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We study the evolution of the energy distribution and equation of state of the Universe from the end of
inflation until the onset of either radiation domination (RD) or a transient period of matter domination
(MD). We use both analytical techniques and lattice simulations. We consider two-field models where the
inflaton Φ has a monomial potential after inflation VðΦÞ ∝ jΦ − vjp (p ≥ 2) and is coupled to a daughter
field X through a quadratic-quadratic interaction g2Φ2X2. We consider two situations, depending on
whether the potential has a minimum at (i) v ¼ 0, or (ii) v > 0. In the scenario (i), the final energy
transferred to X is independent of g2 and entirely determined by p: it is negligible for p < 4, and of order
∼50% for p ≥ 4. The system goes to MD at late times for p ¼ 2, while it goes to RD for p > 2. In the later
case, we can calculate exactly the number of e-folds until RD as a function of g2, and hence predict
accurately inflationary observables like the scalar tilt ns and the tensor-to-scalar ratio r. In the scenario (ii),
the energy is always transferred completely to X for p > 2, as long as its effective mass m2

X ¼ g2ðΦ − vÞ2
is not negligible. For p ¼ 2, the final ratio between the energy densities of X andΦ depends strongly on g2.
For all p ≥ 2, the system always goes to MD at late times.
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I. INTRODUCTION

A phase of accelerated expansion in the early Universe,
inflation [1–4], provides a natural solution to the horizon
and flatness problems of the hot big bang framework, as
well as a mechanism to generate the right spectrum of
primordial perturbations. Constraining cosmological
observables, such as the scalar tilt ns or the tensor-to-
scalar ratio r, provides insight into the inflationary epoch.
Many inflationary models have been actually proposed, but
not all of them are compatible with cosmological obser-
vations [5,6]. For example, recent analysis of the B-mode
polarization of the cosmic microwave background (CMB)
set an upper bound on the inflationary Hubble scale as
Hinf ≲ 4.7 × 1013 GeV [7], putting more pressure, when
not directly ruling out, the parameter space of scenarios
previously compatible with the data.
Inflation must be followed by a period of reheating,

during which the Universe ultimately has to reach a
radiation dominated (RD) thermal state, at least before
the onset of big bang nucleosynthesis at a temperature of
TBBN ∼ 10−3 GeV [8–11]. See [12–16] for reviews on
reheating. The first stage of reheating is often driven by
a period of preheating, characterized by a strong non-
perturbative, out-of-equilibrium excitation of field fluctua-
tions, typically resulting in exponentially growing particle
number densities [17–27]. During preheating and later
stages of reheating, the evolution of the Universe is

characterized by a time-dependent equation of state,
determined by the (averaged) energy content distribution
among the relevant degrees of freedom. In many models
there is an intermediate time when the energy distribution
and the equation of state of the Universe stabilize, at least
temporarily, and a stationary stage is developed [28–30].
Understanding the reheating phase since the end of
inflation till the onset of RD is one of the key challenges
for making accurate predictions for CMB observables [31–
35]. Helping to shed light on this understanding is one of
the main goals of this paper.
Many analytical studies have been performed to inves-

tigate the phase of preheating, giving valuable insight into
the initial linear regime of exponential field excitation
after inflation, see e.g., [18,24,25] for the case of para-
metric resonance with monomial inflaton potentials. The
late time regime, on the other hand, is governed by
nonlinear dynamics. Thus, to investigate the dynamics
of the (p)reheating phase in its full extent, it is necessary to
resort to lattice field theory techniques (for a review see
[36]). Postinflationary dynamics have been studied with
the help of such techniques in the past, in particular for
models with monomial inflaton potentials. For potentials
steeper than quadratic, the inflaton fragments due to self-
resonance even in the absence of couplings to daughter
field species, with the effective equation of state of the
Universe transitioning towards RD ∼ 10 e-folds after the
end of inflation [37,38]. For a quadratic potential,
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however, the inflaton can only fragment via gravitational
effects in a much longer time scale [39].
The inclusion of interactions to other field species can

change the postinflationary dynamics significantly. The
evolution of the energy distribution and equation of state
during preheating was studied in the case of quadratic-
quadratic inflaton-daughter field interactions in [40], and
more extensively in [41] (see also [42] for a nonlattice
study). The case of trilinear interactions was also consid-
ered in [43], and a case with higher order effective
couplings in [44]. A fitting study for quadratic and quartic
potentials was also carried out in [45], where the dynamics
was characterized as a function of the coupling strength.
Furthermore, lattice studies of multifield models with
nonminimal couplings to gravity, transformed into non-
minimal kinetic terms in the Einstein frame, have been
carried out in [46,47], see also [48–50] for semianalytical
studies. Other works on preheating with nonminimal
kinetic terms include [51] in the context of DBI inflation
and based on lattice simulations, and [52,53] in the context
of α-attractor scenarios, based on lattice simulations and in
semianalytical computations, respectively.
Preheating studies have often focused on the early stages

of the field dynamics, rather than on the very late time
evolution of the system, when the energy densities and
equation of state attain a stationary regime. In a recent
Letter [30], using lattice simulations, we captured for the
first time the very late-time dynamics of the inflaton-
daughter field system for a class of scenarios with
monomial inflaton potentials around the origin during
preheating, V ∝ jϕjp (with arbitrary power-law index
p ≥ 2). There we studied the evolution of the energy
distribution and equation of state of the Universe as a
function the model parameters. The simulations were
carried out with the CosmoLattice package [36,54],
which implements various evolution techniques that allow
us to decrease the simulation time and to execute the code
parallellized in multicore systems. In particular, we took
advantage of the higher-order Velocity-Verlet evolution
algorithms implemented in the package, which allowed us
to simulate the late-time regime of the system while
preserving energy conservation sufficiently well.
Furthermore, we also showed that simulations of the given
scenario in (2þ 1) dimensions1 can mimic the (3þ 1)-
dimensional dynamics well, which allows us to signifi-
cantly increase the final simulated time.
The aim of the present paper is to complement and

expand the results of [30]. Regarding the setup for the
inflaton-daughter field system, we consider now a singlet

real scalar inflaton field Φ and model its potential by a
monomial shape around a minimum v after inflation,
VðjϕjÞ ∝ jϕjp (p ≥ 2) with ϕ≡Φ − v. As purely mono-
mial potentials VðϕÞ ∝ jϕjp are strongly disfavored for
inflation,2 we rather use consistent inflaton potentials that
flatten out towards large field values by developing a
plateau, as inspired from α-attractor models [57]. Only after
inflation ends, the inflaton reaches the monomial shape of
its potential VðϕÞ ∝ jϕjp around v. We consider that the
minimum of the inflaton potential can be both at v ¼ 0 (as
in [30]), as well as at a nonvanishing values v ≠ 0 (going
beyond [30]). In the case of v ¼ 0, we refer to the inflaton
potential as centered, while we call it displaced potential
otherwise for v ≠ 0. For the interaction between the
inflaton Φ and the scalar daughter field X, we consider3

the ubiquitous quadratic-quadratic coupling g2Φ2X2. It is
the lowest order coupling allowed in case of a Z2 symmetry,
and it emerges, for example, as the leading term from gauge
interactions of the form ðDμΦÞ†ðDμΦÞ [58], with Dμ being
a gauge covariant derivative. Furthermore, it is a marginal
operator that does not introduce any new scale, and even if
it was absent in the tree-level Lagragian, it is typically
generated in the presence of other interactions from
quantum effects [59].
Using very long lattice simulations, we present a detailed

study of the postinflationary evolution of the different
energy components and the equation of state as a function
of the power-law coefficient p, the inflaton-daughter
coupling g2 and the inflaton potential minimum v. In
particular, we characterize the late-time dynamics of the
system, as well as the values that the different energy ratios
and the equation of state take at the late stationary regime.
We also present a detailed analytical formulation of the
preheating process based on the linearized field equations,
with arbitrary power-law coefficient p of the monomial
inflaton potential. Although this analysis can only be applied
to the early dynamics of the system, it e.g., allows us to obtain
an estimation of the backreaction time when the dominant
process is either parametric resonance of the daughter field
or self-resonance of the inflaton. Furthermore, the analytical
results are also useful to interpret some of the features we
observe in the lattice simulations. Finally, we also present a
detailed calculation of the impact of reheating on the infla-
tionary CMB observables. For v ¼ 0 and p > 2, using our
lattice results we can calculate exactly, as a function of g2, the
number of e-folds between the end of inflation and the onset
of RD. This allows us to predict accurately inflationary

1With “simulations in (2þ 1) dimensions” we mean solving
the three-dimensional field equations in a 2D slice, with the
discrete spatial derivatives adjusted to the new situation: for
example, the OðΔx2Þ Laplacian is sourced by four surrounding
lattice points instead of six. We refer the reader to [55] for a
discussion on this technique.

2Monomial potentials during inflation are not ruled out
however if an appropriate nonminimal coupling between the
inflaton and the Ricci scalar is also present [56].

3We would like to emphasize that other interaction terms might
play a relevant role as well, and that it would be interesting to
extend our study in this direction in the future. However, any such
consideration goes beyond the current scope of the present paper,
where we limit ourselves to quadratic-quadratic interactions.
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observables like the scalar tilt ns and the tensor-to-scalar
ratio r. This paper will be followed by another paper, in
which we will treat the case of multiple daughter fields.
The paper is structured as follows: in Sec. II we describe

the properties of our chosen inflationary potential and the
postinflationary inflaton oscillations. In Sec. III we present
a detailed linearized analysis of preheating, including the
resonances of the inflaton and daughter field, considering
both the effect of a vanishing (v ¼ 0) and nonvanishing
(v ≠ 0) inflaton potential minimum. In Sec. IV we present
the results from our lattice simulations with centered
(v ¼ 0) and displaced (v ≠ 0) potentials. In Sec. V we
study the impact of our results on CMB observables.
Finally, in Sec. VI we discuss our results and conclude.

II. INFLATON POTENTIAL AND OSCILLATIONS

We consider a singlet inflaton Φ with potential VðΦÞ that
exhibits a single minimum at some scale Φ ¼ v. For
simplicity we consider the potential to be symmetric around
the minimum, so it can be written as a function of
jΔΦj≡ jΦ − vj. We will consider the potential to be a
monomial V ∝ jΦ − vjp around the origin, with p > 1. In
the absence of inflaton couplings to other fields, the
dynamics of the system does not depend on v and the field
amplitude can be shifted as Φ → ϕþ v, such that the
minimum of the potential is at ϕ ¼ 0. For the remainder
of this section we discuss the initial phase after inflation,
where inflaton-daughter couplings are neglected andweonly
consider the inflaton potential VðϕÞ. We will restore the
interaction of the inflaton with a daughter field in Sec. III.
A paradigmatic example of monomial potentials is given

by the chaotic inflation scenario, characterized by a
function as

VðϕÞ ¼ 1

p
λμ4−pjϕjp; ð1Þ

with λ a dimensionless parameter, p > 1 a real exponent,
and μ an energy scale. For p ¼ 4 and p ¼ 2, Eq. (1)
reproduces the usual expressions VðϕÞ ¼ ð1=4Þλϕ4 and
VðϕÞ ¼ ð1=2Þm2ϕ2 (with m2 ≡ λμ2), respectively. As the
potential depends on the absolute value of ϕ, the existence
of a minimum at ϕ ¼ 0 is ensured, even for odd or
fractional values of p.
A monomial shape as in Eq. (1) at all field amplitudes is

excluded by CMB observations [6,7]. However, Eq. (1) can
still approximately describe the behavior of a more general
potential around its minimum, as long as it deviates from
the monomial form at large field amplitudes, developing for
instance a plateau. We parametrize such potentials in the
following way:

VtðϕÞ ¼
1

p
Λ4tanhp

�jϕj
M

�
; Λ≡ λ

1
4μ

4−p
4 M

p
4; ð2Þ

where Λ and M are parameters with dimensions of energy,
appropriately chosen (give a value of p) to satisfy CMB
constraints. The form of this potential is motivated by
α-attractor T models of inflation [57] and is depicted in
Fig. 1. The potential can be approximated by Eq. (1) for
small amplitudes jϕj ≪ M, while it develops a plateau
VtðϕÞ → Λ4=p at large amplitudes jϕj ≫ M. The inflec-
tion point separating the positively and negatively curved
regions of the potential is

ϕi ¼ Marcsinh

� ffiffiffiffiffiffiffiffiffiffiffi
p − 1

2

r �
; ð3Þ

which gives ϕi=M ≃ f0.66; 0.89; 1.03; 1.15; 1.26g for
p¼f2;3;4;5;6g, respectively. Note that we get ϕi → ∞
in the limit M → ∞, as expected.
In these models, inflation takes place at large field values

away from the minimum, where a slow-roll regime holds.
The inflaton accelerates as it rolls towards the minimum, and
eventually the slow-roll regime breaks. The end of inflation
can be identified as the time when ϵH ≡ − _H=H2 ¼ 1. For
simplicity, we can also approximate the end of inflation by
the condition ϵV ≡m2

plV
2
;ϕ=ð2V2Þ ¼ 1, which allows us to

obtain analytical expressions for the inflaton amplitude at
that time. In our model,

ϵV ¼ 2p2m2
plcsch

2ð2jϕjM Þ
M2

⟶
M→∞

p2m2
pl

2jϕj2 ; ð4Þ

where we have also written the expression in the monomial
limit M → ∞. The field amplitude ϕ� satisfying the con-
dition ϵVðϕ�Þ≡ 1, is given by

ϕ� ¼
1

2
Marcsinh

� ffiffiffi
2

p
pmpl

M

�
⟶
M→∞

pmplffiffiffi
2

p : ð5Þ

The parameters fp;Λ;Mg can be constrained by match-
ing the model predictions of inflationary observables with

FIG. 1. Inflationary potential (2) for several values of p. The
dashed lines show the monomial function (1) that approximates
the potential well for small values of ϕ.
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current observational constraints. In particular, we want to
explain the observed values of the amplitude As and
spectral tilt ns of the scalar perturbations, while respecting
at the same time the upper bound for the tensor-to-scalar
ratio r. Predictions are obtained by evaluating As and ns as
a function of the potential V and the slow-roll parameters
ϵV and ηV ≡m2

plV;ϕϕ=V, when the pivot scale kCMB ¼
0.05 Mpc−1 crosses the Hubble radius, approximately
∼50–60 e-folds before the end of inflation. Current bounds
for As and ns are [6]

As ¼
ðVk=m4

plÞ
24π2ϵVk

≃ 2.1 × 10−9;

ns ¼ 1þ 2ηVk
− 6ϵVk

¼ 0.9668� 0.0037; ð6Þ

where quantities with a subindex kmust be evaluated when
kCMB crosses the horizon. Moreover, the upper bound of the
tensor-to-scalar ratio is [7]

r0.05 ¼ 16ϵVk
< 0.036: ð7Þ

In Fig. 2 we show the predictions for ns and r as a function
ofM for our inflationary model, for Nk ¼ 50 and Nk ¼ 60.
The constraint for r translates to the upper bound M ≲
10mpl in our potential. In particular, by fitting As, we can
determine the following relation:

Λ4 ¼ 3π2AsM2m2
pl

N2
k

fðp;M;NkÞ; ð8Þ

with f ¼ fðp;M;NkÞ a complicated function that obeys
f ∼ 1 for M ≪ 1. We provide the exact form of f in
Appendix A. For M ≃ 10mpl we get 0.8 < f < 1.3 for
p ∈ ½2; 6�. Equation (8) can be used to obtain an expression
for the coefficient λμ4−p in front of the monomial potential
(1), which approximates the full potential (2) at small
amplitudes. We show in Fig. 3 the dependence of this
coefficient onM, for p ¼ 2–6. It is quite independent onM
for p ¼ 2, giving m2 ≡ λμ2 ≃ 10−11 at all scales. In the
monomial limit M → ∞, it is given by

λμ4−p ≡ Λ4

Mp ⟶
M→∞

12π2p3Asm
4−p
pl

ð2pNk þ p2=2Þpþ2
2

: ð9Þ

The inflationary period terminates when ϕ≲ ϕ�, and
then the inflaton starts oscillating around the minimum of
the potential. For p ≥ 2, we find that ϕi > ϕ� for
M ≥ Mc ≡ 1.633mpl. By choosing M > Mc we guarantee
that the postinflationary oscillations of ϕ are always
contained in the positive-curvature region of the potential.
In this case, the inflaton potential can be well approximated
by the power-law expression (1) during the oscillatory
regime. We assume this mass choice in the following.

