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Majorana bound states induced by antiferromagnetic skyrmion textures
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Majorana bound states are zero-energy states predicted to emerge in topological superconductors and intense
efforts seeking definitive proof of their observation are still ongoing. A standard route to realize them involves
antagonistic orders: a superconductor in proximity to a ferromagnet. Here, we show that this issue can be
resolved using antiferromagnetic rather than ferromagnetic order. We propose to use a chain of antiferromagnetic
skyrmions, in an otherwise collinear antiferromagnet, coupled to a bulk conventional superconductor as a novel
platform capable of supporting Majorana bound states that are robust against disorder. Crucially, the collinear
antiferromagnetic region neither suppresses superconductivity nor induces topological superconductivity, thus
allowing for Majorana bound states localized at the ends of the chain. Our model introduces a new class of
systems where topological superconductivity can be induced by editing antiferromagnetic textures rather than
locally tuning material parameters, opening avenues for the conclusive observation of Majorana bound states.
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I. INTRODUCTION

One-dimensional topological superconductors host zero-
energy localized states called Majorana bound states (MBSs)
[1–4]. An important driving force in the research of MBSs
stems from their non-Abelian exchange statistics [5–7], a key
property that makes them attractive for their potential use
in topological quantum computing [8,9]. Promising experi-
mental signatures of zero-energy states consistent with MBSs
have been reported in nanowires [10–14] and atomic chains
[15–18], which are predicted to realize one-dimensional
topological superconductivity [19–24]. However, due to the
inherent static nature of these setups, they do not easily
lend themselves to the ultimate test of measuring exchange
statistics.

An alternative route toward topological superconductivity
is to couple a bulk superconductor to a noncollinear mag-
netic texture [21–23,25–34], such as stable topological defects
known as skyrmions [35–41]. Recently, single ferromagnetic
(FM) skyrmions with large topological charge [42] and FM
skyrmion lattices [43–45] coupled to a superconductor have
been predicted to support MBSs and Majorana edge modes,
respectively. Because of their topological stability, skyrmions
are themselves particle-like objects, which can be moved
using temperature gradients [46], electric currents [47–50],
or magnetic field gradients from magnetic-force-microscope
tips [51]. Their mobility opens the door to the assembly and
dynamical manipulation of structures that can facilitate the
efforts to measure the exchange statistics of MBSs. A major
hindrance, though, is that the ability to move the skyrmions
necessitates embedding them into a two-dimensional collinear
FM background, which destroys the proximity-induced super-
conducting gap, delocalizing the zero-energy states.

FIG. 1. Antiferromagnetic skyrmion chains induce Majorana
bound states. (a) Probability density of a Majorana bound state (top)
localized at one end of a chain of antiferromagnetic skyrmions em-
bedded in a collinear antiferromagnet (bottom). (b) Top view of the
magnetic texture and Majorana bound state probability density. The
partner Majorana bound state is localized at the other end of the chain
(not shown). Texture parameters are detailed in Appendix A.
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To resolve this issue, here we consider a collinear antifer-
romagnetic (AFM) background into which a chain of AFM
skyrmions [52,53] is embedded, see Fig. 1. This is an ideal
system because AFM skyrmions can be stabilized without
external magnetic fields and the collinear AFM order does
not have a harmful effect on superconductivity. We discover
that in precisely the AFM system, we can modulate between
topological and nontopological regions by editing between
noncollinear and collinear AFM order, respectively. We also
show that its richer phase diagram exhibits more possibilities
to tune into the topological superconducting phase. Moreover,
under equivalent conditions, we find that the minimum length
necessary to ensure well-localized MBSs is smaller in antifer-
romagnetic skyrmion chains (ASCs) than in one-dimensional
AFM spin helices.

II. MODEL

Using a lattice model, we describe our system with the
Hamiltonian,

H = −
∑

r,σ

μ c†
rσ crσ −

∑

〈r,r′〉,σ
t c†

rσ cr′σ

+
∑

r

�(c†
r↑c†

r↓ + cr↓cr↑) +
∑

r,μ,ν

Jc†
rμnr · σμν crν, (1)

where c†
rσ creates an electron at lattice site r with spin σ

in a thin-film magnetic conductor that is coupled to a su-
perconductor, which induces a gap � by proximity effect.
The electronic properties of this conductor are governed by
the chemical potential μ and nearest-neighbor hopping am-
plitude t , while the direction of the magnetic texture nr is
coupled via the exchange interaction, with strength J , to
the local spin of the conductor sr = (1/2)

∑
μ,ν c†

rμσμν crν ,
where σ is the vector of Pauli matrices. The magnetic tex-
ture is assumed to be unaffected by the itinerant electrons.
For simplicity, the lattice constant is henceforth taken as
unity.

