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Instability of the ferromagnetic quantum critical point and symmetry of the ferromagnetic ground
state in two-dimensional and three-dimensional electron gases with arbitrary spin-orbit splitting
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It is well known that in the absence of the spin-orbit (SO) splitting the zero-temperature ferromagnetic phase
transition in two-dimensional (2D) and three-dimensional (3D) electron gas is discontinuous (first order). The
physical reason for this effect lies in the infrared catastrophe brought by the long-range particle-hole fluctuations
near the Fermi surface. It is widely believed that a finite SO splitting is able to regularize this infrared catastrophe,
and therefore, to stabilize the ferromagnetic quantum critical point. In contrast to this, we show that the infrared
catastrophe persists at arbitrary SO splitting and the zero-temperature ferromagnetic phase transition in the
itinerant 2D and 3D electron gas is always discontinuous. We also find that SO splitting reduces the symmetry of
the ferromagnetic ground state down to the symmetry of the spin-orbit term. For example, Rashba SO splitting
in 2D electron gas leads to the easy-plane symmetry of the ferromagnetic ground state. A combination of the
Rashba SO splitting with the Dresselhaus term reduces the symmetry of the ferromagnetic ground state down to
the in-plane Ising ferromagnet. The infrared catastrophe can be measured via the nonanalytic dependence of the
spin susceptibility on magnetic field. This dependence is strongly anisotropic and follows the symmetry of SO
splitting.

DOI: 10.1103/PhysRevB.106.134417

I. INTRODUCTION

Itinerant ferromagnetism in two-dimensional (2D) and
three-dimensional (3D) electron gas has been observed in
various materials, such as manganese perovskites [1–4],
transition-metal-doped semiconductors [5–7], monolayers of
transition metal dichalcogenides [8–13], and many others
[14–21]. The physical mechanisms leading to the ferromag-
netic ground state depend strongly on the materials. Doping
by transition metals results in strong interaction between the
itinerant spins and the magnetic moments of the transition
metal ions, the mechanism known as double exchange or
Zener mechanism [22–24]. In this case, the ferromagnetism
is not intrinsic but rather induced by the magnetic moments
of the dopants. In contrast, in this work, we are interested in
the itinerant ferromagnetism emerging from electron-electron
interactions between the delocalized charge carriers. This
mechanism is often referred to as the Stoner mechanism
[25,26].

In the original work of Stoner [25] the phase transition
to the ferromagnetic phase is of second order, i.e., contin-
uous. The ferromagnetic quantum critical point (FQCP) of
the spin-degenerate electron gas is analyzed in the litera-
ture via the effective Ginzburg-Landau-Wilson theory [27–31]
describing the fluctuating magnetic order parameter. How-
ever, this theory relies on the analyticity of the effective
Lagrangian [30,31], which does not hold for interacting
2D and 3D electron gases [32]. The negative nonanalytic
corrections, originating from the resonant backscattering of
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itinerant electrons close to the spin-degenerate Fermi surface,
emerged already in second-order perturbation in the electron-
electron interaction [32–40]. If these nonanalyticities survive
in the vicinity of the ferromagnetic quantum phase transi-
tion (FQPT), they destabilize the FQCP at zero temperature,
and lead to a first-order FQPT in 2D and 3D electron gases
[33–40]. This phenomenon is an example of the fluctuation-
induced first-order transition first predicted in high-energy
physics [41]. In condensed matter, this effect is responsible for
weak first-order metal-superconductor and smectic-nematic
phase transitions [42].

The problem with FQPTs in clean metals is that it happens
at very strong electron-electron interaction where the pertur-
bative approach [32–40] is no longer valid. It was pointed
out in the literature that higher-order scattering processes
in the spin-degenerate electron gas [43,44] may change the
sign of the nonanalytic terms making them irrelevant in the
infrared limit and thus, stabilizing the FQCP. So far, the
greatest advances in understanding the strongly interacting
regime are attributed to the effective spin-fermion model [45]
where the collective spin excitations in strongly interacting
electron gases are coupled to the electron spin. The negative
nonanalyticities calculated within this model remain relevant,
although strongly suppressed near the FQPT [43,44].

Numerical simulations of the low-density spin-degenerate
2D electron gas (2DEG) confirm a first-order FQPT in the
liquid phase with further transition to the Wigner solid at even
lower densities [46–49]. The situation is less definite in a 3D
electron gas (3DEG) where various advanced numerical tech-
niques predict either a first- or second-order FQPT depending
on the numerical scheme [50–55]. This disagreement between
different numerical results for 3DEGs might follow from the
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much weaker character of the nonanalytic terms destabilizing
the FQCP compared to the 2D case [32].

The problem becomes even more complicated if a spin-
orbit (SO) splitting of the Fermi surface is present. The main
effect of the SO splitting is the spin symmetry breaking re-
stricting possible directions of the net magnetization in the
magnetically ordered phase [56,57]. In particular, the Rashba
SO splitting in 2DEGs restricts possible net magnetization
directions in the 2DEG plane [56,57]. So far, SO splitting is
considered in the literature as a promising intrinsic mecha-
nism cutting the nonanalyticity and stabilizing the FQCP in
the interacting electron gas [58].

In this work, we consider the general case of a D-
dimensional electron gas, D > 1, with arbitrary SO splitting
and identify the resonant scattering processes close to the
Fermi surface which result in the nonanalytic corrections with
respect to the magnetization. Our results are in perfect agree-
ment with the previously considered case of the Rashba 2DEG
[56,57]. However, we show that even arbitrary SO splitting is
not able to cut negative nonanalytic corrections in 2DEGs and
3DEGs. Thus, in contrast to the results of Ref. [58], we find
that SO splitting cannot be considered as a possible intrinsic
mechanism stabilizing FQCP in a uniform electron gas.

In this work we apply the dimensional reduction of the
electron Green’s function which we developed earlier in
Ref. [59]. This procedure allows us to reduce D spatial dimen-
sions to a single effective spatial dimension and significantly
simplifies the derivation of the nonanalytic corrections in the
perturbative regime for arbitrary SO splitting. We confirm the
validity of our approach by comparison with the known results
[44,56,57]. As an example, we consider 2DEG with Rashba
and Dresselhaus SO splitting and find that the symmetry of
the ferromagnetic ground state is broken down to the in-plane
Ising ferromagnet.

The key signatures of the nonanalytic terms destabilizing
the FQCP can be measured via the spin susceptibility even
in the paramagnetic phase. The nonanalytic terms in the spin
susceptibility are strongly anisotropic and follow the sym-
metry of the SO splitting. This can also be used to identify
the symmetry of the SO coupling. The candidate materials
for experiments are the pressure-tuned 3D metals ZrZn2 [60],
UGe2 [61], 2D AlAs quantum wells [62], and many more,
e.g., see the review in Ref. [63].

The paper is organized as follows. In Sec. II we introduce
the noninteracting electron gas in D > 1 spatial dimensions
with arbitrary spin splitting. In Sec. III we present the asymp-
totics of the free electron Green’s function at large imaginary
time τ � 1/EF and large distance r � λF , where EF is the
Fermi energy and λF is the Fermi wavelength. In Sec. IV
we show that the first-order interaction correction does not
contribute to the nonanalyticity in the thermodynamic poten-
tial �. In Sec. V we use second-order perturbation theory to
derive the nonanalytic correction to � with respect to arbitrary
spin splitting. In Sec. VI we take the limit of small Zeeman
splitting B compared to the SO splitting βSO and show that
the nonanalyticity in B survives at arbitrary βSO. The non-
analytic correction is strongly anisotropic, which results in
the reduced symmetry of the ferromagnetic ground state. In
Sec. VII we provide an example of 2DEG with combined
linear Rashba and Dresselhaus SO splittings and show that

the ferromagnetic ground state is the in-plane easy-axis (Ising)
ferromagnet. In Sec. VIII we show that the nonanalytic correc-
tion to spin susceptibility in the paramagnetic (normal) phase
is strongly anisotropic in the presence of the SO splitting.
Directions corresponding to the maxima of spin susceptibil-
ity on the paramagnetic side of the FQPT indicate preferred
directions for the net magnetization in the ordered phase.
Conclusions are given in Sec. IX. Some technical details are
deferred to in the Appendix.

