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ABSTRACT
Estimating high dimensional covariance matrices for portfolio op-
timization is challenging because the number of parameters to be
estimated grows quadratically in the number of assets. When the
matrix dimension exceeds the sample size, the sample covariance
matrix becomes singular. A possible solution is to impose a (latent)
factor structure for the cross-section of asset returns as in the popu-
lar capital asset pricing model. Recent research suggests dimension
reduction techniques to estimate the factors in a data-driven fashion.
We present an asymmetric autoencoder neural network-based esti-
mator that incorporates the factor structure in its architecture and
jointly estimates the factors and their loadings. We test our method
against well established dimension reduction techniques from the
literature and compare them to observable factors as benchmark in
an empirical experiment using stock returns of the past five decades.
Results show that the proposed estimator is very competitive, as
it significantly outperforms the benchmark across most scenarios.
Analyzing the loadings, we find that the constructed factors are
related to the stocks’ sector classification.
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• Computing methodologies→ Factor analysis; Neural net-
works; •Mathematics of computing→Dimensionality reduc-
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1 INTRODUCTION
Covariance matrix estimation is a crucial part of portfolio alloca-
tion problems, more specifically mean-variance optimization by
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Markowitz [32]. As the number of assets increases above the num-
ber of observed returns, the typical sample covariance estimator
becomes singular if no additional structure is imposed. In the eco-
nomics and finance literature, two popular solutions have been
proposed to tackle this problem. One of those methods is to shrink
the sample covariance matrix towards a full rank shrinkage target.
For a comprehensive summary, see Ledoit andWolf [27]. A different
approach is to reduce the dimensionality of the estimation problem
using factor models which was theoretically analyzed in Fan et al.
[11]: They showed that imposing a factor structure is beneficial for
estimating the inverse of the covariance matrix. Factor models are
also widely used in asset pricing and are theoretically motivated by
e.g. the arbitrage pricing theory (APT) [36, 37] and the capital asset
pricing model (CAPM) [29, 38]. They either employ well established
factors, e.g. those of Fama and French [9], or estimate data-driven
(latent) factors using unsupervised machine learning methods, e.g.
in Lettau and Pelger [28] and Gu et al. [15]. After constructing the
factors, the factor loadings then are typically estimated in a second
step using ordinary least squares (OLS).

The aim of this paper is to provide a dimension reduction proce-
dure suited for factor modeling using autoencoder neural networks.
We propose an asymmetric autoencoder with a single linear decod-
ing layer and thereby simplify the usual ‘two-step’ procedure by
jointly estimating the factors and their corresponding loadings in
a single step. The proposed procedure yields highly competitive
minimum variance portfolios with respect to the standard deviation
that are robust across different scenarios compared to alternative
methods from the literature. Analyzing the sectors of the stocks that
correspond to the highest factor loadings, we are able to interpret
the constructed latent factors.

Asymmetric autoencoders were introduced by Majumdar and
Tripathi [31], arguing that the asymmetric structure reduces the
number of parameters to be estimated and potential overfitting.
Applications include Feng et al. [13] and Wang et al. [44] with a
focus on time series forecasting. Andreini et al. [2] also propose a
neural network with asymmetric structure to generate factors in a
dynamic factor model for macroeconomic modeling. Moreover, Gu
et al. [15] propose an asymmetric autoencoder for asset pricing with
variable factor loadings. We do not use their model as we restrict
ourselves to static factor models which do not allow time-varying
betas.

The remainder of this paper is structured as follows: Section 2
gives a brief introduction to covariance matrix estimation using
factor models and proposes our method to estimate the latent fac-
tors. Section 3 describes the rolling window portfolio optimization
experiment where we compare our method with well-known com-
petitors and Section 4 presents the results. Section 5 concludes and
gives an outlook for possible future research.
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2 METHODOLOGY
We focus on static factor models to simplify the estimation problem
as our primary goal is to develop an autoencoder that extracts latent
factors. Further, we restrict our analysis to exact factor models to
improve interpretability: The factors, along with the factor loadings
should explain the entire covariance structure of the asset returns.

2.1 Covariance Matrix Estimation with Factor
Models

A (static) factor model for the returns 𝑟𝑖,𝑡 of assets 𝑖 = 1, . . . , 𝑁 with
(common) factors 𝑓𝑡 = (𝑓1,𝑡 , . . . , 𝑓𝐾,𝑡 )′ assumes

𝑟𝑖,𝑡 = 𝛼𝑖 + 𝛽′𝑖 𝑓𝑡 + 𝑢𝑖,𝑡 ,
where 𝛽𝑖 = (𝛽𝑖,1, . . . , 𝛽𝑖,𝐾 )′ are the factor loadings and 𝑢𝑖,𝑡 is the
error term with 𝐸 (𝑢𝑖,𝑡 |𝑓𝑡 ) = 0 for all dates 𝑡 = 1, . . . ,𝑇 . Stacking the
factor loadings columnwise to the 𝐾 × 𝑁 matrix 𝐵, the returns 𝑟𝑖,𝑡 ,
intercepts 𝛼𝑖 and error terms 𝑢𝑖,𝑡 over all assets to the 𝑁 -vectors
𝑟𝑡 , 𝛼 and 𝑢𝑡 , respectively, allows us to compactly express the factor
structure for all assets as