A. Inflaton oscillations

The equation of motion (EOM) of an inflaton with
potential (1) can be written as

ϕ̈ −
1

a2
∇2ϕþ 3H _ϕþ λμ4−pjϕjp−2ϕ ¼ 0; ð10Þ

where H ≡ _a=a is the Hubble rate. Here we consider the
first oscillations after inflation, when the effects of inter-
actions with other fields are negligible. Hence, we can also
discard the Laplacian term in the EOM, and consider ϕ as
approximately homogeneous. Under these circumstances,
the inflaton solution can be approximately parametrized as

FIG. 2. Prediction for ns and r as a function of M for the
inflationary potential (2), for different choices of p. The obser-
vational constraints for ns are depicted by the dark and light gray
bands, which indicate the 68% and 95% C.L. intervals from
Planck 2018 results [6].

FIG. 3. Coefficient λðμ=mplÞ4−p appearing in the first term of
the Taylor expansion of the potential (1) as a function of M, for
different choices of p.
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the product of a decaying amplitude function AϕðtÞ and an
oscillatory function F ðtÞ [60], as

ϕðtÞ ≃AϕðtÞF ðtÞ; AϕðtÞ≡ ϕ⋆
�
t
t⋆

�
−2=p

; ð11Þ

where ϕ⋆ ≡ ϕðt⋆Þ is the field amplitude at a certain
timescale t ¼ t⋆ close to the end of inflation [the exact
definition of ϕ⋆ is given in Eq. (20) below]. The oscillation
period of FðtÞ changes with time for p ≠ 2, and it is
given by

Ωosc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V;ϕϕ

−1
q

¼ λ
1
2μ

4−p
2 A

p−2
2

ϕ ¼ ω⋆
�
t
t⋆

�2
p−1

; ð12Þ

where ω⋆ ≡ λ
1
2μ

4−p
2 ϕ

p−2
2⋆ is the oscillation frequency at t ¼ t⋆.

Shortly after the end of inflation, the oscillations of the
homogeneous inflaton give rise to the following effective
equation of state [60],

w̄hom ≡ hpϕi
hρϕi

¼ p − 2

pþ 2
; ð13Þ

where hρϕi and hpϕi are the oscillation-averaged energy
density and pressure of the inflaton, respectively. For
power-law coefficients p ∈ ½2; 4�, the equation of state lies
within the range w̄hom ∈ ½0; 1=3�, but a period with a stiff
equation of state w̄hom > 1=3 can also be envisaged for
p > 4. Correspondingly, the evolution of the scale factor
during this regime can be approximately described as

aðtÞ ≃ a⋆
�
1þ 3p

2þ p
H⋆ðt − t⋆Þ

�2þp
3p

; ð14Þ

where a⋆ ≡ aðt⋆Þ and H⋆ ≡Hðt⋆Þ. For monomial poten-
tials, after a few oscillations it holds that H⋆ðt − t⋆Þ ≫ 1,

and hence that aðtÞ=a⋆ ∼ ðH⋆tÞ
2

3ð1þwÞ ¼ ðH⋆tÞ
2þp
3p . We set

a⋆ ¼ 1 for convenience from now on.
Using Eq. (14), we can predict the following scaling

behaviors:

Aϕ ∝ a−
6

pþ2; Ωosc ∝ a
3ð2−pÞ
ðpþ2Þ : ð15Þ

In light of (15), it is convenient to redefine the field and
spacetime variables. First, we introduce an inflaton ampli-
tude transformation as

φ≡ a
6

pþ2
ϕ

ϕ⋆
; ð16Þ

such that the amplitude of the oscillations of φ remains
constant in time. Second, we define new spacetime vari-
ables ðu; y⃗Þ as

t → u≡
Z

t

t⋆
ω⋆aðt0Þ

3ð2−pÞ
2þp dt0; x⃗ → y⃗≡ ω⋆x⃗: ð17Þ

In this way, the oscillation period of the function φ ¼ φðuÞ
will be approximately constant in time. We will collectively
refer to the variables defined in Eqs. (16)–(17) as natural
variables. Derivatives with respect to natural time and
space variables will be denoted as 0≡ d=du and
∇y⃗ ≡ d=dy⃗, respectively.
In terms of natural variables, the homogeneous inflaton

EOM is written as

φ00 þ ðjφjp−2 þ FðuÞÞφ ¼ 0; ð18Þ

where FðuÞ is a time-dependent functional of the scale
factor and its derivatives,

F½a0=a; a00=a�≡ 6

ðpþ 2Þ
�ðp − 4Þ
ðpþ 2Þ

�
a0

a

�
2

−
a00

a

�
: ð19Þ

By substituting Eq. (14) into (17), it turns out that the scale

factor in natural time evolves as a ∼ u
pþ2
6 , so that

FðuÞ ∝ u−2. Therefore, the term ∝ FðuÞ in Eq. (18)
becomes negligible after a few inflaton oscillations, and
we discard it in the following analysis.
In order to solve the differential equation (18), we need

to decide at which time to set the initial conditions, i.e., we
need to define the time t ¼ t⋆. By construction, this
corresponds to u ¼ 0 in natural time, and to an initial
field amplitude φðu ¼ 0Þ ¼ 1. We then define t⋆ from a
condition over the initial time derivative, in particular
requiring that φ0ðu ¼ 0Þ ¼ 0. In physical variables, this
can be written as

φ0ðu ¼ 0Þ ¼ 0 → _ϕ⋆ ¼ −
6H⋆
pþ 2

ϕ⋆: ð20Þ

The field amplitude ϕ⋆ can be obtained by solving the
coupled inflaton and scale factor equations numerically,
with initial conditions deep in the slow-roll regime, until
the above condition holds. This gives

ϕ⋆
mpl

≃ f0.97; 1.34; 1.72; 2.09; 2.47g;

H⋆
ω⋆

≃ f0.49; 0.59; 0.69; 0.79; 0.89g; for p ¼ 2; 3; 4; 5; 6;

ð21Þ

where we also indicate the values of the Hubble parameter
H⋆ ¼ Hðt⋆Þ at this time. Note that we have ϕ⋆ ≈ ϕ�,
although for p > 2 the oscillatory regime always begins
shortly after the end of inflation.
In the approximation FðuÞ ≃ 0, the solution of Eq. (18)

for p ¼ 2 is simply φ ¼ cosðuÞ, whereas for p ¼ 4, the
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solution is given instead by an elliptic cosine, the Jacobi
function φ ¼ cnðu; 1=2Þ. In this second case, the solution
can be nonetheless approximated well by the first term of
its harmonic expansion, φ ≃ cosð0.8472uÞ [25]. Actually,
we have checked that for any value of p ≥ 2, the numerical
solution for φ can always be approximated by simple
cosine functions with different oscillation periods. In
particular, we can write

φ ≃ cosðβφ̄uÞ; βφ̄ ≡ 2π

ω�Tφ
; ð22Þ

where Tφ is the oscillation period of the inflaton, which can
be computed as follows:

ω�Tφ ¼ 4

Z
uðφ¼1Þ

uðφ¼0Þ
du ¼ 4

Z
φ¼1

φ¼0

1

φ0 dφ

¼
ffiffiffiffiffiffi
8p

p Z
φ¼1

φ¼0

dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jφjpp ¼

ffiffiffiffiffiffiffiffiffi
8pπ

p Γ½1þ 1
p�

Γ½1
2
þ 1

p�
: ð23Þ

In the third equality, the energy Eφ ≡ 1
2
φ02 þ 1

p jφjp ¼ 1
p is

conserved. We obtain

βφ̄≃f1;0.92;0.85;0.79;0.75g; for p¼ 2;3;4;5;6: ð24Þ

We now derive an expression for the oscillation-
averaged energy density stored in the inflaton homo-
geneous condensate:

ρϕ̄ ≡ 1

2
h _ϕ2i þ hVðϕÞi

≃ ω2⋆ϕ2⋆a
−6p
pþ2

�
1

2
hφ02i þ 1

p
hjφjpi

�

¼ ω2⋆ϕ2⋆
pa

6p
pþ2

: ð25Þ

In the first equality we have extracted the scale factor from
the oscillation averages, as it does not change significantly
during one oscillation period. In the second equality we
have used that hφ02i ¼ hφpi ¼ 2=ðpþ 2Þ, as computed in
Eqs. (B1)and (B3) of Appendix B. As expected, the energy
redshifts as nonrelativistic matter for p ¼ 2, and as radi-
ation for p ¼ 4.
Finally, let us remark that the inflaton solution (22)

has been obtained under the assumption in Eq. (18) that
FðuÞ ¼ 0 holds exactly at all times. This is however not
really true during the initial oscillations of the inflaton. Thus,
neither the oscillation-averaged equation of state nor the
scale factor is given exactly by Eqs. (13) and (14) during the
initial oscillatory stage. We quantify next the discrepancy
between our analytical approximations and the real solution,
obtaining the latter by solving numerically the coupled
equations of the field and scale factor evolution with initial

conditions deep inside the slow-roll regime. In this regard,we
introduce the following parametrizations,

φ̄ðuÞ ≃ ð1þ δ1Þ cosðð1þ δ2Þβφ̄uÞ; ð26Þ

aðuÞ≃ð1 − δ3Þ
�
1þ 6

pþ 2

H⋆
ω⋆

u
�pþ2

6

; ð27Þ

where δa (a ¼ 1; 2; 3) are three correction factors that
account for such discrepancy. Fitting Eqs. (26) and (27) to
the numerical solutions, we find reasonable agreement by
fixing

δ1 ¼ f0.00; 0.02; 0.04; 0.04; 0.05g;
δ2 ¼ f0.00; 0.02; 0.04; 0.05; 0.07g;
δ3 ¼ f0.12; 0.17; 0.23; 0.28; 0.34g;

for p ¼ f2; 3; 4; 5; 6g: ð28Þ
While the corrections for the inflaton solution are minor, the
corrections for the scale factor aremore sizeable and become
more significant for larger values of p.

III. ANALYTICAL ANALYSIS OF
POSTINFLATIONARY DYNAMICS

Having discussed the postinflationary oscillations of the
inflaton homogeneous mode, we now proceed to include a
quadratic-quadratic interaction with a massless scalar field
X and study the growth of the inflaton and daughter field
fluctuations. For the analytical discussion we present now,
we consider the following potential during preheating,

VðΦ; XÞ≡ VðΦÞ þ ViðΦ; XÞ

¼ 1

p
λμ4−pjΦ − vjp þ 1

2
g2Φ2X2; ð29Þ

where g2 is a dimensionless coupling constant and Φ is the
inflaton. We will refer to the potential with v ¼ 0 as
the centered potential, and to the one with v > 0 as the
displaced potential. It is convenient to express, as in the
previous section, the potential in terms of a shifted field
ϕ≡Φ − v, such that the potential is always centered
around ϕ ¼ 0. From now on we will only work with the
shifted field ϕ and refer to it as the inflaton. The total
potential then reads

Vðϕ; XÞ ¼ VðϕÞ þ VðXÞ þ Viðϕ; XÞ

¼ 1

p
λμ4−pjϕjp þ 1

2
g2v2X2

þ 1

2
g2ð2vϕþ ϕ2ÞX2: ð30Þ

We see that for v ≠ 0 a trilinear interaction arises between
the inflaton and the daughter field, and the latter also
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acquires a nonzero mass m2
X ≡ g2v2. In any case, the

postinflationary dynamics of the inflaton homogeneous
mode during the initial linear regime does not depend on
the choice of v and behaves as described in Sec. II A. In
particular, the inflaton still oscillates around the minimum
of the potential with time-dependent frequency (12), which
gives rise to the effective equation of state (13). Therefore,
it is still convenient to work with natural field variables
(φ, χ),

φ≡ 1

ϕ⋆
a

6
pþ2ϕ; χ ≡ 1

ϕ⋆
a

6
pþ2X; ð31Þ

as well as with the natural spacetime variables (17).
In Sec. III A we present, for the centered potential, an

analytical study of the two relevant resonant excitation
processes after inflation: inflaton self-resonance and para-
metric resonance of the daughter field. In Sec. III B we
extend our study of parametric resonance to the case of the
displaced potential. Finally, in Sec. III C we present useful
expressions for the equation of state and energy compo-
nents of the two-field system.

A. Analytical analysis of resonances: Centered potential

Let us first consider the centered potential case with
v ¼ 0. The inflaton and daughter field equations in natural
variables are

φ00 − a
−ð16−4pÞ

2þp ∇2
y⃗φþ ðjφjp−2 þ q̃χ2 þ FðuÞÞφ ¼ 0; ð32Þ

χ00 − a
−ð16−4pÞ

2þp ∇2
y⃗χ þ ðq̃φ2 þ FðuÞÞχ ¼ 0; ð33Þ

where FðuÞ ∼ u−2 is the function defined in Eq. (19)
(which becomes negligible after a few inflaton oscilla-
tions), and q̃≡ q̃ðuÞ is the time-dependent effective reso-
nance parameter, defined as

q̃ðuÞ≡ q⋆a
6ðp−4Þ
pþ2 ; q⋆ ≡ g2ϕ2⋆

ω2⋆
; ð34Þ

with q⋆ the (dimensionless) initial resonance parameter. At
the onset of oscillations we have q̃ ¼ q⋆, but as the
Universe expands, q̃ changes in different ways depending
on the value of p: it decreases for p < 4, increases for
p > 4, and remains constant for p ¼ 4.
Let us now expand the fields at linear order as

φðy⃗; uÞ≡ φ̄ðuÞ þ δφðy⃗; uÞ; ð35Þ

χðy⃗; uÞ≡ δχðy⃗; uÞ; ð36Þ

where the bar denotes the inflaton homogeneous mode. We
have set the initial homogeneous mode of the daughter field
to zero, as it is made purely out of vacuum quantum

fluctuations. Under the approximation F ¼ 0 we have
φ̄ ≃ cosðβφ̄uÞ, with βφ̄ given in Eq. (23) for each value
of p. On the other hand, the EOM in momentum space of
the inflaton and daughter field fluctuations at linear order
are

δφ00
k þ ω̃2

k;φδφk ¼ 0; ω̃k;φ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2ðaÞ þ ðp − 1Þjφ̄jp−2

q
;

ð37Þ

δχ00k þ ω̃2
k;χδχk ¼ 0; ω̃k;χ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2ðaÞ þ q̃ðaÞφ̄2

q
; ð38Þ

where we define in natural units the resonance momenta
κ̃ as

κ̃ðaÞ≡ κa
−ð8−2pÞ
2þp ; κ ≡ k

ω⋆
: ð39Þ

Note that κ̃ is neither the comoving momentum κ ≡ k=ω⋆
nor the physical momentum κphðaÞ≡ κ=a, although it
coincides with the former for p ¼ 4 and the latter for
p ¼ 2. Therefore, even if the resonance happens at constant
scales in terms of κ̃, the range of excited physical/comoving
momenta typically change as the Universe expands.
As seen in the lineralized equations, the fluctuations of

both fields have time-dependent effective masses induced
by the oscillations of the inflaton field. In natural (dimen-
sionless) units,

m2
φ;eff ¼ ðp − 1Þjφ̄jp−2; ð40Þ

m2
χ;eff ¼ q̃ðaÞφ̄2: ð41Þ

Each time the inflaton crosses the minimum of its potential,
the effective masses vary nonadiabatically (for sufficiently
large q̃), inducing a strong growth of the fluctuations of
both fields. By means of a Floquet analysis we shall see that
the field fluctuations have exponentially growing solutions
for certain ranges of κ̃, with the effect controlled by p in the
case of the inflaton, and by fq⋆; pg in the case of the
daughter field. Due to this, the particle number of both
fields grows as nφk ∼ jδφkj2 ∝ e2μku and nχk ∼ jδχkj2 ∝ e2νku,
respectively, where μk and νk are the Floquet indices of
each field. This gives rise to two distinct resonance effects
that play a major role in the early preheating phase: self-
resonance of the inflaton, and parametric resonance of the
daughter field. In the following we describe these reso-
nances in more detail.