II. NONINTERACTING ELECTRON GAS
WITH ARBITRARY SPIN SPLITTING

In this section we consider a noninteracting single-valley
electron gas in D > 1 spatial dimensions with arbitrary spin
splitting. The case of D = 1 is not included in this paper due
to the Luttinger liquid instability of one-dimensional Fermi
liquids with respect to arbitrarily small interactions [64].
The electron gas is described by the following single-particle
Hamiltonian:

H0 = p2

2m
− EF − σ · β(p), (1)

where p is a D-dimensional momentum, m the effective
mass, EF the Fermi energy, β(p) the spin splitting, and σ =
(σx, σy, σz ) the Pauli matrices. The spin splitting is considered
small compared to the Fermi energy

β(p) ≡ |β(p)| � EF , (2)

but otherwise arbitrary. Therefore, the spin splitting close to
the Fermi surface can be parametrized by the unit vector np =
p/p along the momentum p:

β(p) ≈ β(np), np = p
p
, p = kF =

√
2mEF . (3)

Here we introduced kF as the Fermi momentum at zero spin
splitting β(p) = 0.

The eigenvectors |σ, np〉 of the Hamiltonian H0 correspond
to the eigenvectors of the operator σ · β(np):

σ · β(np)|σ, np〉 = σβ(np)|σ, np〉, (4)

where σ = ±1 and β(np) = |β(np)|. The explicit form of the
spinors is given by

|σ, np〉 = [β−(np), σβ(np) − βz(np)]T√
2β(np)[β(np) − σβz(np)]

, (5)

where the superscript T means the transposition and
β±(np) = βx(np) ± iβy(np). Two spinors with the same np

and opposite σ are orthogonal

〈+, np|−, np〉 = 0. (6)

This forbids the forward scattering between the bands with
opposite band index σ .

In this paper we need the backscattering matrix elements

Mσσ ′ (np) = 〈σ, np|σ ′,−np〉. (7)
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Using Eq. (5), we find the matrix elements explicitly as follows:

Mσσ ′ (np) = β+(np)β−(−np) + σσ ′[β(np) − σβz(np)][β(−np) − σ ′βz(−np)]√
4β(np)β(−np)[β(np) − σβz(np)][β(−np) − σ ′βz(−np)]

. (8)

The spin splitting β(np) results in two Fermi surfaces labeled
by σ = ±1 with the Fermi momenta being dependent on np:

kσ (np) = √
2m[EF + σβ(np)] ≈ kF + σ

β(np)

vF
, (9)

where vF = kF /m is the Fermi velocity at β(np) = 0. Here we
used Eq. (2) to expand the square root.

III. ASYMPTOTICS OF THE FREE ELECTRON
GREEN’S FUNCTION

In the following it is most convenient to work with the
electron Green’s function in the space-time representation.
In this paper we operate with the statistical (Matsubara)
Green’s function Gσ (τ, r), where τ is the imaginary time, r
the D-dimensional coordinate vector, and σ = ±1 the band
index. In this section we present the asymptotics of the
free electron Green’s function G(0)

σ (τ, r) at τ � 1/EF and
r � λF , where λF = 2π/kF is the Fermi wavelength. A de-
tailed derivation of the long-range infrared asymptotics of
the Green’s function is outlined in the Appendix for arbi-
trary geometry of the Fermi surface. Similar derivations can
be found in Ref. [65] in application to the Fermi surface
imaging.

The asymptotics of G(0)
σ (τ, r) at τ � 1/EF and r � λF

comes from the sector (ω, p) close to the Fermi surface:

ω � EF , p = kσ + n(kσ ) δp, δp � kF , (10)

where kσ ∈ FSσ is a point on the spin-split Fermi sur-
face FSσ with index σ , n(kσ ) is the outward normal at
this point, δp > 0 (δp < 0) corresponds to empty (occupied)
states at zero temperature, see Fig. 5(a). The free electron
Green’s function G(0)

σ (iω, p) is given by the quasiparticle
pole

G(0)
σ (iω, p) ≡ G(0)

σ (iω, δp, n) = |σ, n〉〈σ, n|
iω − vσ (n)δp

, (11)

where we shortened n(kσ ) to n here, |σ, n〉 is the spinor given
by Eq. (5), vσ (n) is the Fermi velocity at kσ . Here we also
linearized the dispersion with respect to δp because δp � kF .
At the same time, the finite curvature of the Fermi surface is
important for the asymptotic form of G(0)

σ (τ, r).
Here we consider nearly spherical Fermi surfaces with

small deformations coming from the spin splitting, see
Eq. (9). In this case the asymptotic expansion of the free-
electron Matsubara Green’s function contains two terms, see
Eq. (A49),

G(0)
σ (τ, r) ≈

(
1

λF r

) D−1
2 [

ei(kσ (nr )r−ϑ )g(0)
σ (τ, r, nr)

+ e−i(kσ (−nr )r−ϑ )g(0)
σ (τ,−r,−nr)

]
,

nr = r
r
, ϑ = π

4
(D − 1), (12)

g(0)
σ (τ, x, n) =

∫ ∞

−∞

dδp

2π
eiδp xG(0)

σ (τ, δp, n)

= 1

2π

|σ, n〉〈σ, n|
ix − vF τ

, (13)

where kσ (n) is given by Eq. (9) for arbitrary unit vector n,
λF is the Fermi wavelength, vF = kF /m is the Fermi velocity
at zero spin splitting, and nr = r/r is the unit vector along r.
Here we stress that Eq. (12) is true only if the SO splitting
is small compared to EF , see Eq. (2). We also neglected the
weak dependence of the Fermi velocity on the spin splitting
in Eq. (13), vσ ≈ vF , because it does not provide any non-
analyticities. We see from Eq. (12) that the Green’s function
contains the oscillatory factors that are sensitive to the spin
splitting through kσ (±nr), see Eq. (9). As we will see later,
these oscillatory factors are responsible for the nonanalytic
terms in the thermodynamic potential �. The dimensional
reduction of the electron Green’s function for spherical Fermi
surfaces is covered in Ref. [59].

IV. FIRST-ORDER INTERACTION CORRECTION TO �

In this and the following sections we calculate the non-
analytic corrections to the thermodynamic potential � in the
limit of weak electron-electron interaction. The calculation is
performed within first- and second-order perturbation theory.
Our results extend existing theories [33–35,44,56] to the case
of arbitrary spin splitting. In particular, we show that arbitrary
SO splitting is not able to gap out all soft fluctuation modes
and the nonanalyticity in � with respect to the magnetic field
B survives, in contrast to the predictions of Ref. [58]. As
we are only after the nonanalytic terms in �, all analytic
corrections will be dropped.

