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A B S T R A C T   

Land use regression modeling has commonly been used to model ambient air pollutant concentrations in envi-
ronmental epidemiological studies. Recently, other statistical and machine-learning methods have also been 
applied to model air pollution, but their relative strengths and limitations have not been extensively investigated. 
In this study, we developed and compared land-use statistical and machine-learning models at annual, monthly 
and daily scales estimating ground-level NO2 concentrations across Switzerland (at high spatial resolution 100 ×
100 m). Our study showed that the best model type varies with context, particularly with temporal resolution 
and training data size. Linear-regression-based models were useful in predicting long-term (annual, monthly) 
spatial distribution of NO2 and outperformed machine-learning models. However, linear-regression-based 
models were limited in representing short-term temporal variation even when predictor variables with tempo-
ral variability were provided. Machine-learning models showed high capability in predicting short-term temporal 
variation and outperformed linear-regression-based models for modeling NO2 variation at high temporal reso-
lution (daily). However, the best performing models, XGBoost and LightGBM, constantly overfit on training data 
and may result in erratic patterns in the model-estimated concentration surfaces. Therefore, the temporal and 
spatial scale of the study is an important factor on which the choice of the suitable model type should be based 
and validation is required whatever approach is used.   

1. Introduction 

Nitrogen dioxide (NO2) is one of the major air pollutants of concern, 
with the anthropogenic emissions highly related to traffic and com-
bustion. Being a highly reactive gas, nitrogen dioxide is a respiratory 
tract irritant that is associated with a number of adverse health effects, 
including both short- and long-term (Chen et al., 2007; Samet and Utell, 
1990; World Health Organization, 2006; Yassi et al., 2001). 

Epidemiological studies investigating the associations between air 
pollutants and the adverse health effects rely on a good quality exposure 
assessment (Röösli and Vienneau, 2014). Modeling is a cost-effective 
approach able to reflect the spatial variability of air pollution concen-
trations (Gulliver and de Hoogh, 2015). 

One modeling approach, land use regression (LUR), regresses 
observed concentrations against geographical and environmental fea-
tures around the point location of monitoring sites (Briggs et al., 1997). 
LUR assumes an underlying relationship between the variation of the 

measured concentration and the surrounding environment, for example 
population density, land use and various traffic-related variables. 
Geographical features surrounding the monitoring are extracted using 
geographical information systems (GIS) (Briggs et al., 1997; Eeftens 
et al., 2012; Gulliver and de Hoogh, 2015; World Health Organization, 
2006). Studies have shown that the LUR models are able to explain a 
large amount of spatial variability (Beelen et al., 2010; Chen et al., 
2019a; Eeftens et al., 2012; Lee et al., 2014), and epidemiological 
studies have increasingly turned to LUR modeling for exposure assess-
ment in air pollution studies (Gulliver and de Hoogh, 2015; Hoek et al., 
2008; Montagne et al., 2013). 