1. Self-resonance of the inflaton

For p ≠ 2, the fluctuations of the inflaton have a time-
dependent effective mass due to the oscillations of the
homogeneous mode [see (40)]. This leads to exponential
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growth of some modes in a process of self-resonance. More
precisely, Eq. (37) admits solutions of the type φk ∼ eμku

with μk the Floquet index. Figure 4 shows the real part of
this coefficient as a function of κ̃ and p. The band with the
lowest momenta is the widest one and exhibits the largest
average Floquet index for all values of p, so it dominates
the self-resonance process. The maximum Floquet index in
the entire parameter space is μk ≃ 0.036, obtained for
p ≃ 3.6. Remarkably, the expansion of the Universe does
not diminish the strength of the resonance for a fixed value
of κ̃, as the corresponding Floquet index remains constant.
This is a fundamental difference with respect to parametric
resonance of daughter fields as we shall see.
After the first zero crossing of the inflaton, we have

ρδϕ ≪ ρϕ̄, where ρδϕ and ρϕ̄ are the energy of the inflaton
fluctuations and homogeneous mode respectively, see
Eq. (25). However, the energy stored in the fluctuations
grows exponentially fast as the inflaton oscillates, and it
eventually becomes large enough that nonlinear effects
become relevant, leading to the decay of the inflaton
homogeneous mode. We refer to this moment as the
backreaction time. An analytical estimation of this quantity
was obtained in Ref. [38], which correctly approximates the
more exact result obtained from lattice simulations. In
Ref. [38] parametrization depends on a constant δ, which is
constrained with input from the lattice. In the following we
propose an alternative estimation for the backreaction time
that does not require such input.
We define the backreaction time as the instance when

ρδϕ ¼ ρϕ̄. The expression of ρδϕ can be written as
follows:

ρδϕ ¼ 1

2π2a3

Z
dkk2Ωk;ϕnk;ϕ

¼ ω4⋆
2π2

a
12ð2−pÞ
pþ2

Z
dκ̃κ̃2ω̃k;φnk;ϕ; ð42Þ

where we have defined the frequency of the mode as

Ωk;ϕ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=aÞ2 þ ðp − 1Þλμ4−pjϕ̄jp−2

q
¼ ω⋆a

3ð2−pÞ
pþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2 þ ðp − 1Þjφ̄jp−2

q
;

≡ ω⋆a
3ð2−pÞ
pþ2 ω̃k;φ: ð43Þ

According to the Floquet diagram of Fig. 4, the most
important contribution to the integral comes from the
lowest-momenta resonance band. Therefore, we can
roughly approximate the exponentially growing particle
number of the excited modes as

nk;ϕ ≃
�
e2μ̄u for κ̃− < κ̃ < κ̃þ
0 otherwise

; ð44Þ

where κ̃− and κ̃þ are the minimum and maximum (reso-
nance) momenta of the main resonance band, and we
approximate μk by the average Floquet index within the
band, denoted as μ̄. We can parametrize the band in a
similar fashion as in Ref. [38]. In particular, we depict in
Fig. 5 the average Floquet index μ̄, the band width

FIG. 4. Floquet chart for inflaton self-resonance, which shows
the real part of the inflaton Floquet index μk as a function of p and
κ̃, obtained from the solution of Eqs. (37) and (18). White areas
correspond to Re½μk� ¼ 0.

FIG. 5. Parametrization of the main resonance band appearing
in the Floquet chart of inflaton self-resonance. From top to
bottom: average Floquet index μ̄, average momenta of the band κ̃c
and band width Δκ as a function of p.
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Δκ̃≡ κ̃þ − κ̃−, and the central momentum of the band
κ̃c ≡ ðκ̃þ þ κ̃−Þ=2, all as a function of p.
Plugging (44) into (42) leads to

ρδϕ ≃
ω4⋆
2π2

a
12ð2−pÞ
pþ2

Z
κ̃þ

κ̃−

dκ̃κ̃2e2μ̄uω̃k;φ

≈
ω4⋆
2π2

a
12ð2−pÞ
pþ2 κ̃2cΔκ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2c þ ðp − 1Þhjφ̄jp−2i

q
e2μ̄u; ð45Þ

where we have approximated the inflaton effective mass by
its oscillation-averaged expression [see Eq. (B4) in
Appendix B for a computation of hjφ̄jp−2i]. Note that
the field fluctuations are neither fully relativistic nor
nonrelativistic, as the typical excited (resonance) momenta
are κ̃ ∼ ðp − 1Þhjφ̄jp−2i ∼Oð1Þ. By equating (45) to (25),
we can estimate the backreaction time as the solution to the
following equation,

ubr ≃
1

2μ̄ðpÞ ×
�
6ðp − 4Þ
pþ 2

logaðubrÞ þ log

�
ϕ4−p⋆
λμ4−p

�
þ logð2π2=pÞ − logΔκ̃ðpÞ − 2 log κ̃cðpÞ

−
1

2
log

�
κ̃2cðpÞ þ ðp − 1Þ

Γ½p−1p �Γ½pþ2
2p �

Γ½1p�Γ½3p−22p �

��
; ð46Þ

which is implicit for p ≠ 4. We can solve numerically this
expression for monomial potentials using Eqs. (9), (21) and
(27). The solution is shown in Fig. 6, where we depict both
ubr and the number of e-folds Nbr ≡ logðaðubrÞÞ as a

function of p. We observe that the minimum backreaction
time corresponds to ubr ≃ 300, attained at p ≃ 3.2. If we
either decrease or increase p, the backreaction time
increases, reaching ubr ≳ 700 for p ¼ 2 and p ¼ 6. The
behavior is different in terms of e-folds, as we obtain Nbr ¼
4–4.5 for p ¼ 2.2–3, while it grows (almost linearly) for
larger values of p, reaching Nbr ≃ 8 for p ¼ 6.

2. Parametric resonance of the daughter field

The oscillations of the inflaton condensate can also
trigger an exponential growth of the fluctuations of the
daughter field. If q̃ > 1, then the effective frequency of the
daughter field changes nonadiabatically as ω̃k;χ

0=ω̃2
k;χ ≫ 1,

so that each time the inflaton crosses zero, it excites
daughter field fluctuations via a process of parametric
resonance. Due to this, daughter field modes evolve as χ2k ∼
e2νku with Re½νk� > 0 for specific resonance momentum
bands in κ̃, where νk is the corresponding Floquet index.
Compared to the self-resonance case, the Floquet index
νk ≡ νkðq̃; pÞ depends now not only on p, but also on q̃,
and hence on the scale factor. Therefore, unlike the case of
inflaton self-resonance, the strength of the resonance of X
for a fixed κ̃ changes as the Universe expands.
In Fig. 7 we show the Floquet charts of the daughter field

for p ¼ 2, 3, 4, 4.5, 5 and 6, in terms of κ̃ and q̃. We observe
a clear structure of bands, meaning that the resonance is
much stronger for some values of q̃ than others. The
parameter space can be divided in two regimes depending
on the value of q̃. If q̃ < 1, then the bands are so narrow that
the resonance is very weak: this is referred to as narrow
resonance. On the contrary, if q̃ ≥ 1, the bands are much
broader and the typical Floquet indices are much larger, so
the resonance is stronger: this corresponds to broad
resonance. In the later case, for p ¼ 4, and within the
following q̃ intervals,

q̃ ∈ ½nð2n − 1Þ; nð2nþ 1Þ�; n ¼ 1; 2…; ½p ¼ 4� ð47Þ

(i.e., q̃ ¼ q⋆ ¼ ½1; 3�; ½6; 10�…), the range of excited res-
onance momenta can be written as 0 ≤ κ̃ ≲ κ̃þ ∼ q̃1=4. The
maximum Floquet index throughout the complete param-
eter space is νk;max ≃ 0.26, which is attained at the center of
these bands at κ̃ ¼ 0. A similar structure of bands is
observed for other values of pð≠ 4Þ, but their position is
not described by Eq. (47).
The value of q̃ depends on the scale factor, so the system

moves along a trajectory in the fq̃; κ̃g parameter space as
the Universe expands. We can distinguish three situations
depending on the value of p: (1) if p < 4, then q̃ decreases
with time, so even if the resonance is initially broad, it will
eventually become narrow at late times; (2) if p > 4, then q̃
grows with time, so either the resonance goes from initially
narrow to broad at later times (if q⋆ ≲ 1), or it is always
broad (if q⋆ ≳ 1); (3) if p ¼ 4, then q̃ is constant, so the

FIG. 6. Estimate of the backreaction time for inflaton self-
resonance as a function of p, in terms of natural time ubr (top) and
postinflationary number of e-folds Nbr (bottom).
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type of resonance will not change, and it will be always
either narrow (if q⋆ ≲ 1) or broad (if q⋆ ≳ 1).
Initially the energy density of the daughter field is small,

ρX ≪ ρϕ̄. However, ρX grows exponentially as the inflaton
oscillates, and if the system is in the broad resonance regime
long enough,we eventually arrive at a situationwith ρX ≃ ρϕ̄.
The initially homogeneous inflaton then fragments due to
backreaction, becoming fully inhomogenous. Similarly to
the analysis of self-resonance, we define the corresponding
backreaction time ubr as the time when the condition
ρXðubrÞ ¼ ρϕ̄ðubrÞ holds for the first time. We now estimate
this timescale under the assumption that the resonance is
always broad (q̃ > 1) during the time interval 0 < u < ubr.
The energy density of the X field can be written as

ρX ¼ 1

2π2a3

Z
dkk2Ωk;Xnk;X

¼ ω4⋆
2π2

a
12ð2−pÞ
pþ2

Z
dκ̃κ̃2ω̃k;χnk;X; ð48Þ

where Ωk;X≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=aÞ2þg2ϕ̄2

p
¼ a

3ð2−pÞ
pþ2 ω̃k;χω⋆ is the effec-

tive frequency of the mode, and nk;X is the occupation
number. The amplitude of the daughter field modes grows
exponentially for certain ranges of κ̃, which depend in a
nontrivial way on q̃, as seen in Fig. 7. Furthermore, q̃
evolves with time for p ≠ 4, so the specific modes being
excited change with time. This gives rise to a stochastic
behavior [24]. In order to simplify the computation, we
assume that all modes below a certain cutoff κ̃ < κ̃þ are
excited exponentially with a constant Floquet index ν̄, so
that nk;X ¼ e2ν̄uθð1 − κ̃=κ̃þÞ. As we shall see, this approxi-
mation gives a good order-of-magnitude estimate of the
timescale at which backreaction happens.
We can get an estimate for κ̃þ from the condition of

adiabaticity violation,

ω̃0
k;χ

ω̃2
k;χ

≳ 1 → κ̃2 ≲ ðq̃ φ̄ φ̄0Þ2=3 − q̃φ̄2; ð49Þ

FIG. 7. Floquet diagrams for parametric resonance of the daughter field in the centered potential case, for p ¼ 2, 3, 4, 4.5, 5 and 6,
obtained from the solution of Eq. (38) and (18). The Floquet indexRe½νk� is depicted in terms of q̃ and κ̃. White regions correspond to
parameters for which Re½νk� ¼ 0.
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where we take the approximation ða0=aÞ2; a00=a ≪ κ̃2. For
simplicity, we expand the field amplitude around the mini-
mum of the potential (at the time u ≃ u�), such that φ̄ ∼
βφ̄Δu≡ βφ̄ðu − u�Þ and φ̄0 ∼ βφ̄. By substituting this into
(49), we can show that a range of momenta κ̃ are excited
during the time interval Δu ≃ q̃−1=4β−1=2φ̄ . The range of
excited momenta is the widest at the time Δu≃
3−3=4q̃−1=4β−1=2φ̄ , with the maximum momentum excited

being κ̃≲ κ̃þ≡21=23−3=4β1=2φ̄ q̃1=4¼21=23−3=4β1=2φ̄ q1=4⋆ a
3ðp−4Þ
2ðpþ2Þ.

Wewill use this expression as the upper limit of the integral in
(48). We can also show that most of the excited momenta are
nonrelativistic,

m2
χ

κ̃2þ
∼
q̃

ffiffiffiffiffiffiffiffiffi
hφ̄2i

p
κ̃2þ

∼ q̃1=2 ≳ 1; ð50Þ

where we have used hφ̄2i ≈ 1=2, see Eq. (B2) from
Appendix B. The energy density ρX is finally given by

ρX ¼ ω4⋆
2π2

a
12ð2−pÞ
pþ2

Z
dκκ2ωk;χe2ν̄uθ

�
1 −

κ̃

κ̃þ

�

≃
ω4⋆
2π2

a
12ð2−pÞ
pþ2 q̃1=2hφ̄2i1=2

Z
κ̃þ

0

dκ̃κ̃2e2ν̄u

≃
ω4⋆

2
3
2 · 3π2

q̃1=2a
12ð2−pÞ
pþ2 κ̃3þe2ν̄u

¼ ω4⋆β3=2φ̄

27 · 31=4π2
q5=4⋆ a

−3ð4þ3pÞ
2ðpþ2Þ e2ν̄u: ð51Þ

From the condition ρX ¼ ρϕ̄ we get

ubr ≃
1

2ν̄

�
3ð4 − pÞ
2ðpþ 2Þ ln aðubrÞ þ ln

�
ϕ4−p⋆
λμ4−p

�

−
5

4
log q⋆ þ ln

�
27 · 3

1
4π2

pβ3=2φ̄

��
: ð52Þ

For monomial potentials, we can use Eqs. (9), (21) and
(27) to solve this expression for ubr. For p ¼ 4 the
expression can be solved explicitly. If we take ν̄ ¼ 0.2
and Nk ¼ 60, we obtain the following logarithmic depend-
ence,

ubr ≃ 86 − 7.2log10ðq⋆Þ; ½p ¼ 4�; ð53Þ

which is similar to the result obtained previously in [45].
Equation (52) is however implicit for p ≠ 4, and can only
be solved numerically. We show in Fig. 8 the value of ubr as
a function of q⋆ for p ¼ 2, 3, 4, 5 and 6, as well as the
corresponding number of e-folds Nbr ≡ log½aðubrÞ� after
inflation. The prediction for ubr is very similar for the

considered values of p, so Eq. (53) can in fact roughly
approximate the solution in all cases, even for p ≠ 4.
However, when expressed in number of e-folds, we observe
that Nbr grows monotonically with p for a fixed value of
q⋆. This happens because the number of e-folds goes as
N ∼ pþ2

6
logðuÞ, so N grows with p. Note also that the

above expression predicts a negative backreaction time for
q⋆ ≳ 1012: this signals that our linearized approach is not
valid anymore, as backreaction would take place immedi-
ately after the daughter field is first excited.
Note that in the above computation we assumed that the

system remains in broad resonance (q̃ > 1) from the end of
inflation till backreaction. However, there are two situations
in which this is not the case. First, for p < 4, q̃ decreases as
the Universe expands, so the system can enter into narrow
resonance before backreaction happens, i.e., q̃ðubrÞ ≤ 1.

We have that q̃ ¼ q⋆a
6ðp−4Þ
pþ2 ∼ q⋆up−4, so this condition can

be expressed in terms of q⋆ as follows,

FIG. 8. Estimates of the backreaction time induced by para-
metric resonance in the centered potential case. Results are shown
in terms of natural time ubr (top) and postinflationary number of
e-folds Nbr (bottom), as a function of q⋆ and for different values
of p. Vertical dashed lines for p ¼ 2–4 show the values of q⋆ for
which the condition (54) is no longer valid.
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q̃ðubrÞ≡ q⋆up−4br ðq⋆Þ ≥ 1 → q⋆ ≥ qðminÞ⋆ ≃ 101.9ð4−pÞ; ð54Þ

where the expression for qðminÞ⋆ given in the right-hand side
of the inequality is simply a fit to the numerical solution of

the corresponding implicit equation. If q⋆ ≤ qðminÞ⋆ , then the
homogeneous inflaton mode never decays due to back-
reaction of X, as the resonance becomes narrow before
backreaction. On the other hand, if p > 4 and q⋆ < 1, q̃
grows with time, and even though the resonance is initially
narrow, the system eventually develops broad resonance
and hence X backreacts on the inflaton. This delays the
backreaction time (52) by an extra amount of time

Δu ∼ q
− 1
p−4⋆ .

A rapid inspection of the corresponding Floquet dia-
grams shows that broad parametric resonance of the
daughter field, if present, is always much stronger than
inflaton self-resonance. In particular, the maximum Floquet
index for inflaton self-resonance is μk ≈ 0.035, while for
parametric resonance of the daughter field is νk ≈ 0.26. Due
to this, the predicted Nbr is always larger for self-resonance
(Fig. 6) than for broad parametric resonance (Fig. 8), for all
considered values of p ∈ ½2; 6�.

