 2D plane) and |α| = α̃s into the Hamiltonian
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(a) (b) (c) (d)

(e) (f) (g)

FIG. 8. (a) Quasi-1D discretization scheme for the infinite QHE-SC-QHE structure with periodic boundary conditions in x direction,
corresponding to Eqs. (B7)–(B9). [(b)–(d)] Sketches of the QHE-SC-QHE lateral junction structure with the different possible CAR gap
opening mechanisms: (b) The case of the main text, where oppositely directed in-plane magnetic field components in the QHE parts enable
the otherwise spin-polarized chiral edges of the QHE at ν = 1 filling to be proximitized by the singlet-type SC. (c) The mechanism based on
SOI considered in earlier works, where the spin-polarized ν = 1 edges gain overlap with the singlet structure of CPs by the spin-rotating effect
of SOI in the SC. (d) Just for comparison purposes, we show the case of ν = 2 filling, where the chiral edges are unpolarized and CAR can
take place without any additional ingredient. [(e)–(g)] Low-energy spectra with the CAR opened gaps of the respective systems in (b)–(d),
obtained in the discretized model of (a). Color coding is consistent with the rest of the figure and the main text, green and purple lines show
the lowest Landau levels and edge states in the separate QHE subsystem spectrum (with PBC only having the set of chiral edges present next
to the SC that are affected by CAR). Red curves represent states in the unconnected SC region with width Ws. Full lines mean electronic and
dashed ones hole states. Blue circles are the lowest eigenenergies of the hybrid QHE-SC-QHE system at different k, showing a significant
induced cross-gap �c. Parameters used for all (e)–(g): Nn = 50, Ns = 26, ts = tc = t , μs = 0.1t , �s = 0.02t , φ = 0.01, and ζ = 10a. Only
in (e), μn = 0.06t , �⊥

Z = 0.04t , �
‖
Z = 0.04t , and αs = 0. Only in (f), μn = 0.06t , �⊥

Z = 0.04t , �
‖
Z = 0, and αs = 0.05t . And only in (g),

μn = 0.1025t , �⊥
Z = 0.0025t , �

‖
Z = 0, and αs = 0.

density of the SC part, Hs → Hs + Hs,SOI, where

Hs,SOI = −iα̃s(∂xσy − ∂yσxτz )τz (B1)

in the chosen BdG basis of the main text. This way we can
discuss the discretized models describing either of the pos-
sible mechanisms on a common footing and compare their
behavior. In addition, with the same model, we can describe
systems with QHE parts at ν = 2 filling, which support spin-
unpolarized chiral edge states, in which CAR can be induced
without the need of any additional mechanism. We will make
comparisons between this system and the ν = 1 cases on the
way.

The following discretization rules prove to be useful for the
derivation of the models presented later on:

∂xψ (x) ≈ ψ (x + a) − ψ (x − a)

2a
, (B2)

∂2
x ψ (x) ≈ ψ (x + a) − 2ψ (x) + ψ (x − a)

a2
, (B3)

−i∂x → kx → 1

a
sin (kxa), (B4)

−∂2
x → k2

x → 2

a2
[1 − cos (kxa)], (B5)

the latter applying to the case of a system with continuous
or discrete (lattice) translational symmetry, where (crys-
tal)momentum kx is a good quantum number. We define
the hopping parameters in the QHE and SC regions, t =
h̄2/2mqa2 and ts = h̄2/2msa2, respectively. Equally, we rein-

terpret the normal-superconductor coupling t̃c of the main text
as the coupling hopping t̃ca ≡ tc, with energy dimension now.
For the same notational convenience, we redefine α̃s/2a ≡ αs,
also with the dimension of energy.

Orbital effects in the tight-binding models are incorporated
through Peierls-substitution,

tab → tab exp

(
i
2π

�0

∫ rb

ra

A · ds
)

, (B6)

where the integration path follows the lattice bonds and �0 =
h/e is the regular (nonsuperconducting) flux quantum.

1. Infinite planar QHE-SC-QHE junction geometry

To study the energy spectrum and the behavior of CAR
induced gap in the spectrum of chiral edge states coupled
to the bulk s-wave SC, we first consider the infinite planar
QHE-SC-QHE junction geometry (see Fig. 8), where the sys-
tem remains translationally invariant in the lateral direction y,
allowing for the momentum in that direction, ky (from here
onward simply noted as k), to be a good quantum number.

We fix our gauge in this geometry as A(r) = B0xey which
is compatible with the translation invariance in y direction
and conveniently gives constant A = 0 in the SC part. This
choice is consistent with the assumption that orbital effects are
caused by the unchanged out-of-plane magnetic field compo-
nent B0 in the QHE regions and that B(r) = 0 in the SC part
due to the Meissner effect.

075410-7



TAMÁS HAIDEKKER GALAMBOS et al. PHYSICAL REVIEW B 106, 075410 (2022)

Written in the BdG tight-binding basis of Cl,k =
(cl,k,↑, cl,k,↓, c†

l,−k,↑, c†
l,−k,↓)T , where cl,k,σ annihilates an

electron with y-momentum k and spin σ on site x = (l − 1)a,

cf. Fig. 8(a). The tight-binding Hamiltonian of the finite width,
infinitely long lateral QHE-SC-QHE system reads H = Hs +
Hn + Hc, where firstly

Hs = 1

2

∑
k

(
Ns∑

l=1

C†
l,k{[4ts − 2ts cos (ka) − μs]τz − 2αs sin (ka)σx + �sσyτy}Cl,k +

Ns−1∑
l=1

{C†
l+1,k[−ts − iαsσy]τz Cl,k + H.c.}

)

(B7)

describes the superconducting slab region of width Ws = (Ns − 1)a in the middle, with Ns the number of SC sites in the
discretized model. Note how the x-coordinate origin and the start of numbering of sites is aligned with the upper edge of
this region, see Fig. 8(a).

Secondly, the Hamiltonian of the QHE regions is given as

Hn = 1

2

∑
k

[
Ns+2Nn−1∑

l=Ns+1

C†
l,k

(
{4t − 2t cos[ka − τz2πφ(l − Ns)] − μn}τz + �⊥

Z σzτz + �
‖
Z

{
exp

[
− l − (Ns + 1)

ζ/a

]

− exp

[
− (Ns + 2Nn − 1) − l

ζ/a

]}
σxτz

)
Cl,k −

Ns+2Nn−2∑
l=Ns+1

(C†
l+1,k t τzCl,k + H.c.)