𝑟𝑡 = 𝛼 + 𝐵′ 𝑓𝑡 + 𝑢𝑡 . (1)

Define Σ𝑟,𝑡 := Cov(𝑟𝑡 |I𝑡−1), Σ𝑓 ,𝑡 := Cov(𝑓𝑡 |I𝑡−1) and Σ𝑢,𝑡 :=
Cov(𝑢𝑡 |I𝑡−1) as the covariance matrices conditional on the infor-
mation set I𝑡−1 in date 𝑡 − 1. Similar to Ledoit and Wolf [22] and
Fan et al. [11], we focus on static factor models according to the def-
inition in De Nard et al. [6, p. 3 f.]. The key assumptions that make
a factor model static are time-invariant intercepts 𝛼 and factor load-
ings 𝐵, as well as time-invariant conditional covariance matrices
of the returns, factors and errors. Combined with the underlying
assumption of (weak) stationarity for the factors {𝑓𝑡 } and errors
{𝑢𝑡 }, the latter implies Σ𝑟 := Cov(𝑟𝑡 ) = Σ𝑟,𝑡 , Σ𝑓 := Cov(𝑓𝑡 ) = Σ𝑓 ,𝑡
and Σ𝑢 := Cov(𝑢𝑡 ) = Σ𝑢,𝑡 for all 𝑡 = 1, . . . ,𝑇 .

Therefore, under the static factor model, the covariance matrix
of the returns follows easily from (1) as

Σ𝑟 = 𝐵
′Σ𝑓 𝐵 + Σ𝑢 .

As our paper focuses on the estimation of latent factors, we further
restrict our attention to exact factor models which assume that Σ𝑢
is a diagonal matrix. Following De Nard et al. [6], the estimation
of Σ𝑟 is straightforward: The intercepts and factor loadings are
estimated in a linear regression of the returns on the factors using
ordinary least squares (OLS), resulting in the residuals {𝑢𝑡 }. Then,
Σ̂𝑓 follows as the sample covariance matrix of the factors {𝑓𝑡 } and
Σ̂𝑢 = diag(𝑆�̂� ), where 𝑆�̂� is the sample covariance. The estimator
of Σ𝑟 is then given by

Σ̂𝑟 := �̂�′Σ̂𝑓 �̂� + Σ̂𝑢 . (2)

Note that Σ̂𝑟 will usually have full rank because typically rank(Σ̂𝑢 ) =
𝑁 , except e.g. when the factors perfectly explain some assets and
their respective residual sum of squares becomes zero.

Fan et al. [11] compared the asymptotic behavior of Σ̂𝑟 to the
sample covariance matrix of the returns 𝑆𝑟 under the static and
exact factor model and the assumption of independent and identi-
cally distributed (i.i.d.) samples of the returns and observable factors
(𝑟 ′1, 𝑓

′
1 ), . . . , (𝑟

′
𝑇
, 𝑓 ′
𝑇
) when the number of assets 𝑁 tends to∞ as the

sample size 𝑇 increases. They conclude under technical assump-
tions and when the number of factors 𝐾 is allowed to grow with

𝑁 at 𝐾 = 𝑜 (𝑁 ), that the inverse Σ̂−1𝑟 exhibits a faster convergence
rate in probability to Σ−1𝑟 than the inverse of the sample estimator
𝑆−1𝑟 . Therefore, the factor structure in Σ̂𝑟 is useful for portfolio op-
timization as, e.g., the global minimum variance portfolio involves
Σ−1𝑟 .

In contrast to an approximate factor model (allows Σ𝑢 to be
any finite and positive definite matrix), the assumption of an exact
factor model may seem very restrictive. However, first, the assump-
tion improves the interpretability of our estimators as the entire
covariance structure of the returns are explained by the factors
and factor loadings. Second, the method we propose can easily be
extended to allow for an approximate factor model by e.g. applying
the nonlinear shrinkage estimator of Ledoit and Wolf [26] or the
principal orthogonal complement thresholding method (POET) by
Fan et al. [12] to the residuals {𝑢𝑡 } as in De Nard et al. [6, p. 10 ff.].
The authors further propose a simple generalization to dynamic
factor models by estimating the dynamic conditional correlation
model with nonlinear shrinking (DCC-NL) [8] on {𝑢𝑡 }. Another ap-
proach used in Conlon et al. [5] is to apply the dynamic conditional
correlation model (DCC) [7] on the (estimated latent) factors {𝑓𝑡 }
combined with univariate GARCH models on {𝑢𝑡 } for the diagonal
elements of Σ̂𝑢,𝑡 .

The factors may be observed, such as the Fama-French factors
[9], or latent in which case they have to be estimated from the data.
A common approach for the latter is principal components analysis
(PCA) [3, p. 205]. Our contribution is to develop an estimation
method based on autoencoders.