Although the term land use regression sometimes strictly refers to 
multiple linear regression models developed with a supervised stepwise 
variable selection, a number of different models, evolving from typical 
linear regressions to machine-learning approaches, have been developed 
and applied for regression tasks with land-use and environmental 
covariates to model air pollution. Commonly used approaches include 
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Supervised stepwise linear regression (SLR). SLR selects the “best” set of 
predictor variables in a sequential manner and models the ground-level 
concentration by linear regression with the selected predictor variables 
(Eeftens et al., 2012; Gulliver and de Hoogh, 2015). SLR has been used in 
many studies to model the air pollution concentration, for example in 
the European Study of Cohorts for Air Pollution Effects (ESCAPE) project 
(Beelen et al., 2014; de Hoogh et al., 2016; Eeftens et al., 2012; Lee et al., 
2014). Geographically-weighted regression (GWR) relaxes the assump-
tion of the spatial stationarity of model coefficient estimates and allows 
varying relationships in different areas in space (Thapa and Estoque, 
2012). For example, a spatially heterogeneous relationship between 
AOD and PM2.5 was found across the contiguous United States and GWR 
was used to account for the spatially inconsistent relationship (Hu, 
2009). While GWR provides flexibility in the spatial dimension, Linear 
mixed effect regression models (LMER) can provide flexibility in the 
temporal dimension by adjusting the estimation with the random effect 
by time (e.g. by month or by day). Linear mixed effect models have been 
applied to estimate the daily PM2.5 and NO2 concentration across 
Switzerland (de Hoogh et al., 2018, 2019). Machine-learning algorithms 
are theoretically capable of approximating any linear or non-linear 
function as well as the complex potential interactions among the pre-
dictor variables (Bishop, 1995). Applications of the ensemble 
decision-tree-based algorithms, particularly random forest and gradient 
boosting machines, have been used to model particulate matter in Italy 
(Stafoggia et al., 2019), NO2 and PM2.5 at a European scale (Chen et al., 
2018, 2019a), and PM2.5 across the contiguous United States (Di et al., 
2019; Hu et al., 2017). A higher predictive accuracy of the 
ensemble-tree-based algorithms has been observed compared to the 
linear regression methods in many studies (Chen et al., 2019a; Lu et al., 
2020). Aside from the decision-tree-based algorithms, neural networks 
have also been applied to model the ground-level concentration of air 
pollutants. Although a number of studies used a variety of neural net-
works to model or forecast air pollution (Alimissis et al., 2018; Cab-
aneros et al., 2019, 2020; Liu et al., 2020; Mlakar and Boznar, 2011; Tsai 
et al., 2018; Van Roode et al., 2019), most of which explain the spatial 
variability only by interpolation based on coordinates (Alimissis et al., 
2018; Van Roode et al., 2019), relatively few entered environmental 
covariates into the model as input variables like in the LUR approach. 
Recent applications in the United States (Di et al., 2016, 2019) modeled 
the PM2.5 concentration with a large number of predictor variables 
(including land use and meteorological variables) based on neural net-
works and have shown promising results. 

Each model has strengths and limitations. Linear regression makes 
assumptions like the linearity and spatial-stationarity of the effects and 
does not assume interactions. Furthermore, the stepwise forward 
approach is often criticized for preventing identification of relevant in-
teractions and non-linear effects (Bishop, 1995; Guyon and Elisseeff, 
2003). Although GWR and LMER provide more flexibilities of the model 
estimates in both the spatial and/or temporal dimension, the models still 
make the assumption of the linearity of the effects and the potential 
overfitting of GWR may be of concern. On the other hand, despite the 
fact that the machine learning algorithms are able to model non-linear 
relationships and complex interactions, these algorithms are typically 
data-hungry, computationally demanding and hard to interpret. 

With the increase of the number of available model types comes a 
need to investigate the strengths and limitations of these models for air 
pollution modeling. Here we conducted an inter-comparison between 
the performances of different types of models predicting NO2 concen-
tration at various temporal resolutions. We incorporated multiple vari-
ables, including satellite-derived atmospheric column NO2, 
meteorological variables and land-use variables, into land-use statistical 
and machine-learning models and developed models with six algorithms 
at annual, monthly, and daily temporal scale for Switzerland at 100 ×
100 m spatial resolution. The predictive performance of the models was 
then compared to investigate the strengths and limitations of each 
model. 

2. Materials and methods 

2.1. Study domain 

The study area is Switzerland, a landlocked country in Central 
Europe with a great variety of landscapes and climates in a relatively 
small area (41,285 km2). For the aims of the study, we divided the Swiss 
spatial domain into 100 × 100 m grid cells (projected coordinate system 
CH 1903+/LV95). The study period is from January 1st, 2019 to 
December 31st, 2019, a total of 365 days. Using remote-sensing data in 
air pollution modeling has been a common approach in recent studies 
(de Hoogh et al., 2016; de Hoogh et al., 2018; de Hoogh et al., 2019; 
Stafoggia et al., 2019), and the new generation remote-sensing tropo-
spheric NO2 data product from TROPOMI (online in July 2018, see 
2.2.2) is expected to be a main data source for future studies, hence 
being highly relevant to the selection of the study period to incorporate 
the availability of the data product. 