III. ADVANTAGES OF AN ANTIFERROMAGNET

Although a natural point of departure for topological su-
perconductivity may start with materials supporting a FM
exchange interaction and, likewise, FM skyrmion chains, the
critical reader could be weary of such a system for several
reasons. First, in order to stabilize FM skyrmions, a magnetic
field is conventionally applied perpendicular to the surface
and could destroy the superconductivity. Second, if the tex-
ture manages to survive the conditions to support skyrmions,
a collinear FM background will surely destroy the super-
conducting correlations at least for a modest value of the
exchange interaction as compared to the AFM case. Lastly,
because FM skyrmions naturally repel (see Appendix B), gen-
erating and maintaining such a chain would require pinning
of the individual skyrmions with a local magnetic field or
impurity to locally enhance the anisotropy.

Because in the following analysis we are interested in
localized states supported by skyrmions in a collinear mag-
netic background, it is imperative that the spectrum remains

gapped. However, in an infinite collinear FM layer coupled to
a superconductor, Eq. (1) with nr constant, the gap vanishes
when J � �. Consequently, any would-be localized states at
the ends of a ferromagnetic skyrmion chain are delocalized
throughout the superconductor under the collinear ferromag-
netic region. In contrast, the spectral gap of a superconductor
coupled to a collinear antiferromagnet closes only when J =√

�2 + μ2. Thus, although it is hopeless to realize MBSs
generated by ferromagnetic skyrmions residing in a larger
collinear background, chains of antiferromagnetic skyrmions
in an antiferromagnetic collinear background can host MBSs
at the their ends.

IV. ANTIFERROMAGNETIC SKYRMION TEXTURES

For a realistic treatment of the skyrmionic textures, we
consider the free energy of the localized spins whose classi-
cal minimum configuration determines nr (see Appendix A).
Including AFM exchange and interfacial Dzyaloshinskii-
Moriya interactions, as well as easy-axis anisotropy, we use
atomistic spin simulations to numerically obtain an ASC
(Fig. 1) as a metastable spin configuration. We emphasize here
the complete absence of any external magnetic field (which,
for the ferromagnetic case, would be needed to stabilize a
skyrmion texture).

Below we also employ artificial skyrmionic textures
constructed using the following simple model. A single
AFM skyrmion on the square lattice centered at the
origin is parametrized by nr = (−1)i+ j[sin(kSr) cos ϕ(r),
sin(kSr) sin ϕ(r), cos(kSr)]T for r � RS and nr =
[0, 0, (−1)i+ j]T otherwise, where r = ix̂ + jŷ and tan ϕ(r) =
j/i with i and j being integers. Here kS = π/(RS − 1) and
RS is the skyrmion radius. This model can be immediately
generalized to an ASC with a spacing S between edges of two
adjacent skyrmions. By tuning RS and S , artificial skyrmionic
textures can be brought to remarkably good agreement with
realistic textures.

V. INDUCED MAJORANA BOUND STATES

To confirm that the ASC is able to induce MBSs, we
construct a phase diagram with control parameters μ and
J , choosing � = 0.5t for numerical simplicity, by finding
the bulk gap closing points in the periodic realistic ASC.
In Fig. 2(a) we plot the energy gap Egap scaled logarithmi-
cally where green color indicates Egap ≈ 0. There is a region
in the phase diagram, enclosed by the dashed gray square,
in which changes in the gap size are dense. A blowup of
this region is shown in Fig. 2(b) where three points have
been highlighted. To characterize the corresponding phases,
in Fig. 2(c) we plot the probability density of their lowest
nonnegative energy state |�E0 (r)|2, and their energy spectrum
found for a finite-size chain of AFM skyrmions. Indeed, we
find topologically distinct phases [separated by (green) gap
closing lines], in which the ASC induces zero, two, and
four MBSs, respectively. The lobular structure exhibited by
the probability density of the MBSs is reminiscent of that
of the lowest-energy state induced by single isolated AFM
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FIG. 2. Topological phases induced by an antiferromagnetic
skyrmion chain. (a) Topological phase diagram as a function of
the chemical potential μ and exchange coefficient J for � = 0.5t .
The logarithmically-scaled color code encodes the energy gap, Egap,
and the green curves denote Egap ≈ 0. (b) Blowup of the region
enclosed by the dashed-gray square in (a). Highlighted are selected
phases supporting no MBSs (orange square, {μ, J} = {2.8t, 2.2t}),
two MBSs (magenta circle, {μ, J} = {2.5t, 2.43t}), and four MBSs
(red triangle, {μ, J} = {2.2t, 2.1t}). (c) Probability density of the
lowest nonnegative energy state (left) and energy spectrum (right)
of the selected phases indicated in (b) for a chain composed of 37
antiferromagnetic skyrmions. Only energies, labeled by n, in the
vicinity of zero are shown. Texture parameters are as in Fig. 1.

skyrmions (see Appendix C). It is also similar to the clover
shape of Yu-Shiba-Rusinov states of magnetic adatoms on
a superconducting surface measured by scanning tunneling
spectroscopy [54].