2.2 Asymmetric Autoencoder
Autoencoders are unsupervised neural networks that can be used
for dimension reduction andmay be viewed as a (nonlinear) general-
ization of PCA [4, 15]. They consist of the encoder function𝑔, which
reduces the dimensionality of the returns 𝑟𝑡 to the ‘code’ 𝑧𝑡 = 𝑔(𝑟𝑡 ),
and of the decoder function ℎ which decodes the ‘code’ 𝑧𝑡 from the
encoder to the original dimension of the data via 𝑟𝑡 = ℎ(𝑧𝑡 ). The
output 𝑟𝑡 is called the reconstruction. In this work, we focus on
undercomplete autoencoders, where 𝑔 : R𝑁 → R𝐾 with 𝐾 ≪ 𝑁

and consequently ℎ : R𝐾 → R𝑁 . The idea is that the autoencoder
should capture the most salient features of the data thanks to the
dimension reduction through 𝑔 [14].

In order to fit the neural network, we parametrize the functions
𝑔 and ℎ with weight vectors 𝜃𝑔 and 𝜃ℎ , respectively, which are then
trained by minimizing a loss function L, i.e.

min
𝜃𝑔,𝜃ℎ

𝑇∑︁
𝑡=1

L(𝑟𝑡 , ℎ(𝑔(𝑟𝑡 ;𝜃𝑔);𝜃ℎ)) . (3)

Typically, autoencoders are symmetric, i.e. in the simple case where
𝑔 and ℎ both only consist of linear layers followed by a nonlinear
activation function that translates to having the same number of
layers for the encoder and decoder [18]. However, since our goal is
to estimate latent factors {𝑓𝑡 } via the encoder 𝑔 to be used in factor
models and covariance matrix estimation in (2), this would involve
an additional step where we have to estimate the loadings 𝐵 for
the estimated latent factors {𝑓𝑡 } via a linear regression (as for the
autoencoder of Conlon et al. [5]). We propose to integrate this last
step into our autoencoder so we can jointly estimate the factors
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Figure 1: Architecture of the autoencoder
The cross-section of returns (blue) at each time period 𝑡 is used as input of the encoder.
All hidden units (grey) are computed using (4). The code layer contains latent factors
𝑧 (red) which are decoded using a linear output layer (green).

{𝑓𝑡 } and its loadings 𝐵 by using a simple linear layer without any
activation as decoder ℎ.

In order to reduce clutter in our notation, we omit the time
subscript 𝑡 in the exposition of our autoencoder. Implicitly, we
apply the encoder and decoder over all time periods 𝑡 . The encoder
is allowed to be nonlinear, i.e. it may have multiple linear layers
followed by a nonlinear activation function. Let 𝐾 (𝑙 ) denote the
number of hidden units in the 𝑙-th layer with 𝑙 = 0, 1, . . . , 𝐿. The
output of unit 𝑘 in layer 𝑙 is given by 𝑎 (𝑙 )

𝑘
which is collected in

𝑎 (𝑙 ) :=
(
𝑎
(𝑙 )
1 , . . . , 𝑎

(𝑙 )
𝐾 (𝑙 )

)′
. For the input layer 𝑙 = 0, the input are

the returns 𝑟 = 𝑎 (0) . The remaining 𝑎 (𝑙 ) are computed via

𝑎 (𝑙 ) = 𝜎
(
𝑊 (𝑙 )𝑎 (𝑙−1) + 𝑏 (𝑙 )

)
, for 𝑙 = 1, . . . , 𝐿 − 1, (4)

where𝑊 (𝑙 ) is the 𝐾 (𝑙 ) × 𝐾 (𝑙−1) weight matrix, 𝑏 (𝑙 ) is the 𝐾 (𝑙 ) -
vector of biases and 𝜎 denotes an element-wise activation of the out-
puts in 𝑎 (𝑙 ) . We use the hyperbolic tangent tanh as activation func-
tion𝜎 (𝑥) = 2/(1 + exp(−2𝑥)) − 1which is a zero-centered function
whose range lies between −1 and 1. Typically, factors for asset re-
turns do not have a fixed range, thus, we omit the activation for
the last encoding layer: 𝑎 (𝐿) =𝑊 (𝐿)𝑎 (𝐿−1) + 𝑏 (𝐿) = 𝑧 = 𝑓 which
are our latent factors.

The decoder is a simple linear layer ℎ(𝑧) =𝑊𝑧 + 𝑏, where 𝑏 is
an 𝑁 -vector of biases and𝑊 is the 𝑁 × 𝐾 weight matrix. Since
the input 𝑧 of the decoder are the series of latent factors {𝑓𝑡 } (ex-
tracted by the autoencoder), the weight matrix𝑊 corresponds to
the factor loadings, i.e.𝑊 = 𝐵′. Figure 1 illustrates the idea of this
autoencoder architecture using a three-layer encoder. The asym-
metric architecture of the autoencoder should help improve the
performance of our covariance estimator as the estimated latent
factors are ‘optimized’ directly for the factor structure.