]
, (B8)

where instead of describing two separate QHE slabs on both sides of the SC region, either supporting pairs of chiral states on
their inner and outer edges, we model the system wrapped around as shown in Fig. 8(a), which allows us to get rid of the edge
states far from the SC region that would anyway not be affected by the coupling of subsystems. The described QHE region has
2Nn − 1 sites, but counting the coupling links in Fig. 8(a) yields 2Wn = 2Nna in width (note that magnetic flux is present in the
two plaquettes of the coupling region). The site dependent part in the cosine is the result of the orbital effect, which with our
gauge choice only affects hopping parameters in y direction and φ = B0a2/�0 measures the flux through a plaquette in units
of the flux quantum. The extra τz within the cosine takes into account the opposite charge of electrons and holes in the Nambu
basis. To respect the integer magnetic unit cell condition with the chosen periodic boundary conditions, 2Nnφ ∈ Z has to hold.

Finally, the coupling over interfaces between the SC and
QHE subsystems reads

Hc = 1

2

∑
k

[(−tcC
†
Ns,k

τzCNs+1,k

− tcC
†
Ns+2Nn−1,kτzC1,k ) + H.c.]. (B9)

We obtain the magnitude of the induced crossed gap |�c|
in the composite system by calculating the lowest positive
eigenvalue of the matrix Hamiltonian for a discrete, dense
enough set of k values and then minimizing over k. This is the
lowest point in the upper half of the numerical spectra plotted
with blue circles in Figs. 8(e)–8(g). We see that it is possible

to open a gap in all three considered cases, explained in the
sketches of Figs. 8(b)–8(d).

2. Finite finger geometry and transport setup

In order to study the behavior of the finite length SC finger
wedged into the QHE insulator, we need its 2D discretized
model which we formulate in Eqs. (B10)–(B14) based on the
scheme shown in Fig. 9. This time, we choose a different
gauge, A(r) = −B0yex, that is compatible with the presence
of translationally invariant semi-infinite leads extended along
the x direction. The Hamiltonian

H =
Nx∑

l=1

Ny∑
m=1

∑
σσ ′

c†
l,m,σ

Eσ,σ ′
l,m cl,m,σ ′ −

Nx−1∑
l=1

Ny∑
m=1

∑
σσ ′

(c†
l+1,m,σ

tσ,σ ′
l+1,m,l,mcl,m,σ ′ + H.c.)

−
Nx∑

l=1

Ny−1∑
m=1

∑
σσ ′

(c†
l,m+1,σ

tσ,σ ′
l,m+1,l,mcl,m,σ ′ + H.c.) + 1

2

Nx∑
l=1

Ny∑
m=1

�l,m(cl,m,↑cl,m,↓ − cl,m,↓cl,m,↑ + H.c.) (B10)
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FIG. 9. Schematic of the discretized finger geometry model with leads indicated that are used for transport calculations. The principal
region described by Eq. (B10) is marked with the dashed black line and contains Nx × Ny sites, with Nx = 2Nn + Ns. The SC finger is Ws =
(Ns − 1)a wide and Ls = (S − 1)a long, its sites are marked with red and the red shaded area marks the region of zero magnetic flux through
the plaquettes. All gray plaquettes bear a flux, even the region under the blue dashed lines that indicate the interface coupling between SC and
QHE, quantified by tc. �L/R denote the self-energies associated with the left- and right semi-infinite leads, respectively.

describes the principal region without resorting to the BdG formalism, cl,m,σ annihilates an electron on site (l, m) with spin σ .
The first, onsite term reads

El,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4t − μn + �⊥
Z σz − �

‖
Ze−a(Nn−l )/ζ σx, 1 � l � Nn and 1 � m � S,

4t − μn + �⊥
Z σz + �

‖
Z e

−a
(√

(Nn−l+1)2+(m−S)2−1
)
/ζ

× (l−Nn−1)σx+(m−S)σy√
(Nn−l+1)2+(m−S)2

, 1 � l � Nn and S < m � Ny,

4ts − μs, Nn < l � Nn + Ns and 1 � m � S,

4t − μn + �⊥
Z σz + �

‖
Ze−a(m−S−1)/ζ σy, Nn < l � Nn + Ns and S < m � Ny,

4t − μn + �⊥
Z σz + �

‖
Ze−a(l−Nn−Ns−1)/ζ σx, Nx − Nn < l � Nx and 1 � m � S,

4t − μn + �⊥
Z σz + �

‖
Z e

−a
(√

(l−Ns−Nn )2+(m−S)2−1
)
/ζ

× (l−Ns−Nn )σx+(m−S)σy√
(l−Ns−Nn )2+(m−S)2

, Nx − Nn < l � Nx and S < m � Ny,

(B11)

while the hopping term in the x direction is given by

tl+1,m,n,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tce−i2πφ(m−1),
l = Nn and

1 � m � S,

ts − iαsσy,
Nn < l < Nn + Ns and

1 � m � S,

tce−i2πφ(m−1),
l = Nn + Ns and

1 � m � S,

te−i2πφ(m−1), otherwise.
(B12)

Similarly, hopping in y direction is described as

tl,m+1,l,m =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ts + iαsσx,
Nn < l < Nn + Ns and

1 � m � S,

tc,
Nn < l � Nn + Ns and

m = S,

t, otherwise,

(B13)

and finally, the pairing term has the form

�l,m =
{
�s, Nn < l < Nn + Ns and 1 � m � S,

0, otherwise. (B14)

Without the leads, the system supports chiral edge states
running along the edge of the principal region and around
the SC finger, where locally they can gap out due to CAR.
If the leads are included, the system becomes infinite and
the oppositely moving chiral edges on the top and bottom
propagate infinitely without closing in on each other.

APPENDIX C: PARAMETER CHOICES
AND DIMENSIONLESS QUANTITIES

Our intention is far from trying to exactly model experi-
ments [56,60], but we choose our numerical parameter ranges
inspired by them. These setups have a SC finger of length
Ls ∼ 1 μm and width Ws ∼ 50, . . . , 200 nm, thus we assume
the region of interest to be ∼1 μm2, which we choose to
discretize on a square lattice with lattice constant a ∼ 2 nm
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for reasonable computational needs (we eventually considered
also smaller model sizes to speed up calculations).