We have studied the effect of disorder in the electronic
properties and the texture on the MBSs. We found they are
robust to disorder in the electronic couplings μ and J , similar
to MBSs arising in quantum wires [55], and are more sensitive
to deformations in the texture (see Appendix D).

VI. SKYRMION DENSITY

Although distances between skyrmions are fixed in the
realistic texture by the spin simulation parameters, we can
study how the density of skyrmions in the artificial texture
affects the formation of MBSs by increasing the spacing
between adjacent skyrmions, S = L − 2(RS − 1) with L the
distance between skyrmion centers. As a concrete case study,
in Fig. 3(a) we plot the gap size for a periodic chain of
skyrmions as a function of J in a series of curves. The front-
most curve corresponds to a chain with S = 0 and successive
curves, moving back, increase the spacing by two until the
penultimate curve; the last curve corresponds to the limit S →
∞ of an isolated, single skyrmion. The bottom face of the box

FIG. 3. Effect of spacing between adjacent skyrmions. (a) Topo-
logical phase diagram of a periodic chain of antiferromagnetic
skyrmions, of radius RS = 4 with μ = 1.0t and � = 0.5t , with
control parameters J and the spacing between adjacent skyrmions
S. The curves denote the energy gap at the specified values of S
as a function of J . The bottom face of the cube interpolates the
logarithmically-scaled gap values of the curves along the S axis. The
top face of the cube indicates the topological number of the effective
Kitaev chain (see Appendix E) in which red (off-white) corresponds
to one (zero). (b) Probability density of the lowest nonnegative en-
ergy state at selected points marked in the phase diagram (circle:
S = 0; square: S = 2; triangle: S = 4; and hexagon: S = 6) for an
open chain of 50 antiferromagnetic skyrmions. MBSs remain robust
against a moderate spacing increase.

is a phase diagram as a function of J interpolated along the
S axis. The top face of the box indicates if the corresponding
point of the phase diagram below is expected to be topological
(red) or nontopological (off-white) as predicted by project-
ing Eq. (1) onto an effective Hamiltonian (see Appendix E).
The densest skyrmion chain S = 0 supports MBSs near J ∈
{1.55t, 1.825t, 1.9t}, and in the range J ∈ [1.37t, 1.47t]. In-
creasing S noticeably decreases the range of J supporting a
topological phase, which asymptotes to the case of an isolated
skyrmion where the gap closes with the system remaining
nontopological. The range J ∈ [1.24t, 1.29t] is also topolog-
ical for S = 0 with a decreasing range of J for increasing
S but, in contrast, the gap closing is lifted for sufficiently
large S , e.g., S = 6 near J = 1.21t , wherein the topological
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phase changes into the nontopological one. We conclude that,
although a skyrmion sufficiently displaced from its neighbors
in the chain will break a single topological chain into two
topological pieces, MBSs at the chain ends can still enjoy
protection against moderate skyrmion displacements. Further-
more, we predict that the denser the packing of skyrmions
along the chain, the denser the topological phase in parameter
space.

VII. EXPERIMENTAL REALIZATION AND OBSERVATION

One route to experimentally realizing our setup is a
heterostructure of layered transition metal dichalcogenides
(TMDs). TMDs can have a large spin-orbit interaction, are
amenable to being stacked, and their chemical potential can
be shifted by the application of a back gate. Recent ad-
vances in the synthesis of TMDs have uncovered materials
that can host superconducting or AFM order, although not
concurrently. In particular, NbSe2 is a promising candidate
for the superconducting layer as it sustains superconductiv-
ity even as monolayer [56]. On the other hand, Fe1/3NbS2

exhibits AFM [57] order although noncollinear AFM order
remains elusive. Analogous to conventional FM materials
[58,59], we propose interfacing the antiferromagnet with a
layer of heavy metals, e.g., Ir, Pd, or Pt, which could enhance
the spin-orbit interaction and ultimately provide a strong
Dzyaloshinskii-Moriya interaction to stabilize skyrmions. A
trilayer of Fe1/3NbS2|Ir|NbSe2 would allow injection or dele-
tion of AFM skyrmions in the magnetic layer, stabilized by the
heavy metal, which induces an effective magnetic exchange
interaction within the NbSe2 superconducting layer. Because
the latter can be back gated [60], the topological phase space
of the heterostructure, which we predict to be dense, can be
scanned or tuned to the topologically nontrivial regime.