B. Analytical analysis of resonances:
Displaced potential

Let us turn to the case of an inflaton potential with
minimum at v ≠ 0. In this case, the daughter field X
acquires now a mass mX at the minimum of the potential,
given by

m2
X ≡ ∂2V

∂X2

����
min

¼ g2v2 ¼ q⋆
�
ω⋆v
ϕ⋆

�
2

; ð55Þ

where q⋆ ¼ g2ϕ2⋆=ω2⋆ [cf. (34)] is the initial resonance
parameter. Considering also the effective mass of the
inflaton,

m2
ϕ ≡ ∂2V

∂ϕ2
¼ λμ4−pϕp−2; ð56Þ

it is convenient to define the (time-dependent) ratio R̃

R̃2 ≡m2
X

m2
ϕ

¼ g2v2

λμ4−pϕp−2 ¼ R2⋆a
6ðp−2Þ
ðpþ2Þ ; ð57Þ

R2⋆ ≡m2
X

m2
ϕ

����
t¼t⋆

¼ q⋆v2
ϕ2⋆

; ð58Þ

where R⋆ refers to the ratio at the initial time t⋆. For p ¼ 2,
R̃ is constant and can be interpreted as the mass ratio
between the two fields, whereas for p > 2 it is a ratio that
grows with the expansion of the Universe.

Similarly to the centered potential case, it is convenient
to work with natural spacetime and field variables,
cf. Eqs. (17) and (31). The field EOM, including inter-
actions and spatial gradients, read

φ00 − a
−ð16−4pÞ

2þp ∇2
y⃗φþ jφjp−1 þ q̃χ2ðφþ ṽÞ ¼ 0; ð59Þ

χ00 − a
−ð16−4pÞ

2þp ∇2
y⃗χ þ q̃ðφþ ṽÞ2χ ¼ 0; ð60Þ

where q̃ ¼ q⋆a
6ðp−4Þ
pþ2 [cf. (34)] and

ṽðaÞ≡ v⋆a
6

2þp; v⋆ ≡ v
ϕ⋆

: ð61Þ

During the early stage of preheating, we can do again a
linearized analysis of the inflaton and daughter field
fluctuations, by expanding the fields as φðy⃗; uÞ≡ φ̄ðuÞ þ
δφðy⃗; uÞ and χðy⃗; uÞ≡ δχðy⃗; uÞ. The evolution of the
homogeneous inflaton mode φ̄ðuÞ is then described by
the EOM φ̄00 þ jφ̄jp−2φ̄ ≃ 0, and its solution is approxi-
mately described by Eq. (22). The mode equations of the
fluctuations are

δφ00
k þω2

k;φδφk ¼ 0; ωk;φ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2þðp−1Þjφ̄jp−2

q
; ð62Þ

δχ00k þ ω2
k;χδχk ¼ 0; ωk;χ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2 þ q̃ðφ̄þ ṽÞ2

q
; ð63Þ

where κ̃≡ κa
−ð8−2pÞ
2þp is the resonance momentum in natural

units [cf. (39)]. The equation of the inflaton fluctuations is
identical to the one of the centered case (37), so the process
of self-resonance remains unchanged. As discussed, it
admits exponential solutions of the type δϕk ∼ eμku with
Re½μk� > 0 for certain combinations of fκ̃; pg, which are
described by the Floquet chart of Fig. 4.
The daughter field experiences an exponential growth

δχk ∼ eνku due to parametric resonance for certain combi-
nations of parameters fκ̃; ṽ; q̃;pg. On the one hand, if
ṽ ≪ 1, we recover the situation of the centered potential,
explained in Sec. III A 2. On the other hand, if ṽ ≫ 1, then
the adiabaticity condition is never violated, i.e.,
ω̃0
k;χ=ω̃

2
k;χ < 1 holds at all times, so no excitation of the

daughter field takes place. We are therefore interested in
studying the postinflationary dynamics when ṽ has an
intermediate value between both limits.
Let us generalize the previous Floquet analysis to the

case of nonvanishing minimum v. For this purpose, we
write the equation of δχk in a more convenient form,

δχ00k þ
�
κ̃2 þ R̃2

�
1þ φ̄

ṽ

�
2
�
δχk ¼ 0; ð64Þ

which allows us to study the properties of the solution in
terms of R̃ and ṽ. Figure 9 summarizes our results. We have
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FIG. 9. Floquet index Re½νk� for parametric resonance of the daughter field in the displaced potential case. From top to bottom, we
consider the power-law coefficients p ¼ 2, 3, 4 and 5, and in each case, we fix the resonance momenta to κ̃ ¼ 0 (left), 0.5 (middle) and 1
(right). Charts are plotted as a function of R̃ and ṽ. White areas correspond to regions whereRe½νk� ¼ 0. The dashed lines indicate how
the system moves in parameter space as the Universe expands.
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considered the power-law coefficients p ¼ 2, 3, 4 and 5,
and, for each case, we show the Floquet charts for specific
choices of resonance momenta: κ̃ ¼ 0, 0.5 and 1. Each
panel shows the real part of the Floquet index Re½νk� as a
function of R̃ and ṽ (note that there is resonance for values
of R̃ > 2 even if these are not shown in the figure).
Interestingly, we see that parametric resonance can excite
daughter particles with mass much larger than the inflaton
mass, mX ≫ mϕ, in contrast to perturbative decay
processes.
In the regime ṽ ≲ 1 we can observe that small variations

in R̃ or ṽ may lead to very different behaviors in the
resonance structure. The largest Floquet indices for a
particular mode can be found at the ratios R̃ ¼
R⋆ ∼ nβφ̄=2 with n ¼ 1; 2;…, where βφ̄ is given in
Eq. (23). The largest Floquet index overall for p ¼ 2
can be found for κ̃ ¼ 0, with Re½νκ� ≈ 0.26. However, if
we consider instead larger values of p, the maximum value
attained by νκ is smaller: for example, for p ¼ 4 we obtain
νmax
κ ≈ 0.235 for very small ṽ.
Let us now consider the structure of resonances for

ṽ≳ 1. As observed in the Floquet charts, in this regime the
resonance bands are significantly broader for lower
momenta, while they become increasingly narrow for
higher values of κ̃. For very large values of ṽ, the bands
become thin spikes located around specific values of R̃.
This property of the solutions can be explained by
analyzing the mode equation in the limit ṽ ≫ 1. In this
regime, Eq. (64) can be written as

δχ00k þ ðαþ βφ̄Þδχk ≃ 0; α≡ κ̃2 þ R̃2; β≡ 2R̃2

ṽ
:

ð65Þ

For p ¼ 2, the inflaton homogeneous mode evolves exactly
as φ̄ ¼ cosðuÞ, so Eq. (65) corresponds to a Mathieu-like
equation. In the limit β → 0, the solution of these equations
shows a structure of narrow resonance bands located at α
values α ¼ ðn=2Þ2, with n ¼ 1; 2; 3;…, which become
increasingly narrow as β gets closer to zero [61]. In our
system this means that, in the limit ṽ ≫ 1, there exist
resonance bands (spikes) roughly centered at the mass
ratios

R̃¼ R⋆ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n
2

�
2

− κ̃2

s
; n¼ 1;2;…; ½p¼ 2� ð66Þ

for all integer values of n obeying n > 2κ̃. Therefore, the
momentum κ̃ ¼ 0 only gets excited when the mass ratio is
around integer or half-integer values. These bands can be
clearly seen for ṽ > 1 in the Floquet charts for p ¼ 2,
depicted in the top panels of Fig. 9. The mass ratio that
gives the strongest excitation (for κ̃ ¼ 0) is R̃ ¼ R⋆ ≃ 0.5.

For p > 2, we do not have an exact solution for φ̄, but it
can be approximated by φ̄ ≈ cosðβφ̄uÞ [see Eqs. (22) and
(24)]. In this case, the resonance bands are instead located at

R̃ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
βφ̄n

2

�
2

− κ̃2

s
; n ¼ 1; 2;…; ð67Þ

again for all integer values of n obeying n > 2κ̃. This
structure of bands is also clearly observed for ṽ ≥ 1 in the
Floquet charts for p ¼ 3, 4, and 5, see Fig. 9.
Note that both ṽ and R̃ depend on the scale factor, so the

system travels along trajectories throughout parameter
space as the Universe expands. These are depicted with
dashed arrows in the different stability charts of Fig. 9. In
the case p ¼ 2, R̃ ¼ R⋆ is constant and ṽ ¼ v⋆a3=2 grows
with time, so the system travels vertically and downwards.
For p > 2, both R̃ ∝ a3ðp−2Þ=ðpþ2Þ and ṽ ∝ a6=ð2þpÞ grow,
so the system travels both downwards and rightwards. If the
initial value of ṽ satisfies ṽ ≪ 1, the system goes first
through a stochastic stage during which short intervals of
strong excitation alternate quickly with instances of no
excitation, and a wide range of modes gets amplified. Once
ṽ≳ 1, the system enters a stage where modes are amplified
only on specific resonance momentum bands centered
around the critical values given by Eqs. (66) (for p ¼ 2)
or (67) (for p > 4). In any case, as the expansion of the
Universe goes on, the Floquet indices decrease for all
momenta, and eventually the resonance is completely
switched off.

C. Energy distribution and equation of state

We present expressions for the different energy contri-
butions of the fields and explain how their evolution
impacts the equation of state after inflation. In the following
we do not differentiate between v ¼ 0 and v ≠ 0, as the
expressions are common to both cases.
We start by writing the pressure and energy densities as

p ¼ 1

2
_ϕ2 þ 1

2
_X2 −

1

6
j∇ϕj2 − 1

6
j∇Xj2 − Vðϕ; XÞ; ð68Þ

ρ ¼ 1

2
_ϕ2 þ 1

2
_X2 þ 1

2
j∇ϕj2 þ 1

2
j∇Xj2 þ Vðϕ; XÞ; ð69Þ

where Vðϕ; XÞ is the potential energy given in Eq. (30).
When written in terms of natural variables (17) and (31),
these can be decomposed as

ρ ¼ ω2⋆ϕ2⋆
a

6p
2þp

ðEφ
k þ Eχ

k þ Eφ
g þ Eχ

g þ Ep þ EiÞ; ð70Þ

p ¼ ω2⋆ϕ2⋆
a

6p
2þp

�
Eφ
k þ Eχ

k −
1

3
Eφ
g −

1

3
Eχ
g − Ep − Ei

�
; ð71Þ
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where Ef
k and Ef

g (f ¼ φ; χ) are the (natural) kinetic and
gradient energy densities of each field, Ep is the (natural)
potential energy (which can be decomposed as the sum of
the inflaton and daughter field contributions, Ep≡
Eφ
p þ Eχ

p), and Ei is the interaction energy (which can

also be decomposed in two terms as Ei ≡ Eð1Þ
i þ Eð2Þ

i ).
Each of these terms can be written as

Ef
k ≡ 1

2

�
f0 −

6

pþ 2

a0

a
f

�
2

; ðf ¼ φ; χÞ; ð72Þ

Ef
g ≡ 1

2
a

4p−16
pþ2 j∇y⃗fj2; ðf ¼ φ; χÞ; ð73Þ

Eφ
p ≡ 1

p
jφjp; ð74Þ

Eχ
p ≡ 1

2
a

6ðp−2Þ
pþ2 q⋆v2⋆χ2: ð75Þ

Eð1Þ
i ≡ a

6ðp−3Þ
pþ2 q⋆v⋆φχ2; ð76Þ

Eð2Þ
i ≡ 1

2
a

6p−24
pþ2 q⋆φ2χ2; ð77Þ

Note that for the centered potential case we have v⋆ ¼ 0, so
the trilinear interaction and daughter field potential are not

present, and Ep ¼ Eφ
p and Ei ¼ Eð2Þ

i .
We can also define energy ratios for each of these terms

as εi ≡ hEii=h
P

j Eji, where j sums over all energy
components and h…i denotes a volume average. These
indicate the different relative contributions to the total
energy of the system. By construction, all ratios sum one,

X
j

εj ¼ εφk þ εχk þ εφg þ εχg þ εp þ εi ¼ 1: ð78Þ

The equation of state is defined as the ratio between the
pressure (71) and the energy density (70), and can be
written as

w≡ p
ρ
¼ εφk þ εχk −

1

3
ðεφg þ εχgÞ − ðεp þ εiÞ: ð79Þ

Wewill be mainly interested in the evolution of the effective
equation of state w̄, which is obtained by averaging the
instantaneous equation of state (79) over oscillations. The
energy distribution and the equation of state will evolve in
different ways for different choices of p and q⋆.
It has been shown that this kind of field systems virialize

rapidly after the end of inflation [37,38,45,62], with the
following relations holding when averaged over both
volume and oscillations,

h _f2i ¼ hj∇fj2i þ
	
f
∂V
∂f



; ðf ¼ φ; χÞ: ð80Þ

For the two-field scenario under consideration with poten-
tial (30), these relations can be expressed in terms of energy
contributions as

hEφ
k i ≃ hEφ

g i þ p
2
hEφ

pi þ 1

2
hEð1Þ

i i þ hEð2Þ
i i; ð81Þ

hEχ
ki≃hEχ

gi þ hEχ
pi þ hEii; ð82Þ

Besides, the sum Et ≡P
j Ej does not change significantly

during one oscillation, so we can write analogous relations
in terms of energy ratios by simply doing the substitution
hEii → ε̄i in Eqs. (81)–(82), where the bar denotes an
oscillation average over time.
During the initial stage of preheating, the energy budget

is dominated by the oscillatory homogeneous inflaton
mode, and the only non-negligible energy ratios are εφk
and εφp. Using Eqs. (78) and (81) we get

ε̄φk ¼ p
pþ 2

; ε̄φp ¼ 2

pþ 2
: ð83Þ

If we substitute these expressions into (79), then we recover
w̄≡ ðp − 2Þ=ðpþ 2Þ as expected, cf. (13). On the other
hand, whenever the potential and interaction energies of the
system are very small compared to gradient and kinetic
energies (say effectively we have εφp; εi ≪ 1), we get from
(78) and (81) that the kinetic energy of each field equals its
gradient energy, ε̄fk ≃ ε̄fg ðf ¼ φ; χÞ. By substituting this
into (79), we get that this configuration gives rise to a
radiation-dominated universe w̄ ¼ 1=3. Note that this result
is independent on how much energy is transferred between
the two fields: only the ratio between the gradient and the
potential energies is relevant, which must obey εp=ε

f
g ≪ 1

and εi=ε
f
g ≪ 1.

IV. LATTICE RESULTS

We now present our numerical results on the postinfla-
tionary dynamics. The aim of this section is to properly
study the later nonlinear regime of the field evolution with
lattice simulations, beyond the limitations of the linearized
analysis carried out before. We are interested in how the
energy ratios εi evolve after inflation, and how they affect
the postinflationary equation of state, sourced by the
different εis, cf. Eq. (79). We are particularly interested
in their values at very late times, to see if a radiation-
dominated stage is eventually achieved. These results are
accompanied with a spectral analysis of the centered
potential case, which is presented in Appendix C.
We simulate the postinflationary dynamics for two-field

system with total potential
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Vðϕ; XÞ ¼ VtðϕÞ þ V intðϕ; XÞ

¼ 1

p
Λ4tanhp

�jϕj
M

�
þ 1

2
g2ðϕþ vÞ2X2; ð84Þ

where, as usual, ϕ≡Φ − v. For small field values around
the origin jϕj ≪ M, Eq. (84) reduces to the potential
Eq. (30) used in our analytical calculations. We have
initialized the simulations at the end of inflation, when
the field value of the inflaton is ϕ�, and only consider cases
in which inflation ends in the positive-curvature region of
the potential, i.e., ϕi > ϕ�.

