
Automatic Detection of Pathological
Regions in Medical Images

Inaugural dissertation

to
be awarded the degree of

Dr. sc. med.

presented at
the Faculty of Medicine

of the University of Basel

by
Julia Wolleb

from Lupfig AG, Switzerland

Basel, 2022

Original document stored on the publication server of the University of Basel
edoc.unibas.ch

https://edoc.unibas.ch


ii

Approved by the Faculty of Medicine
on application of

Prof. Dr. Philippe C. Cattin, University of Basel – primary advisor
Prof. Dr. Cristina Granziera, University of Basel – secondary advisor
Prof. Dr. Björn Menze, University of Zurich – external expert
Dr. Robin Sandkühler, University of Basel – further advisor

Basel, the 31st of October 2022

Prof. Dr. Primo Schär
Dean



To my parents.



iv



Contents

Acknowledgements vii

Summary ix

Zusammenfassung xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Medical Background 7
2.1 Medical Imaging Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Pleural Effusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Multiple Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Glioma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Deep Learning 15
3.1 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Components of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Deep Learning in Medical Image Analysis 31
4.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Diffusion Models for Implicit Image Segmentation Ensembles 41

6 DeScarGAN: Disease-Speci�c Anomaly Detection with Weak Supervision 55

7 Diffusion Models for Medical Anomaly Detection 69

8 The Swiss Army Knife for Image-to-Image Translation 83

v



vi Contents

9 Learn to Ignore: Domain Adaptation for Multi-Site MRI Analysis 97

10 Discussion and Conclusion 111

Bibliography 117

Curriculum Vitae 135



Acknowledgements

In the �rst place, my thanks go to Prof. Dr. Philippe C. Cattin for giving me the opportunity to
work on this project, for his motivating guidance, openness to new ideas, and continuous support
in all matters that came up during my time at the DBE. Regarding the medical aspects of this
project, I want to thank Prof. Dr. Cristina Granziera for her advice whenever I asked for it, her
willingness to share data, and her encouragement during tough problems. It was a pleasure to
have the chance to work on real-world problems in the clinic for part of my thesis.
I am also most grateful to Dr. Robin Sandkühler for his patience in answering all possible ques-
tions, for our long discussions at the blackboard or on Zoom, and for his many inspiring new
ideas. It was of priceless value to have such a supportive advisor and colleague at my side to
complete this project.
A very warm thanks goes to Florentin Bieder ”vis-�a-vis,” for chatting about all big and small
thoughts crossing our minds, and for his companionship - together with Eva Schnider - during
such a long way of common education. My Ph.D. experience was very interesting and enriching,
which is to a large part thanks to the enormous contribution of past and current members of the
Center for medical Image Analysis & Navigation: Alicia Durrer, Dr. Antal Huck, Balázs Faludi,
Bruno Semṕeŕe, Carlo Seppi, Dr. Christoph Jud, Corinne Eymann-Baier, Eva Schnider, Flo-
rentin Bieder, Florian Spiess, Lorenzo Iafolla, Madina Kojanazarova, Marek Zelechowski, Mas-
similiano Filipozzi, Nair von M̈uhlenen, Negin Sahraei, Norbert Zentai, Paul Friedrich, Pe-
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Summary