Let us start from the first-order interaction correction to �,
see Fig. 1(a):

�(1) = 1

2

∑
σ,σ ′

∫
dz V0(z)Pσσ ′ (z), (14)

Pσσ ′ (z) = −Tr
{
G(0)

σ (z)G(0)
σ ′ (−z)

}
, (15)

where z = (τ, r), Tr stands for the spin trace, and Pσσ ′ (z) is the
particle-hole bubble. Here, V0(z) is the Coulomb interaction,

V0(τ, r) = e2

εr
δ(τ ), (16)

where e is the elementary charge, ε the dielectric constant, and
δ(τ ) is due to the instantaneous nature of the Coulomb interac-
tion (the speed of light is much larger than the Fermi velocity).
Using the asymptotics of the Green’s function G(0)

σ (τ, r),
see Eq. (12), we find the asymptotics of the particle-hole
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FIG. 1. (a) First-order interaction correction to �, see Eq. (14).
(b) Second-order interaction correction to � contributing to the
nonanalyticity. Solid lines correspond to the electron propagators
G(0)

σ (τ, r), see Eq. (12); wiggly lines stand for the Coulomb inter-
action, see Eq. (16).

bubble

Pσσ ′ (τ, r) = PL
σσ ′ (τ, r) + PK

σσ ′ (τ, r), (17)

PL
σσ ′ (τ, r) ≈ δσσ ′

2π2

(
1

λF r

)D−1
v2

F τ 2 − r2

(
r2 + v2

F τ 2
)2 , (18)

PK
σσ ′ (τ, r) ≈ 1

4π2

1

r2 + v2
F τ 2

(
1

λF r

)D−1

× [e−2iϑeir(kσ (nr )+kσ ′ (−nr ))|Mσσ ′ (nr)|2
+ e2iϑe−ir(kσ (−nr )+kσ ′ (nr ))|Mσσ ′ (−nr)|2], (19)

where the matrix elements Mσσ ′ (±nr) are given by Eq. (8).
Here PL

σσ ′ (τ, r) is the Landau damping contribution to the
particle-hole bubble coming from the forward scattering. It is
clear that this contribution is insensitive to the spin splitting.
The second contribution, PK

σσ ′ (τ, r), is the Kohn anomaly com-
ing from the backscattering with the momentum transfer close
to 2kF . The Kohn anomaly is sensitive to the spin splitting
through the oscillatory factors containing the Fermi momenta
kσ (±nr), see Eq. (9).

As only the Kohn anomaly is sensitive to the spin splitting
β(np), we can simplify Eq. (14):

�(1) = 1

2

∑
σ,σ ′

∫
SD−1

dnr

∫ ∞

0
dr rD−1 e2

εr
PK

σσ ′ (0, r), (20)

where SD−1 is the (D − 1)-dimensional unit sphere, dr =
rD−1 dr dnr. The integral over r is divergent at small r (the
ultraviolet divergence) because it takes the following form:∫ ∞

0

dr

r3
eir� → ∞, (21)

where � is either equal to � = kσ (nr) + kσ ′ (−nr) or to � =
−kσ (−nr) − kσ ′ (nr). This divergence comes from the asymp-
totics of the particle-hole bubble, see Eq. (19), that is only
valid at r � λF . Therefore, the lower limit for r in Eq. (21)
is bounded by r ∼ λF . This divergence can also be cured via
the analytical continuation to the Euler gamma function (x)
using the following identity:

Iα (�) =
∫ ∞

0

dr

rα
eir� = π |�|α−1

sin(πα)(α)
e−i π

2 (α−1)sgn(�). (22)

In our case α = 3 and the integral is indeed divergent due to
sin(3π ) = 0 in the denominator. Therefore, we consider α =
3 + δ and take the limit δ → 0:∫ ∞

0

dr

r3
eir� = �2

2

(
1

δ
+ ln |�| − i

π

2
sgn(�)

)
. (23)

Now it is clear that the physical dimension of � under the
logarithm has to be compensated by the ultraviolet scale p0 ∼
2kF , which is equivalent to cutting the lower limit in Eq. (21)
at r ∼ λF :∫ ∞

∼λF

dr

r3
eir� = �2

2

(
ln

∣∣∣∣ �

p0

∣∣∣∣ − i
π

2
sgn(�)

)
. (24)

We subtracted out the divergent terms originating from r ∼ λF

because they do not contribute to the nonanalyticity in the
spin splitting due to the infrared long-range nature of the
nonanalytic corrections. However, this can be seen explicitly.
The term ∼1/λ2

F that is not present in Eq. (24) does not
depend on � and can be safely subtracted out. The linear
term ∼�/λF , which is also not present in Eq. (24) is analytic
(no absolute value is taken), and thus, it cannot contribute
to any nonanalyticity. One can explicitly substitute it back
into Eq. (20) and check that any term linear in spin splitting
disappears after the summation over the spin indices. Now, we
come back to �(1) where � is either equal to � = kσ (nr) +
kσ ′ (−nr) or to � = −kσ (−nr) − kσ ′ (nr), so using Eq. (9)
we find

|�| ≈ 2kF + σβ(±nr) + σ ′β(∓nr)

vF
. (25)

As the spin splitting is much smaller than the Fermi energy,
we can expand the logarithm ln |�/p0| in the analytic Taylor
series with respect to the spin splitting. Hence, we see that
�(1) does not contain any nonanalyticities for arbitrary spin
splitting.

Here we performed the calculations for the long-range
Coulomb interaction Eq. (16). Finite electron density results
in the Thomas-Fermi screening of the long-range Coulomb
tail on the scale of the screening length r0. The weak coupling
limit that we consider in this section corresponds to r0 � λF .
However, the integral over r in �(1) converges at r ∼ λF � r0

because � ≈ 2kF here. Therefore, we can indeed neglect the
Thomas-Fermi screening in this section.

V. SECOND-ORDER INTERACTION
CORRECTIONS TO �

We see from the calculation of �(1) that the nonanalytic
terms may come from the oscillatory integrals like the one in
Eq. (22). However, we have to subtract the 2kF factor first,
such that � in Eq. (22) becomes proportional to the spin
splitting. One way to achieve this is to consider �(1), see
Eq. (14), with the interaction V (τ, r), which has oscillatory
components e±i2kF r . In fact, the electron-electron interaction
acquires such components upon the dynamic screening by the
particle-hole bubble. One consequence of this is the Thomas-
Fermi screening, which we already discussed and concluded
that it is not important if the interaction is weak. However,
there is another much more important consequence of such
dressing that results in 2kF harmonics in the interaction due to
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backscattering of electrons near the Fermi surface, the effect
known as Friedel oscillations. As we consider the correlations
at large r ∼ vF /β � λF , where β is a characteristic value of
the spin splitting at the Fermi surface, the interaction matrix
elements at the momentum transfer 2kF are effectively local,
so we can use the effective contact interaction

V2kF (z) = u δ(r)δ(τ ) = u δ(z), (26)

u ≈ V0(2kF ) = 2π
D
2 (D − 1)


(

D
2

) e2

ε(2kF )D−1
, (27)

where δ(r) is the D-dimensional delta function and V0(q)
is the Fourier transform of the Coulomb interaction
Eq. (16).