4

In the following we explore the dynamics for different
values of the power-law coefficient p, the resonance
parameter q� for the centered potential [see Eq. (34)],
and the mass ratio R� for the displaced potential [see
Eq. (58)]. The inflaton potential in Eq. (84) is well
approximated by the monomial function (1) during the
oscillatory regime, and hence the initial preheating stage on
the lattice is well described by the linearized analysis
presented in Sec. III. For illustrative purposes, we fix the
value ofM in the simulations we present in this section. We
choose M ¼ 10mpl, corresponding approximately to the
largest value compatible with the upper bound of the
tensor-to-scalar ratio, see Fig. 2. The qualitative results
we present here forM ¼ 10mpl hold for other choices ofM
as long as the inflaton potential can be properly approxi-
mated by a monomial function during preheating. In Sec. V
we take simulations into account for the whole range
M=mpl ¼ 2–10, to constrain the inflationary observables
ns and r, as a function of M.
Simulations have been carried out with Velocity-Verlet

integration [36] in CosmoLattice [54], a recent package
for lattice simulations of interacting fields in an expanding
Universe.5 We have run simulations in 2þ 1 dimensions
[see footnote 1 for an explanation of the meaning of
“(2þ 1)-dimensional simulations”], but we do not expect
relevant differences compared to (3þ 1)-dimensional sim-
ulations, based on our quantitative comparison already
presented in our previous work [30]. There we confirmed
that the postinflationary dynamics of the system are
qualitatively and quantitatively similar in both cases, by

direct comparison in the parameter regions were both kinds
of simulations are possible. The main reason for using
simulations in 2þ 1 dimensions is that it reduces the
simulation time by a factor ∼102–103 in comparison to
three-dimensional ones. This allows us to properly explore
the late time regime, which requires extremely long
simulations, sometimes covering more than ∼10 e-folds
of expansion after inflation. Furthermore, as described in
Sec. III, the inflaton and daughter fields are excited at
different momentum scales, and their field spectra propa-
gate towards ultraviolet scales during and after backreac-
tion. Therefore, in certain cases we had to use relatively
large lattices, up to N ¼ 1024 points/dimension for values
of p slightly larger than p ¼ 2, e.g., p ¼ 2.3.
Very long simulations may pose an important problem

due to the accumulation of errors after many time steps of
evolution. Our algorithm uses the acceleration Friedmann
equation to evolve the scale factor, while it uses the Hubble
rate equation to check the accuracy of the solution, as it is a
direct constraint of the field dynamics (this is typically
referred to as “energy conservation” in our context of field
evolution in an expanding background). Results for the
energy distribution and equation of state cannot be trusted
when the relative difference between the (volume-aver-
aged) left- and right-hand sides of the Hubble Friedmann
equation becomes too large, Δe≡ ðlhs− rhsÞ=ðlhsþ rhsÞ≳
Oð10−2Þ. For many parameter regions this happens before
the equation of state and/or the energy ratios achieve a
stationary regime. In particular, the time scale at which this
stationary regime is achieved grows as z ∼ qδ� with δ ∈
½0; 1� (see Ref. [45]), so it becomes increasingly difficult to
study very large values of q�. We have partially alleviated
this issue by simulating the system with higher-order
Velocity-Verlet algorithms [36], which are implemented
in CosmoLattice up to Oðdt−10Þ. For the cases we
present in the following, the violation of energy conserva-
tion does not exceed Δe ∼Oð10−3Þ at the end of the
simulations.

A. Lattice analysis: Centered potential

We begin by explaining the results from our lattice
simulations with a centered potential (v ¼ 0). We consider
in detail the following three scenarios, according to the
choice of power-law coefficient: p ¼ 2, p ∈ ð2; 4Þ and
p ≥ 4.
(i) p ¼ 2. In this case, the inflaton does not develop

fluctuations via self-resonance, but the daughter field gets
excited via parametric resonance if a quadratic-quadratic
coupling between both fields is sufficiently large. This may
trigger the decay of the inflaton homogeneous mode due to
backreaction. The strength of the resonance is set by the
effective resonance parameter q̃≡ q�a−3 [cf. (34)], which
decreases as the Universe expands. For parameters in the

range 1 < q� < qðmaxÞ
� [where qðmaxÞ

� ¼ 103.8 ≈ 6.3 × 103,

4This condition holds forM ≳ 1.633mpl for all values of p [see
Eqs. (3) and (5)]. For M ≲ 1.633mp, the inflaton will enter the
tachyonic region of the potential during at least the first
oscillations, which will trigger a growth of the inflaton fluctua-
tions in a process of self-resonance, but different to the one
studied in Sec. III A 1. In this case, the inflaton fragments into
long-lived oscillons, as long as the inflaton is sufficiently weakly
coupled to daughter fields. For p > 2, the inflaton fragments into
transients, which are similar to oscillons but with significantly
shorter lifetimes [37,38].

5Different integration methods, such as the staggered leapfrog
algorithm used in Ref. [30], give equivalent results as long as
numerical errors are under control and, in particular, energy is
sufficiently well conserved.
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recall Eq. (54)], the resonance is initially broad, but it
becomes narrow before backreaction effects take place.
Once narrow resonance is set, the energy of the daughter
field decays as ρX ∼ a−4, while the one of the inflaton
homogeneous mode goes as ρϕ ∼ a−3. As a result, the
homogeneous inflaton eventually dominates the energy
budget again. The gradient energy of both fields remains
always subdominant, so the deviation of the equation of
state from the homogeneous prediction w̄ ≃ w̄hom ¼ 0 is
negligible.
The case q� > qðmaxÞ

� is more interesting. In Fig. 10 we
show, for p ¼ 2 and q� ¼ 2.4 × 104, the postinflationary
evolution of the different energy ratios and equation of
state. Contrary to the previous case, now the inflaton
homogeneous mode decays via backreaction effects, at
approximately the backreation time ubr given in Eq. (52).
For the range of parameters considered in this work, we
typically have ubr ∼ 30–100 in agreement with the ana-
lytical estimation of Fig. 8. Approximately at this time, the
fraction of energy stored in the gradients of both fields
becomes sizeable, and due to this, the effective equation of
state deviates from the homogeneous solution w̄≃w̄hom≡0
as time approaches ubr, reaching a local maximum w̄ ¼
w̄max < 1=3 at some later time umax > ubr. However, as q̃ ¼
q�a−3 decreases with time, the resonance eventually
becomes narrow and the interaction negligible. From then
on, the total inflaton energy decays as ρϕ ∼ a−3 due to its
mass, while the energy of the (massless) daughter field
dilutes as ρX ∼ a−4. The total gradient energy also becomes
very small at late times, so the homogeneous mode of the
inflaton eventually dominates the energy budget of the
system again. This behavior gets reflected in the effective
equation of state, which slowly decays from the maximum
w̄ ¼ w̄max towards w̄ → 0.

The qualitative evolution of the equation of state is very
similar for all resonance parameters obeying q� ≳ qðminÞ

� ,
though the specific details depend on the choice of q�. This
can be seen in Fig. 11, where we show the evolution of w̄
obtained from simulations with different values of q�. We
can observe that, as q� increases, the maximum value that
the equation of state attains, w̄max, becomes larger, and the
whole growth-and-decay process also takes longer. We
have quantified this in Fig. 12. In the top panel we show
that the larger the value of q� is, the larger w̄max becomes,
slowly approaching the radiation-dominated value w̄max ¼
1=3 for very large q�. Similarly, in the bottom panel we
show the number of postinflationary e-folds it takes for the
equation of state to reach w̄ ¼ w̄max, as well as to decay
down to w̄ ¼ 0.1 and 0.03 during the subsequent relaxation
process. For the range of resonance parameters considered,

FIG. 10. [v ¼ 0] Results from lattice simulations with p ¼ 2, q� ¼ 2.4 × 104, andM ¼ 10mpl. Left: evolution of the different energy
contributions (72)–(74) and (77) and their sum Et ≡P

i Ei as a function of time and postinflationary number of e-folds. Right:
instantaneous equation of state w (blue line) and its effective oscillation-averaged approximation w̄ (red thick line). The horizontal
dashed line indicates the maximum equation of state w̄max, while the different vertical lines indicate the times at which the equation of
state attains w̄ ¼ w̄max, 0.1 and 0.03.

FIG. 11. [v ¼ 0] Evolution of the effective equation of state for
p ¼ 2, M ¼ 10mpl, and different choices of q�, as a function of
the post-inflationary number of e-folds.
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w̄max is attained ∼3–4 e-folds after the end of inflation,
while the relaxation process may take several more e-folds.
(ii) 2 < p < 4. According to our linearized analysis, in

this case there are two relevant postinflationary resonant
phenomena dictating the evolution of the energy distribu-
tion and equation of state: self-resonance of the inflaton and
parametric resonance of the daughter field.
Let us consider first the case p ¼ 2.3, i.e., a value

slightly larger than the p ¼ 2 case considered just above.
This choice allows to illustrate very clearly the different
time scales at which parametric resonance and self-reso-
nance are effective. In Fig. 13 we have plotted the evolution
of the energy ratios and equation of state for three different
resonance parameters: q� ¼ 0, 4 × 103 and 6 × 104.
Initially, the inflaton homogeneous mode dominates the
energy budget, with its kinetic energy representing ∼53%
of the total, its potential energy representing the other
∼47%, cf. Eq. (83), and with negligible gradient energy
density. The equation of state at this stage is w̄hom ≃ 0.07, as
expected from Eq. (13) for p ¼ 2.3. This is well observed
in the three panels depicted in the figure. However, the
energy ratios and equation of state evolve in various
manners after backreaction effects kick in, which we
explain in the following.

If q� ¼ 0, then there is no transfer of energy to the
daughter field, but the amplitude of the inflaton fluctuations
grows exponentially via self-resonance, according to the
linearized analysis of Sec. III A 1. Approximately Nbr ∼
6–7 e-folds after the end of inflation, its gradient energy
becomes comparable to the one of the inflaton homo-
geneous mode, i.e., ε̄φg ≈ ε̄φp. This can be seen in the left
panel of Fig. 13, and it is in qualitative agreement with the
analytical prediction of Fig. 6. Correspondingly, at this time
there is a deviation of the equation of state from w̄ ¼
w̄hom ≃ 0.07 towards w̄ → 1=3. Remarkably, the self-inter-
actions keep exciting modes of increasingly higher comov-
ing momenta even after backreaction, which leads to a
complete fragmentation of the inflaton homogeneous mode
at very late times. This effect was noted first in [37,38], and
here we confirm the result. Due to this, the ratio ε̄φg =ε̄

φ
p

keeps growing during the later nonlinear stage, and goes to
ε̄φg =ε̄

φ
p → ∞ at very late times. Consistent with the virial

identity (81), we have ε̄φk , ε̄
φ
g → 1=2 in this regime, and the

equation of state (79) goes to w̄ → 1=3 at very late times.
Let us now consider the results for q� ¼ 4 × 103, which

is depicted in the middle panel of Fig. 13. In this case, there
is a significant transfer of energy to the daughter field
during the initial linear regime via broad parametric
resonance. The inflaton also gets excited via self-reso-
nance, but the effect is always much weaker as discussed in
Sec. III.6 Therefore, backreaction effects induced by the
daughter field modes fragment the inflaton condensate
sooner than in the previous case: only Nbr ∼ 4 e-folds
of expansion after the end of inflation, in agreement
again with our prediction in Fig. 8. In any case, the ratio
ðε̄φg þ ε̄χgÞ=ε̄φp keeps growing both during the linear regime
and the early phase of the nonlinear stage.
Correspondingly, the equation of state deviates from w̄ ¼
w̄hom ≃ 0.07 towards some maximum value w̄max < 1=3.
However, the effective resonance parameter decreases with

time as q̃ ¼ q�a
6ðp−4Þ
pþ2 ∼ a−2.37, so the resonance eventually

becomes narrow (q̃ < 1). At that time, something similar to
the p ¼ 2 scenario happens: the daughter (kinetic and
gradient) energy ratios stop their growth and start decreas-
ing (ε̄φk , ε̄

φ
g → 0) at different dilution rates, and the inflaton

gradient energy, which was mainly excited due to inter-
actions with X, also stops its growth and gets smaller. In the
equation of state, this is manifested as a transitory recovery
process from the local maximum w̄ ¼ w̄max towards
w̄ → w̄hom. However, unlike the p ¼ 2 case, now the
inflaton field is also excited via self-resonance, and as in
the q� ¼ 0 case, this process is present even after the
breaking of the initially homogeneous mode, and it never
ceases. Therefore, the inflaton fluctuations slowly pile up,

FIG. 12. [v ¼ 0] Parametrization of the effective equation of
state for p ¼ 2 and M ¼ 10mpl. The top panel shows the
maximum value attained after inflation w̄max for different choices
of q�. The bottom panel shows the corresponding postinflationary
number of e-folds of expansion at which w̄ ¼ w̄max is attained, as
well as w̄ ¼ 0.1, 0.03 during the subsequent relaxation process.

6Note that although the gradient energy ratio of the inflaton
grows during the linear regime, this is mainly due to backreaction
effects from the daughter field, and only subdominantly sourced
by the inflaton self-resonance.
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and at a later timescale we obtain ε̄φg =ε̄
φ
p ≫ 1. Con-

sequently, the equation of state then starts increasing again,
and goes towards w̄ → 1=3 at late times.
The energies also evolve in a similar way for other

choices of p ∈ ½2; 4Þ and q� > qðminÞ
� , but the “oscillatory”

pattern of the equation of state is not always clearly seen.
For example, in the case of p ¼ 2.3 and the larger
resonance parameter q� ¼ 6 × 104 (depicted in the bottom
panel of Fig. 13), the transition from broad to narrow
resonance takes place at later times, so the growth of the

gradient energy during the linear regime is much larger than
for q� ¼ 4 × 103. The equation of state also becomes very
close to w̄ ¼ 1=3 after the initial raise, so the transitory
decrease before inflaton self-resonance becomes relevant is
less remarkable. In any case, we have ε̄φg =ε̄

φ
p ≫ 1 at late

times due to the self-resonance, so the equation of state
goes to w̄ → 1=3 as well.
Interestingly, if q� is large enough (and 2 ≤ p < 4), then

we can observe a transitory equipartition regime during
which the energy is distributed equally between the inflaton

FIG. 13. [v ¼ 0] Left panels: evolution of the energy ratios for p ¼ 2.3, M ¼ 10mp, and q� ¼ 0 (top), 4 × 103 (middle) and 6 × 104

(bottom). Right panels: evolution of the instantaneous and oscillation-averaged equation of state (depicted in blue and red, respectively).
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and daughter fields. This can be observed for example in
Fig. 14, where the energy distribution and equation of state
are depicted for p ¼ 3, and two different choices of q�. For
q� ¼ 2 × 103, parametric resonance becomes narrow (i.e.,
q̃ < 1) around backreaction time, and the daughter field
energy density starts to decrease immediately after para-
metric resonance has terminated. However, for q� ¼ 105, the
transition to narrow resonance happens at later times, and an
equipartition regime emerges with ε̄φk ≃ ε̄φg ≃ ε̄χk ≃ ε̄χg ≈ 0.25.
In any case, the exchange of energy between the two fields
gets strongly suppressed once q̃ < 1, and the energy of the
daughter field becomes negligible at late times, ε̄χk, ε̄

χ
g → 0.

(iii) p ≥ 4. Finally, let us consider the cases in which the
inflaton potential is quartic (p ¼ 4) or steeper than quartic
(p > 4). In both cases the inflaton is excited via self-
resonance, which remains always active. As for the
daughter field, the effective resonance parameter q̃
[Eq. (34)] either remains constant for p ¼ 4 or grows
for p > 4. Therefore, for p ¼ 4 the resonance always
remains broad as long as q� > 1, while for p > 4 the
resonance will be broad at late times even if q� < 1 initially.
In these cases, energy is continuously exchanged between
the two fields, and eventually an equipartition state is
achieved, with the energy equally distributed between the
inflaton and the daughter field, ε̄φk ≈ ε̄φg ≈ ε̄χk ≈ ε̄χg ≈ 1=4.

This can be seen in Fig. 15, where we show the energy
distribution and equation of state for the particular exam-
ples p ¼ 4 and p ¼ 6. As before, the strongly oscillating
equation of state breaks at ubr, and a radiation dominated
state is quickly achieved. While for p ¼ 4 the effective
equation of state is always w̄ ¼ 1=3, for p ¼ 6 it jumps
quickly from w̄ ¼ w̄hom ¼ 1=2 to w̄ ¼ 1=3.

1. Overview of results

The dependence of the equation of state for different
choices of p and q� is summarized in Fig. 16. There we
show its evolution for p ¼ 2, 3, 4, 5 and 6, and for each
coefficient we consider two scenarios: one in which there is
no coupling between the inflaton and the daughter field,
and another in which a sizeable quadratic-quadratic cou-
pling is present. In this second case, we have chosen

resonance parameters q� > qðminÞ
� , so that the initial decay

of the inflaton homogeneous mode is triggered by broad
parametric resonance of the daughter field. Remarkably, the
value that the equation of state attains at very late times is
independent on the absence or presence of a coupling, and
in the latter case independent as well of its strength: it
always goes to w̄ → 0 for p ¼ 2, and to w̄ → 1=3 for
p > 2. However, there are important differences in its

FIG. 14. [v ¼ 0] Postinflationary evolution of the energy ratios and effective equation of state for p ¼ 3, M ¼ 10mpl, and two
different values of q�. The dashed vertical lines in the left panels show when q̃ ¼ 1.
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evolution before reaching the final state. On the one hand,
for p ¼ 2 and a nonzero coupling, w̄ shows a transitory
deviation from the homogeneous solution and attains a

local maximum w̄ ¼ w̄max < 1=3. On the other hand, for
p > 2, the transition from w̄ ¼ w̄hom ≡ ðp − 2Þ=ðpþ 2Þ to
w̄ ¼ 1=3 takes place several e-folds earlier when a coupling
exists. Note also that for the range of values 2 < p≲ 3, we
sometimes observe an oscillatory pattern in the averaged
equation of state, see e.g., the middle and bottom panels
of Fig. 13.
At late times, the energy density is distributed between

its components in different ways for different choices of p
and q�. We show the final values attained by the energy
ratios in Table I. For p ¼ 2, the energy at late times is
dominated by the inflaton homogeneous mode, so
ε̄φk ≃ ε̄φp ≃ 1=2, and no significant amount of energy

FIG. 15. [v ¼ 0] Evolution of the energy ratios and equation of state for p > 4, M ¼ 10mpl, and two different values of q� as a
function of time and number of e-folds.