The experiments operate at B0 ∼ 8, . . . , 14 T magnetic
fields: The convenient value of φ = a2B0/�0 = 0.01, that
we use throughout, corresponds to about B0 ∼ 10 T. This
yields the dimensionless magnetic length in our model with
quadratic dispersion �B/a = √

h̄/eB0/a = 1/
√

2πφ ∼ 4. In
addition, it is reported that the LL gap in the QHE sys-
tem is �LL ∼ 100 meV, which, with its expression �LL =
eB0/mq = 4πφ t , determines the hopping parameter as t ∼
0.8 eV and we have �LL/t ∼ 0.125. For the sake of simplicity,
we use ts = tc = t , unless indicated otherwise.

Further, the Fermi velocity in the NbN SC is reported
to be vF,s = 1.8 × 106 m/s, which by the definition μs =
msv

2
F,s/2 determines the chemical potential in the SC as

μs/t = (h̄vF,s/2at )2 ∼ 0.13, we have chosen to use μs/t =
0.1 in most cases. The following dimensionless expression
of the Fermi momentum kF,sa = √

μs/t proves useful in the
study of the oscillatory behavior of the CAR gap, the Fermi
length is λF,s/a = 2π/kF,sa ∼ 20 for the μs/t = 0.1 choice.

The superconducting coherence length in the NbN SC fin-
ger of the experiment is estimated to be ξs = (52 ± 2) nm,
which, in the simple BCS meanfield approach of our model,
reads ξs/a = h̄vF,s/�sa = 2

√
μs/t/(�s/t ) ∼ 26, meaning a

dimensionless gap size �s/t ∼ 0.024, instead of which we
choose to use the value �s/t = 0.02, which corresponds to
ξs ≈ 31.6a ≈ 63 nm with the parameter choices described so
far.

The temperature ranges we use in most of the transport
calculations, T/�s = 0.03–0.3, with the critical temperature
of the superconducting NbN indicated as Tc ≈ 12 K, corre-
spond to a range of approximately 360 mK–3.6 K. Note that
Ref. [56] reports measurements in the range of 1.8–10 K,
whereas Ref. [60] at 15 mK.

For SOI in the SC, we do not have an estimate of the exper-
imental strength, we use the range of values αs/t = 0.025–0.1
(or αs = 0, e.g., throughout the main text), which corresponds
to spin-orbit lengths λSO,s = 2π/kSO,s ∼ 125–500 nm, where
kSO,sa = αs/t is the dimensionless spin-orbit momentum. If
the SOI is present in the SC, the Fermi momenta are modified
as k±

F,sa =
√

μs/t + (αs/t )2 ± αs/t . The average Fermi mo-

mentum k±
F,sa =

√
μs/t + (αs/t )2 stays almost unchanged:

With our parameters it amounts to less than 5%. To form the
QHE system at ν = 1 filling, we tune the chemical potential
to the lowest LL with μn/t = 0.0625 and introduce the out-
of-plane Zeeman-splitting �⊥

Z /t = 0.04. This is a rather large
value (twice the SC gap ∼4 meV) if one wanted to achieve
it paramagnetically through usual g-factor values, however, in
case of graphene for example, interaction effects can be very
strong, introducing ferromagnetic ordering (still following the
external field’s direction) that enhance the effective Zeeman
strength to hundreds of Kelvins [87]. The experimental fact
of observing stable ν = 1 QHE plateaus justifies these argu-
ments (along with a similarly large valley splitting in case of
graphene). For the ν = 2 filling, we conveniently choose the
same velocities in the edge states, as in the ν = 1 case, re-
quiring μn/t = 0.1025 with simply �⊥

Z /t = 0 for the simplest
description. For the in-plane component strength, we con-
sider the range �

‖
Z/�⊥

Z = 0–1, describing different tilt angles

of the oblique wedge walls and/or different Meissner-effect
efficiencies.

Numerical parameters of figures in the main text.
Figure 1(b). Magnetic field lines are obtained through a

COMSOL Multipysics� [112] simulation (see corresponding
section for all parameters), for a wall tilt angle tan(θ ) = 1/2
with perfect Meissner-effect, χ = −1.

Figure 2. Nn = 50, Ns = 20, . . . , 120, ts = tc = t , μs =
0.1t , �s = 0.02t , φ = 0.01, μn = 0.0625t , �⊥

Z = 0.04t ,
�

‖
Z = {0.04t, 0.02t, 0.01t, 0.05t}, ζ = 10a, and αs = 0. The

gap is measured by searching the minimum of positive
eigenenergies in the range ka = 0, . . . , π/6 divided linearly
into 500 discretized momentum values. (Inset) Same param-
eters as the main figure, except for Ns = 36, �

‖
Z = 0.02t and

the spectrum is displayed in 400 discrete momentum values
linearly sampled for the range −π/3 � ka � π/3.

Figure 3. Nx = 150, Ny = 120, Ns = 20, . . . , 100, Nn =
(Nx − Ns)/2, S = 90, ts = tc = t , μs = 0.1t , �s = 0.02t , φ =
0.01, μn = 0.0625t , �⊥

Z = 0.04t , �
‖
Z = 0.02t , ζ = 10a, and

αs = 0. For a small linewidth in the RGF calculation, we
use η = 10−5�s, the transmission spectrum is recorded
for energies −�s � E � �s with 0.01�s resolution and
then resistances are calculated for the range of kBT/�s =
0.03, . . . , 0.3 with again 0.01�s resolution.

Figure 4(a). We use the exact same parameters as in Fig. 3.,
but the LDOS is calculated only for E = 0 and Ns = 36. (b)
Downstream resistance values are obtained in systems with
parameters Nx = 100, Ny = S + 30, Ns = 26, Nn = (Nx −
Ns)/2, S = {90, 180, 270, 360, 450, 540, 630, 720, 810}, ts =
tc = t , μs = 0.1t , �s = 0.02t , φ = 0.01, μn = 0.0625t ,
�⊥

Z = 0.04t , �
‖
Z/�⊥

Z = {0.05, 0.1, 0.2, 0.4, 0.8}, ζ = 10a,
αs = 0, η = 10−6�s, in which transmission spectra are
recorded in the range −0.03�s � E � 0.03�s with �E =
0.0001�s granularity. Resistance values are calculated for
kBT/�s = 0.006, which, according to the previous section’s
considerations, corresponds to T ∼ 72 mK.