The parameters of the aforementioned autoencoders are esti-
mated by minimizing the mean quadratic loss function where we
regularize the training using weight decay (𝐿2-regularization). Thus,

the optimization problem of (3) for our autoencoder is extended to

min
𝜃𝑔,𝜃ℎ

[
1
𝑇

𝑇∑︁
𝑡=1

| |𝑟𝑡 − ℎ(𝑔(𝑟𝑡 ;𝜃𝑔);𝜃ℎ) | |2
]
+ 𝜆

(
| |𝜃𝑔 | |2 + ||𝜃ℎ | |2

)
,

where 𝜆 ≥ 0 is the weight decay parameter. Moreover, we apply
dropout [40] to the code layer to further regularize the estimation
and therefore prevent overfitting. In brief, dropout independently
sets observations of the factors to zero with probability 𝑝 during
training, but rescales the remaining ones by 1/(1 − 𝑝) to stand in
for the omitted factors. In the simple case of linear regression, it
may be viewed as a generalized ridge penalty [17, 43]. Note that
dropout does not force the same factors over all time periods 𝑡 to
zero, as it independently chooses observations over all 𝑡 and factors
to zero. Dropout is not used after training when generating the
estimated factors {𝑓𝑡 } with the fitted network.

2.3 Minimum Variance Portfolios
We apply our covariance matrix estimators to construct minimum
variance portfolios which have been frequently used in the port-
folio optimization literature and date back to Markowitz [32]. The
optimization problem is described as

min
𝑤

𝑤 ′Σ̂𝑟𝑤,

s.t.𝑤 ′1 = 1,
(5)

where 𝑤 = (𝑤1, . . . ,𝑤𝑁 )′ is a vector of portfolio weights, 1 is an
𝑁 × 1 vector of ones, and Σ̂𝑟 is the estimated covariance matrix.
Different estimators are considered for Σ̂𝑟 which are described
in Section 3.2. The constraint ensures that the portfolio is fully
invested, i.e. the portfolio weights must add up to one. Depending
on whether one allows short selling, another constraint is imposed
on the problem, which is formulated as

𝑤𝑖 ≥ 0, for 𝑖 = 1, . . . , 𝑁 , (6)

which means that all portfolio weights are non-negative. There are
many portfolio optimization applications, some of which include
the constraint of (6), such as Conlon et al. [5] or Ledoit and Wolf
[23]. De Nard et al. [6], on the other hand, allow short selling in
their work. In this paper we consider both cases: The portfolio
resulting from (5) is denoted by GMV (global minimum variance
portfolio) and if the short-sale constraint of (6) is imposed, then it
is denoted by GMV+.

3 EMPIRICAL ANALYSIS
3.1 Data and Portfolio Construction Rules
The data set for this empirical analysis consists of individual stock
return data from the Center for Research in Security Prices (CRSP)
downloaded from January 1973 to December 2021. All ordinary
common shares (share codes 10 and 11) listed on the NYSE, AMEX,
and NASDAQ (exchange codes 1, 2, and 3) were selected. We also
downloaded the five factor data series of Fama and French [10] as
well as the one-month U.S. Treasury bill rate (risk-free rate) for the
same time period from Kenneth French’s website.1

We adopt a monthly sliding window procedure similar to the
common literature e.g. Ledoit and Wolf [23], De Nard et al. [6], and
1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Conlon et al. [5]. At the beginning of each investment date we select
all stocks with a history of 𝑇 = 120 months. We find the stocks
that have an almost complete return history (availability of > 97.5%
observations) and an observable next month out-of-sample return.
Whilst this "forward-looking" restriction is not perfectly realistic, it
corresponds to the standard in the literature. Finally, stocks with a
share price below 5 USD have been filtered out. The out-of-sample
period therefore ranges from January 1983 to December 2021, re-
sulting in a total of 468 months.

We denote investment dates 𝑠 = 1, . . . , 468. At any investment
date 𝑠 the covariance matrix is estimated based on the historic
𝑇 = 120 monthly returns using the 𝑁 largest stocks by market
capitalization. The considered portfolio sizes are 𝑁 ∈ {50, 100, 200}.

Simple models such as the sample covariance estimator take
the resulting 𝑇 × 𝑁 matrix to construct the covariance matrix.
Covariance matrix estimators based on factor models that do not
require hyperparameter tuning apply (2) using the factors (which
may be estimated by a dimension reduction method), and their
corresponding loadings and residuals estimated by OLS. For ma-
chine learning-based models that require hyperparameter tuning
we adopt a simple validation sample approach, also used in Conlon
et al. [5, p. 17 ff.], that maintains the temporal ordering of the data:
In each iteration of the rolling window the data is split into two
disjoint periods, namely the first 80% of the sample running from
𝑡 = 1, . . . ,𝑇𝜏 , with 𝑇𝜏 = 96, for model training and the following
20% of the data running from 𝑡 = 𝑇𝜏 + 1, . . . ,𝑇 for model validation.
The hyperparameter selection of each model is given in Section 3.2.