If we dress the interaction line in Fig. 1(a) by a single
particle-hole bubble, we get the second-order diagram for �

shown in Fig. 1(b)

�(2) = −1

4

∑
σi

∫
dz1dz2dz3 V2kF (z2)V2kF (z3 − z1)

×Pσ1σ2 (z1)Pσ3σ4 (z3 − z2). (28)

Using the contact approximation Eq. (26), we simplify �(2) to
the following expression:

�(2) = −u2

4

∑
σi

∫
dz Pσ1σ2 (z)Pσ3σ4 (z), (29)

where z = (τ, r). From Eqs. (17) to (19) we find that only the
product of Kohn anomalies contains slowly oscillating terms
on the scale vF /β, where β stands for the characteristic spin
splitting at the Fermi surface

Pσ1σ2 (z)Pσ3σ4 (z) = eir�
σ1σ2
σ3σ4 (nr )|Mσ1σ2 (nr)Mσ3σ4 (−nr)|2 + e−ir�

σ1σ2
σ3σ4 (−nr )|Mσ1σ2 (−nr)Mσ3σ4 (nr)|2

(2π )4(λF r)2(D−1)
(
r2 + v2

F τ 2
)2 . . . , (30)

�σ1σ2
σ3σ4

(nr) = kσ1 (nr) + kσ2 (−nr) − kσ3 (−nr) − kσ4 (nr) ≈ (σ1 − σ4)β(nr) + (σ2 − σ3)β(−nr)

vF
, (31)

where the dots in Eq. (30) stand for the rapidly oscillating
terms on the scale of 2kF and 4kF and also the forward scat-
tering contribution, which does not contain any nonanalytic
dependence on the spin splitting. We used Eq. (9) to express
�σ1σ2

σ3σ4
(nr) in terms of the spin splitting.

Then we substitute Eq. (30) into Eq. (29) and evaluate the
integral over z = (τ, r). The integral over τ is elementary

∫ ∞

−∞

dτ(
r2 + v2

F τ 2
)2 = π

2vF r3
. (32)

The integral over r can be represented using the integral Iα (�)
defined in Eq. (22)

�(2) = − u2

26π3vF λ
2(D−1)
F

∑
σi

∫
SD−1

dnr

×|Mσ1σ2 (nr)Mσ3σ4 (−nr)|2Re
{
ID+2

[
�σ1σ2

σ3σ4
(nr)

]}
,

(33)

where Re stands for the real part. Here we used that Iα (−x) =
I∗
α (x), where the star corresponds to the complex conjugation.

At this point it is convenient to introduce the dimensionless
interaction parameter g:

g = uNF = umkD−2
F

2D−1π
D
2 

(
D
2

) , (34)

where NF is the density of states per band at the Fermi level.
Substituting Eq. (27) into Eq. (34), we find an estimate for the
dimensionless coupling constant g:

g ≈ (D − 1)

22D−32
(

D
2

) 1

kF aB
, aB = ε

me2
, (35)

where aB is the effective Bohr radius. The weak coupling
regime corresponds to high densities such that kF aB � 1 or
g � 1.

Then Eq. (33) can be represented in the following form:

�(2) = LD
vD+1

F

2D+2

∑
σi

∫
SD−1

dnr

×|Mσ1σ2 (nr)Mσ3σ4 (−nr)|2∣∣�σ1σ2
σ3σ4

(nr)
∣∣D+1

, (36)

LD = g2

32

(
2

πvF

)D 2
(

D
2

)
(D + 2)

1

cos
(
π D

2

) . (37)

We perform the summation over the band indexes σi explicitly

�(2) = LD

∫
SD−1

dn
{|M+−(n)M+−(−n)|2|β(n) − β(−n)|D+1

+ |M++(n)M−−(n)|2|β(n) + β(−n)|D+1

+ 2[|M++(n)M−+(n)|2 + |M−−(n)M+−(n)|2]|β(n)|D+1
}
.

(38)

Here we dropped the index r in nr, such that n can be
also interpreted as the unit vector np = p/p, p ≈ kF , in the
momentum space. This interpretation makes sense because
the asymptotics of the Green’s function, see Eq. (12), comes
from small vicinities of two points on the Fermi surface whose
outward normals are collinear with r. So, r and p are in a way
pinned to each other.
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FIG. 2. Other second-order diagrams that do not contribute to the
nonanalyticities in �, see Eqs. (39) and (40).

Finally, we have to check that the second-order diagrams in
Figs. 2(a) and 2(b) do not contribute to the nonanalytic terms
in �:

�a = u2

2

∑
σi

∫
dz Tr

{
G(0)

σ1
(0)G(0)

σ2
(z)G(0)

σ3
(0)G(0)

σ4
(−z)

}
,

(39)

�b = u2

4

∑
σi

∫
dz Tr

{
G(0)

σ1
(z)G(0)

σ2
(−z)G(0)

σ3
(z)G(0)

σ4
(−z)

}
.

(40)

Here G(0)
σ (0) = G(0)

σ (τ = −0, r = 0) due to the ordering of
the field operators within the interaction Hamiltonian

G(0)
σ (0) =

∫
d p

(2π )D
θ (kσ (np) − p)|σ, np〉〈σ, np|, (41)

where |σ, np〉 are the eigenvectors of the single-particle
Hamiltonian, see Eq. (5), and kσ (np) is given by Eq. (9).

The diagram �a has a single particle-hole bubble in it due
to the Green’s functions G(0)

σ2
(z) and G(0)

σ4
(−z), see Eq. (39).

The product of these Green’s functions contains weakly os-
cillating terms and ≈2kF harmonics. As in the case of �(1),
the 2kF harmonics do not produce any nonanalyticities. The
weakly oscillating terms originate from the Landau damping
part of the particle-hole bubble but these terms vanish due to
the integral over τ : ∫ ∞

−∞

dτ

(vF τ ± ir)2
= 0. (42)

The diagram �b is more complicated. Let us consider two
matrix products G(0)

σ1
(z)G(0)

σ2
(−z) and G(0)

σ3
(z)G(0)

σ4
(−z), spin

traces are not taken here. As usual, we are after the slowly
oscillating terms in Eq. (40). One possibility for this is the
product of the forward scattering contributions coming from
G(0)

σ1
(z)G(0)

σ2
(−z) and G(0)

σ3
(z)G(0)

σ4
(−z). From Eq. (12) it is clear

that the forward-scattering contributions are nonzero only if
σ1 = σ2 and σ3 = σ4, the matrix products of corresponding
projectors vanish otherwise. However, in this case the oscil-
lating factors are canceled exactly, and thus, this contribution
is analytic. Another way to obtain slowly oscillating terms in
Eq. (40) is the product of the Kohn anomalies contained in
G(0)

σ1
(z)G(0)

σ2
(−z) and G(0)

σ3
(z)G(0)

σ4
(−z). In this case, we have to

look at the spin trace in Eq. (40) which is nonzero only if σ1 =
σ4 and σ2 = σ3. This condition becomes obvious if we notice

that the product of the Kohn anomalies of G(0)
σ1

(z)G(0)
σ2

(−z)
and G(0)

σ3
(z)G(0)

σ4
(−z) is actually equivalent to the product of

the forward-scattering contributions of G(0)
σ2

(−z)G(0)
σ3

(z) and
G(0)

σ4
(−z)G(0)

σ1
(z), which is analytic for the reasons we dis-

cussed above.
Hence, only the diagram in Fig. 1(b) contains nonana-

lytic terms, and therefore, Eq. (38) describes the nonanalytic
corrections to � due to arbitrary spin splitting β(p) within
second-order perturbation theory.