APPENDIX D: PROPERTIES OF THE INDUCED
CROSSED GAP �c

In this section, we discuss some additional properties of the
gap �c induced by crossed Andreev reflection (see Fig. 2 of
the main text). We justify the approximate formula for the gap
given in Eq. (3) and we use it to provide a physical insight for
all the dependencies on system parameters. We also provide
some numerical results for the gap dependencies in agreement
with the approximate formula. Further, stability of the gap
is tested against parameter variations and disorder effects.
Throughout this section, we will compare the case presented
in the main text with both the SOI case at ν = 1 and the non
spin-polarized edge states at ν = 2.

We start by presenting the approximate expressions for the
induced gap [33]

�
Z‖
c,ν=1 ∝ t2

c �s f (kF,s, ξs,Ws) sin (θ ), (D1)

�
αs
c,ν=1 ∝ t2

c �s f (kF,s, ξs,Ws) sin (kSO,sWs), (D2)

�c,ν=2 ∝ t2
c �s f (kF,s, ξs,Ws), (D3)
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where

f (kF,s, ξs,Ws) = sinh (Ws/ξs) cos (kF,sWs)

cosh (2Ws/ξs) − cos (2kF,sWs)
, (D4)

which in the limit Ws > ξs becomes

f (kF,s, ξs,Ws)
Ws>ξs−−−→ exp (−Ws/ξs) cos (kF,sWs). (D5)

We recall from the main text that θ = arctan(�‖
Z/�⊥

Z ), with
0 � θ < π/2 because of geometrical constraints.

As a first comment, we note that all three crossed gap
expressions share the common factor, t2

c �s f (kF,s, ξs,Ws). The
quadratic dependence on tc is due to the fact that, at least in the
perturbative regime tc/t < 1, crossed Andreev reflection is a
mechanism that involves two tunneling processes between SC
and edge states. The linearity in the superconducting parent
gap �s is typical of proximity induced gap and, since all the
remaining terms in the expression are smaller than 1, it sets the
maximum value of the induced gap. The negative exponential
term in Eq. (D5), obtained for the Ws > ξs limit, corresponds
to the overlap between edge states, separated by a distance
Ws, mediated by Cooper pairs, whose typical size is set by
the SC coherence length ξs. For narrow fingers, Ws < ξS ,
the corresponding full expression, captured by the fraction
in the same equation, describes extra resonances as the
cosine in the denominator becomes relevant. Finally, the last
cosine term induces oscillations with the Fermi wave-vector
of the SC due to a definite Fermi-surface and the finite width
of the finger: With confinement in the x direction, the SC
preferably accommodates electronic states with a Fermi wave-
length λF,s = 2π/kF,s commensurate with the width Ws and
with reduced probability those states that have incommensu-
rate λF,s. Below, we will show some numerical results related
to this oscillatory dependence on kF,s.

The remaining sine functions in Eqs. (D1) and (D2) are
related to the spin-tilting of the otherwise spin-polarized
edge states at ν = 1. Since the edge states at ν = 2 are not
spin-polarized, the crossed gap can be opened without any
spin-tilting mechanism and this additional factor is absent
in Eq. (D3). In the SOI case at ν = 1, the spin-orbit length
lSO,s = 2π/kSO,s determines the typical distance over which
a spin flips its direction. Then, the relative spin-tilting on
opposite edges separated by the distance Ws is governed by the
ratio Ws/lSO,s and determines the opening of the gap through
the sine dependence in Eq. (D2). In the next subsection, we
justify the presence of the sine function term for the in-plane
magnetic field case and we also present numerical simulations
to support it.

1. In-plane magnetic field dependence for ν = 1

Here, we provide a heuristic derivation for the dependence
of the induced gap on the angle θ . We denote the spin basis
with quantization along the z axis as |↑〉 and |↓〉. In the
absence of an in-plane magnetic field, the spin is quantized
along the same axis in the normal and in the superconducting
region. For instance, we can express the spin dependence of a
Cooper pair as

|S〉 = |↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉√
2

. (D6)

FIG. 10. The absolute value of the proximity-induced CAR gap
�c relative to SC parent gap �s as a function of the ratio of in-plane
and out-of-plane components of Zeeman energy, �

‖
Z/�⊥

Z . We used
the following parameters: Nn = 50, Ns = 36, ts = tc = t , μs = 0.1t ,
�s = 0.02t , φ = 0.01, μn = 0.0625t , αs = 0, and ζ = 10a. In this
figure, we fix �⊥

Z = 0.04t , whereas in Fig. 3, we used with a Zeeman
term of constant magnitude �Z = 0.04t that is rotated homoge-
neously within the QHE regions (oppositely for the two QHE parts)
from out-of-plane to in-plane directions with angle θ .

In presence of the in-plane component of magnetic field, the
spin is not quantized anymore along this axis in the edge
states and the new basis can be expressed as a rotation of the
previous basis by the angle θ

|E±〉 = cos

(
θ

2

)
|↑〉 ± sin

(
θ

2

)
|↓〉 , (D7)

where ± indicates the two states with opposite spin polariza-
tion, i.e where the angle θ has an opposite sign. The overlap
between the spin-dependent part of edge state and Cooper pair
wave functions is

〈S|E+E−〉 = sin (θ )√
2

. (D8)

Notice that for the edge states we assumed that the spin tilting
occurs with opposite angles θ and −θ . This equation justifies
the presence of the factor sin(θ ) in the induced crossed An-
dreev gap as the overlap of the tilted edge state spin structure
with the singlet CP spin wave function.