More specifically, methods that require hyperparameter tuning
are estimated using information of the training sample from the
following regression equation:

𝑟𝑡 = 𝛼
𝜏 + �̂�𝜏 ′𝜓𝜏 (𝑟𝑡 ) + 𝑢𝑡 , for 𝑡 = 1, . . . ,𝑇𝜏 ,

where �̂�𝜏 is the estimated matrix of factor loadings (by OLS) using
only data up to 𝑇𝜏 , and 𝜓𝜏 is the estimated dimension reduction
function using a particular set of hyperparameters which depends
on returns 𝑟𝑡 . Next the covariance over the training subsample is
calculated by

Σ̂𝜏𝑟 = �̂�
𝜏 ′Σ̂𝜏

𝑓
�̂�𝜏 + Σ̂𝜏𝑢 ,

where Σ̂𝜏
𝑓
is the sample covariance matrix of the factors 𝜓𝜏 (𝑟𝑡 )

over the training data and Σ̂𝜏𝑢 is a diagonal matrix containing the
sample variances of residuals𝑢𝑡 for 𝑡 = 1, . . . ,𝑇𝜏 . For validation, the
covariance matrix is calculated, again using the estimated matrix
of loadings �̂�𝜏 as

Σ̂𝜈𝑟 = �̂�𝜏 ′Σ̂𝜈
𝑓
�̂�𝜏 + Σ̂𝜈𝑢 ,

where Σ̂𝜈
𝑓
is the sample covariance matrix of the estimated fac-

tors 𝜓𝜏 (𝑟𝑡 ) over the validation data and Σ̂𝜈𝑢 is a diagonal matrix
containing the sample variance of the residuals derived by 𝑢𝑡 =

𝑟𝑡 −
(
𝛼𝜏 + �̂�𝜏 ′𝜓𝜏 (𝑟𝑡 )

)
for 𝑡 = 𝑇𝜏 + 1, . . . ,𝑇 .

The covariance matrix is evaluated by finding portfolio weights
�̂� for the GMV and GMV+ portfolio (see Section 2.3) using the
covariancematrix Σ̂𝜏𝑟 estimated from the training set. The validation
portfolio variance is then calculated as �̂� ′Σ̂𝜈𝑟 �̂� . This procedure is
repeated for each set of hyperparameters.

The set that yields the lowest portfolio variance over the vali-
dation sample is the optimal hyperparameter setting. This setting

is then used to re-estimate the latent factors and factor loadings
using all the observations in the rolling window. Finally, the actual
out-of-sample performance is evaluated by constructing a portfolio
at investment date 𝑠 and observing the portfolio performance in
𝑠+1 using the asset returns that have not been part of the parameter
estimation process. This rolling window approach is repeated until
November 2021 (𝑠 = 468). Following De Nard et al. [6], transaction
costs throughout all experiments are ignored.

3.2 Competing Estimators
In order to compare the performance of our model, we include
different methods for the empirical analysis. Importantly, we exam-
ine popular alternative dimension reduction approaches from the
literature as well as some other reference portfolios. Note that the
factor models for this comparison are restricted to exact factor mod-
els. To achieve parsimonious model specifications that still capture
the main (co-)variation in the data, we decided to use 5 latent fac-
tors for all dimension reduction methods. Competing factor-based
estimators are the following:

• FF5: The five factors of Fama and French [10]: market re-
turn in excess of the risk-free rate, size premium (small-
minus-big), value premium (high-minus-low), profitability
(robust-minus-weak), and investment (conservative-minus-
aggressive).

• AE: Our estimator as described in Section 2.2 and shown in
Figure 1.

• AE-SYM: A symmetric autoencoder, i.e. a comparable archi-
tecture as AE, but with a decoder that is symmetric to the
encoder.

• PCA: Principal Components Analysis.
• SPCA: Sparse Principal Components Analysis as suggested
by Mairal et al. [30].

• CCK : A symmetric autoencoder neural network by Conlon
et al. [5] that uses ranks of stock returns which are mapped
on a [−0.5, 0.5] interval as input features. The authors claim
that this transformation focuses on the ordering of the data
and is insensitive to outliers.

Note that FF5 does not use dimension reduction but employs ob-
servable factors. It serves as a natural benchmark to assess whether
latent factors from dimension reduction methods lead to better
portfolio performance.

We also include some simple portfolios:

• Sample: The minimum-variance portfolio based on the sam-
ple covariance matrix estimator.

• VW : A value-weighted portfolio based on each stock’s mar-
ket capitalization at investment date 𝑠 .

• EW : An equally-weighted portfolio, i.e. a weight of 𝑤𝑖 =

1/𝑁 ∀ 𝑖 .
All factor-based estimators apart from AE are two-step proce-

dures, i.e., the latent factors are first estimated by the corresponding
dimension reduction method which are then plugged into (1) to
estimate the factor loadings by OLS. For our method AE, the load-
ings are directly extracted from the decoding layer of the neural
network. Furthermore, all dimension reduction methods, except
for CCK, are estimated based on standardized returns and their
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Table 1: Hyperparameter tuning - Parameters and choice of
values

Method(s) Hyperparameters Values

encoding layers [1, 2]
AE, AE-SYM 𝜆 [1𝑒−4, 1𝑒−3 ]

dropout ratio [0.20, 0.25, 0.30]

[0.1, 0.2, 0.5, 0.8, 1.0, 1.2,
SPCA 𝛼 1.5, 1.8, 2.0, 2.2, 2.5, 2.8,

3.0, 3.5, 4.0, 4.5, 5.0]

𝜆 [0.0, 1𝑒−5, 1𝑒−4 ]
CCK 𝛿1 [0.0, 1𝑒−5, 1𝑒−4 ]

𝛿2 [0.0, 1𝑒−5, 1𝑒−4 ]

resulting covariance matrix estimate is then rescaled. The standard-
ization is carried out in each rolling window. For methods that need
hyperparameter tuning, the required moments are estimated from
the training set when determining the optimal hyperparameters.
The final model then uses the moments estimated from the entire
window. For CCK, standardization is irrelevant as it uses ranks of
returns as input.