Medical images are an essential tool in the daily clinical routine for the detection, diagnosis,
and monitoring of diseases. Different imaging modalities such as magnetic resonance (MR) or
X-ray imaging are used to visualize the manifestations of various diseases, providing physicians
with valuable information. However, analyzing every single image by human experts is a tedious
and laborious task. Deep learning methods have shown great potential to support this process,
but many images are needed to train reliable neural networks. Besides the accuracy of the �nal
method, the interpretability of the results is crucial for a deep learning method to be established.
A fundamental problem in the medical �eld is the availability of suf�ciently large datasets due
to the variability of different imaging techniques and their con�gurations.
The aim of this thesis is the development of deep learning methods for the automatic identi�ca-
tion of anomalous regions in medical images. Each method is tailored to the amount and type
of available data. In the �rst step, we present a fully supervised segmentation method based on
denoising diffusion models. This requires a large dataset with pixel-wise manual annotations
of the pathological regions. Due to the implicit ensemble characteristic, our method provides
uncertainty maps to allow interpretability of the model's decisions.
Manual pixel-wise annotations face the problems that they are prone to human bias, hard to ob-
tain, and often even unavailable. Weakly supervised methods avoid these issues by only relying
on image-level annotations. We present two different approaches based on generative models
to generate pixel-wise anomaly maps using only image-level annotations, i.e., a generative ad-
versarial network and a denoising diffusion model. Both perform image-to-image translation
between a set of healthy and a set of diseased subjects. Pixel-wise anomaly maps can be ob-
tained by computing the difference between the original image of the diseased subject and the
synthetic image of its healthy representation. In an extension of the diffusion-based anomaly
detection method, we present a �exible framework to solve various image-to-image translation
tasks. With this method, we managed to change the size of tumors in MR images, and we were
able to add realistic pathologies to images of healthy subjects.
Finally, we focus on a problem frequently occurring when working with MR images: If not
enough data from one MR scanner are available, data from other scanners need to be consid-
ered. This multi-scanner setting introduces a bias between the datasets of different scanners,
limiting the performance of deep learning models. We present a regularization strategy on the
model's latent space to overcome the problems raised by this multi-site setting.
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Zusammenfassung

Medizinische Bilder sind im klinischen Alltag ein unverzichtbares Instrument für die Erkennung,
Diagnose undÜberwachung von Krankheiten. Bildgebende Verfahren wie Magnetresonanz-
(MR) oder R̈ontgenaufnahmen werden eingesetzt, um die Erscheinungsformen verschiedener
Erkrankungen zu visualisieren und damitÄrzten wertvolle Informationen zu liefern. Die Ana-
lyse jedes einzelnen Bildes durch Experten ist jedoch eine mühsame Aufgabe. Deep-Learning-
Methoden haben ein grosses Potenzial, diesen Prozess zu unterstützen. Allerdings werden sehr
viele Bilder ben̈otigt, um zuverl̈assige neuronale Netze zu trainieren. Des Weiteren ist auch die
Interpretierbarkeit der Ergebnisse entscheidend für die klinische Anwendung. Ein grundlegen-
des Problem im medizinischen Bereich ist die limitierte Verfügbarkeit von grossen Datensätzen,
da die verschiedenen Bildgebungsverfahren und Kon�gurationen nicht einheitlich sind.
Das Ziel dieser Arbeit ist die Entwicklung von Deep-Learning-Methoden zur automatischen
Identi�zierung anomaler Regionen in medizinischen Bildern. Jede Methode ist auf die Menge
der verf̈ugbaren Daten und Annotationen zugeschnitten. Zuerst präsentieren wir eine vollständig
überwachte Segmentierungsmethode, die auf denoising Diffusionsmodellen basiert. Dafür wird
ein grosser Datensatz mit pixelweisen manuellen Annotationen der Pathologie benötigt. Da un-
sere Methode implizit Ensembles generiert, können wir Unsicherheitskarten für die Interpretier-
barkeit des Modells berechnen.
Manuelle pixelweise Annotationen sind schwer zu beschaffen und auch anfällig für mensch-
liche Voreingenommenheit. Schwachüberwachte Methoden umgehen diese Probleme, indem
sie allein auf Informationen auf Bildebene beruhen. Wir stellen zwei verschiedene Methoden
zur Erstellung von pixelweisen Anomaliekarten vor. Dafür adaptieren wir zwei verschiedene
generative Modelle, n̈amlich ein generatives adverserielles Netzwerk und ein denoising Diffu-
sionsmodell. Beide f̈uhren eine Bild-zu-Bild-̈Ubersetzung zwischen einer Gruppe gesunder und
einer Gruppe kranker Probanden durch. Pixelweise Anomaliekarten werden mit der Differenz
zwischen dem Originalbild des kranken Probanden und dem synthetischen Bild seiner gesun-
den Rekonstruktion berechnet. Als Erweiterung der diffusionsbasierten Methode präsentieren
wir einen �exiblen Ansatz f̈ur verschiedene Bild-zu-Bild-̈Ubersetzungsaufgaben. Damit konn-
ten wir die Gr̈osse von Tumoren in MR-Bildern verändern und realistisch aussehende Pathologi-
en zu Bildern von gesunden Probanden hinzufügen. Schlussendlich befassen wir uns mit einem
häu�gen Problem bei MR-Datensätzen: Wenn nicht genügend Daten von einem MR-Scanner
verfügbar sind, m̈ussen Bilder von anderen Scannern hinzugefügt werden. So entsteht ein Bias
zwischen den Bildern, welcher die Modelle limitiert. Wir entwickeln eine Methode für dieses
Problem und verbessern die Generalisierbarkeit der Modelle.
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Chapter 1