In Fig. 10, we computed numerically the dependence of
�c on the ratio of in-plane and out-of-plane components of
Zeeman-energy, �

‖
Z/�⊥

Z . In these plots, we checked that the
gap starts linearly with �

‖
Z/�⊥

Z and θ . In Fig. 10, we also plot
a sine function of �

‖
Z/�⊥

Z (blue dotted line), which fits the
numerical curve up to a certain ratio and eventually deviates
from it. This discrepancy shows that the exact dependence
of the argument in the sine function is not linear in �

‖
Z/�⊥

Z ,
but involves the inverse tangent function (see the definition of
θ ). Also, the magnitude of the Zeeman field is not constant
as �

‖
Z/�⊥

Z is varied, which then modifies band alignments
between QHE and SC as well, so it is not anymore only the
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(a) (b)

FIG. 11. (a) Oscillation of the absolute value of the crossed gap,
�c, induced in the ν = 1 QHE edge states, normalized by the su-
perconducting gap in the SC region, �s, as a function of the SC
region width, Ws, measured in units of the discretized lattice spacing
a, for fixed in-plane magnetic field �

‖
Z/�⊥

Z = 1 and different values
of chemical potential in the SC, μs. (b) Fourier transformation of the
data displayed in (a). The theoretically estimated Fermi momentum
values are indicated by the solid colored lines. As expected, the
absolute value of the gap oscillates with the period set by 2kF,s.
Parameters of the numerics not indicated in the figure: Nn = 50,
ts = tc = t , μn = 0.0625t , �⊥

Z = 0.04t , ζ = 10a, �s = 0.02t , φ =
0.01, and αs = 0. For a better understanding, we also indicate the
chemical potential dependent superconducting coherence length ξs

for all curves, ξs/a ≈ {31, 47, 63, 79, 95}, which characterize the
scale of decay for the CAR gap. We observe irregular resonances for
Ws � ξs, while a smooth decaying cosine-like behavior for Ws > ξs,
in line with Eqs. (D1) and (D5).

spin structure that plays a role in the magnitude of the induced
crossed Andreev gap.

2. Finger-width dependence for all considered cases

In this section, we evaluate numerically the dependence
of the induced gap on the width Ws and the superconducting
chemical potential μs. We plot the ν = 1 case with in-plane
magnetic field in Fig. 11, the ν = 1 case with SOI in Fig. 12
and the ν = 2 case in Fig. 13.

Fast oscillations in the width Ws result from the existence
of a definite Fermi-surface, see Figs. 11(a), 12(a), and 13(a).
They are characterized by a spatial period related to the mag-
nitude of the Fermi momentum in the SC, kF,s. In order to clear
out this point, we computed the Fourier transform of the gap
in each different case, see the main peaks in Figs. 11(b), 12(b),
and 13(b). The theoretical values correspond to the expected
Fermi momentum for each different chemical potential μs.

In Figs. 11, 12(a), 12(b), and 13, one sees the fast oscil-
lations changing with chemical potential and thus the Fermi
momentum, while the envelope remains unchanged, except
that the exponential suppression with the coherence length
decreases as μs increases due to the increase of the Fermi
velocity vF,s (and thus the coherence length ξs). One can also
clearly discern in the numerically obtained plots of all three
cases the resonant behavior at small Ws � ξs described by the
fraction in Eq. (D5).

In Figs. 12(c) and 12(d), we show an oscillating pattern of
the gap as a function of SOI. Here, we can identify some slow
enveloping oscillations that are induced by the spin-rotating
effect of SOI. They are peculiar to the presence of the SOI that
enables the overlap of the spin-polarized ν = 1 edge states
with the singlet structure of the SC. The rotation and the

(a) (b)

(c) (d)

FIG. 12. (a) Double oscillation of the absolute value of the
crossed gap, �c, induced in the ν = 1 QHE edge states, normalized
by the superconducting gap in the SC region, �s, as a function of
the SC region width, Ws, measured in units of the discretized lattice
spacing a, for fixed SOI strength αs = 0.1t and different values of
chemical potential in the SC, μs. (b) Fourier transformation of the
data displayed in (a). The theoretically expected Fermi-momentum
values are indicated by the solid colored lines. (c) Double oscillation
of the absolute value of the crossed gap, �c, induced in the ν = 1
QHE edge states, normalized by the superconducting gap in the SC
region, �s, as a function of the SC region width, Ws, measured in
units of the discretized lattice spacing a, for different values of SOI
strength in the SC, αs, at constant SC chemical potential μs/t = 0.9.
(d) Fourier transformation of the data displayed in (c). The theo-
retically expected fast oscillation period value is indicated by the
solid black line, while dashed lines show the theoretically expected
side lobe periods due to the slow envelope oscillations. Parameters
of the numerics not indicated in the figure: Nn = 50, ts = tc = t ,
μn = 0.0625t , �⊥

Z = 0.04t , �
‖
Z = 0, ζ = 10a, �s = 0.02t , and φ =

0.01. The superconducting coherence length ξs for all curves in
(a) takes values ξs/a ≈ {31, 47, 63, 79, 95}, whereas in (c), it is fixed
as ξs/a ≈ 95. We observe irregular resonances for Ws � ξs, while
a smooth, decaying double oscillatory behavior for Ws > ξs, in line
with Eqs. (D2) and (D5).

overlap size are dependent on the amount of rotation that is
achieved across the SC finger width of size Ws, thus inducing
an oscillating pattern. Side peaks in the FT correspond to these
oscillations dependent on the SOI parameter αs.

3. Dependence on coupling tc

Here, we evaluate numerically the dependence of the
induced gap on the normal-superconductor coupling tc. In
Fig. 14, we display the ratio �c/�s averaged over different
values of Ws in the same range as shown in Figs. 11–13, as a
function of tc/t , normalized with respect to the same quantity
at tc = t , for all three different cases considered. First of all,
we do find only a weak dependence on the filling factor, on
SOI, or on in-plane magnetic field to a large degree. One can
see that the induced gap start to develop quadratically and
reach 1 only close to tc = t . These results are in accordance
with Eqs. (D1)–(D3).
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(a) (b)

FIG. 13. (a) Oscillation of the absolute value of the crossed
gap, �c, induced in the ν = 2 QHE edge states, normalized by
the superconducting gap in the SC region, �s, as a function of the
SC region width, Ws, measured in units of the discretized lattice
spacing a, for different values of chemical potential in the SC, μs.
(b) Fourier transformation of the data displayed in the panel (a).
The theoretically expected Fermi-momentum values are indicated
by the solid colored lines. Parameters of the numerics not indicated
in the figure: Nn = 50, ts = tc = t , μn = 0.1025t , �

‖
Z = �⊥

Z = 0,
ζ = 10a, αs = 0, �s = 0.02t , and φ = 0.01. Superconducting co-
herence length ξs for all curves reads ξs/a ≈ {31, 47, 63, 79, 95}. We
observe irregular resonances for Ws � ξs, while a smooth, decaying
cosine-like behavior for Ws > ξs, in line with Eqs. (D1) and (D5).