FIG. 16. [v ¼ 0] Evolution of the effective equation of state for
p ¼ 2, 3, 4, 5, 6 extracted form lattice simulations. The dashed
lines correspond to cases in which there is no coupling between
the inflaton and the daughter field (q� ¼ 0), while for the
continuous lines such coupling is included. The resonance
parameters chosen for this second set of simulations are
q� ¼ 8 × 104, 2 × 104, 102, 10−2 and 1, for p ¼ 2, 3, 4, 5 and 6,
respectively.

TABLE I. [v ¼ 0] Final equation of state (EOS) and energy
ratios at asymptotic late times, for different combinations of p
and q�, as observed in the simulations.

Final energy ratios for VðϕÞ ∝ jϕjp, v ¼ 0

p, q� EOS ε̄φk ε̄φg ε̄χk ε̄χk ε̄φp ε̄i
p ¼ 2; ∀ q� MD 1=2 0 0 0 1=2 0
2 < p < 4; ∀ q� RD 1=2 1=2 0 0 0 0
p ≥ 4, q� ¼ 0 RD 1=2 1=2 0 0 0 0
p ≥ 4, q� > 0 RD 1=4 1=4 1=4 1=4 0 0
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remains stored in the daughter field or in the field
gradients. For p ∈ ½2; 4Þ, there is also no significant
transfer of energy to the daughter field at late times,
but we get ε̄φk ≈ ε̄φg ≈ 1=2 ≫ ε̄φp due to inflaton self-
resonance. Only for p ≥ 4, the system transfers a sizeable
fraction of energy into the daughter field: approximately
∼50% of the total (ε̄φk ≈ ε̄φg ≈ ε̄χk ≈ ε̄χg ≈ 0.25).
Finally, we show in Fig. 17 the backreaction timescale in

terms of natural time ubr and postinflationary number of
e-folds Nbr. This time describes approximately when the
averaged equation of state starts to deviate from the
homogeneous solution w̄ ¼ w̄hom. We have considered four
different coupling strengths: g ¼ 0 (i.e., no coupling
between the inflaton and the daughter field), 10−5, 10−4

and 10−3. In each case, we have carried out several
simulations with different values of p, and extracted Nbr
from them. For g ¼ 0 we get that Nbr ≈ 6 is approximately
constant for 2 < p < 4, but grows with p for p ≥ 4, up to
Nbr ≈ 12 for p ¼ 6. This is in qualitative agreement with
the analytical estimation of Nbr coming from inflaton self-
resonance,7 see Fig. 6. However, the estimation of Nbr if a
coupling is added is different. For example, in the case
g ¼ 10−5 we observe that, for p≳ 3.4, Nbr is always
several e-folds less than in the g ¼ 0 case for the same
value of p. However, for p≲ 3.4, Nbr becomes larger and
approximately equal to the g ¼ 0 case. We can understand
this by noting that the resonance parameter q� ¼
ðg2=λÞðϕ�=μÞ4−p is a decreasing function of p for a fixed
value of g. For sufficiently low values of p we have

q� ≲ qðminÞ
� , so the stage of broad parametric resonance is

not long enough to trigger the decay of the inflaton
homogeneous condensate, and instead the condensate
fragments eventually due to inflaton self-resonance (as
in the q� ¼ 0 case). The same behavior can be observed for
g ¼ 10−4, but in this case the transition happens at p ≈ 2.6.
For g ¼ 10−3 no transition is observed for the range of
considered values of p.
The bottom panel of Fig. 17 shows, for g ¼ 10−5, 10−4

and 10−3, the postinflationary number of e-folds since the
end of inflation at which the final radiation-dominated
stage is approximately achieved (in those cases where such
thing happens, i.e., for p > 2). More specifically, Nrd is
defined as the time when the relative difference between w̄
and w̄ ¼ 1=3 is 5%. We can see that, when the inflaton
homogeneous mode decays via broad parametric reso-
nance, the difference between Nbr and Nrd is of at most ∼1
1e-fold, showing that the RD stage is attained quite fast
after backreaction time.

FIG. 17. [v ¼ 0] Backreaction time from lattice simulations in
terms of number of e-folds after inflation N br (top panel), and
natural time ubr (middle panel). We consider coupling strengths
g2 ¼ 0, 10−5, 10−4 and 10−3, for each value of p. In the top panel,
upper and lower gray dashed lines represent, respectively, the
analytical estimation for inflaton self-resonance (see Fig. 6) and
the approximation ubr ¼ pþ2

6
logð75Þ for parametric resonance

[based on Eq. (53)]. The bottom panel shows the number of
e-folds N rd till the onset of RD for each choice of g2 ≠ 0 as a
function of p. For comparison, it also shows N br.

7Note that the numbers for Nbr as a function of p are very
similar to the ones shown in Ref. [30], but are not identical
because they come from different sets of lattice simulations with
slightly different model parameters. In particular, the simulations
of this work have been carried out for Nk ¼ 60, while we fixed
Nk ¼ 50 in the earlier work.
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B. Lattice analysis: Displaced potential

We now present results from lattice simulations of the
preheating process in the case of the displaced potential,
with v > 0. The results of the centered potential case are
recovered in the limit v ≪ mpl, while the resonance gets
extremely weak for v ≫ mpl and the postinflationary
dynamics becomes trivial. Therefore, in our simulations
we need to choose some intermediate value. We choose
v ¼ 10−2mpl for the simulations presented in this section,
and we comment briefly afterwards about the results
expected for other choices of v. We set again M ¼
10mpl as in the centered potential scenario, and distinguish
two relevant cases: p ¼ 2 and p > 2. In each case we will
consider different initial mass ratios R� [cf. Eq. (58)], in
correspondence with different values of the initial reso-
nance parameter q�.
(i) p ¼ 2. In Fig. 18 we show the evolution of the

volume-averaged amplitudes of the inflaton and daughter
fields for the mass ratios R� ¼ 0.4, 0.5 and 0.7. As
expected, the energy budget of the system is initially
dominated by the oscillations of the homogeneous inflaton
in all cases. However, the later evolution of the amplitude of
both fields strongly depends on the choice of R�. For R� ¼
0.4 and 0.5, the homogeneous inflaton mode decays
quickly at the onset of backreaction at ubr ≃ 100–140,
but for R� ¼ 0.7 the homogeneous oscillatory regime
survives and remains till the end of the simulation. This
indicates that the excitation of the daughter field is
significantly stronger in the first two cases than in the third.

We plot now the corresponding evolution of the energy
distribution in order to better understand the above behav-
ior. In Fig. 19 we show, for the same choices of mass ratios
together with R� ¼ 1, the postinflationary evolution of the
averaged energy ratios ε̄i and equation of state. The energy
budget is initially dominated by the kinetic and potential
energies of the inflaton, with ε̄φk ¼ ε̄φp ≃ 0.5 in agreement
with the equipartition identity (81). The remaining energy
ratios grow exponentially due to the parametric resonance
effect analyzed in Sec. III B. In particular, the stochastic
behavior of the system, where intervals of strong excitation
and no excitation alternate can be observed in the inset of
the R� ¼ 0.5 case. For the mass ratios R� ¼ 0.4, 0.5 and 1,
the resonant excitation of the daughter field modes takes
long enough for backreaction effects to become important,
and for the inflaton homogeneous regime to break down at
the backreaction time ubr. On the contrary, for R� ¼ 0.7
these ratios stop growing and saturate at ε̄i ∼ 10−2, before
becoming of the same order of magnitude than ε̄φk and ε̄φp.
Therefore, it is clear that the strength and duration of the
daughter field resonance depends very sensitively on R�.
This can be understood in light of the stability charts
depicted in the top panels of Fig. 9. First, parametric
resonance of the daughter field is significantly stronger for
the critical mass ratios R� ≃ 0.5; 1; 1.5…, etc., see Eq. (66).
Second, the effective vacuum amplitude ṽ≡ v�a3=2 grows
in time, so the resonance eventually terminates for all
values of R�, which can be seen by following the different
arrows in the Floquet chart. This happens at later times
when R� is close to the critical values, which explains why
backreaction effects break apart the inflaton homogeneous
mode for R� ¼ 0.4, 0.5 and 1, but not for R� ¼ 0.7.
The different evolutions of the energy distribution are

also reflected in the corresponding behavior of the equation
of state. For R� ¼ 0.4, 0.5 and 1, the averaged equation of
state enters a transitory phase during which it deviates from
the value w̄hom ¼ 0 and attains a maximum w̄ ¼ w̄max <
1=3 around u ¼ umax ≳ ubr. On the contrary, for R� ¼ 0.7 it
remains approximately constant at w̄ ¼ w̄hom ¼ 0.
Let us now analyze the evolution of the system at late

times. After parametric resonance ends, no more field
fluctuations are produced, so the gradient energy ratios
stop growing and start diluting as radiation, such that ε̄φg ,
ε̄χg ≪ 1 at late times. A similar decrease is observed in the
interaction energy ratios. Due to this, the equation of state
for R� ¼ 0.4, 0.5, 1 relaxes from the local maximum
attained at w̄ ¼ w̄max, back to w̄ → w̄hom ¼ 0 at late times.
Only the kinetic and potential energy ratios of both the
inflaton and the daughter field remain and become con-
stants at late times, obeying ε̄φk ≃ ε̄φp and ε̄χk ≃ ε̄χp, in
accordance with the equipartition identities (81) and
(82). In particular, we end in a situation in which both
the inflaton and the daughter field become oscillating
homogeneous condensates, with their oscillation periods
being Tφ ≈ 2π and Tχ ≈ Tφ=R�, respectively. The final

FIG. 18. [v > 0] Evolution of the volume-averaged amplitudes
of the inflaton φ (blue) and the daughter field χ (red) for p ¼ 2,
M ¼ 10mpl, v ¼ 10−2mpl, and the mass ratios R� ¼ 0.4 (top), 0.5
(middle) and 0.7 (bottom).

CHARACTERIZING THE POSTINFLATIONARY REHEATING … PHYS. REV. D 105, 043532 (2022)

043532-23



FIG. 19. [v > 0] Left panels: evolution of the averaged energy ratios ε̄i [see Eqs. (72)–(77)] for p ¼ 2,M ¼ 10mpl, v ¼ 10−2mpl and

four different mass ratios: R� ¼ 0.4, 0.5, 0.7 and 1. Note: the interaction energy ratio is negative, so we depict jε̄ð1Þi j. Right panels:
evolution of the instantaneous and oscillation-averaged equation of state (blue and red, respectively) for the same model parameters.
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amount of energy transferred to the daughter field depends
roughly on the strength of the resonance, i.e., on R�. In
particular, for R� ¼ 0.4 and 1 we end up with more energy
in the daughter field than in the inflaton, for R� ¼ 0.5 we
end with the same amount of energy in both fields, whereas
almost all the energy remains in the inflaton for R� ¼ 0.7.
This is in sharp contrast with the results for the centered
potential, for which there is at the end no significant
transfer of energy to the daughter field, no matter the

value of the coupling. Remarkably, let us note that the
significant transfer of energy to the daughter field for mass
ratios R� > 0.5, as we see here, is forbidden for perturba-
tive decays.
Finally, we briefly discuss how the system evolves for

vacuum expectation values smaller and larger than our
canonical choice v ¼ 10−2mpl. We have carried out lattice
simulations for v ¼ 10−3mpl and v ¼ 10−1mpl, considering
in each case several mass ratios. The smaller the value of v,

FIG. 20. [v > 0] Evolution of the averaged energy ratios (left panels) and equation of state w (right panels) for M ¼ 10mpl,
v ¼ 10−2mpl, and different values of p and R�: p ¼ 3 and R� ¼ 0.3 (top), p ¼ 4 and R� ¼ 0.01 (middle), and p ¼ 5 and R� ¼ 0.005
(bottom). The right panels show the equation of state w in blue and its oscillation average w̄ in red. Note: the energy ratio associated to
the trilinear interaction is depicted in terms of its absolute value jε̄1i j.
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the closer the postinflationary dynamics of the system is to
the centered potential case (v ¼ 0). For v ¼ 10−3mpl

we have observed that, for all considered mass ratios
including R� ¼ 0.7, the initial linear stage of field excita-
tions takes long enough for backreaction effects to frag-
ment the initial homogeneous configuration of the inflaton,
as expected in centered potentials. On the other hand, for
our larger choice v ¼ 10−1mpl, we find that a non-
negligible excitation of the daughter field can only be seen
for mass ratios very close to R� ≃ 1=2. For these mass
ratios, the daughter field may still carry a relevant part of
the total energy density of the Universe at late times.
However, we note that even in those cases, only a very
small amount of gradient energy is produced during para-
metric resonance, so the averaged equation of state stays
roughly at w̄ ≃ 0 during the entire preheating process.
(ii) p > 2. In Fig. 20 we present results from lattice

simulations for p ¼ 3, 4 and 5, each case for a particular
choice of R�. In the left panels we have depicted the
evolution of the averaged energy ratios. Initially, all the
energy is stored in the homogeneous inflaton condensate,
which approximately satisfies the equipartition identity
ε̄φk ≃ ðp=2Þε̄φp. The kinetic and gradient energies of the
daughter field get excited via parametric resonance, and
when they become sizable, they induce the decay of the
inflaton condensate due to backreaction effects at the
timescale ubr ∼ 80–120. As analyzed in Sec. III B, para-
metric resonance eventually ends, so the gradient energies
stop growing and start decreasing. At very late times, we
end in a situation in which the daughter field dominates the
entire energy budget and shows a homogeneous configu-
ration. Note that the equipartition identities Eqs. (81) and
(82) are approximately preserved at all times during
preheating, so at late times the daughter field kinetic and
potential energies approximately obey the virial identity
ε̄χk ≃ ε̄χp. This result is independent on the choice of p as
long as p > 2.
In the right panels of Fig. 20 we show the evolution of

the equation of state w (blue) and its average w̄ (red) for
three choices of R�. During the initial homogeneous phase
we have w̄ ¼ w̄hom ¼ ðp − 2Þ=ðpþ 2Þ as expected. With
the later growth of the gradient energies due to parametric
resonance, w̄ is pushed slightly towards the radiation-
domination result w̄ → 1=3 for p ¼ 3 and 5 (for p ¼ 4,
it stays at w̄ ¼ w̄hom ¼ 1=3). This result is similar to the
centered case potential. Once parametric resonance termi-
nates, the gradient energy ratios start to dilute and the
massive daughter field eventually dominates the energy
budget, so that the averaged equation of state evolves
towards w̄ → 0 at late times.