Even though Eq. (38) is true in arbitrary number D of spa-
tial dimensions, we give explicit expressions for D = 2 and
D = 3. For 2DEG the coefficient L2 is negative, see Eq. (37)
for D = 2:

L2 = − g2

48π2v2
F

. (43)

The integral over dn can be parametrized by a single angle
φ ∈ (0, 2π ], so the nonanalytic correction Eq. (38) for 2DEG
then reads

�(2) = − g2

24πv2
F

∫ 2π

0

dφ

2π

{|M+−(φ)M−+(φ)|2|β(φ)

−β(φ + π )|3 + |M++(φ)M−−(φ)|2|β(φ)

+β(φ + π )|3 + 2
[|M++(φ)M−+(φ)|2

+ |M−−(φ)M+−(φ)|2]|β(φ)|3}, D = 2. (44)

Our result Eq. (44) agrees with previous studies [44,56,57]
and extends them to the case of arbitrary spin splitting. Equa-
tion (44) together with Eq. (8) for the matrix elements allows
one to find the nonanalytic terms in � directly from the spin
splitting β(n).

The case of D = 3 is marginal because the non-analytic
terms in Eq. (38) are proportional to the fourth power of
the spin splitting. The nonanalyticity itself comes from the
divergence of the LD prefactor at D = 3, see Eq. (37), which
results in an additional logarithm. This is best seen from the
dimensional regularization

D = 3 − δ, δ → +0. (45)

The dimension D enters Eq. (38) in the following form:

LD�D+1 = − g2�4

192π3v3
F

(
1

δ
− ln �

)
+ O(δ), (46)

where � takes one of the following values: � = |β(n) ±
β(−n)| or � = |β(n)|. Here we expanded the expression
at δ → +0. The divergent 1/δ contribution is actually ana-
lytic and can be represented by ln � factor, � ∼ EF , which
compensates the physical dimension of �:

LD�D+1 → g2

48π2v3
F

�4

4π
ln

∣∣∣∣��
∣∣∣∣, � ∼ EF . (47)
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Using the regularization Eq. (47), we find the nonanalytic correction to the spin-split 3DEG

�(2) = g2

48π2v3
F

∫
S2

dn
4π

{
|M+−(n)M−+(n)|2|β(n) − β(−n)|4 ln

∣∣∣∣β(n) − β(−n)

�

∣∣∣∣
+|M++(n)M−−(n)|2|β(n) + β(−n)|4 ln

∣∣∣∣β(n) + β(−n)

�

∣∣∣∣
+2

[|M++(n)M−+(n)|2 + |M−−(n)M+−(n)|2]|β(n)|4 ln

∣∣∣∣β(n)

�

∣∣∣∣
}
, � ∼ EF , D = 3. (48)

Here, integration over the unit sphere S2 means dn =
sin φ1 dφ1dφ2, φ1 ∈ [0, π ], φ2 ∈ (0, 2π ]. The nonanalytic
correction is negatively defined for arbitrary spin splitting
due to the logarithms. In particular, if β(n) = B, we get the
well-known result, see Ref. [44],

�(2) = g2B4

3π2v3
F

ln

∣∣∣∣2B

�

∣∣∣∣, � ∼ EF . (49)

VI. LARGE SO SPLITTING AND SMALL
MAGNETIC FIELD

Here, we consider the important special case of arbitrary
SO splitting and small magnetic field

β(np) = βSO(np) + B, B � βSO, (50)

where np = p/p, p ≈ kF , βSO is a characteristic value of the
SO splitting at the Fermi surface. As any SO splitting respects
time reversal symmetry, it has to be an odd vector function of
np:

βSO(−np) = −βSO(np). (51)

As we consider B � βSO, then we can expand β(n) with
respect to B:

β(n) ≈ βSO(n) + βSO(n) · B
βSO(n)

, (52)

where βSO(n) = |βSO(n)|. Together with the symmetry con-
dition Eq. (51), we conclude that only the very first term in
Eq. (38) contributes to the nonanalyticity with respect to B
due to the following identity:

β(n) − β(−n) ≈ 2
βSO(n) · B

βSO(n)
. (53)

As we only consider the leading nonanalyticity, we calculate
the matrix elements at B = 0:

Mσσ (n) = 0, Mσ−σ (n) = −1. (54)

Substituting Eqs. (53) and (54) in Eq. (38), we find the non-
analytic in B correction to � in case of arbitrary SO splitting:

δ�(B) = LD

∫
SD−1

dn

∣∣∣∣2βSO(n) · B
βSO(n)

∣∣∣∣
D+1

, (55)

where δ�(B) indicates that only the nonanalytic terms with
respect to B are included. Thus, we see that the nonanalyticity
in magnetic field B cannot be eliminated even by arbitrary SO
splitting, in contrast to the results of Ref. [58].

The elementary processes that are responsible for the non-
analyticity given by Eq. (55) are shown in Fig. 3. These

processes describe the resonant scattering of a pair of elec-
trons with the band index σ and opposite momenta ±kσ into
a pair of electrons in the other band with index −σ and
momenta ±k−σ that are collinear with momenta of initial
electrons ±kσ . The momentum transfer in such a scatter-
ing processes is close to 2kF , see Fig. 3(b). The scattering
with small momentum transfer is forbidden due to the or-
thogonality condition Eq. (6). The considered processes are
resonant due to the time-reversal symmetry, see Eq. (51).
The collinearity condition comes from the local nesting when
the momentum transfer between the resonantly scattering
states also matches small vicinities around these states. This
matching is satisfied when the outward normals in the scat-
tering states are collinear such that the mismatch comes
only from different curvatures of the Fermi surface in the
considered points. The local nesting strongly enhances the
corresponding scattering processes because not only the con-
sidered states are in resonance, but also small vicinities of
states around them. For example, the Kohn anomaly in the
particle-hole bubble is a result of such a local nesting for the
states scattering with the 2kF momentum transfer. The per-
fect local nesting corresponds to the Landau damping of the
particle-hole excitations with energy and momentum around
zero, in this case the scattered region in the particle-hole
bubble is mapped onto itself.

FIG. 3. (a) Fermi surfaces at arbitrary SO splitting, red (blue)
color corresponds to σ = +1 (σ = −1). The arrows show the
resonant scattering processes. (b) The interaction matrix element
corresponding to the resonant scattering processes at finite SO split-
ting. Here a pair of electrons with the band index σ = +1 and
opposite momenta ±k+ scatter into a pair with momenta ±k− that
are collinear with ±k+. These processes are resonant due to the time
reversal symmetry, see Eq. (51). The collinearity of k+ and k− is due
to the local nesting discussed in the main text after Eq. (55). These
processes are responsible for the nonanalyticity in � with respect to
small magnetic field B, see Eq. (55).
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It is also instructive to write down Eq. (55) for 2DEG and
3DEG explicitly

δ�(B) = −g2|B|3
3πv2

F

∫ 2π

0

dφ

2π

∣∣∣∣βSO(φ) · b
βSO(φ)

∣∣∣∣
3

, D = 2, (56)

δ�(B) = g2B4

3π2v3
F

ln

∣∣∣∣2B

�

∣∣∣∣
∫

S2

dn
4π

∣∣∣∣βSO(n) · b
βSO(n)

∣∣∣∣
4

, D = 3,

(57)

where b = B/B is the unit vector along B. We neglected the

term ln |βSO(n) · b/βSO(n)| in Eq. (57) because it just slightly
renormalizes the regular B4 term. Here it is convenient to
introduce the angular form-factor FD(b) which depends on the
direction b of the magnetic field and on the SO splitting

FD(b) =
∫

SD−1

dn
SD−1

∣∣∣∣βSO(n) · b
βSO(n)

∣∣∣∣
D+1

, (58)

where SD−1 is the area of a unit (D − 1)-dimensional sphere.
The form-factors FD(b) can only be positive or zero, see

Eq. (58). If we demand FD(b) = 0 for any unit vector b, it
is equivalent to say that βSO(n) · b = 0 for any b and also
βSO(n) �= 0 from Eq. (50). As this is clearly impossible, we
conclude that FD(b) can never vanish for all unit vectors b even
at arbitrary SO splitting βSO(n). Therefore, the nonanalyticity
with respect to B cannot be cut by any SO splitting neither in
2DEG nor in 3DEG.