Two-dimensional systems hosting more complicated ge-
ometries of chains could provide a path for the identification
of MBSs. Rather than a simple straight chain of skyrmions,
consider a quasi-one-dimensional figure-eight track, which
supports antiferromagnetism and conventional superconduc-
tivity described by Eq. (1). A chain of skyrmions located
initially at the right curve in the track supports two MBSs, γ

and γ ′ at each end [Fig. 4(a)]. This chain can be pinned, e.g.,
by a magnetic tip or a local impurity. Then the chain can be
moved, by a spin current for instance, to the other side by go-
ing through the vertex of the quasi-one-dimensional structure
[Fig. 4(b)]. Shuffling the skyrmions back to the right using
only the lower leg of the structure consequently exchanges
the MBSs [Fig. 4(c)] and imprints an overall phase, which can
be measured by an ancillary state. This can be generalized to
more skyrmion chains and quasi-one-dimensional structures
with additional handles. We can effect braiding of any two
MBSs by analogous shuffling in what may be deemed a “topo-
logical racetrack memory.”

VIII. DISCUSSION

So far, AFM skyrmions have not been observed in con-
ventional AFM materials. However, real-space detection of
skyrmions has been recently reported in ferrimagnets [61]
and synthetic antiferromagnets [62–65]. The experimental

FIG. 4. Exchanging MBSs on a topological racetrack. (a) MBSs,
γ and γ ′ residing at the ends of an antiferromagnetic skyrmion
chain (red) can be shuffled to the other side of the structure, through
the collinear antiferromagnetic background (blue), utilizing a path
through the cross. (b) The same procedure can move the MBSs back
to the right via the lower leg of the structure. (c) The result is an
exchange of γ and γ ′.

assembly of chains of, albeit FM, skyrmions has already
been achieved [51,66,67]. The coexistence of superconduc-
tivity with FM skyrmions in [IrFeCoPt]/Nb heterostructures
has been demonstrated recently [68]. Thin films of Pd/Fe/Ir
grown on a Re substrate are also promising systems where
the presence of FM skyrmions has been reported, although
above the superconducting critical temperature of Re [41].
Evidence consistent with topological superconductivity has
been measured in nanowires overgrown with interlaced FM
EuS and superconducting Al [14]. These systems are evidence
of the experimental expertise necessary to realize magnetic-
superconducting heterostructures, which could guide the
engineering of our proposed system.

Our model, Eq. (1), can also describe the experimentally
different setup of a lattice of magnetic atoms residing on
the surface of a superconductor. One-dimensional chains of
magnetic atoms on conventional superconductors have been
experimentally realized and zero-energy states localized at
the ends of the chains have been observed [15,17,18]. Owing
to interfacial Dzyaloshinskii-Moriya interactions, the atomic
chain in Ref. [18] orders in a FM spin helix, crucial for the
appearance of MBSs. Moreover, a one-dimensional AFM spin
helix can also support MBSs [69], as we explain analytically
in Appendix F.

Even though the one-dimensional texture along the center
of the ASC is an AFM spin helix, the former has an important
advantage over the latter. In both the ASC and helix, localized
MBSs are guaranteed as long as their wave functions do not
overlap, which could lead to their hybridization. For the same
induced gap, which determines MBSs localization length,
the minimum length necessary to ensure their localization is
smaller in ASCs than in one-dimensional AFM spin helices,
as we show in Appendix G. Intuitively, the lateral extension of
ASCs provides additional spatial support for the MBSs wave
function to spread out and shorten their localization length
along the chain axis [70,71].

Although the ASC is stabilized for the set of the parameters
used to generate a realistic texture (see Appendix A), we
have not included the effect of the backaction of electrons
on the magnetic texture. Whether the electronic backaction
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is sufficient to destabilize the ASC depends entirely on the
material- and setup-dependent competition between the su-
perexchange and double-exchange mechanisms. For instance,
ferromagnetic [14], antiferromagnetic [72], and skyrimionic
[68] magnetic textures have all been observed in the presence
of superconductivity.

The novel features of our platform are underpinned by
the rich physics emerging from the interaction between con-
ventional superconductivity and antiferromagnetism, and are
not attainable with ferromagnets. Furthermore, the current
and active endeavor of realizing MBSs, quasiparticles with
non-Abelian exchange statistics, for topological quantum
computing, underscores the fundamental and applied nature of
our study. The experimental realization of our concrete setup
proposal, its optimization and measurement, will necessarily
bring together expertise from magnetism, superconductivity,
and material science.