4. Stability against disorder

In this part, we test the stability of the induced gap with
respect to disorder in the SC chemical potential and in the
interface coupling tc. The latter type of disorder can arise due
to an imperfect QHE-SC coupling or due to the presence of
defects at the interface. In Fig. 15, we computed the ratio
�c/�s averaged over different values of Ws in the same range
as in Fig. 11 for these two types of disorder, normalized with
respect to the same quantity without disorder. First of all, we

FIG. 14. Plot of the absolute value of the proximity-induced
CAR gap �c relative to SC parent gap �s, averaged over different
values of Ws as a function of tc/t , normalized with respect to the
same quantity at tc = t . Curves are obtained numerically in an in-
finite QHE-SC-QHE system with Nn = 50, Ns = 2, . . . , 120, ts = t ,
μs = 0.4t , �s = 0.02t , φ = 0.01, ζ = 10a, and for ν = 1, �

‖
Z �= 0

with μn = 0.0625t , �
‖
Z = �⊥

Z = 0.04t , αs = 0, for ν = 1, αs �= 0
with μn = 0.0625t , �

‖
Z = 0, �⊥

Z = 0.04t , αs = 0.1t , and finally for
ν = 2 with μn = 0.1025t , �

‖
Z = �⊥

Z = 0, and αs = 0 (no SOI).

(a) (b)

FIG. 15. (a) The absolute value of the proximity-induced CAR
gap �c relative to SC parent gap �s averaged over different values
of Ws with respect to the disorder (a) in the SC chemical potential μs

and (b) in the interface coupling tc, normalized with respect to the
same quantity without disorder. Curves are obtained with the same
respective parameters as in Fig. 14, by numerical exact diagonaliza-
tion of a long but finite QHE-SC-QHE planar junction.

note that there is no striking difference between the three dif-
ferent cases considered. The important point to notice is that,
even though the presence of disorder causes a reduction of
the induced gap, the gap keeps a finite value even for disorder
size of the order of μs [in Fig. 15(a)] or tc [in Fig. 15(b)]. For
Fig. 15(a), the SC chemical potential is redefined as μs,lm =
μs + δμsulm, where ulm ∼ U (−1, 1) are iid uniform random
variables on each SC site. Similarly in Fig. 15(b), the interface
disorder varies the coupling strength as ts,lm = tc + δtc ulm,
sampled independently for each interface link.

APPENDIX E: TRANSPORT CALCULATION DETAILS

If one symmetrizes the Hamiltonian of Eq. (B10) in
particle-hole space, that is, writes it in the full BdG form,
it can be represented as a rather sparse matrix H of di-
mension 4NxNy × 4NxNy corresponding to site-, spin-, and
electron-hole degrees of freedom. Its elements are addressed
as [H]lmστ,l ′m′σ ′τ ′ . One defines then the retarded and advanced
Green’s functions (GFs) of the system at energy E as

GR/A(E ) = [(E ± iη)I − H − �R/A(E )]−1, (E1)

where η is the infinitesimal (small) linewidth, I is the identity
matrix of the appropriate dimension and �R/A(E ) describe the
self-energy at the same frequency of anything attached to the
principal region, in particular,

[�R/A]1mστ,1m′σ ′τ ′ = [
�

R/A
L

]
mστ,m′σ ′τ ′ , (E2)

[�R/A]Nxmστ,Nxm′σ ′τ ′ = [
�

R/A
R

]
mστ,m′σ ′τ ′ (E3)

describe the self-energies of the left and right leads, 4Ny ×
4Ny dimensional matrices themselves, which can be easily ob-
tained trough an iterative calculation of surface GFs [82–84].
Elements of the full GF can be calculated efficiently by the
recursive GF method [81]. We note that GA(E ) = [GR(E )]†

and therefore define G = GR(E ) for the sake of simplified
notation. In addition, we define the broadening functions

�τ
L/R = i

(
�R

L/R − �A
L/R

)
ττ

, (E4)

where we already separate out the electron-hole space de-
pendence, which is—since the leads are normal semi-infinite
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QHE systems—trivially diagonal anyway. �τ
L/R are now

2Ny × 2Ny square matrices.
Firstly, to calculate the (spatially dependent) LDOS at en-

ergy E , one needs the diagonal elements of the GF:

LDOS(E , l, m) = − 1

2π
Im[Tr Glm,lm(E )], (E5)

where the trace is taken over the spin- and particle-hole space
and the unusual factor of 2 accounts for the base doubling in
the BdG formalism.

Secondly, to study transport, we need the following GF
elements: [

Gττ ′
LL

]
mσ,m′σ ′ = [G]1mστ,1m′σ ′τ ′ , (E6)[

Gττ ′
RL

]
mσ,m′σ ′ = [G]Nxmστ,1m′σ ′τ ′ , (E7)[

Gττ ′
LR

]
mσ,m′σ ′ = [G]1mστ,Nxm′σ ′τ ′ , (E8)[

Gττ ′
RR

]
mσ,m′σ ′ = [G]Nxmστ,Nxm′σ ′τ ′, (E9)

where again we separate out in the definition the electron-hole
space indices to facilitate later discussion of normal (diago-
nal in the e-h space) and anomalous or Andreev processes
(off-diagonal in e-h). These Gττ ′

i j GFs are again matrices of
2Ny × 2Ny dimension, indices take values as i, j = {L, R} and
τ, τ ′ = {e, h}. Then one defines the energy dependent trans-
port coefficients [85] as

T ττ ′
i j (E ) = Tr

{
�τ

i (E )Gττ ′
i j (E )�τ ′

j (E )
[
Gττ ′

i j (E )
]†}

, (E10)

where trace is over the y direction sites and over spin, yield-
ing a single number, which describes the energy-dependent
normal (τ = τ ′) and Andreev (τ �= τ ′) reflection (i = j) and
transmission (i �= j) probabilities in the principal region of the
system, as Fig. 9 shows.