V. DETERMINATION OF INFLATIONARY
CONSTRAINTS

Inflation generates an almost scale-invariant spectrum of
scalar fluctuations, which can be parametrized as

Δ2
RðkÞ ¼ As

�
k

kCMB

�
ns−1

; ð85Þ

where As and ns are the scalar amplitude and spectral tilt at
a particular pivot scale kCMB. We denote the inflaton
amplitude when the pivot scale crosses the Hubble scale
as ϕk. In terms of slow roll parameters, As and ns are
determined as a function of the inflationary potential as

As ¼
VðϕkÞ

24π2ϵVðϕkÞm4
pl

; ð86Þ

ns ¼ 1 − 6ϵVðϕkÞ þ 2ηVðϕkÞ: ð87Þ

Observations of CMB anisotropies [63] have constrained
the scalar amplitude to be lnð1010AsÞ ¼ 3.043� 0.014 at
kCMB ¼ 0.05 Mpc−1, which we adopt from now on as our
fiducial choice of pivot scale. We can then use Eq. (86) to
determine the value of ϕk when the pivot scale crossed the
Hubble radius. Furthermore, inflation also generates a
nearly scale-invariant spectrum of tensor perturbations with
amplitude At and tensor tilt nt. The tensor-to-scalar ratio
r≡ At=As can be computed as

r ¼ 16ϵVðϕkÞ: ð88Þ

Given an inflationary model, it is interesting to obtain
predictions for ns and r to compare them with experimental
constraints. However, these predictions depend on the
number of e-folds of expansion from the moment at which
the pivot scale kCMB crossed the Hubble scale till the end of
inflation. This quantity, which we denote as Nk, can be
written as

Nk ≡ ln
aend
ak

≃
1

m2
pl

Z
ϕend

ϕk

V
V;ϕ

jdϕj; ð89Þ

where ϕend is the field amplitude at the end of inflation. To
determine Nk exactly one needs to know the evolution of
the equation of state w from the end of inflation until the
onset of a RD stage.
A more convenient expression for Nk can be obtained by

comparing the pivot scale kCMB to the present Hubble
radius 1=ða0H0Þ, and then considering the expansion of the
Universe from the time of horizon crossing (when
kCMB ¼ akHk) till today. We parametrize the expansion
history as a series of four stages characterized by different
equations of state. The first stage corresponds to the
inflationary expansion, from the time of horizon crossing
till the end of inflation. The second stage goes from the end
of inflation till the onset of RD (which does not necessarily
coincide with the moment of thermalization of the relativ-
istic species). The subsequent third and fourth stages go,
respectively, from the onset of RD to the onset of matter
domination (MD), and from the latter moment to today,
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including the present smooth transition into a dark energy
dominated universe. We can write the ratio kCMB=ða0H0Þ
as follows,

kCMB

a0H0

¼ akHk

a0H0

¼ e−Nk
aend
ard

ard
aeq

aeq
a0

Heq

H0

Hk

Heq
; ð90Þ

where the different labels indicate at which times the
quantities must be evaluated: aend, ard and aeq denote,
respectively, the scale factor at the end of inflation, onset of
RD and when the matter-radiation equality holds. We note
that for inflationary potentials of the form VðϕÞ ∝ ϕ4, the
Universe enters RD almost immediately after the end of
inflation. In such a case we have aend ≃ ard.
We can write the above expression in a more useful form

by considering the following relations,

H2
k ≃

Vk

3m2
pl

; Vk ≡ VðϕkÞ; ð91Þ

ard
aeq

¼
�
ρrd
ρeq

�
−1=4

; ð92Þ

a0
aeq

¼ð1þ zeqÞ ≃ 3387; ð93Þ

ρeq ¼ 6Ωm;0m2
plH

2
0ð1þ zeqÞ3; ð94Þ

where in the second expression we have neglected changes
in the number of relativistic degrees of freedom. Using the
constraints of H0 ¼ ð67.66� 0.42Þ km s−1Mpc−1 and
Ωm;0 ≃ 0.311� 0.006 [63], we obtain the following expres-
sion

Nk ≃ 61.5þ 1

4
ln

�
V2
k

m4
plρrd

�
− ΔNrd

end; ð95Þ

where ΔNrd
end ≡ lnðard=aendÞ is the number of e-folds

between the end of inflation and the onset of the RD
stage, which depends on the evolution of the equation of
state during this period. Under reasonable assumptions for
the reheating stage, Nk is estimated to be around Nk ≃
50–60 [64]. However, we are now in position to use our in-
depth analysis of the postinflationary evolution of the scale
factor and energy densities to exactly compute Nk, and
hence ns and r. Note that in Appendix D, we have rewritten
Eq. (95) by decomposing the expansion history between
the end of inflation and radiation domination in different
substages. This allows us to discuss in more detail the role
that the interaction term plays in the determination of Nk,
and hence on the inflationary observables ns and r.

A. Determination of Nk, ns and r

We will now use our lattice results in order to compute
exact predictions for Nk in the case of the α-attractor model
(2), and then constrain the CMB observables ns and r.
Given an inflationary model, we can simulate the post-
inflationary dynamics on the lattice and observe when a RD
stage is achieved in the simulations. The values of ρrd and
ΔNrd

end can be extracted from the numerical simulations and
be used to compute Nk exactly via Eq. (95). This only
applies to the centered potential scenario for p > 2, as for a
centered potential with p ¼ 2 or for a displaced potential
with arbitrary p, the Universe always ends in a transient
MD stage within our simulation time scales.
An important challenge with the procedure just men-

tioned is that, in order to perform the lattice simulations, the
value of Λ must be fixed beforehand, even though it
depends on Nk via Eq. (8). We circumvent this issue by
applying an iterative procedure as follows. First, an initial

simulation is carried out with the parameter Λð1Þ ¼ ΛðNð1Þ
k Þ

corresponding to Nð1Þ
k ¼ 60. By extracting ρrd and ΔNrd

end
from the simulation, we can then use Eq. (95) to compute a

better approximation Nð2Þ
k . A new simulation with Λ ¼

Λð2Þ ≡ ΛðNð2Þ
k Þ is now carried out, the outcome of which is

used to improve further the estimation of Nk. The iterative
cycle is repeated several times, until the value of Nk only
changes marginally in each iteration. We observe that, after
four to five cycles, Nk changes only by a factor Oð10−2Þ.
The following results for Nk are obtained by the

numerical routine presented above. We considered
power-law coefficients and mass parameters in the ranges
p ¼ 3–6 and M=mpl ¼ 2–10, such that the inflaton oscil-
lates only in the positive curved region of the potential [see
Eq. (3)]. In each case we distinguish two situations: first,
when the inflaton is not coupled to a daughter field (i.e.,
q� ¼ 0) and the homogeneous regime breaks down due to
inflaton self-resonance; second, when a quadratic-quadratic

g2ϕ2X2 interaction is present with q� ≳ qðminÞ
� [see

Eq. (54)], and the homogeneity of the inflaton breaks
down due to parametric resonance of the daughter field. In
the later case, for sake of being specific, simulations have
been performed for g ≃ 10−4, as for other reasonable
couplings the e-folding needed to achieve RD are rather

similar as long as q� ≳ qðmaxÞ
� , see Fig. 17.

1. Results for Nk

Table II shows values of Nk computed for the power-law
coefficients p ¼ 3, 4, 5, 6 for the mass parameters M ¼
2mpl and 10mpl. In these cases, Nk lies roughly in the range
Nk ≈ 55–59. We note that uncertainties due to experimental
bounds of observational data, such as H0 and Ωm;0 [63],
lead to uncertainties in Nk of Oð10−2Þ. The biggest
uncertainty comes therefore from the variation of M: as
this scale decreases, the transition between the monomial
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and flat regimes of the potential happens at smaller field
amplitudes, so the value of Nk changes correspondingly.
Note that for p ¼ 4, the equation of state after the first

oscillation is already very close to radiation-domination
(whom ¼ 1=3 for p ¼ 4, cf. (13), so for a fixedM, the values
of Nk are the same for all choices of q�. On the other hand,
Nk for p < 4 is smaller with respect to the p ¼ 4 case,
because all the ΔNj

i terms in Eq. (D3) become negative in
this case. Similarly, Nk becomes larger for p > 4, as the
different ΔNj

i terms in Eq. (D3) become positive.
Moreover, note that for a given choice of M and p, the

value of Nk for q� > qðmÞ
� only changes by less than an

e-fold with respect to the q� ¼ 0 case (for a more detailed
discussion, see Appendix D).
Let us briefly comment here on the centered potential

case with p ¼ 2. Independently of the specific preheating
dynamics, the system eventually returns to MD, so Nk
cannot be determined without adding further ingredients in
the scenario. In order to reheat the Universe and arrive into
a RD stage, further ingredients should be added to the
theory, such as e.g., perturbative decay channels.8 In any
case, the stage of parametric resonance induces a temporary
deviation of the equation of state from w̄ ¼ 0 towards
w̄ ¼ w̄max < 1=3, which makes δNk slightly change with
respect to the case without interaction. Although δNk
becomes larger for increasingly larger values of q�, we
obtain δNk < 1 for all values of q� considered in this work.

2. Predictions for ns and r

With the numbers for Nk, we can now compute pre-
dictions for the CMB observables using Eqs. (87) and (88)
(for p > 2). Our results are summarized in Fig. 21. The top
panel shows results in the ns − r plane for g ≃ 10−4 and
several power-law coefficients p. Each dot indicates an
integer value of the mass scale between M=mpl ¼ 2–10 in

ΔM=mpl ¼ 1 intervals. The tensor-to-scalar ratio is mainly
controlled by the mass scale M and falls in the range
r ≃ 0.0025–0.05, though much smaller values can be
achieved for M ≪ mpl (which we have not considered
here because the inflaton potential can no longer be
approximated by a monomial potential during preheating).
On the other hand, ns decreases for all values of p as we
increase M from M ≳ 3mpl, though ns increases slightly
when we move from M ¼ 2mpl to M ≃ 3mpl.
A direct comparison between the results in the absence

and presence of interaction is shown in the lower panel.
There we also show the constraints corresponding to the
approximate range Nk ¼ 50–60. We note that an accurate
investigation of the preheating phase strongly reduces the
uncertainty. The space of possible spectral tilts ranges for
the considered parameters, ranges from ns ≃ 0.9622

(for p ¼ 6, M ¼ 10mpl and q� ≳ qðmaxÞ
� ) to ns ≃ 0.9652

(for p ¼ 6, M ¼ 3mpl and g ¼ 0).

VI. SUMMARY AND DISCUSSION

In this work we have characterized the evolution of the
energy distribution and equation of state after inflation by
using a combination of analytical techniques and lattice
simulations. As a proxy for preheating, we have considered
two-field scenarios where the inflaton Φ has a monomial
potential around a minimum at some scale Φ ¼ v after
inflation, so that VðjϕjÞ ∝ jϕjp (p ≥ 2) with ϕ≡Φ − v.
We have also considered that the inflaton is coupled to a
daughter field X via a quadratic-quadratic interaction
g2Φ2X2. We have examined two situations: (1) a minimum
at v ¼ 0 so that VðΦÞ ∝ jΦjp (centered potentials), and
(2) a minimum at v > 0 so that VðΦÞ ∝ jΦ − vjp (dis-
placed potentials).

A. Summary of results

Due to the length of the paper, we provide here a short
“guide” to the most important results, with references to the
corresponding equations and figures:
(1) In Sec. II we have studied the properties of the

considered potentials. In particular, in Sec. II A we
have parametrized the oscillatory properties of the
homogeneous inflaton condensate during the initial
stage after inflation. This configuration gives rise to
the equation of state w̄hom ¼ ðp − 2Þ=ðpþ 2Þ.

(2) In Sec. III we have studied analytically the resonant
excitation processes of the inflaton and daughter
fields triggered by the oscillations of the homo-
geneous inflaton, which are valid during the initial
linear regime before backreaction effects become
relevant. In particular:
(i) In Sec. III A 1 we have studied the process of

inflaton self-resonance, which exists for p > 2.
The corresponding Floquet diagram is depicted
in Fig. 4. Using its properties, we have

TABLE II. Values of Nk computed with lattice simulations of
the centered potential scenario for different choices of p and M,
when (i) there is no interaction between the inflaton and the
daughter field, so q� ¼ 0, and (ii) the inflaton is coupled to the

daughter field with q� ≥ qðminÞ
� [see Eq. (54)].

Nk M ¼ 2mpl M ¼ 10mpl

p q� ¼ 0 q� ≥ qðminÞ
� q� ¼ 0 q� ≥ qðminÞ

�

3 55.2 55.5 56.7 56.9
4 55.8 55.8 57.4 57.4
5 56.9 56.1 58.1 57.8
6 57.1 56.5 58.9 58.3

8Note that the shifted potential provides such a perturbative
decay channel, as it generates a trilinear coupling between the
inflaton and the daughter field. However, this does not solve the
problem because X becomes a massive field.
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computed an analytical estimate of the back-
reaction time as a function of p in Eq. (46),
depicted in Fig. 6.

(ii) In Sec. III A 2 we have studied the process of
parametric resonance of the daughter field for
the centered potential scenario. The corre-
sponding Floquet diagram is depicted in Fig. 7,
and an analytical estimate for the backreaction
time has been computed in Eq. (52) and
depicted in Fig. 8.

(iii) In Sec. III B we have studied the process of
parametric resonance of the daughter field in
the displaced potential scenario. The corre-
sponding Floquet charts for different model
parameters, which summarize the most impor-
tant information from our analysis, are depicted
in Fig. 9.

(3) In Sec. IV we have presented results from our lattice
simulations, which go beyond the linearized analysis
and capture the later nonlinear dynamics. We have
considered both the centered and displaced potential
scenarios:
(i) In Sec. IVA we have presented our lattice

results for the centered potential scenario.
Depending on the choice of p, we can distin-
guish three different regimes:

—For p ¼ 2 there is no inflaton self-resonance. More-
over, even if parametric resonance of the daughter
field is initially broad, it will always become narrow at
late times due to the expansion of the Universe.
Therefore, even if both fields can get excited and
develop fluctuations at initial times, at late times the
inflaton gets homogeneous again and dominates the
energy budget. Similarly, the equation of state deviates
temporarily from w̄ ¼ w̄hom ¼ 0 to w̄ ¼ w̄max < 1=3,
but goes back to w̄ → w̄hom ¼ 0 at late times. This
behavior can be seen in Figs. 10, 11 and 12, which
illustrate results from different simulations with differ-
ent coupling strengths.

—For 2 < p < 4, parametric resonance of the daughter
field is also narrow at late times, but inflaton self-
resonance is always active (unlike the p ¼ 2 case).
Due to this, the inflaton also dominates the energy
budget of the Universe at late times, but in this case it
fragments completely, with its energy is equally dis-
tributed between its kinetic and gradient components.
Correspondingly, the equation of state goes from w̄ ¼
w̄hom ¼ ðp − 2Þ=ðpþ 2Þ at initial times, to w̄ → 1=3 at
late times. Results from specific lattice simulations have
been depicted in Figs. 13 and 14.

—For p ≥ 4, if parametric resonance is initially broad, it
will remain as such at later times. As the inflaton self-
resonance is also active, we end up in a situation in
which the energy is equally distributed (∼50%–50%)
between the inflaton and the daughter field, and in each
case, shared equally between the corresponding kinetic

and gradient components. Consequently, the equation
of state jumps also from w̄ ¼ w̄hom ¼ ðp − 2Þ=ðpþ 2Þ
at initial times to w̄ → 1=3 at late times. Results from
lattice simulations of this scenario have been depicted
in Fig. 15.

—Finally, note that all these results have been summa-
rized in Table I, which indicates the final values
attained by the equation of state and energy ratios
for different choices of p and q�. Also, the various
evolutions of the equation of state for different p are
shown in Fig. 16.
Note also that a spectral analysis of the centered

potential scenario is presented in Appendix C.
(ii) In Sec. IV B we have presented results from

lattice simulations for the displaced potential
scenario. Depending on p we have identified
two different scenarios, and in each case we
have simulated the dynamics for different
“mass ratios” R� [defined in Eq. (58)]:

—For p ¼ 2, our results are summarized in Fig. 19. We
have observed that the amount of energy transferred to
the daughter field via parametric resonance depends
significantly on the value of R�, and unlike in the
centered case, we can transfer more than 50% for
some specific choices of R� and v. However, para-
metric resonance becomes weak at late times due to
the expansion of the Universe, so the contribution of
the gradient energies of both fields to the energy
budget eventually becomes negligible. Therefore, at
late times both the inflaton and daughter fields are
completely homogeneous and oscillate around the
minimum of the potential with different oscillation
periods. Similarly, the equation of state deviates
initially from w̄ ¼ w̄hom ¼ 0 to w̄ ¼ w̄max < 1=3,
but recovers w̄ → 0 at late times.

—For p > 2, the dynamics is very similar to the p ¼ 2
case, but now the inflaton is massless at late times
(while the daughter field is still massive). Therefore,
the energy budget at late times is dominated, in all
cases, by the oscillating homogeneous mode of the
daughter field. This can be observed in Fig. 20.

(4) In Sec. V, we have used our information on the
equation of state to determine the number of e-folds
between the time of horizon crossing and the end of
inflation exactly, see Table II and Fig. 17. Note that
this is only possible for the centered potential with
p > 2, as these are the only cases where the equation
of state achieves an RD stage at late times. With this
information, we have been able to predict exactly the
values of ns and r, which are given in Fig. 21.