2.2. Data 

2.2.1. Nitrogen dioxide monitoring data 
Daily NO2 monitoring data (μg/m3) for 2019 were obtained from the 

Swiss Air Pollution Database “Immissionsdatenbank Luft der Schweiz” 
(https://www.arias.ch/arbeit/welcome.html). Ninety-six sites with at 
least 30 daily observations were included in the training data 
(Figure A1), including 39 traffic sites, 6 industry sites, and 51 back-
ground sites (characterized by the monitoring sites and their sur-
rounding areas; Table A1). Most of the sites performed the measurement 
using chemiluminescent and a small number (4 sites) used optical 
spectroscopy methods (DOAS). 

2.2.2. Satellite-derived tropospheric column NO2 
The spectral absorption characteristics of atmospheric NO2 allows 

indirect measurement of the atmospheric column amount NO2 from 
satellite-based earth observations (Lamsal et al., 2020). Data collected 
by the TROPOspheric Monitoring Instrument (TROPOMI) onboard the 
European Space Agency Sentinel-5 Precursor (S–5P) satellite was used in 
this study. TROPOMI is a spectrometer that allows observations of key 
atmospheric constituents including NO2, O3, CO, SO2, CH4, CH2O, and 
aerosols (Veefkind et al., 2012). From July 2018 onwards, the S–5P 
mission plays a transitional gap-filler role that provides observation time 
series of tropospheric data products in the timeframe 2017–2023, the 
period between the current OMI (Ozone Monitoring Instrument), 
SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmo-
spheric CartograpHY) (Bovensmann et al., 1999) and the upcoming 
operational Sentinel-5 observation of air quality and climate. Compared 
to the previous OMI observation, TROPOMI observes the atmosphere 
with a higher spectral (extended the wavelength range in the NIR and 
SWIR) and spatial (7 × 3.5 km) resolution (13 × 25 km for OMI) (Eskes 
et al., 2020), which in principle allows for a more detailed observation of 
the spatially inhomogeneous distribution of NO2. The Level-2 (L2) off-
line daily tropospheric column NO2 data product version 1.4.0 (nitro-
gendioxide_tropospheric_column) (Copernicus Sentinel-5P (processed by 
ESA), 2021) was obtained from the ESA Sentinel-5P Pre-operations Data 
Hub (https://s5phub.copernicus.eu/dhus/) and used in this study 
(Table 1). 

The availability of satellite-derived atmospheric column NO2 ob-
servations were limited by the meteorological and surface conditions on 
the sensing date, and a number of missing pixels values exist in the 
dataset. Before using these satellite-derived observations as input vari-
ables to model the ground-level NO2 concentration, the missing pixels 
were imputed. The general approach follows approaches used in pre-
vious studies (de Hoogh et al., 2019; Stafoggia et al., 2019). A random 
forest model was used to model the relationship between the TROPOMI 
observations and some covariates which have no missing values, 
including meteorological variables, elevation, and CAMS-modeled 
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atmospheric NO2 (see Appendix A.1 for details). The final imputation 
model was used to fill in the missing pixel values in the TROPOMI 
tropospheric column NO2 observations, where missing pixels were filled 
in with the model-predicted values in the final imputed data product and 
the pixels that were not missing took the original observed values. 

2.2.3. Spatial-temporal predictor variables 
Daily meteorological variables (2m air temperature, 10m u-compo-

nent of wind, 10m v-component of wind, surface pressure, total pre-
cipitation, total cloud cover, and boundary layer height) of the ERA5- 
Reanalysis dataset (Hersbach et al., 2018) modeled for 12:00:00UTC 
were obtained from European Centre for Medium-Range Weather 
Forecasts (ECMWF) (Table 1). Vegetation changes and distribution may 
associate with the variation of air pollutants as a pollution sink, and the 
16-day normalized difference vegetation index (NDVI) time series data 
was obtained from the Aqua Moderate Resolution Imaging Spectror-
adiometer (MODIS) Vegetation Indices Version 6 (MYD13Q1 v006) data 
product (Didan, 2015) from the NASA EarthData platform (Table 1). 
Detailed information can be found in Appendix A.2. Pixel-wise temporal 
aggregation was applied to the spatial-temporal predictor variable raster 
time-series to obtain the annual and monthly mean raster from the daily 
time-series. 