All autoencoders are fitted by minimizing the mean quadratic
loss function using Adam [21] with a fixed learning rate of 0.005 and
model-dependent weight decay 𝜆. We forego batch optimization as
our datasets are quite small. Similar to Gu et al. [15] we apply early
stopping to reduce the computational burden and further regularize
the procedures: The Adam optimizer is allowed to run a maximum
number of 3’500 epochs but is stopped early if the validation loss
does not improve for 300 consecutive epochs. In addition, CCK
applies activity regularization on the output of the encoder using
an elastic net penalty term, controlled by 𝛿1 and 𝛿2 for the 𝐿1 and
𝐿2 penalty, respectively, which shrinks the estimated latent factors
[14].

Finally, the number of neurons in the hidden layers of the au-
toencoders is chosen according to the geometric pyramid rule [33,
p. 176 ff.]. For the symmetric autoencoder, we simply mirror the
number of neurons of the corresponding layers of the encoder.

Table 1 covers the choices of hyperparameters as well as the
corresponding values. Each hyperparameter combination is tested
using the validation sample approach as described in Section 3.1.
The choice of hyperparameters was determined in simple pre-
experiments in order to find a suitable range.

3.3 Evaluation Measures
Inspired by Conlon et al. [5] and De Nard et al. [6], we compare
the out-of-sample performance of the covariance matrix estimators
using measures based on the out-of-sample portfolio returns. Those
are:

• SD: The standard deviation of the 468 out-of-sample returns
annualized by multiplying by

√
12.

• SR: The Sharpe ratio as (AV− RF)/SD, where AV and RF are
the annualized (multiplied by 12) arithmetic means of the 468
out-of-sample returns and of the risk-free rate, respectively.

In context of minimum variance portfolios, the most important
performance measure is the out-of-sample SD. SR measures the risk-
variance tradeoff and is of secondary importance when evaluating
the covariance matrix estimators.

We apply the hypothesis test of Ledoit and Wolf [25] to check
whether the proposed factor-based estimators deliver significantly
different SD than the well-known FF5 model. Let 𝜎𝑚 denote the
standard deviation of the out-of-sample returns of method 𝑚 ∈
{AE,AE-SYM, PCA, SPCA,CCK} and let 𝜎FF5 be the standard devi-
ation of the out-of-sample returns generated by FF5. Then, we test
the null hypothesis

𝐻0,𝑚 : log(𝜎𝑚) = log(𝜎FF5) vs. 𝐻1,𝑚 : log(𝜎𝑚) ≠ log(𝜎FF5),
for all 𝑚 and portfolio sizes 𝑁 . As recommended in Ledoit and
Wolf [25, p. 87], we calculate the 𝑝-values using a circular block
bootstrap. The block size for each comparison is chosen using the
algorithm provided in Ledoit and Wolf [24, p. 854] from the can-
didates2 {1, 3, 6, 10}. As multiple null hypotheses are tested, we
control for the family-wise error rate by correcting all 𝑝-values
using the Holm-Bonferroni procedure [19]. Those adjustments are
applied over all𝑚 but separately for each scenario, which is the
combination of portfolio size 𝑁 and optimization constraint (GMV
or GMV+). Since the major goal of the tests is to compare the per-
formance of factor models to the benchmark FF5, we omit Sample3,
EW, and VW4 from the tests and achieve more power from the
Holm-Bonferroni correction.

3.4 Implementation
All computations are performed in Python 3.8.13. Generally, numer-
ical computations and data preprocessing use NumPy 1.22.3 [16],
SciPy 1.8.0 [42], and pandas 1.4.1 [41], while all neural networks are
implemented in PyTorch 1.11.0 [34]. Specifically, the CCK autoen-
coder is reimplemented in PyTorch according to Conlon et al. [5].
The remaining dimension reduction methods PCA and its extension
SPCA, as well as the OLS routine for the estimation of the factor
loadings for most methods, are taken from scikit-learn 1.0.2 [35].
The portfolio weights are optimized using the quadratic program-
ming solver of CVXOPT 1.3.0 [1]. The hypothesis tests of Section
3.3 are conducted using the MATLAB implementation provided on
Michael Wolf’s website5 and the Holm-Bonferroni correction is
taken from statsmodels 0.13.2 [39].