We remark that for the cases where the system stabilizes
with equation of state w̄ → 0, the ultimately required
transition to the RD stage has to happen at a later time,
e.g., via perturbative decays. This requires some slight
extensions of the scenarios considered here by e.g., small
mass terms of the respective fields and additional
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interactions. For situations where the RD stage is reached
but the inflaton field still carries some substantial fraction
of energy, such slight extensions (with negligible effects
during the phase of our simulation) can also lead to the
transfer of energy to secondary light fields via perturbative
decays, while staying within a RD universe. In these
situations the transition to RD can be considered as already
completed in the here simulated phase of reheating.

B. Future work

In this paper, we have focused on the cases when the
inflationary potential can be approximately described as a
monomial around the minimum [VðjϕjÞ ∝ jϕjp during the
stages following inflation, with p ≥ 2 and ϕ≡Φ − v]. We
have restricted our analysis to the situation where the
dominant interaction between the inflaton and a daughter
field is described by a quadratic-quadratic coupling g2Φ2X2.

We envisage our present project (formed by Letter [30]
and this work) as a first step towards a more complete
characterization of the postinflationary stage in general. In
particular, this work will be followed by another paper, in
which we study the energy distribution and equation of
state when the inflaton is coupled to multiple daughter
fields instead of one, and where these can also have quartic
self-interactions. In such type of setups, we will show that
one can transfer far more than 50% of the energy to the
daughter field sector, while simultaneously achieving a
RD stage.
Another interesting case of study will be to include

trilinear interactions between the inflaton and the daughter
field (similar to the case studied in [43]). This setup has
been partially considered in the displaced potential sce-
nario, as the nonzero v can be mapped, after a convenient
field redefinition, to the case of a massive daughter field
with a specific trilinear interaction, see Eq. (30). However,
both the coupling strength and the mass depend explicitly
on the one parameter v here, while ideally it would be
interesting to study separately the role of a trilinear
coupling during the postinflationary dynamics for arbitrary
values.
Other possible extensions of this work might consist in

considering (1) inflaton potentials with shapes different
than monomial. For example, if we consider inflaton
potentials with regions flatter than quadratic at largest field
values of the inflaton oscillations, the formation of oscil-
lons is expected. Oscillons can form via self-resonance
effects [65] or tachyonic oscillations [66], typically pushing
the equation of state towards w̄ ¼ 0 during their lifetime
[37,38,67]. (2) Different mechanisms of parametric exci-
tation during the linear regime, such as tachyonic preheat-
ing [68–71]. (3) Scenarios where nonminimal couplings to
gravity or nonminimal kinetic terms are considered, like
e.g., in [48–53]. Two-field models with non-minimal
gravitation couplings have been studied in detail with
lattice simulations in [46,47], showing that for quartic
potentials and quadratic-quadratic interactions RD can be
achieved in ≲3 e-folds after inflation for generic coupling
choices. Scenarios of geometric preheating where spectator
fields are non-minimally coupled to gravity represent also
interesting cases to be considered [72–75].
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FIG. 21. [v ¼ 0] Top: predictions for ns and r for potential (2),
in the presence of an interaction between the inflaton and a
daughter field with g ≃ 10−4. We have considered potential
parameters M=mpl ¼ 2–10 and p ¼ 3, 3.4, 4, 5 and 6. Bottom:
comparison of the predicted values of ns and r in the presence and
absence of quadratic-quadratic interaction. The yellow area
shows, for g ¼ 0, the range of values of ns and r predicted for
the potential parameters just indicated. The blue area shows the
same but for g ≃ 10−4. Finally, the area enclosed by dashed lines
shows the predictions for Nk ∈ ½50; 60�. The dark and light gray
areas indicate the 68% and 95% C.L. regions for ns and r,
respectively.
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APPENDIX A: DETAILS ON THE T MODEL

Here we lay out some details of the inflationary potential
(2), in particular expressions and constraints concerning the
phase of inflation. Inflation terminates when the first slow-
roll condition breaks, at the field amplitude ϕ� given by
Eq. (5). The number of e-folds Nk between the moment
when the pivot scale kCMB leaves the horizon and the end of
inflation is given by

Nk ≡ ln
a�
ak

≃
1

m2
pl

Z
ϕ�

ϕk

V
∂ϕV

jdϕj: ðA1Þ

With this expression, we can determine the field value ϕk,

ϕk ¼
1

2
Marccosh

�
I

pNk
þ J

�
; ðA2Þ

where I ¼ 4p2N2
km

2
pl=M

2 and J 2 ¼ 1þ 2p2m2
pl=M

2. By
evaluating the two slow-roll parameters at ϕk, we can give
expressions for the spectral index ns ¼ 1–6ϵVðϕkÞ þ
2ηVðϕkÞ and tensor-to-scalar ratio r ¼ 16ηVðϕkÞ,

ns ¼ 1 −
p2 þ 2pJ þ 2I=Nk

p2=2þ 2pNkJ þ I
; ðA3Þ

r ¼ 8p2

p2=2þ 2pNkJ þ I
: ðA4Þ

In the limit M → ∞ we have I → 0 and J → 1, and we
recover the expressions of the chaotic scenario for ns and r.
Moreover, we can constrain Λ4 from the scalar amplitude
As via VðϕkÞ ¼ 24π2ϵVðϕkÞAsm4

pl. We then obtain the
following relation:

Λ4 ¼ 3π2AsM2m2
pl

N2
k

fðp;M;NkÞ; ðA5Þ

with

fðp;M;NkÞ ¼
pI

2−p
2 ðI þ 2pNkJ þ pNkÞp

ðp2=2þ 2pNkJ þ IÞ2þp
2

: ðA6Þ

In the limit M → 0 this function goes to fðp;M;NkÞ → 1
and we recover the expression for the chaotic inflation
scenario, see Eq. (9).

APPENDIX B: OSCILLATION-AVERAGED
EXPRESSIONS FOR THE INFLATON

HOMOGENEOUS AMPLITUDE

We compute here the oscillation-averaged quantities
hφ02i, hφ2i, hjφjpi and hjφjp−2i, where φ is the homo-
geneous component of the inflaton amplitude in natural
variables, used in the linearized analysis of Secs. II and III.

The EOM of φ is given in Eq. (18). As explained in the bulk
text, its solution can be approximately written, under the
approximation Δ ¼ 0, as φ ≃ cos½2πu=ðTφω�Þ� [cf. (22)],
where Tφ is the oscillation period given in Eq. (23).
Let us start with hφ02i. The oscillation-averaged quantity

can be written as four times the integration over a quarter
period, which goes from φ ¼ 0 (the minimum of the
oscillation) to φ ¼ 1 (the maximum). The computation
proceeds as follows:

hφ02i ¼ 4

Tφ

Z
uðφ¼1Þ

uðφ¼0Þ
φ02ðuÞdu ¼ 4

Tφ

Z
φ¼1

φ¼0

φ0dφ

¼ 4

Tφ

ffiffiffiffi
2

p

s Z
φ¼1

φ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jφjp

p
dφ ¼ 2

2þ p
; ðB1Þ

where in the second line we have used that the energy Eφ ≡
1
2
φ02 þ 1

p jφjp ¼ 1=p is conserved during the oscillation.

Similarly, hφ2i can be computed as

hφ2i ¼ 4

Tφ

Z
uðφ¼1Þ

uðφ¼0Þ
φ2ðuÞdu

¼
ffiffiffiffiffiffi
8p

p
Tφ

Z
φ¼1

φ¼0

φ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jφjpp dφ ¼

Γ½3p�Γ½pþ2
2p �

Γ½1p�Γ½pþ6
2p �

; ðB2Þ

Also, hjφjpi can be computed as

hjφjpi ¼ 4

Tφ

Z
uðφ¼1Þ

uðφ¼0Þ
jφðuÞjpdu

¼
ffiffiffiffiffiffi
8p

p
Tφ

Z
φ¼1

φ¼0

jφjpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jφjpp dφ ¼ 2

2þ p
: ðB3Þ

Finally, hjφjp−2i is given by

hjφjp−2i ¼ 4

Tφ

Z
uðφ¼1Þ

uðφ¼0Þ
jφðuÞjp−2du

¼
ffiffiffiffiffiffi
8p

p
Tφ

Z
φ¼1

φ¼0

jφjp−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jφjpp dφ

¼
Γ½p−1p �Γ½pþ2

2p �
Γ½1p�Γ½3p−22p � : ðB4Þ

APPENDIX C: SPECTRAL ANALYSIS

Here, as a supplement to the results of Sec. IV, we briefly
discuss how the spectra of the inflaton and daughter field
evolve in momentum space in the case of the centered
potential. The power spectra of both fields, PφðkÞ and
PχðkÞ, can be defined as
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hφ2i ¼
Z

d log kPφðkÞ; ðC1Þ

hχ2i ¼
Z

d log kPχðkÞ: ðC2Þ

We consider two scenarios: when q� ¼ 0 and only the
inflaton gets excited via self-resonance (see Fig. 22), and

when q� > qðminÞ
� and the daughter field also gets excited

via parametric resonance (see Fig. 23). In each case we
consider different choices of p.
(i) q� ¼ 0: in Fig. 22 we have depicted the time-

evolution of the inflaton spectra for p ¼ 2.3, 3, 4 and 6
(note that there is no excitation for p ¼ 2). In all cases, the
main growth of the spectrum during the initial linear regime
takes place in very narrow bands of fixed resonance
momenta, given by the Floquet chart of Fig. 4. The natural
resonance momenta is defined in terms of comoving

momenta as κ̃ðaÞ≡ κa−
ð8−2pÞ
pþ2 with κ ¼ k=ω� [cf. (39)], so

the position of the bands in comoving momenta changes
as the Universe expands: they move to the infrared for
p < 4, to the ultraviolet for p > 4, and remain constant for
p ¼ 4. For example, the main resonance bands for
p ¼ 2.3 and 3 are emplaced, according to the chart, at
the constant values κ̃ ≃ 1.7 and 1.5, respectively, so in
terms of comoving momenta they move to the ultraviolet

as κ ≡ κ̃ðaÞa8−2p
pþ2 ∼ κ̃a0.79, κ̃a0.4, respectively. Note that, as

the propagation towards the ultraviolet for p ¼ 3 is slower
than for p ¼ 2.3, the simulation for the first case has only
required a lattice with N2 ¼ 5122 points, while the second
one has required instead N2 ¼ 10242 points. For p ¼ 4,
the growth of the field modes during the linear stage takes
place at constant comoving momenta κ for p ¼ 4, while
for p ¼ 6 it takes place at red-shifting comoving

momenta κ ≡ κ̃ðaÞa8−2p
pþ2 ∼ κ̃a−1=2.

In all cases, approximately ubr ≈ 6–12 e-folds after the
end of inflation, backreaction takes place, and the sharp
peaks in the spectrum get washed out. During the

FIG. 22. [v ¼ 0] Spectra of the inflaton for the case q� ¼ 0 and the power-law coefficients p ¼ 2.3, 3, 4 and 6, as a function of natural
comoving momentum κ ≡ k=ω�. Each line shows the spectrum at different times, from red (early times) to purple (late times). We
indicate the corresponding number of e-folds after inflation for each simulation.
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subsequent non-linear stage, the whole spectrum slowly
propagates towards the ultraviolet, in a rescattering process
induced by the inflaton self-resonance, which is also
reflected in the growth of gradient energy seen in Fig. 13.

(ii) q� > qðminÞ
� : in Fig. 23 we have plotted the evolution

of the inflaton and daughter field spectra for p ¼ 2, 3, 4
and 6. For p ¼ 2, we observe that the spectra of both fields
evolve in very similar ways, showing that the interaction

FIG. 23. [v ¼ 0] Spectra of the inflaton and daughter fields for p ¼ 2, 3, 4, 6, as a function of natural comoving momentum κ ≡ k=ω�.
Each line shows the spectrum at different times, from red (early times) to purple (late times). We indicate the corresponding number of
e-folds after inflation for each simulation.
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term is very efficient in coupling the evolution of both
fields. During the initial linear regime, the spectrum of the
daughter field gets populated in an infrared band
0 ≤ κ ≤ κþ, as expected from our linearized analysis.
However, the inflaton spectrum also grows within this
band, which is purely an effect of the daughter field modes
backreacting onto the inflaton (as there is no inflaton self-
resonance). After backrection time, we enter the nonlinear
regime, in which both spectra start propagating towards the
ultraviolet due to scattering processes, eventually saturating
at a certain momentum scale.
In the p ¼ 3 case, parametric resonance of the daughter

field is the dominant resonance process during the linear
regime, so the growth of the spectra takes place mainly
within a wide infrared band. Therefore, the sharp narrow
peaks induced by the inflaton self-resonance cannot be
observer here. Eventually, backreaction takes place ∼4
e-folds after the end of inflation, and during the following
nonlinear regime, both spectra slowly propagate to the
ultraviolet. We clearly see that the inflaton spectrum
broadens towards much larger momenta than the daughter
field. At this stage, the parametric resonance exciting the
daughter field has become narrow, q̃ < 1, so the only
relevant effect is the excitation of the inflaton via self-
resonance. This is constantly stimulating the different
inflaton modes even after backreaction has destroyed
the inflaton homogeneous mode. This explains why the
inflaton spectrum moves to the ultraviolet much faster than
the daughter field, and eventually makes the inflaton
gradient energy dominate over the daughter (kinetic and
gradient) energies, as observed in Fig. 13.
Finally, the evolution for the p ¼ 4 and p ¼ 6 cases is

similar to the 2 < p < 4 scenario. First, the initial growth
of both spectra takes place within a broad resonance band
0 < κ < κþ due to parametric resonance. Then, after back-
reaction time, the peaks get washed out, and the spectra
start propagating to the ultraviolet. The evolution of both
field spectra is very similar because the resonance param-
eter q̃ stays constant or grows, thus enables efficient
exchange of energy via scattering processes.

APPENDIX D: DEPENDENCE OF Nk ON THE
QUADRATIC-QUADRATIC INTERACTION

In order to illustrate the influence of the transition
phase from the end of inflation to radiation domination on
Nk, Eq. (95) can be developed further, by including
explicitly the timescale at which backreaction effects
break the homogeneous inflaton condensate. We can
decompose the expansion stage between the end of
inflation and the onset of radiation domination as
aend=ard ¼ ðaend=ahomÞðahom=abrÞðabr=ardÞ, where ahom

denotes the scale factor when the equation of state becomes
w̄hom ¼ ðp − 2Þ=ðpþ 2Þ [see (13)], and abr the scale
factor at the backreaction time. Similarly, we can write
the corresponding number of e-folds as ΔNrd

end ¼
ΔNhom

end þ ΔNbr
hom þ ΔNrd

br, where ΔNj
i ≡ lnðaj=aiÞ. We

can then write ρrd in terms of ρend as

ρrd ¼
ρrd
ρbr

ρbr
ρhom

ρhom
ρend

ρend

¼
�
ard
abr

�
−3ð1þw̄rd

brÞ
�

abr
ahom

�
−3ð1þw̄homÞ

×

�
ahom
aend

�
−3ð1þw̄hom

end Þ
ρend; ðD1Þ

where w̄j
i is the averaged equation of state over number of

e-folds between ai and aj,

w̄j
i ≡ 1

ΔNj
i

Z
Nj

Ni

wðN0ÞdN0: ðD2Þ

We can then write Eq. (95) as follows:

Nk ≈ 61.5þ 1

4
ln

V2
k

m4
plρend

þ 3w̄hom
end − 1

4
ΔNhom

end

þ p − 4

2pþ 4
ΔNbr

hom þ 3w̄rd
br − 1

4
ΔNrd

br: ðD3Þ

A similar expression has been derived in [38], although
ΔNhom

end has been omitted and the explicit dependence on
ΔNrd

br approximated by an instant jump to radiation domi-
nation. The terms in the first line of Eq. (D3) depend on
observational data and the shape of the inflaton potential.
The quantities in the second line are directly affected by the
preheating dynamics. While for p ¼ 2 the time of radiation
domination is unknown without further assumption (thus
ΔNrd

br cannot be determined), for p > 2 we can estimate
how the coupling to the daughter field affects the value of
Nk. With this aim, we approximate the fast transition from
w̄hom to w̄ ¼ 1=3 with ΔNrd

br ≈ 0 (which is well justified for
cases p ≥ 3, see e.g., Fig. 16), such that only the term
including ΔNbr

hom is left in the second line. For p ¼ 2–6 we
have p−4

2pþ4
∼ ð−0.2Þ − 0.1, while the values of ΔNbr

hom are
depicted in Fig. 17 forM ¼ 10mpl and different interaction
strengths. The difference in number of e-folds until back-
reaction between the two resonance cases is
ðΔNbr

homÞðsrÞ − ðΔNbr
homÞðprÞ ≃ 2–6, which leads to a change

in Nk of less than an e-fold.
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