The transport setup in Fig. 3. of the main text represents a
multiterminal junction with three terminals or leads: Terminal
L, where the generated current I is fed in; the grounded SC
finger, terminal S, which also drains the current; as well as
terminal R, which is a floating gate only to measure the down-
stream resistance. The multiterminal current-bias relations in
the linear response Landauer-Büttiker formalism read [68,89]

Ii =
∑

j

ai j (Vj − V ), (E11)

where Ii is the current from lead i, Vj is the potential of lead
j, V = VS = μs/e is the electrochemical potential of the SC
condensate around which one linearizes for small bias differ-
ences between leads (meaning that the up- and downstream
resistance measurement needs to happen with weak driving
current I), and finally the proportionality coefficients are

ai j = e2

h

∫ ∞

−∞
dE

[
−∂ f (E )

∂E

]

× [
Ne

i (E )δi j − T ee
i j (E ) + T eh

i j (E )
]
. (E12)

Here a factor of 2 is omitted compared to Ref. [89] because
our transmission coefficients include contributions of both
spin species. Also, the above form explicitly takes into ac-
count the particle-hole symmetry of our system. f (E ) = [1 +

exp(E/kBT )]−1 is the Fermi function at temperature T , and
Ne

i (E ) = ∑
j,τ T eτ

i j (E ) counts the number of open channels
for electron-like excitations in lead i.

To express the resistances RU/D = VU/D/I for VU = VL −
VS , VD = VR − VS and conditions IL = I and IR = 0, we can
write

aLLVU + aLRVD = I, (E13)

aRLVU + aRRVD = 0, (E14)

RU = aRR

aLLaRR − aLRaRL
, (E15)

RD = − aRL

aLLaRR − aLRaRL
, (E16)

aLL = e2

h

(
T ee

LR + T eh
LR + 2T eh

LL

)
, (E17)

aLR = e2

h

(
T eh

LR − T ee
LR

)
, (E18)

aRR = e2

h

(
T ee

RL + T eh
RL + 2T eh

RR

)
, (E19)

aRL = e2

h

(
T eh

RL − T ee
RL

)
, (E20)

where the transmission coefficients are evaluated (for a given
temperature) as

T eτ
i j =

∫ ∞

−∞
dE

T eτ
i j (E )

4kBT cosh2 (E/2kBT )
, (E21)

finally yielding

RU = RQ
T ee

RL + T eh
RL + 2T eh

RR

D
, (E22)

RD = RQ
T ee

RL − T eh
RL

D
, (E23)

D = T ee
LRT eh

RL + T ee
RLT eh

LR + T eh
LL

(
T ee

RL + T eh
RL + T eh

RR

)
+ T eh

RR

(
T ee

LR + T eh
LR + T eh

LL

)
(E24)

in line with results of Ref. [68] if adapted to the ν = 1 filling
case. Here, RQ = h/2e2, as defined in the main text, along
with T ee

RL = T N and T eh
RL = T A, the normal- and Andreev trans-

mission probabilities. Due to the chiral nature of edge states,
there is no backscattering (normal or Andreev) in the system,
meaning T ττ ′

ii = 0. A further consequence of the chirality and
of the fact that the SC finger is only in contact with the
lower edge mode is T eh

LR = 0, because only the SC can convert
electrons into holes. This entails, lacking backscattering, that
T ee

LR = ν = 1, i.e., the upper edge perfectly transmits electrons
from right to left. In the lower edge an electron is either
transmitted from left to right as an electron or a hole (leaving
a CP in the SC), meaning T N + T A = ν = 1, as stated in the
main text. All these simplifications yield D = νT A and with
that RU/D = RQ(T N ± T A)/(νT A). Note that measuring the
difference RU − RD = h/(νe2) is equivalent to measuring the
nonlocal or Hall resistance in the QHE system.

A remark is due in order to explain the T A → 0 limit of
the above expressions of the resistances, which diverge in this
case. This limit means that the QHE edges transmit electrons
without talking to the SC finger. As the SC is the only drain on

075410-14



CROSSED ANDREEV REFLECTION IN SPIN-POLARIZED … PHYSICAL REVIEW B 106, 075410 (2022)

(a) (b)

(c) (d)

FIG. 16. (a) Andreev transmission coefficient between the two
leads, T A, as a function of the finger width Ws at different tem-
peratures T for the in-plane magnetic field case. The dash-dotted
line at 0.5 indicates the threshold above which values of anoma-
lous transmission negative downstream resistances are observed.
(b) Calculated width dependence of downstream (RD) resistances.
The dashed line indicates the theoretically achievable minimum re-
sistance, RD = −RQ for ν = 1 filling. (c) Stability of the Andreev
transmission coefficient T A as a function of the magnetic flux varia-
tion δφ. (d) Stability of the downstream resistance RD as a function of
the magnetic flux variation δφ. This magnetic flux controls the orbital
effect in the QHE region. The stability is checked for different widths
associated with peaks in the transmission. In correspondence with the
chosen values of Ws, lines are drawn in (a) and (b) with the same color
code as in (c) and (d). Parameters: Nx = 150, Ny = 120, S = 90,
ts = tc = t , μs = 0.1t , �s = 0.02t , φ = 0.01, μn = 0.0625t , �⊥

Z =
0.04t , �

‖
Z = 0.02t , ζ = 10a, and αs = 0.

the circuit (lead R being a floating voltage probe), all pumped-
in current from lead L has to leave the QHE edge circle again
through the same lead, so effectively it is impossible to push
any net current into the system, which is exactly the case of
infinite resistance.

APPENDIX F: TRANSPORT SETUP

In this section, we consider the transport setup with a finite-
size SC finger of length Ls. Firstly, we check the stability of
negative resistance peaks when the filling factor is changed,
pointing out the differences between the case at ν = 1, where
CAR dominates, and the case at ν = 2, where local Andreev
reflection (LAR) processes are present. Secondly, we show
the zero-energy local density of states (LDOS) for disordered
systems, in order to prove the stability of zero-energy peaks
and their compatibility with emergence of Majorana bound
states. Lastly, we present a heuristic explanation outlining
the relationship between localized MBSs and the Andreev
transmission coefficient.