IX. CONCLUSIONS

In contrast to ferromagnets, antiferromagnets are
capable of changing the local topological phase of an
antiferromagnet|superconductor bilayer by deforming
between collinear and noncollinear magnetic textures. In
particular, chains of AFM skyrmions are capable of hosting
MBSs at their ends, generating a rich phase diagram that
depends on the material parameters and geometric details of
the skyrmions, further increasing the degree of tunability into
the topological superconducting phase. These end states are
robust to fluctuations in the chemical potential and magnitude
of the exchange interaction as well as small deformations
in the magnetic texture. Our system offers a new platform
in which local topological superconducting regions can be
moved and modified by in situ manipulation of the magnetic
order, and provides a potential route to measuring the
exchange statistics and perform braiding of MBSs.
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APPENDIX A: REALISTIC ANTIFERROMAGNETIC
SKYRMION TEXTURES

We use atomistic spin simulations to determine classical,
metastable magnetic textures governed by the energy function

EM =
∑

r

J nr · (nr+x̂ + nr+ŷ) − K(nr · ẑ)2

+D(x̂ · nr × nr+ŷ − ŷ · nr × nr+x̂), (A1)

with nr the direction of the classical spin at site r on a square
lattice, with the lattice constant taken as unity, located on the
xy-plane, which includes nearest-neighbor antiferromagnetic
exchange J , interfacial Dzyaloshinskii-Moriya interaction D,
and easy-axis anisotropy K. The phase diagram of single
antiferromagnetic skyrmions modeled by a similar energy
function has been recently discussed in Ref. [73]. An ini-
tial “seed texture” consisting of a chain of circular regions
with downward pointing spins embedded in a collinear an-
tiferromagnetic texture is relaxed employing the atomistic
Landau-Lifshitz-Gilbert equation. The parameters that gen-
erate the texture used in Figs. 1 and 2 are {D/J ,K/J } =
{0.475, 0.4}. For a system size of 360×45 spins with free
boundary conditions we obtained a chain of 37 antiferromag-
netic skyrmions.

APPENDIX B: FERROMAGNETIC VS
ANTIFERROMAGNETIC SKYRMION CHAINS

Skyrmions in antiferromagnets, just as skyrmions sta-
bilized by interfacial Dzyaloshinskii-Moriya interaction in
ferromagnets, repel each other. In this section we show
that their lower mutual repulsive forces allow for the as-
sembly of antiferromagnetic skyrmion chains with shorter
inter-skyrmion distances than ferromagnetic ones.

Unlike their antiferromagnetic counterparts, ferromagnetic
skyrmions do not need anisotropy but do require an external
magnetic field to stabilize them. Therefore, a minimal mag-
netic energy function capable of supporting them would be
similar to the one in Eq. (A1), with J → −|J |, K = 0, and
the additional Zeeman energy term −∑

r gμBB nr · ẑ, where g
and μB are the g-factor and Bohr magneton, respectively. It is
convenient to introduce the dimensionless external magnetic
field magnitude b = gμBB/|J |.

The magnetic energy functions of ferromagnetic and anti-
ferromagnetic skyrmions are markedly different. Therefore, in
order to make a meaningful quantitative comparison between
the repulsive forces in the antiferromagnetic and ferromag-
netic case, further criteria must be specified. We choose to
compare skyrmions with the same strength of exchange and
Dzyaloshinskii-Moriya interaction, as well as radius. Here,
the skyrmion radius is defined as the distance from its center to
where the magnetization has no out-of-plane component. For
a system size of 45×45 spins with free boundary conditions,
using the same parameters as in the main text {D/J ,K/J } =
{0.475, 0.4}, the radius of a single antiferromagnetic skyrmion
is rAFM = 1.66 (in units of the lattice constant). Single ferro-
magnetic skyrmions are stable in the range b ∈ [0.12, 0.33].
Tuning the external magnetic field we determine that the radii
of ferromagnetic and antiferromagnetic skyrmions become
equal at b∗ = 0.293 [see Fig. 5(a)].

To illustrate the difference in their stability we attempt to
assemble a short chain comprised of five skyrmions in a sys-
tem with 50×45 spins with free boundary conditions. We set
up equivalent “seed textures” for both the ferromagnetic and
antiferromagnetic case and then relax them using atomistic
spin simulations. As shown in Figs. 5(b) and 5(c), we find that
while a stable antiferromagnetic skyrmion chain is obtained,
a ferromagnetic skyrmion chain cannot be stabilized owing to
their higher mutual repulsion.
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FIG. 5. Stability comparison between ferromagnetic and antifer-
romagnetic skyrmion chains. For ferromagnetic (antiferromagnetic)
skyrmions we use {D/|J |,K/|J |} = {0.475, 0.0} ({D/J ,K/J } =
{0.475, 0.4}). (a) The radius of a single ferromagnetic skyrmion,
rFM, decreases as the external magnetic field, b, increases (green).
It matches the radius of a single antiferromagnetic skyrmion, rAFM =
1.66, at b∗ = 0.293. (b) A chain of five antiferromagnetic skyrmions
stabilized with the same parameters as in the main text. (c) Single
ferromagnetic skyrmions with the same radius as their antiferromag-
netic counterparts, using b = b∗, cannot be stabilized in an equivalent
chain as in (b) due to their higher mutual repulsion.