2.2.4. Spatial predictor variables 
The following spatial predictor variables were used in the study to 

model ground level concentration: land cover type (percentage of resi-
dential, industrial or commercial, total built-up, urban green areas, 
agricultural, and semi-natural and forest area), elevation, population, 
nighttime light, NOx emission inventories, 30m-NDVI, and traffic vari-
ables (number of intersections, traffic intensity, distance to nearest 
major road, major road density, and all road density) (Table 1). Detailed 
descriptions of the variables can be found in Appendix A.3. The spatial 
predictor variables (except “distance from nearest major road” and 
“30m-NDVI”) were summarized using circular buffer moving windows 
with various radii (100, 200, 500, 1000, 2000, 5000, 10000m) for the 
neighborhood of the focal cells to account for the information of the 
surrounding pixels (Eeftens et al., 2012; Gulliver and de Hoogh, 2015). 

2.3. Modeling ground-level concentration 

Different algorithms were applied to model the relationship between 
the ground-level concentration and the environmental and land use 
covariates at 100 × 100 m spatial resolution. 

Prior to modeling, logarithm transformation x’=ln(x+1) was applied 
to the following predictor variables (and their spatially-buffed products) 
that were most skewed: emissions, nighttime light, population, traffic 
intensity, the density of major roads and all roads, and number of in-
tersections. The scalar 1 was added to the predictor variables before the 
logarithm transformation to avoid ln(0) because some original values 
were zero. Following the transformation, the predictor variables as well 
as their spatially buffered products were standardized to mean 0 and 
unity standard deviation (x′

= x− x
σx

) to allow comparison between model 
coefficients and better model performance (except land cover and total 
cloud cover, whose unit is “percent” and value range is between 0 and 
1). 

Table 1 
Summary of input data.  

Data type Name Source Details 

Ground NO2 

monitoring 
Monitored NO2 Immissionsmesswerte 

Luft der Schweiz 
Unit: μg/m3 

Satellite-derived 
tropospheric 
column NO2 

OMI 
Tropospheric 
column NO2 

NASA EarthData GES 
DISC  

- Spatial 
resolution: 
0.25◦ × 0.25◦

(~13 × 25 km)  
- Temporal 

resolution: 1 
day  

- Unit: molec/ 
cm2 

TROPOMI 
Tropospheric 
column NO2 

ESA Sentinel-5P Pre- 
operations data hub  

- Spatial 
resolution: 7 ×
3.5 km  

- Temporal 
resolution: 1 
day  

- Unit: molec/ 
cm2 

(preprocesseed) 
Modeled NO2 

(for the 
imputation 
models) 

Modeled total 
column amount 
NO2 

CAMS global 
reanalysis (EAC4)  

- Spatial 
resolution: 
0.75◦ × 0.75◦

(~80 × 80 km)  
- Temporal 

resolution: 1 
day  

- Unit: kg/m2 

Spatial predictor 
variables 

CORINE land 
cover 2018 

Copernicus Land 
Monitoring Service 

Spatial resolution: 
100 × 100 m 

EU-DEM v1.1 
elevation 

Copernicus Land 
Monitoring Service 

Spatial resolution: 
25 × 25 m 

GHS 
population 
2016 

EU Open Data Spatial resolution: 
100 × 100m 

VIIRS light at 
night 

Earth Observation 
Group Annual VNL V2 

Spatial resolution: 
15 arc second 

NOx emissions 
2015 (by 
source types) 

Meteotest Spatial resolution: 
200 × 200m 

NDVI MODIS Spatial resolution: 
30 × 30 m 
resampled to 100 
× 100m 

Number of 
intersections 

Calculated from 
Sonbase database road 
network 

Spatial resolution: 
100 × 100m 

Traffic 
intensity 
Road density 
Distance to 
nearest major 
road 

Spatialtemporal 
predictor 
variables 

ERA5 
meteorological 
variables 

ERA5 (ECMWF)  - Variables 
(units): 2m 
temperature 
(K), 10m u- 
component of 
wind (m/s), 
10m v- 
component of 
wind (m/s), 
Surface 
pressure (Pa), 
Total 
precipitation 
(m), Total cloud 
cover (0–1), 
Boundary layer 
height (m)  