Finally, all calculations are performed on the sciCORE scientific
computing center at the University of Basel.6

4 RESULTS
4.1 Performance Measures
Table 2 shows the SD and SR of the global minimum variance (GMV)
portfolios from the optimization problem of (5) for the different
methods and varying portfolio sizes. In summary, our proposed
method AE yields consistently low SDs for all 𝑁 . For 𝑁 = 50
and 𝑁 = 200, AE ranks second, with values of 12.57% and 11.61%,
2Default values recommended by the authors.
3Sample is highly unstable for GMV portfolios and even breaks down for 𝑁 = 200.
4EW and VW always yield higher SD than FF5.
5https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html#Programming_
Code
6http://scicore.unibas.ch/
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Table 2: Main results for the GMV portfolio

𝑁 = 50 𝑁 = 100 𝑁 = 200

SD RK SR SD RK SR SD RK SR
model

FF5 13.42 6 0.93 12.74 6 0.85 12.88 6 0.84

AE 12.57** 2 1.00 11.41*** 1 0.94 11.61*** 2 0.98
AE-SYM 13.06 4 1.00 11.89** 4 0.96 11.98** 5 0.93
PCA 13.16 5 0.92 11.47*** 2 0.96 11.59*** 1 0.97
SPCA 12.94 3 1.00 11.59*** 3 0.97 11.68*** 3 0.98
CCK 12.41 1 1.04 12.02 5 1.00 11.78** 4 0.94

Sample 14.85 9 0.77 23.91 9 0.48 – – –
EW 14.57 7 0.88 14.72 8 0.83 14.68 8 0.86
VW 14.57 8 0.85 14.51 7 0.84 14.43 7 0.85

This table shows the annualized standard deviation (SD) and Sharpe ratio (SR) over the
468 out-of-sample returns from January 1983 to December 2021 for three portfolio sizes
𝑁 ∈ {50, 100, 200} across 9 methods (6 factor-based covariance matrix estimators
and 3 simple portfolios) of the global minimum variance portfolio without short-sale
constraint. RK ranks the methods from smallest to largest according to SD. Asterisks
indicate the significance of the hypothesis tests of the dimension reduction methods
(AE, AE-SYM, PCA, SPCA, CCK) against the benchmark (FF5). ***, ** and * denote
significance at the 0.01, 0.05 and 0.1 level, respectively.

Table 3: Main results for GMV+ portfolio

𝑁 = 50 𝑁 = 100 𝑁 = 200

SD RK SR SD RK SR SD RK SR
model

FF5 12.65 7 1.00 11.92 6 0.94 12.11 7 0.89

AE 12.32 1 1.02 11.54** 1 0.94 11.54** 1 0.98
AE-SYM 12.46 4 1.04 11.66 4 0.95 11.57* 2 0.97
PCA 12.55 6 1.04 11.61 2 0.94 11.60 3 0.98
SPCA 12.46 3 1.05 11.70 5 0.92 11.67 5 0.99
CCK 12.53 5 1.03 12.00 7 0.99 11.64 4 0.97

Sample 12.43 2 1.01 11.64 3 0.94 11.93 6 0.94
EW 14.57 8 0.88 14.72 9 0.83 14.68 9 0.86
VW 14.57 9 0.85 14.51 8 0.84 14.43 8 0.85

This table shows the annualized standard deviation (SD) and Sharpe ratio (SR) over the
468 out-of-sample returns from January 1983 to December 2021 for three portfolio sizes
𝑁 ∈ {50, 100, 200} across 9 methods (6 factor-based covariance matrix estimators
and 3 simple portfolios) of the minimum variance portfolio with short-sale constraint
(no negative weights). RK ranks the methods from smallest to largest according to SD.
Asterisks indicate the significance of the hypothesis tests of the dimension reduction
methods (AE, AE-SYM, PCA, SPCA, CCK) against the benchmark (FF5). ***, ** and *
denote significance at the 0.01, 0.05 and 0.1 level, respectively.

respectively, and first for 𝑁 = 100 with 11.41%. Moreover, in all
scenarios its SD is significantly different from FF5 at the usual
significance levels. The estimator with the lowest SD for 𝑁 = 50
is CCK with a value of 12.41%, however, the difference to FF5 is
not significant although its SD is lower than AE. This is due to
the fact that the performed test incorporates higher-order moment
dependencies between the returns of CCK and FF5 which, in this
case, results in a higher standard error than for AE. For details see
Ledoit and Wolf [25, p. 87]. For 𝑁 = 100 CCK drops to rank 5 with
12.02% which is about 5.3% higher than AE. Moreover, for 𝑁 = 200,
CCK ranks 4th with 11.78%.

Autoencoders can be interpreted as (nonlinear) extensions of
PCA, so it is interesting to compare AEwith PCA. PCA is the closest
competitor of AE for 𝑁 = 100 at rank 2 with an SD of 11.47%. How-
ever, for 𝑁 = 50, it performs much worse with an SD that is around
4.7% larger than AE. Interestingly, for 𝑁 = 200, AE ranks second
behind PCA with marginal differences in SD. We also included
SPCA for comparison to check whether the regularized estimation
of AE is the main driver for the improved performance or if it is due
to the network structure itself. The results are mixed, for 𝑁 = 100
and 𝑁 = 200, SPCA is worse than PCA, but for 𝑁 = 50 the opposite
is true. Still, SPCA is worse than AE in all scenarios, suggesting
that the model architecture of AE is key for the performance gain
of AE compared to PCA and SPCA.

Importantly, AE performs better than AE-SYM for all portfolio
sizes 𝑁 which shows that the asymmetric structure of AE yields fac-
tors and loadings that are more suitable for portfolio optimization
in our scenarios.

The sample covariance estimator ranks last in terms of SD for
small 𝑁 = 50, and becomes highly unstable at 𝑁 = 100 ≈ 𝑇 with
a very high SD of 23.91%. It yields no results for 𝑁 = 200 because
the resulting covariance matrix is singular.