Introduction

In recent years, the success of machine learning, especially deep learning, has revolutionized the
�eld of medical image analysis. Novel achievements in computer vision directly in�uenced the
development of new methods for medical tasks such as classi�cation, semantic segmentation,
or anomaly detection. However, in medical applications, problems such as the limited availabil-
ity of data and labels impose challenges on the training of deep learning methods. Moreover,
medical data can be diverse and heterogeneous, and a bias introduced by different acquisition
methods may limit the generalization quality of machine learning models. Those challenges are
tackled in a very active �eld of deep learning research to support and improve medical image
analysis in the clinic.

1.1 Motivation

Deep learning-based anomaly detection and segmentation for medical images have the potential
to support physicians in the diagnosis of diseases and to lead the attention to the relevant parts
of the anatomy. The goal of this thesis is to detect visual manifestations of pathology in medical
images and to outline the affected anatomical regions, as illustrated in Figure 1.1.

Figure 1.1: The overall goal of this thesis is to develop deep learning models that learn to identify
the pathological regions in medical images. We aim to provide pixel-wise maps highlighting
anomalous changes.
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2 Chapter 1. Introduction

If pixel-wise ground truth segmentations of the anomalous region are provided during training
on an extensive database, such a task can be solved with fully supervised segmentation ap-
proaches. While those methods have shown an impressive performance in lesion segmentation
[73, 167], interpretability of the results is often not ensured but would be of great importance
in clinical applications. While neural networks are often referred to as a ”black box,” it is cru-
cial to understand the model's decisions and gain insight into any uncertainties. Furthermore,
fully supervised segmentation approaches depend on manual pixel-wise annotations, which are
time-consuming to obtain, require expert knowledge, and may even be unavailable. Moreover,
if trained on manual labels, the deep learning models learn to imitate human performance and
are therefore prone to human bias. Another problem occurs if already existing structures show
anomalous deformations. In this case, pixel-wise ground truth segmentations are dif�cult to pro-
vide since, in the worst case, all anatomical structures are deformed, rendering the whole input
image anomalous. Due to all these downsides of fully supervised methods, weakly supervised
anomaly detection approaches are of great interest: They circumvent these issues by using only
image-level labels instead of pixel-level labels during training. Thereby, they have the potential
to highlight visual manifestations of a disease that were previously not in focus.
Apart from the limited availability of ground truth labels discussed above, the limited availability
of data also imposes problems on the application of deep learning algorithms in medicine. Since
large datasets are hard to obtain due to data privacy or differences in the acquisition protocols or
hardware, data from multi-site studies need to be considered to increase the amount of training
data. This can be problematic due to a bias introduced by different acquisition settings. An
illustration of this problem can be found in Figure 1.2. Here, the pixel intensities for MR images
of the brain acquired with two different MR scanners are shown. The images originate from
the ADNI1 and from the Young Adult Human Connectome Project (HCP) [185] dataset and are

Figure 1.2: Distribution of the pixel intensities for MR images of healthy subjects of the ADNI
and HCP dataset for the same MR sequence. The difference between the two datasets originates
from differences in MR scanner hardware and software.

1Data used in preparation of this thesis were obtained from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu).
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acquired using the same �eld strength and the same MR sequence. The difference between the
two datasets, due to variations in the scanner hardware and software, can clearly be seen in the
histogram. This bias disturbs the automated analysis of MR images and needs to be ignored to
improve the generalization quality of deep learning methods.