- Spatial 
resolution: 
0.25◦ × 0.25◦

- Temporal 
resolution: 3 h  

Table 1 (continued ) 

Data type Name Source Details 

NDVI MODIS vegetation 
MYD13Q1  

- Spatial 
resolution: 250 
× 250 m  

- Temporal 
resolution: 1 
day  
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2.3.1. Supervised forward stepwise linear regression (SLR) 
We applied the supervised stepwise model selection algorithm and 

criteria following the protocol of the ESCAPE study (de Hoogh et al., 
2016; Eeftens et al., 2012). In short, the expected sign of the regression 
coefficients of all predictor variables were defined a priori. Univariate 
linear regressions were first fitted for the respective predictor variables, 
and the one with the highest adjusted-R2 was included as the initial 
predictor variable. Then, the remaining predictor variables were 
sequentially added in to the linear regression model with the initially 
included variable. The variable that (1) further gave the highest gain in 
the model adjusted-R2, (2) with the right direction of effect, and (3) did 
not change the direct of effect of the existing predictor variable was 
included in the model. This step was repeated iteratively until there 
were no more variables (1) with the right direction of effect and (2) 
which added at least 0.01 to the adjusted-R2 of the previous model. 
Finally, variables with (1) a p-value >0.10 (insignificant variables) or 
(2) Variable Inflation Factor (VIF) > 3 (variables with collinearity) were 
removed from the model. 

For the monthly and daily model, we engineered additional predictor 
variables for the SLR models to take into account the information of 
temporal changes. Seasonal cyclic patterns exist in the NO2 concentra-
tion, but the relationship between the time step (“month” or “day of 
year”) and the concentration is non-linear. We applied cosine trans-
formation to the “month” variable (1–12) of the monthly model and the 
“DOY” variable (1–365) of the daily model to linearize the relationship 
(Appendix A.4). The transformed variable ranges between − 1 and 1 and 
has a more linear relationship to the response variable. 

2.3.2. Geographically weighted regression 
Whereas conventional regression models yi = β0 +

∑

k
βkxik + εi as-

sume the regression coefficients βk to be spatially stationary, 
geographically weighted regression models permit the coefficient esti-
mates to vary locally [16]: yi = β0(ui, vi) +

∑

k
βk(ui, vi)xik + εi where 

(ui, vi) were the coordinates of point i. Data closer to the point i were 
weighted more than data from observations that were far away [16]. 
GWR was used for annual prediction to take into account the spatial 
variability of long-term NO2 concentration. 

GWR was used to fit the annual average concentration based on the 
predictor variables selected by SLR. An adaptive bandwidth for the 
distance decay function was adopted for the GWR model. The GWR 
model was implemented with the R package “GWmodel” (Gollini et al., 
2015). 

2.3.3. Supervised stepwise linear mixed effect regression model (SLMER) 
Linear mixed effect models were applied to the monthly and daily 

data to adjust the regression coefficient of the pooled linear regression as 
the random effect, which allows precise prediction for each individual 
time step (best linear unbiased predictors; BLUPs). In this study, the 
estimation of random effect was based on a preliminary variable selec-
tion with the SLR algorithm (without the presence of the cosine- 
transformed temporal variables). For the monthly model, a random 
intercept (an adjustment to the intercepts for each month) estimation 
was added to the model random effect structure. For the daily model, a 
random slope on the TROPOMI satellite NO2 observation was further 
added to the random effect structure for each individual day along with 
the random intercept. The mixed effect models were implemented with 
the “lme4” package (Bates et al., 2015). 

Note the limitation for applying the temporally-blocked cross vali-
dation (see the following section 2.4 Model evaluation) for the mixed 
effect models. The estimated values of the test set in the temporally- 
blocked cross validation were only population-level predictions (no 
random effect adjustments) since the random effect grouping of test set 
observations (an entire month) was not present in the data for model 
fitting. Therefore, the temporally-blocked CV predictions only represent 

the estimation based on the fixed effects. 