Nevertheless, the SO splitting is important because it leads
to strong anisotropy of the nonanalytic term, see Eq. (55),
which is described by the form-factor FD(b). If we extrapolate
this result to the vicinity of a FQPT, we conclude that the
direction of spontaneous magnetization must coincide with

the maximum of FD(b). In particular, we predict a first-order
Ising FQPT in electron gas with a general SO splitting which
breaks the spin rotational symmetry down to Z2.

VII. NONANALYTIC CORRECTION IN 2DEG
WITH RASHBA AND DRESSELHAUS SOI

In this section we give an example of 2DEG with Rashba
and Dresselhaus SO splittings:

βSO(φ) = [(αD + αR)kF sin φ, (αD − αR)kF cos φ, 0], (59)

where the x and y axes correspond to the [110] and [110] crys-
tallographic directions and αR and αD are the Rashba and the
Dresselhaus coupling constants, respectively. The qualitative
picture of the SO-split Fermi surfaces is shown in Fig. 3(a). It
is more convenient to introduce the following SO couplings:

a± ≡ (αR ± αD)kF . (60)

Then we find the angular form-factor F2(b), see Eqs. (56) and
(58)

F2(b) =
∫ 2π

0

dφ

2π

|a+bx sin φ − a−by cos φ |3
(a2+ sin2 φ + a2− cos2 φ)

3
2

, (61)

where b = B/B is the unit vector along B. We want to iden-
tify the directions b∗ where F2(b∗) is maximal. It is clear
that all such directions have b∗

z = 0. Then b∗
x and b∗

y can be
parametrized by a single angle �:

b∗
x = cos �, b∗

y = sin �. (62)
The integral in Eq. (61) is quite cumbersome but elementary:

π

2
F2(ζ ,�) = −ζ cos(2�)

ζ 2 − 1
+ ζ cos �

(ζ 2 − 1)
3
2

(ζ 2 cos2 � − 3 sin2 �) arctan(
√

ζ 2 − 1 cos �)

+ sin �

(ζ 2 − 1)
3
2

(sin2 � − 3ζ 2 cos2 �) ln

(√
ζ 2 cos2 � + sin2 �√
ζ 2 − 1 sin � + ζ

)
, ζ ≡

∣∣∣∣a+
a−

∣∣∣∣ =
∣∣∣∣αR + αD

αR − αD

∣∣∣∣ > 1. (63)

We added ζ as additional argument of F2(b) for convenience.
Equation (63) is true only if ζ > 1. If ζ < 1, we use the

FIG. 4. The form-factor F2(ζ , �) (multiplied by 3π/4), see
Eq. (63), as a function of � ∈ (0, π ) for different values of ζ .

following identity:

F2(ζ ,�) = F2

(
1

ζ
,
π

2
− �

)
. (64)

The form-factor F2(ζ ,�) is plotted in Fig. 4. In case of ζ = 1
the form factor is independent of �, F2(1, �) = 4/(3π ). This
corresponds to the case of either pure Rashba or pure Dres-
selhaus SO splitting. In either case the ferromagnetic ground
state is an easy-plane ferromagnet predicted in Refs. [56,57].

In case both SO interactions are present, i.e., ζ �= 1, the
form factor is a nontrivial function of the angle �, see Fig. 4.
The extremal values of the π -periodic function F2(ζ ,�) cor-
respond to � = 0 and � = π/2:

F2(ζ , 0) = 2

π

[
ζ 3 arctan(

√
ζ 2 − 1)

(ζ 2 − 1)
3
2

− ζ

ζ 2 − 1

]
, (65)

F2

(
ζ ,

π

2

)
= 2

π

[
ζ

ζ 2 − 1
− ln(ζ +

√
ζ 2 − 1)

(ζ 2 − 1)
3
2

]
, (66)
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where ζ > 1. It is straightforward to see that at ζ > 1 the
maximum of F2(ζ ,�) corresponds to � = 0. If ζ < 1, we use
Eq. (64) and find that the maximum corresponds to � = π/2,
see also Fig. 4.

If these calculations are extrapolated to the vicinity of the
FQPT, we predict an Ising ferromagnetism in 2DEG with
Rashba and Dresselhaus SO splitting. The direction of sponta-
neous magnetization here coincides with the spin quantization
axis of the states that are maximally split by the SO coupling,
namely, along [110] ([110]) if αR and αD have the same
(opposite) signs. The easy-plane ferromagnet is only realized
when either Rashba or Dresselhaus SO splitting is zero.

VIII. SPIN SUSCEPTIBILITY IN THE
PARAMAGNETIC PHASE

The nonanalytic corrections destabilizing the FQCP sep-
arating ferromagnetic and paramagnetic phases can be mea-
sured experimentally via the magnetic-field dependence of the
spin susceptibility χi j (B) in the paramagnetic phase

χi j (B) = −∂2�(B)

∂Bi∂Bj
. (67)

Deep inside the paramagnetic phase where g � 1 or λF � aB,
see Eq. (35), the nonanalytic correction is given by Eqs. (56)
and (57), so the corresponding nonanalytic corrections to the
spin susceptibility are the following:

δχi j (B) = 2g2|B|
πv2

F

κ
(2)
i j (b), D = 2, (68)

δχi j (B) = −4g2B2

π2v3
F

ln

∣∣∣∣2B

�

∣∣∣∣κ (3)
i j (b), D = 3, (69)

κ
(D)
i j (b) =

∫
SD−1

dn
SD−1

∣∣∣∣βSO(n) · b
βSO(n)

∣∣∣∣
D−1

β i
SO(n)β j

SO(n)

β2
SO(n)

,

(70)

where � ∼ EF , β i
SO(n) is the ith component of the vector

βSO(n). These results are valid for B � T . In the opposite
regime B � T , the nonanalyticity is regularized by the tem-
perature. An important feature here is the nontrivial angular
dependence of the spin susceptibility on b due to the SO
splitting, see the angular tensor κ

(D)
i j (b). Notice the following

identity:

κ
(D)
i j (b)bib j = FD(b), (71)

where FD(b) is the form factor introduced in Eq. (58). Thus,
the form factor FD(b) can be retrieved from a spin suscepti-
bility measurement. Moreover, the directions corresponding
to the maxima of the form factor FD(b) are the preferred di-
rections of the net magnetization in the magnetically ordered
phase. To measure local spin susceptibility one can use, for
example, ultrasensitive nitrogen-vacancy center based detec-
tors [66].