Table 3 shows the same out-of-sample measures for the GMV+

portfolios where only positive portfolio weights are allowed. Over-
all, the SDs are lower across most methods compared to the GMV
portfolios, especially for small 𝑁 = 50. This can be explained by
the fact, that constraining the weights to be nonnegative effectively
shrinks the covariance matrix estimator [20, p. 1657].

AE again yields very competitive and robust SDs for all 𝑁 , rank-
ing first in every scenario. It also is the only dimension reduction
method which is significantly different from FF5 for 𝑁 = 100 and
𝑁 = 200 at the 5% level. However, PCA achieves higher SRs com-
pared to AE for 𝑁 = 50, while its SR is similar to that of AE for
𝑁 = 100 and 𝑁 = 200. Again, the regularization in SPCA does not
always improve upon PCA: its SD is higher in both 𝑁 = 100 and
𝑁 = 200. Interestingly, while CCK yields the GMV portfolio with
the lowest SD for small 𝑁 = 50, its relative performance is much
worse for the GMV+ portfolio with short-sale constraint: it drops
to rank 5.

The sample covariance estimator performs much better with
short-sale constraint. For 𝑁 = 50 and 𝑁 = 100 it is competitive
ranking second and third, but dropping to 6th for larger portfolios.

4.2 Factors and Loadings
The asymmetric structure of our autoencoder leads to a joint estima-
tion of the latent factors and their loadings which should improve
the interpretability of the model. The loadings are directly observ-
able as weights of the single linear decoding layer. Figure 2 displays
the ten highest loading exposures for each factor in a descending
order. The corresponding model is the hyperparameter-tuned ver-
sion estimated as of 30.11.2021 for 𝑁 = 100 stocks, which is the
last investment date (𝑠 = 468) of our data set. Since the results of
the neural network are data-driven and computed without addi-
tional knowledge of the stocks, there is no prior convention on how
to interpret the latent factors. To provide a possible explanation
for this ranking, we have colored each stock based on the MSCI
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Figure 2: Top 10 loadings for AE model as of 30.11.2021

The model is trained on the last investment date (𝑠 = 468) using input from the
previous 10 years. Each column represents loadings of a specific factor taken from the
neural network decoder, ranked by their exposure. Colors represent sectors based on
the GICS-codes. Stocks are labeled with their ticker symbol.

Global Industry Classification Standard (GICS)7 code downloaded
from COMPUSTAT dating from 31.12.2020, which classifies each
stock into one of eleven sectors. Additionally, we labeled each stock
with its current ticker symbol. The resulting color-matrix suggests
the following explanation: Factor 1 mainly drives companies from
the health sector, e.g. pharmaceuticals and healthcare companies.
Factor 2 shows high exposures for tech companies e.g. NVIDIA,
Adobe, Apple or AMD. Factor 3 is related to the consumer indus-
try. Wholesale corporations like Costco or Walmart, and consumer
goods corporations like Coca Cola or Procter & Gamble can be
found here. Factor 4 visibly summarizes corporations in the finan-
cial industry: (investment) banks, insurance companies, and other
financial services. Factor 5 is not as characterized by a particular
sector as the other factors. It attempts to capture the remaining
variation in the returns.

The results appear to be economically reasonable. Evidently, the
model also identifies similar companies from different sectors, such
as Amazon and Tesla, which are both tech-related even though they
are not classified as ‘IT’ in the GICS codes.

5 CONCLUSION
We proposed an autoencoder structure for factor-based high dimen-
sional covariance matrix estimation applied to portfolio allocation.
We focused on exact and static factor models, so the covariance
structure of the asset returns is completely determined by the fac-
tors and their loadings. The asymmetric architecture of our pro-
cedure is tailored for factor modeling and jointly estimates the
latent factors along with their loadings, and therefore avoids the
usual two-step procedure required by other dimension reduction
methods.

We ran our method in an empirical application using monthly
stock return data of the past five decades. Using typical risk mea-
sures, the performance of the asymmetric autoencoder was com-
pared to well-established covariance matrix estimators from the
literature, which include comparable dimension reduction methods

7See https://www.msci.com/our-solutions/indexes/gics for more details on the
industries.

and other reference portfolios. To test whether dimension reduc-
tion techniques yield better results than observable factors, the
well-known five-factors of Fama and French [10] were chosen as
the benchmark model. Moreover, we evaluated the decoder weights
of the neural network to find a possible interpretation of the latent
factors.

Our results can be summarized as follows: The proposed au-
toencoder is highly competitive across any tested portfolio size
and optimization constraints (short-sale). Importantly, it is the only
dimension reduction method that consistently outperforms the
benchmark with significant difference. Moreover, it always im-
proves upon a symmetric autoencoder and compares favorably
with PCA which justifies the selected architecture. Furthermore,
we have shown that the asymmetric autoencoder estimates data-
driven latent factors that are economically reasonable, even without
having prior knowledge of the stock characteristics. Therefore, we
shed light on an often regarded blackbox procedure by finding
meaning in the latent variables. The suggested color-scheme of the
factor loadings by sectors is only one way to interpret the latent fac-
tors. Future research is required to better understand the economic
content of the latent factors.
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