2.3.4. Random forest (RF) 
Random forest (Breiman, 2001) uses bootstrap aggregation of clas-

sification and regression trees (CARTs) by randomly drawing of only a 
subset (instead of all) of the predictor variables at each split (Breiman, 
2001; Liaw and Wiener, 2002). We applied random forest to fit the 
annual, monthly, and daily land-use random forest models with the 
“ranger” package (Wright et al., 2015). An embedded variable selection 
(Guyon and Elisseeff, 2003) based on variable importance was applied 
prior to the fitting of the final random forest model (Appendix A.5 for 
details). The hyperparameters (n.trees, mtry; see Table A2-A4) were 
selected based on a grid search over a number of hyperparameter 
combinations that minimize the model cross-validated RMSE loss in a 
parameter space. 

2.3.5. Gradient boosting machines (XGBoost, LightGBM) 
Whereas random forest grows and aggregates parallel bootstrapped 

decision trees, “boosting” grows trees sequentially where the later trees 
learn the pattern based on the errors of previous trees. Two most widely- 
used variants of boosting decision-tree-based algorithms, Extreme 
Gradient Boosting (XGBoost) (Chen and He, 2015) and Light Gradient 
Boosting Machine (LightGBM) (Ke et al., 2017), were used in this study 
to fit the annual, monthly, and daily land-use boosting models (with the 
“xgboost” (Chen and He, 2015; Chen et al., 2019b) and “lightgbm” (Ke 
et al., 2017, 2021) packages). Embedded variable selections (Guyon and 
Elisseeff, 2003) based on variable importance were applied prior to the 
fitting of the final XGBoost and LightGBM models (Appendix A.5 for 
details). The hyperparameters of the final XGBoost and LightGBM 
models, that minimize the model cross-validated RMSE loss, were 
selected based on the grid searches over a number of hyperparameter 
combinations in a parameter space for XGBoost and LightGBM 
(Table A2-A4). 

2.3.6. Neural network (NN) 
Neural networks are function approximators composed of inter-

connected neurons (Bishop, 1995; Goodfellow et al., 2016). The inter-
connected weights are the basic parameters adjusted during the training 
process with the backpropagation algorithm and 
stochastic-gradient-descent-based optimization, which tries to find the 
parameter that minimizes the error between the observed and predicted 
values (the loss function) (Bishop, 1995; Goodfellow et al., 2016; Mlakar 
and Boznar, 2011). 

We developed neural network models for the regression of ground- 
level concentration with “Keras” (Allaire and Chollet, 2021). For the 
monthly and daily models, we applied a variable selection prior to the 
fitting of the final neural network model based on variable importance 
with Garson’s algorithm (Garson, 1991; Goh, 1995) (Appendix A.5 for 
details). The architecture (hyperparameters) of the final model (number 
of hidden layers and neurons, regularization, dropout layer) and setting 
of the training process (batch size, training epochs) was selected based 
on grid searches over a number of hyperparameter combinations that 
minimize the model cross-validated MAE loss in a parameter space 
(Table A2-A4). 

2.4. Model evaluation 

The statistical performance of models was evaluated by comparing 
the observed and the predicted values of the models and by analyzing 
the prediction residuals. Besides the prediction based on the model 
developed with the complete training data (full model), we performed 
cross validations and compared the observed and the cross-validation 
prediction values to evaluate the robustness of the algorithms. Three 
different cross validation partitioning methods were applied: (1) The 
conventional 5-fold random-split cross validation randomly divided the 
96 monitoring sites into 5 groups. In each iteration the data of one group 
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was held back in the training data when the model was fitted, and was 
used to evaluate the error of the fitted model by the predicted values. 
Furthermore, we applied a (2) 5-fold spatially-blocked cross validation. 
Instead of dividing the monitoring sites randomly, the study area was 
split into large chunks and the partitioning of the cross-validation folds 
was assigned to the chunks. All the monitoring sites within a same chunk 
were assigned with the same cross validation fold (Fig. 1 (a)). The 
spatially-blocked CV was a more conservative approach to evaluate the 
model’s ability to generalize over space, since the model was applied to 
an area where no information was included in the training process. A 
previous review (Roberts et al., 2017) suggested that for the data with 
spatial, temporal or hierarchical structure, block cross validation was 
more appropriate to evaluate model performance than random cross 
validation when the goal was predicting to new data or predictor space. 
We also applied a (3) 12-fold temporally-blocked cross validation for the 
monthly and daily model to evaluate the models’ robustness in time. The 
dataset was partitioned by 12 months where in each iteration the model 
was fitted with data from 11 months and predicted on the data of the 
held-out month. 