IX. CONCLUSION

In this paper we revisited FQPT in interacting clean 2DEG
and 3DEG with arbitrary SO splitting. First, we calculated
nonanalytic corrections to the thermodynamic potential �

with respect to arbitrary spin splitting in second order with
respect to electron-electron interaction. So far, this has been
done in the literature only for very limited number of special
cases [44,56–58]. Here we generalized the calculation for
arbitrary spin splitting and arbitrary spatial dimension D >

1, see Eq. (38). First, we see that even arbitrarily complex
SO splitting is not able to cut the nonanalyticity in � with
respect to the magnetic field, see Eq. (55). This is a direct
consequence of the backscattering processes shown in Fig. 3.
Such processes were not taken into account in Ref. [58] where
a complicated-enough SO splitting is predicted to cut the
nonanalyticity. Second, the nonanalytic correction is strongly
anisotropic and follows the symmetry of the SO splitting.
This results in reduced symmetry of the ferromagnetic ground
state. For example, the ferromagnetic ground state in the
Rashba 2DEG is the easy-plane ferromagnet. If both Rashba
and Dresselhaus terms are present, the symmetry of the fer-
romagnetic ground state is reduced down to the in-plane
easy-axis (Ising) ferromagnet. Strong anisotropy of the non-
analytic term can be measured via the nonanalytic correction
to the spin susceptibility in the paramagnetic phase that is
strongly anisotropic and follows the symmetry of the SO
splitting. The candidate materials are the pressure-tuned 3D
ferromagnets ZrZn2 [60], UGe2 [61], and many others [63],
or density-tuned 2D quantum wells [62].

ACKNOWLEDGMENTS

This work was supported by the Georg H. Endress Foun-
dation, the Swiss National Science Foundation (SNSF), and
NCCR SPIN. This project received funding from the Euro-
pean Union’s Horizon 2020 research and innovation program
(ERC Starting Grant, Grant Agreement No. 757725).

APPENDIX: ASYMPTOTICS OF THE
GREEN’S FUNCTION

We start from the Fourier representation of the Green’s
function

G(τ, r) =
∫

d p
(2π )D

eip·rG(τ, p), (A1)

where τ is the imaginary time, r a D-dimensional position vec-
tor, and p a D-dimensional momentum vector. Here we do not
indicate any band index because it is fixed. The asymptotics
at large τ � 1/EF and large r = |r| � λF is dominated by
the vicinity of the Fermi surface FS, so we can expand the
momentum p into the momentum k on the Fermi surface FS
and the momentum along the outward normal n(k) at k, see
Fig. 5(a),

p = k + n(k)δp, k ∈ FS, (A2)

where δp is the distance from p to the Fermi surface FS .
Notice that δp > 0 (δp < 0) corresponds to the states above
(below) the Fermi surface. At large r � 1/kF , kF is the
typical momentum scale on the Fermi surface, we have
δp ∼ 1/r � kF , so we can approximate the integral over
p by the integration over a thin layer around the Fermi
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FIG. 5. (a) Expansion of the momentum p close to the Fermi
surface FS: k is the normal projection of p on FS, n(k) is the
outward normal at k ∈ FS, δp � kF , see Eq. (A2). (b) Two points
k(nr) and k(−nr) on a nearly spherical Fermi surface FS where
the outward normals are equal to nr and −nr, respectively. The two
red patches on FS correspond to the vicinities of the points k(±nr)
which give the leading contribution to the τ � 1/EF and r � λF

asymptotics of the Green’s function.

surface

G(τ, r) ≈
∫ ∞

−∞

dδp

2π

∫
k∈FS

dk
(2π )D−1

×eik·reiδp n(k)·rG(τ, δp, k), (A3)

G(τ, δp, k) ≡ G[τ, k + n(k)δp]. (A4)

Here we extended the integral over δp to the interval
(−∞,∞) because the convergence radius of this integral is
very short at r → ∞, namely, δp ∼ 1/r. Hence, we approx-
imated the initial Fourier transform Eq. (A1) by the integral
over the fiber bundle FS × (−∞,∞).

As r → ∞, we can use the stationary phase method to find
the asymptotics. First, we evaluate the integral over the Fermi
surface. The stationary condition for the phase of the rapidly
oscillating factor eik·r in Eq. (A3) reads

dk · r = 0, (A5)

where dk is an arbitrary infinitesimal (but nonzero) element
of the tangent space T (k) attached to the Fermi surface FS at
the point k. Hence, r has to be orthogonal to the whole linear
space T (k), which has codimension of one. This means that
the stationary phase condition is satisfied at the points k′ ∈
FS where r is collinear with the normals n(k′):

n(k′) = s(k′, nr)nr, nr = r
r
, (A6)

where s(k′, nr) = +1 [s(k′, nr) = −1] if the outward normal
n(k′) and the radius vector r are parallel (antiparallel). We
include all such points k′ into a set P (nr):

P (nr) = {k′ ∈ FS|n(k′) = ±nr}. (A7)

It is clear that P (−nr) = P (nr) and s(k′,−nr) = −s(k′, nr).
At this point we can take the integral over δp in Eq. (A3)∫ ∞

−∞

dδp

2π
eiδp n(k′ )·rG(τ, δp, k′) = G[τ, s(k′, nr)r, k′], (A8)

where we used that k′ ∈ P (nr) and s(k′, nr) = n(k′) · nr =
±1, see Eq. (A6). Here G(τ, x, k) is the 1D Fourier transform

of the Green function:

G(τ, x, k) =
∫ ∞

−∞

dδp

2π
eiδp xG(τ, δp, k), k ∈ FS. (A9)

Note that such a one-dimensional (1D) Fourier transform is
generally dependent on the point k ∈ FS . Substituting this
into Eq. (A3), we find

G(τ, r) ≈
∑

k′∈P (nr )

eik′ ·rJk′ (r)G[τ, s(k′, nr)r, k′], (A10)

Jk′ (r) =
∫

k∈FS

dk
(2π )D−1

ei(k−k′ )·r. (A11)

The function Jk′ (r) appears due to the integration over a small
vicinity of a point k′ ∈ P (nr).

The integral Jk′ (r) converges due to the finite curvature of
the Fermi surface at k′. This is true even if the interaction is
very strong such that the Fermi surface becomes critical. To
evaluate this integral, it is convenient to introduce an auxiliary
function ε(p) with the following properties:

ε(p) = 0 if p ∈ FS, (A12)

v(p) = ∂ε(p)

∂ p
�= 0 if p ∈ FS. (A13)

We notice here that there are infinitely many choices for such
a function, but we will show that the result is independent of
the choice. In the case of a free electron gas the natural choice
for ε(p) is the electron dispersion. The condition Eq. (A13)
is required to generate the outward normal n(k) at each point
k ∈ FS:

v(k) = v(k)n(k), k ∈ FS. (A14)

Here v(k) > 0 for all k ∈ FS .
Consider two close points k ∈ FS and k′ ∈ FS . Accord-

ing to Eq. (A12), we can write

ε(k) = ε(k′) = 0. (A15)

Using the Taylor series expansion, we find

0 = ε(k) ≈ ε(k′) + (k − k′) · v(k′)

+1

2
(k − k′)T R(k′)(k − k′), (A16)

Ri j (p) = ∂2ε(p)

∂ pi∂ p j
, (A17)

where we used the matrix notations in Eq. (A16), and the
superscript T stands for transposition. Substituting Eq. (A14)
into Eq. (A16), we find

(k − k′) · n(k′) ≈ −(k − k′)T R(k′)
2v(k′)

(k − k′). (A18)

In Eq. (A11) k′ ∈ P (nr), so n(k′) satisfies Eq. (A6). This
allows us to write

(k − k′) · r ≈ −s(k′, nr)r(k − k′)T R(k′)
2v(k′)

(k − k′). (A19)

The expression is quadratic with respect to the small differ-
ence k − k′. At large r the convergence radius of the integral
Jk′ (r) scales as |k − k′| ∝ 1/

√
r, so we indeed have to in-

tegrate over a small vicinity of k′ ∈ P (nr) and the Taylor
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expansion is valid. Equation (A19) also shows that the com-
ponent of k − k′ along the normal n(k′) is only quadratic with
respect to k − k′, so at a given accuracy we can approximate
k − k′ on the right-hand side of Eq. (A19) by its orthogonal
projection onto the tangent space T (k′):

Jk′ (r) ≈
∫

κ∈T (k′ )

dκ

(2π )D−1
e−irs(k′,nr )κT A(k′ )κ, (A20)

A(k′) = RT (k′)
2v(k′)

, (A21)

where RT (k′) is the restriction of the tensor R(k′) to the
tangent space T (k′). We reduced the initial integral Jk′ (r) to a
standard Gaussian integral

Jk′ (r) ≈
(

1

4πr

) D−1
2 e−i π

4 s(k′,nr )S(A(k′ ))√
| det A(k′)|

, (A22)

S[A(k′)] =
D−1∑
i=1

sgn(ai ), (A23)

where ai are all D − 1 eigenvalues of the symmetric matrix
A(k′). In all cases that we consider in this paper det A(k) �= 0
at any point k ∈ FS . In other words, we consider only Fermi
surfaces with nonzero Gauss curvature at each point.