APPENDIX C: STATES INDUCED BY A SINGLE
ANTIFERROMAGNETIC SKYRMION

The probability density of the MBSs presented in the main
text consists of an array of lobular patterns that fade toward
the center of the antiferromagnetic skyrmion chain (ASC). We
can understand how this peculiar spatial distribution emerges
by looking at the electronic states supported by a single, iso-
lated antiferromagnetic skyrmion. As we show in Fig. 6, the
probability density of the lowest positive energy state induced

FIG. 6. Electronic states induced by a single antiferromagnetic
skyrmion. Left panels: probability density of the lowest positive
energy state for the same electronic parameters as in Fig. 2, indi-
cated by the upper-left symbol (orange square, magenta circle, and
red triangle). Right panels: the corresponding energy spectra. The
antiferromagnetic skyrmion is located at the center of a 45×45 spin
lattice generated using atomistic spin simulations and the magnetic
parameters described in Appendix A. For all three cases, the lowest
positive energy state shows a characteristic lobular structure centered
at the antiferromagnetic skyrmion.

by the skyrmion exhibits a four-lobe structure. Comparison
of Fig. 6 with the associated MBS wave functions in the
main text [Fig. 2(c)] suggests that when the antiferromagnetic
skyrmions are brought close to each other to assemble the
ASC, the supported MBSs inherit their wave function from
the lowest energy states and their hole partners.

APPENDIX D: STABILITY OF MAJORANA BOUND
STATES: DISORDER ANALYSES

One of the key properties of MBSs is that they remain
at zero energy in the presence of disorder. Impurities in the
sample could give rise to local variations in the electronic
properties of a material, i.e., parameters of our model, such
as the chemical potential and the exchange interaction. An-
other possible source of disorder is the underlying skyrmionic
magnetic texture. For instance, randomly positioned impuri-
ties could locally deform the magnetic texture. Furthermore,
skyrmionic magnetic textures at high temperatures (room tem-
perature) can be regarded as an ensemble average over small
random deformations throughout the entirety of the pristine
zero-temperature texture.
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In the absence of disorder, a linear chain of 37 AFM
skyrmions with electronic model parameters {μ,�, J} =
{2.0t, 0.5t, 1.92t} supports four MBSs. First we studied the
effect of disorder arising from spatial inhomogeneities in the
chemical potential and the exchange interaction. For each
disorder realization in the chemical potential, the value at
each site was drawn from a Gaussian distribution centered at
μ = 2.0t with standard deviation σμ. The disorder strength
was controlled by varying σμ up to 5δ, where δ is equal to
half the electronic gap of the unperturbed system. Similarly,
the disorder in the exchange interaction was modeled with a
Gaussian distribution centered at J = 1.92t and the standard
deviation σJ was also varied up to 5δ.

Random flips of the magnetic moments of the skyrmionic
texture were modeled using the Bernoulli distribution with
probability parameter p, which gives a value of 1 with prob-
ability p or a value of 0 with probability 1 − p. For a given
disorder realization, a value drawn from the Bernoulli distri-
bution was assigned to each magnetic moment site. Only the
moments with assigned value of 1 were flipped. In this case
the disorder strength was controlled by p, which was swept in
the interval [0.0, 5×10−3].

Small distortions throughout the entirety of the pristine
magnetic texture were constructed as follows. If nr is the
direction of the magnetic moment at site r, then adding a
small random vector vr, whose components are drawn from a
Gaussian distribution with zero mean and standard deviation
σrad, results in a vector whose direction is within a cone with
axis nr and cone angle ≈ σrad (in radians). Therefore, at each
site the new distorted direction n′

r is given by

n′
r = nr + vr

|nr + vr| . (D1)

The disorder strength was in this case controlled by varying
σrad. It is useful to define σ = (180/π )σrad, which corre-
sponds to an angle in degrees. The parameter σ was increased
from 0◦ up to 5◦.

Figure 7 shows the effect of the four types of disorder
on the energy states in the vicinity of the gap. The disor-
der strength parameters of each disorder type are σμ, σJ ,
p, and σ . For each value of these parameters, the spectrum
was computed for a total of 100 disorder realizations. The
disorder-averaged energy (black curves) and standard devia-
tion (shades) of each state were then calculated. We conclude
that MBSs are robust against disorder in the electronic cou-
plings μ and J , and they are more susceptible to deformations
in the magnetic texture.