We calculated the coefficient of determination (commonly referred 
to as R2) and root mean square error (RMSE) to evaluate model per-
formance. We also assessed the potential spatial autocorrelation of the 
model residuals with the global Moran’s I statistic [61–64] of the re-
siduals of the full training model. 

Additionally, the fold-specific RMSEs of the spatially- and 
temporally-blocked (for monthly and daily models) cross validations 
were compared across folds to assess the space- and time-specific un-
certainties of the models. The time series structure (trend and period-
icity) of the daily-model residuals was also analyzed (Appendix A.6). 

3. Results and discussion 

3.1. Annual models 

Overall, SLR and RF are the best performing models at annual 
average scale (Fig. 2). RF gave the highest random-split CV-R2 (0.749) 
and SLR gave the highest spatially-blocked CV-R2 (0.728) (Table A5). 

SLR has the highest predictive performance at annual scale despite 
its simplicity and the potential limitation of the forward selection 
approach. The random-split (0.736) and spatially-blocked (0.728) CV-R2 

of SLR are close to the full-model R2 (0.758), suggesting the robustness 
of the model in space. The statistical performance of GWR was little 
different from that of the SLR model on which the GWR was developed. 
Figure A2 shows the very low spatially-varying regression coefficients of 
GWR, probably due to the relatively small study area and the conse-
quently limited heterogeneity. The random-split (0.749) and spatially- 
blocked (0.722) CV-R2 values of RF are comparable to that of SLR. 
Whereas the full-model R2 of the XGBoost model is almost 1, the R2 

measured by random-split (0.731) and spatial-blocked (0.710) CV 
models are lower than SLR and RF (Table A5). Likewise, the full-model 
R2 of the LightGBM is around 90% but the spatially-blocked CV-R2 

(0.671) of the LightGBM models are the lowest among all of the annual 
models compared, suggesting that the model may be spatially not as 
robust as the other ones. The full-model R2 of the neural network models 
is around 76%, and random-split CV-R2 is the lowest (0.674) among all 
of the annual models compared. 

In summary, SLR and RF are the best performing models predicting 
annual average concentrations. The two boosting models overfit on the 
training data, suggesting that the models are too complex for the data. 
Since monitoring data for only one year was used for training in this 
study, the performance of the boosting models might be better if the data 
size is bigger (e.g., multiple years) for better generalization. 

Chen et al. (2019a) compared 16 algorithms predicting annual 
average PM2.5 and NO2 concentrations across Europe and showed that 
the NO2 models performed similarly across different algorithms with 
5-fold-CV R2 ranging from 0.57 to 0.62 (Chen et al., 2019a). Despite the 
overall higher R2 and lower RMSE values in this study, possibly linked to 
the smaller study area, we also found that the difference between the 
annual models was relatively small (5-fold random-split CV-R2 ranging 
from 0.672 to 0.749). Chen et al. (2019a) suggested that the small dif-
ferences between models may be related to the large number of training 
data (number of monitoring sites) and the lack of complex relationships 
between the predictor variables and the relatively stable annual average 
concentrations. 

Fig. 1. (a) The spatial partitioning of the spatially-blocked cross validation. (b) The fold-specific RMSEs (μg/m3) of the spatially-blocked cross validated models.  