1.2 Contribution

”Do I have enough data, and do I have enough labels?” – this might be the fundamental question
every machine learning scientist asks �rst. In this project, we explore various scenarios related
to the amount and type of available data that may occur in real-world applications. We present
different methods with the overall goal of medical anomaly detection. In Figure 1.3, we present
an overview of the different scenarios. All methods correspond to a chapter number of this the-
sis, each presenting a publication.

Figure 1.3: Overview of the different building blocks of this thesis.
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In the �rst scenario, a large dataset of MR images of brains containing a tumor is available.
Pixel-wise ground truth is provided for training a model to segment the brain tumor. To tackle
the problem of model interpretability, we present a fully supervised segmentation method based
on diffusion models that also provides pixel-wise variance maps. They can be used to measure
the uncertainty of the predicted segmentation mask. This approach is presented in Chapter 5.
Next, if pixel-wise ground truth is not available, we consider anomaly detection with weak su-
pervision. Given two unpaired sets of images, one showing healthy and one showing diseased
subjects, our algorithm should automatically �nd the visual manifestations that make the dis-
tributions of the two datasets differ. Our method performs unpaired image-to-image translation
between the two datasets. An anomaly map can then be de�ned by the difference between the
original image of a patient and its translated synthetic healthy representation. In most previous
presented methods, weakly-supervised approaches are only used to detect lesions. In contrast to
that, the focus of the project presented in Chapter 6 is the detection of deformation of existing
structures rather than lesions. We propose a generative adversarial network (GAN) that detects
pleural effusions in lung X-ray images, which can be interpreted as a deformation of the pleural
space. Furthermore, we design a synthetic dataset with pixel-wise ground truth to evaluate the
performance of such anomaly detection methods.
A signi�cant issue of GANs is their instability and cumbersome training. Therefore, another
class of generative models with much more stable training, the denoising diffusion models, can
be taken for image-to-image translation between healthy and diseased subjects. The recon-
structed images are of very high quality and are only changed in regions showing an anomaly,
resulting in very detailed anomaly maps. The straightforward training process is a signi�cant
advantage over GANs. This approach is presented in Chapter 7.
The same method can also be applied to various image-to-image translation tasks. Applying
gradient guidance during diffusion-based image-to-image translation can perform a great vari-
ety of modi�cations. We focus on the simulation of the aging process on facial photos, brain
tumor growth, and the generation of anomalous data that could be useful for evaluating other
anomaly detection methods. In Chapter 8, we present this �exible framework as an extension of
Chapter 7.
Only a very limited amount of training data is available for many real-world applications. We
focus on a classi�cation task on MR images and observe that using additional datasets from
other MR scanners can be problematic due to the bias introduced by different scanners. The
classi�cation model tends to learn only the dominant scanner-related features rather than class-
speci�c ones. This leads to a low generalization quality of the model. This problem is tackled
in the paper presented in Chapter 9, where we introduce a method to ignore the scanner-related
features by adding speci�c constraints on the latent space. Medical images acquired with dif-
ferent scanners are common in long-term or multi-center studies. Our method shows a major
improvement for this scenario that can be integrated into other tasks.
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1.3 Outline

Since this project comprises work on several medical image datasets, we present the different
imaging modalities used to collect the datasets in Chapter 2 and provide medical background
information on the diseases in focus. In Chapter 3, we provide technical details about deep-
learning models. Common applications of deep learning algorithms in medicine are discussed in
Chapter 4. Chapters 5 to 9 present the �ve publications that constitute this thesis. In Chapter 5 we
present a fully supervised segmentation method based on denoising diffusion models, providing
pixel-wise uncertainty maps for model interpretability. In Chapters 6 and 7, two approaches
for weakly supervised anomaly detection based on GANs and diffusion models are presented.
Chapter 8 builds on Chapter 7 and extends the idea to other image-to-image translation tasks.
Finally, Chapter 9 presents a possible solution to the problem of limited data availability and
proposes a domain adaptation method for MR harmonization across different MR scanners. We
conclude by discussing the results in Chapter 10.
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Chapter 2

Medical Background

As pathological changes vary signi�cantly from disease to disease, different imaging methods
are required to make them visible. Taking advantage of the physical and chemical properties of
the tissues present in the body, the imaging techniques reveal information about the anatomy of
the subject in focus. Section 2.1 gives a short overview of the imaging modalities used within
the scope of this thesis, whereas the diseases in focus are described in Sections 2.2 to 2.4.