Let us check that the matrix A(k), k ∈ FS , is indeed inde-
pendent of the choice of ε(p). For this, we consider another
parametrization

ε̃(p) = f (p)ε(p), (A24)

where f (p) is an arbitrary smooth function such that f (p) >

0. As f (p) �= 0, then ε̃(p) = 0 if and only if ε(p) = 0, i.e.,
ε̃(p) = 0 defines the Fermi surface FS . Let us find the veloc-
ity ṽ(k) when k ∈ FS:

ṽ(k)n(k) = ∂ε̃(k)

∂k
= ∂ f (k)

∂k
ε(k) + f (k)v(k)n(k), (A25)

where v(k) is defined in Eqs. (A13) and (A14). As k ∈ FS ,
then ε(k) = 0, so we find

ṽ(k) = f (k)v(k) > 0, k ∈ FS. (A26)

Similarly, we can calculate the tensor R̃(k), k ∈ FS:

R̃i j (k) = ∂2ε̃(k)

∂ki∂k j
= f (k)Ri j (k)

+ v(k)

(
∂ f

∂ki
n j (k) + ∂ f

∂k j
ni(k)

)
, k ∈ FS,

(A27)

where Ri j (k) is defined in Eq. (A17). The second line in
Eq. (A27) contains a term which vanishes in all products
κT R̃(k)κ where κ ∈ T (k), i.e., κ · n(k) = 0. This means that
the restriction to the tangent space T (k) is especially simple

R̃T (k) = f (k)RT (k), k ∈ FS. (A28)

Using Eqs. (A26) and (A28), we indeed find that the operator
A(k), k ∈ FS , is invariant with respect to different choices of
ε(p):

Ã(k) = R̃T (k)

2ṽ(k)
= RT (k)

2v(k)
= A(k), k ∈ FS. (A29)

All in all, the long-range asymptotics of the Green’s func-
tion of an interacting Fermi gas is the following:

G(τ, r) ≈
∑

k′∈P (nr )

C(k′, nr)

(4πr)
D−1

2

eik′·rG[τ, s(k′, nr)r, k′], (A30)

C(k′, nr) = e−i π
4 s(k′,nr )S[A(k′ )]√
| det A(k′)|

. (A31)

This is the general result which is suitable for a Fermi sur-
face of arbitrary geometry. The matrix structure is hidden in
G[τ, s(k′, nr)r, k′]. Next, we give examples for spherical or
nearly spherical Fermi surfaces.

1. Spherical Fermi surface

The simplest example is the spherical Fermi surface with
the Fermi momentum kF . We considered this case in Ref. [59].
For an arbitrary direction nr there are exactly two points on
the Fermi surface whose normals are collinear with nr, see
Fig. 5(b),

P (nr) = {±kF nr}. (A32)

In this case, the sum over k′ in Eq. (A30) contains only two
terms, namely, k′ = ±kF nr. To calculate the matrix A(k′), we
consider the function

ε(p) = p2 − k2
F

2
. (A33)

The velocity v(p) and the tensor R(p) are then the following:

v(p) = p, (A34)

Ri j (p) = δi j . (A35)

This allows us to identify the matrix A(k), |k| = kF :

A(k) = I

2kF
, |k| = kF , (A36)

where I is the (D − 1) × (D − 1) identity matrix on the tan-
gent space T (k). Substituting this into Eq. (A30), we find the
asymptotics of the Green’s function in the case of the spherical
Fermi surface

G(τ, r) ≈
(

1

λF r

) D−1
2

[ei(kF r−ϑ )G(τ, r)

+ e−i(kF r−ϑ )G(τ,−r)], (A37)

ϑ = π

4
(D − 1), (A38)

G(τ, x) =
∫ ∞

−∞

dδp

2π
eiδp xG(τ, δp), (A39)

where λF = 2π/kF is the Fermi wavelength. Here we also
used the spherical symmetry, i.e., G(τ, p) = G(τ, p), so
G(τ, δp, k) is independent of k ∈ FS .

2. Nearly spherical Fermi surface

Here we consider another example when the Fermi sur-
face is nearly spherical and can be modeled by the following

134417-11



MISEREV, LOSS, AND KLINOVAJA PHYSICAL REVIEW B 106, 134417 (2022)

dispersion:

ε(p) = p2 − k2
F

2m
− β(p). (A40)

We denote points on the Fermi surface FS by k, they satisfy
the equation ε(k) = 0:

k2 = k2
F + 2mβ(k). (A41)

In this part we make the following assumptions about the
smooth function β(p):

|β(k)| � EF , ∇β(k) ≡ ∂β(p)

∂ p

∣∣∣∣
p=k

� vF , (A42)

where k ∈ FS , 2EF = kF vF is the Fermi energy and vF =
kF /m the Fermi velocity. Using the first condition in
Eq. (A42), we find the approximate Fermi surface equation

k(e) ≈ kF + β(e)

vF
, k(e)e ∈ FS, (A43)

where e is an arbitrary unit vector and β(e) stands for β(kF e).
The outward normal n(k) at k ∈ FS is defined though the

gradient of ε(p) at p = k:

v(k)n(k) = k
m

− ∇β(k), (A44)

v2(k) = k2

m2
− 2

k · ∇β(k)

m
+ [∇β(k)]2, (A45)

where the second equation here is just the first one squared.
Here is where we use the second condition in Eq. (A42). In

linear order in β(k) we find

v(k) ≈ k(n)

m
− n · ∇β(n), (A46)

k · n(k) ≈ k(n) = kF + β(n)

vF
, (A47)

where β(n) stands for β(kF n).
We are only interested in the points k′ ∈ FS with normals

n(k′) = snr, s = ±1, see Fig. 5(b). Using Eq. (A47), we find
the oscillating phase

k′ · r = srk′ · n(k′) ≈ sk(snr)r, (A48)

where we used Eq. (A47). Neglecting the weak dependence
of the prefactor C(k′, nr) on β(k′), see Eq. (A31), we find the
asymptotic behavior of the Green’s function in the case of a
nearly spherical Fermi surface

G(τ, r) ≈
(

1

λF r

) D−1
2

[ei[k(nr )r−ϑ]G(τ, r)

+ e−i[k(−nr )r−ϑ]G(τ,−r)], (A49)

where k(n) is given by Eq. (A43) and ϑ by Eq. (A38).
Here, G(τ, x) is calculated at β(p) = 0, i.e., it coincides with
the spherically symmetric case. Importantly, the oscillatory
factors e±ik(±nr )r in Eq. (A49) depend explicitly on β(±nr),
which is crucial for the resonant scattering processes near the
Fermi surface.
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