APPENDIX E: EFFECTIVE HAMILTONIAN

One method to find the topological phase of periodic one-
dimensional system is calculate the Zak phase of the filled
bands. When there are many bands and many band cross-
ings, this method requires some care in the discretization
parameters to ensure that the correct results are obtained.
Moreover, for a sufficiently complicated band structure, this
calculation, even for a single point in parameter space, can be
computationally costly. For a periodic ASC, the unit cell has
2(RS − 1)(2B + L + 2) sites with B the number of collinear

FIG. 7. Effect of disorder on energy states in the gap vicinity.
Disorder-averaged energies (black curves) with shaded standard de-
viations as functions of the disorder strength parameter. Blue/gray
shaded curves correspond to in-gap/bulk states. Disorder in the
chemical potential μ and exchange interaction J is shown in (a) and
(b), respectively. Disorder arising from deformations of the pristine
magnetic texture: (c) random flips of the magnetic moments, and
(d) small random distortions about the magnetic moment directions.
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magnetic sites buffering the skyrmion chain on either side
and L the distance between skyrmion centers as in the main
text. For example, the artificial skyrmion texture considered
in main text has, minimally, 174 sites. Because of the spin
and particle-hole degrees of freedom, this gives 4×174 = 696
bands. Consequently, to obtain a dense topological diagram
as a function of the control parameters J and μ using the Zak
phase is time consuming and tedious.

In our analysis we perform a considerably simpler, though
less rigorous, calculation of the topological phase of the
system. When skyrmions are sufficiently close together, the
localized states hybridize which, if the ASC is periodic, forms
bands. We can approximate and study the lowest energy band
by mapping it onto a Kitaev Hamiltonian,

Heff = −2μeff

∑

j

c†
j c j −

∑

j

(teffc
†
j c j+1 + �effc jc j+1 + H.c.).

(E1)

Here, μeff, teff, and �eff are the effective chemical poten-
tial, nearest-neighbor hopping strength, and nearest-neighbor
superconducting pairing amplitude, respectively. These are
found by considering first numerically generating the Hamil-
tonians, HL and HR, for a single skrymion centered at r =
0 and r = L, respectively, using Eq. (1) and the prescrip-
tion for the artificial skyrmion texture. The eigenvalues of
these Hamiltonians are identical and the interested reader
can find a typical set of energies and the lowest energy
wave functions in Fig. 6. The positive (negative) eigenstates
with energy closest to the chemical potential of the HL and
HR are |�+

L 〉 (|�−
L 〉) and |�+

R 〉 (|�−
R 〉), respectively. Next,

again utilizing Eq. (1), we generate a Hamiltonian, H , which
simulates two skrymions whose centers are separated by a
distance L. We can then calculate the effective parameters in
Eq. (E1): μeff = 〈�+

L |H |�+
L 〉, teff = 〈�+

R |H |�+
L 〉, and �eff =

〈�−
R |H |�+

L 〉. Because Eq. (E1) is known to be in the topo-
logical phase when |teff| > 2|μeff|, we identify the topological
phase of our system by comparing teff and 2μeff.

Although the efficiency of this formulation is appealing, it
is incomplete. The most obvious drawbacks are that (1) it only
considers the state with the energy nearest to the chemical
potential and particle-hole partner and (2) there is no consider-
ation of longer-range hopping. A more complete theory would
identify all the N states that are localized by a single skyrmion
and go beyond the interaction of nearest-neighbor states to
obtain an N×N Hamiltonian for which one could calculate the
topological number by, for instance, finding the Zak phase. We
leave the development of such a theory to subsequent work.

APPENDIX F: ONE-DIMENSIONAL SPIN HELICES

The necessary conditions to host MBSs in superconductors
with a noncollinear or effectively noncollinear ferromagnetic
field have been extensively discussed in the literature of
one-dimensional topological materials [21–23]. Perhaps less
well known are the conditions necessary with a noncollinear
antiferromagnetic field [74,75]. Here we use our model
Hamiltonian [Eq. (1)] to characterize a few of the impor-
tant properties of one-dimensional spin helices. The spins
reside at lattice sites r = ix̂ with i an integer, and the lattice
constant is taken as unity for simplicity. The texture of the

FIG. 8. Localization of zero-energy states in one-dimensional
spin helices. The probability density of the zero-energy states,
|�AF

E0
(r)|2 and |�FM

E0
(r)|2, is localized at the interface between an-

tiferromagnetic helical and collinear antiferromagnetic order (black
solid curve) but delocalized over the collinear ferromagnetic region
(red dotted curve) for ferromagnetic helices. Both helices extend over
twenty-five times their pitch, which has a length of six lattice sites
while the material parameters are {μ, �, J} = {3.0t, 0.5t, 2.5t}.

helix is given by nr = (P )i[0, sin(khr), cos(khr)]T , where r =
|r|, λh = 2π/kh is the helix pitch, and P = ±1 for a ferro-
magnet or antiferromagnet, respectively. Upon transforming
to momentum space k, the spectrum of the infinite antiferro-
magnetic helix exhibits a gap closing at k = π and supports a
topological phase when