2.1 Medical Imaging Methods

Medical imaging is the technique used to view areas inside the human body for diagnostic or
treatment purposes. Nowadays, the most common modalities used in the clinic are X-ray imag-
ing, computed tomography (CT), magnet resonance imaging, ultrasound, positron emission to-
mography (PET), or single-photon emission computerized tomography [188]. In the following,
the relevant imaging methods for this thesis are discussed in detail.

2.1.1 X-Ray Imaging

X-rays are a form of electromagnetic radiation with a wavelength from10� 8 to 10� 12 m. As
described in [210], they can be generated in an X-ray tube consisting of a cathode and an an-
ode. A current is passed through the tungsten �lament of the cathode and heats it up. Electrons
are expelled from the �lament through thermionic emission by the high energy applied. The
electrons that are emitted from the cathode are then accelerated with a high voltage and hit the
anode. 99% of the energy is released as heat, and 1% is emitted as two different types of X-rays:
The Bremsstrahlung is generated through the deceleration of the electron and is emitted perpen-
dicularly to the electron beam. On the other hand, when the electron collides with an inner orbit
electron of an atom of the anode, both are ejected from this atom. Then, characteristic X-rays
are produced when electrons change from a higher atomic orbit to a lower one in this atom. They
result in peaks in the X-ray spectrum [104]. The angle of the target de�nes the �eld size of the
generated X-ray beam.
For X-ray imaging, the object to be scanned is placed in-between the X-ray tube and an ana-
log or digital image receptor such as a radiographic �lm or a silicon detector. This receptor

7



8 Chapter 2. Medical Background

detects X-rays that pass through the object [152]. To reduce the radiation exposure, �lters and
collimators are placed before the object to restrict the X-ray beam and �lter out low-frequency
X-rays, i.e., harden the X-ray beam. To improve image quality, anti-scatter grids for �ltering out
scattered photons are placed after the object to prevent image blur. Sensitivity can be improved
by intensifying screens [52].
Two effects dominate X-ray absorption in the object: Firstly, in the photoelectric effect, the en-
ergy is translated into the emission of electrons. Secondly, the Compton scattering is explained
by the X-ray photon colliding with an electron, resulting in a scattered photon with decreased
energy [152]. The absorption of the X-ray beam is proportional to the physical density of the
tissue. The mass attenuation coef�cient describes the absorption properties of different tissue
types, determined by the material's effective atomic number and mass density [104]. Tissues
with a high mass attenuation coef�cient cast a shadow on the image receptor. This results in
an image contrast to tissues with a lower mass attenuation coef�cient. The resulting image is a
two-dimensional projection of the three-dimensional object.
As different tissue types in the body differ in density and atomic structure, the mass attenuation
coef�cients for typical tissues also vary. As the calcium in bones absorbs X-rays the most, bones
look white in the resulting image. Air absorbs X-rays the least, resulting in black areas on the
image, such as the lungs. Different grayscale values in the image represent fat and soft tissue,
however, soft-tissue contrast is limited [76].
In Figure 2.1, we present exemplary images of the MURA dataset [140]. As can be seen, X-ray
images are a helpful tool for detecting bone fractures. Foreign objects such as screws or plates
can also be visualized very well.

Figure 2.1: Exemplary X-Ray images of the MURA dataset, showing a healthy hand, a broken
humerus, and a forearm that needed to be �xated with plates and screws.

X-ray imaging is widely used as it is cheap, non-invasive, helpful in diagnosis and medical
treatment planning, and can guide the medical personnel during surgery. However, exposure to
ionizing radiation increases the risk of developing cancer [86]. Moreover, certain parts of the
anatomy cannot be well displayed. For example, imaging the brain is challenging, as soft tissues
in general produce little contrast, but also as it is surrounded by bone that absorbs the radiation.
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