1. Finger-width dependence of downstream resistance
and stability of negative resistance dips against

magnetic flux variation (orbital effects)

In Figs. 16–18, we plot the Andreev transmission co-
efficient between the two leads, T A, and the downstream

(a) (b)

(c) (d)

FIG. 17. (a) Andreev transmission coefficient between the two
leads, T A, as a function of the finger width Ws at different temper-
atures T for the SOI case. The dash-dotted line at 0.5 indicates the
threshold above which values of anomalous transmission negative
downstream resistances are observed. (b) Calculated width depen-
dence of downstream (RD) resistances. The dashed line indicates the
theoretically achievable minimum resistance, RD = −RQ for ν = 1
filling. (c) Stability of the Andreev transmission coefficient T A as
a function of the magnetic flux variation δφ. (d) Stability of the
downstream resistance RD as a function of the magnetic flux variation
δφ. This magnetic flux controls the orbital effect in the QHE region.
The stability is checked for different widths associated with peaks
in the transmission. In correspondence with the chosen values of Ws,
lines are drawn in (a) and (b) with the same color code as in (c) and
(d).Note how the double oscillations of T A in (a) are reminiscent of
the double oscillations of the induced CAR gap displayed for the
ν = 1 SOI case in Fig. 12. Parameters: Nx = 150, Ny = 120, S = 90,
ts = tc = t , μs = 0.1t , �s = 0.02t , φ = 0.01, μn = 0.0625t , �⊥

Z =
0.04t , �

‖
Z = 0, ζ = 10a, and αs = 0.05t .

resistance RD, checking their stability with respect to mag-
netic flux variation, for all the cases considered. The magnetic
flux controls the orbital effect in the QHE region. In each plot,
panels (a) and (b) show the Andreev transmission coefficient
and the downstream resistance, respectively, as a function of
the width Ws, while panels (c) and (d) present the stability
of the same quantities with respect to variation δφ of the
magnetic flux, φ = φ + δφ. The main goal is to point out the
difference between the case at ν = 1, where only nonlocal
Andreev reflections are possible, and the case at ν = 2, where
also local Andreev reflection (LAR) processes are present.
In the spin-unpolarized edge states at ν = 2, the negative
resistance dips can originate from the formation of Andreev
edge states (AES), which can be interpreted as an alternating
skipping orbit of electrons and holes locally Andreev reflected
at the SC interface. Since the radius of these skipping orbits
depend on the magnetic length �B, negative resistance dips
induced by AES should display an oscillating pattern in the
magnetic field. The formation of AES is ruled out by the spin-
polarization of ν = 1 edge states at the two separate QHE-SC
interfaces. We also check that peaks and dips at ν = 1 are not
oscillating against the variation of magnetic field, while they
exhibit an oscillating pattern in the variation of magnetic flux
at ν = 2.
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(a) (b)

(c) (d)

FIG. 18. (a) Andreev transmission coefficient between the two
leads, T A, as a function of the finger width Ws at different temper-
atures T for the ν = 2 case. The dash-dotted line at 1 indicates the
threshold above which values of anomalous transmission negative
downstream resistances are observed. (b) Calculated width depen-
dence of downstream (RD) resistances. The dashed line indicates
the theoretically achievable minimum resistance, RD = −RQ/2 for
ν = 2 filling. (c) Stability of the Andreev transmission coefficient
T A as a function of the magnetic flux variation δφ. (d) Stability of the
downstream resistance RD as a function of the magnetic flux variation
δφ. This magnetic flux controls the orbital effect in the QHE region.
The stability is checked for different widths associated with peaks
in the transmission. In correspondence with the chosen values of Ws,
lines are drawn in (a) and (b) with the same color code as in (c) and
(d). Parameters: Nx = 150, Ny = 120, S = 90, ts = tc = t , μs = 0.1t ,
�s = 0.02t , φ = 0.01, μn = 0.1025t , �⊥

Z = �
‖
Z = 0, ζ = 10a, and

αs = 0.

a. ν = 1 case, in-plane magnetic field mechanism

In Figs. 16, Andreev transmission and the associated down-
stream resistance remains very stable with respect to flux
variations.

b. ν = 1 case, spin-orbit interaction mechanism

For the spin-orbit case (see Fig. 17), we observe the same
behavior as for the previous case, thus showing that the
negative resistance peaks at ν = 1 are independent of the
magnetic length. We confirm that, at ν = 1, we can rule out
the explanation for the negative resistance peaks based on
AES.

c. ν = 2 case

In Fig. 18, the negative resistance peaks are significantly
dependent on the orbital effects and exhibit an oscillating
pattern with respect to the flux variation δφ, for differ-
ent values of the finger width. For spin-unpolarized edge
states at ν = 2, we interpret the appearance of negative
resistance values as a result of LAR processes and AES for-
mation.

2. Local density of states and Majorana zero-energy modes

In Fig. 19, we show the LDOS at zero energy for dif-
ferent values of disorder in the SC chemical potential. The

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 19. (a) LDOS at zero energy (E = 0), in the finite-geometry
SC finger setup. The green dash-dotted lines indicate the SC finger.
Note that edge states along the SC finger gap out and a localized
zero-energy MBS forms on the tip of the finger, as well as
its delocalized partner in the lower edge states (away from
the finger), invisible at the scale adapted to the MBS density.
The strength of disorder is (a) δμs = 0, (b) δμs =
0.5�s, (c) δμs = �s, (d) δμs = 2�s, (e) δμs = 5�s,
(f) δμs = 10�s, (g) δμs = 20�s, and (h) δμs = 40�s. Apart
from the presence of disorder, densities are obtained numerically
with the same parameters as in Fig. 4(a) in the main text.

plot in Fig. 19(a) is identical to the one in Fig. 4(a) of the
main text, exhibiting a zero-energy peak at the tip of the
SC finger. In panels (b)–(g), we show the same quantity for
an increasing value of disorder in the SC chemical poten-
tial. Remarkably, the peaks in the zero-energy LDOS remain
up to significant amounts of disorder, i.e., δμs ≈ 20�s. We
consistently observe the stability of zero-energy peaks in cor-
respondence with negative values of downstream resistance.
This result is in agreement with the hypothesis of the emer-
gence of Majorana bound states in our setup. The second
zero-energy peak at the bottom of the SC finger hybridizes
with the continuum of QHE edge states and cannot be ob-
served in the zero-energy LDOS. This hybridization is key
to the efficient electron-to-hole conversion in the transport
and thus to the occurrence of negative downstream resis-
tances.
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