√
�2 + [2t sin(kh/2) − |μ|]2 < |J| <√

�2 + [2t sin(kh/2) + |μ|]2. This is in contrast to the fer-
romagnetic helix in which the gap closes at k = 0 and
is topological when

√
�2 + [2t cos(kh/2) − |μ|]2 < |J| <√

�2 + [2t cos(kh/2) + |μ|]2. In the antiferromagnetic (ferro-
magnetic) case, the region in parameter space in which the
system is topological decreases (increases) with increasing
pitch. Critically, this implies that a collinear antiferromag-
net, kh → 0, is always nontopological and the spectrum
exhibits a trivial gap closing when J2 = �2 + μ2; in con-
trast, the spectrum of a collinear ferromagnet is gapless when√

�2 + (2t − |μ|)2 < |J| <
√

�2 + (2t + |μ|)2.
The consequences of this are immediately realized upon

considering long helices, containing many turns, flanked by
a collinear region nr = (P )i(0, 0, 1)T . If the helical part of
the system is in the topological phase, we find zero-energy
states at the ends of the helical textures. In an antiferromagnet,
the zero-energy states are localized to the interface between
the helix and collinear textures [Fig. 8 (black-solid line)].
In a ferromagnet, the zero-energy states are totally delocal-
ized throughout the collinear ferromagnetic region [Fig. 8
(red-dashed line)]; paradoxically, the large exchange term that
drives the helical portion into the topological phase is simul-
taneously responsible for destroying the gap in the collinear
ferromagnetic region.

APPENDIX G: ANTIFERROMAGNETIC SKYRMION
CHAINS VS. ONE-DIMENSIONAL SPIN HELICES

There is an advantage of great importance of ASCs
over one-dimensional antiferromagnetic spin helices: under
equivalent conditions, the minimum length necessary to host
well-localized MBSs is shorter for ASCs. We compare the
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skyrmion chain

spin helix

10 15 20 25 30 35

FIG. 9. Hybridization of MBSs. Energy difference η between
the lowest nonnegative energy state and its particle-hole partner
supported by chains comprised of m antiferromagnetic skyrmions
(black) and the corresponding one-dimensional antiferromagnetic
spin helix (magenta) running along the chain axis. The mini-
mum length necessary to ensure well-localized MBSs is smaller in
antiferromagnetic skyrmion chains than in one-dimensional antifer-
romagnetic spin helices.

realistic ASC, obtained as explained in Appendix A, with the
line of spins running along the chain, through the center of the
skyrmions, which itself is an antiferromagnetic spin helix. In
order to make a meaningful comparison devoid of finite-size
effects the induced superconducting gaps of the corresponding
periodic textures must be the same. (We note that we do not
determine the superconducting gap self-consistently in this
paper [76,77].) We extract a magnetic unit cell, comprised of

two antiferromagnetic skyrmions, from within the bulk of the
ASC to construct the corresponding electronic band structures
and obtain the induced gaps. For the electronic model param-
eters {μ,�, J} = {2.5t, 0.5t, 2.43t} the open ASC supports
two MBSs, as shown in Fig. 2. Fixing μ = 2.5t and � = 0.5t ,
we find that for J = 1.973t the induced gap of the antiferro-
magnetic spin helix matches that of the ASC.

Naturally, to study the localization of the MBSs we require
finite textures. Starting from an open chain of 37 antiferro-
magnetic skyrmions we sequentially remove two skyrmions
from within the bulk and compute the electronic spectra
supported by the ASC and the antiferromagnetic spin he-
lix using the parameters identified above. If the texture is
not sufficiently long, the MBSs from each end may overlap
and hybridize [78], hence acquiring a finite, nonzero energy.
Therefore, as a proxy for the MBSs localization length we use
the energy difference η between the lowest nonnegative en-
ergy state and its particle-hole partner, which we plot in Fig. 9.
This energy difference is larger for the antiferromagnetic spin
helix than the ASC. While a chain of 13 antiferromagnetic
skyrmions already supports well-localized MBSs, the antifer-
romagnetic spin helix of a length equivalent to 37 skyrmions
exhibits considerable hybridization. The reason can be traced
back to the spatial extension of the ASC perpendicular to the
chain axis, which allows the MBSs to spread out laterally, as
shown in Fig. 2, and thus shorten their localization length. We
conclude that for the same induced superconducting gap, the
minimum length necessary to ensure well-localized MBSs is
smaller in ASCs than in one-dimensional antiferromagnetic
spin helices.
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[68] A. P. Petrović, M. Raju, X. Y. Tee, A. Louat, I. Maggio-Aprile,
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