T.-L. Liu et al.                                                                                                                                                                                                                                   



Atmospheric Pollution Research 13 (2022) 101611

6

In most of the annual models, TROPOMI-observation NO2 product 
was not selected by the models (Table A10; Figure A5), whereas the 
traffic-related variables (traffic intensity, major road density, traffic- 
source NOx emission) at various radii consistently were the variables 
with the highest ranking. The improvement of the performance of the 
SLR models by including satellite-derived column NO2 (OMI) was larger 
in the West-European models (de Hoogh et al., 2016) than in this study. 
This is likely because of the little extra information added by the satellite 
observation on the spatial variability of NO2 concentrations already 
covered by the land-use terms. This as opposed to large areas, where the 
satellite-derived column NO2 is able to explain large scale variability, 
which, at the European scale, improved the model performance (de 
Hoogh et al., 2016). 

3.2. Monthly models 

The two gradient-boosting models, XGBoost and LightGBM, have the 
highest random-split CV-R2 (XGB: 0.784; LGB: 0.787) and temporally- 
blocked CV-R2 (both 0.901) (Fig. 2, Table A6). The models with the 
highest spatially-blocked CV-R2 are LightGBM (0.728), SLR (0.727), and 
SLMER (0.722). The overall performance of the neural network models 
is the lowest among the algorithms compared. The difference between 
the full-model R2 and CV-R2 is largest for the two gradient-boosting 
models (full-model R2 > 0.99), suggesting an overfitting. 

A pattern of underestimation at lower fitted values (in the range ŷ 
<0) can be observed in SLR and SLMER, showing the limitation of linear 
predictions of the linear regression models. An overestimation at higher 
fitter values (in the range ŷ > 30) can be observed with the NN model 
(Figure A3 (b)). 

Unlike in the annual models, the TROPOMI-observation NO2 was 
selected as a predictor variable in all models (Table A10; Figure A5). The 
traffic-related variables, including traffic density, major road density 
and traffic-source NOx emission, remain highly relevant predictor var-
iables across the different algorithms. Month (and its cosine-transformed 
numeric variable) is also an important variable. Meteorological vari-
ables, whose variable importance ranking was relatively low in the 
annual models, are also present among the most important variables, 
including air temperature (in SLMER, XGBoost, RF, LightGBM, NN), 
boundary layer height (in RF, XGBoost, LightGBM, NN), and total cloud 
cover (in SLR, SLMER, RF, XGBoost, LightGBM, NN). 

3.3. Daily models 

At daily scale the variability of NO2 concentration is higher and the 
relationship between the variables is more complex, and in this case, it is 
observed that the boosting models are the best performing models. The 
predictions of the two gradient-boosting models, XGBoost and 
LightGBM, have the highest random-split CV-R2 (XGB: 0.721; LGB: 
0.724) and spatially-blocked CV-R2 (XGB: 0.676; LGB: 0.673) (Fig. 2, 
Table A7). Following gradient boosting, mixed effect model (SLMER) 
has the third highest random-split CV-R2 (0.686) and spatially-blocked 
CV-R2 (0.660), higher than that of random forest. Random forest and 
LightGBM are the models with the highest temporally-blocked CV-R2 

(RF: 0.741; LGB: 0.742). SLR performs poorly at daily scale (CV-R2s 
around 58%), suggesting that the daily variation is too complex to be 
predicted with a simple model like SLR. The performance of the mixed 
effect model improves compared to SLR when daily variation was taken 
into consideration as the random effect. Note that the temporal-CV R2 is 
lower (0.400) because only the fixed-effect predictions (instead of 
random-effect BLUPs) of the mixed effect model can be estimated for 
temporally-blocked cross validation (see section 2.3.3). It can also be 
observed from the temporally-blocked CV that higher variability exists 
between months than within months (SLMER: pooled temporal-CV R2 =

0.400, minimum temporal-CV R2 = 0.415, maximum temporal-CV R2 =

0.638). With lower CV-R2 and higher CV-RMSE, neural network 

performed the worst among the four machine-learning algorithms. Note 
that the difference between the full-model (training) R2 and CV-R2 is 
largest for the two gradient-boosting models (XGBoost: full-model R2 =

0.927, LightGBM: full-model R2 = 0.991), suggesting an overfitting 
despite the cross-validation hyperparameter grid search. Including 
observation data of more years for training the models may improve the 
overfitting issue for a better generalization. 

We aggregated the daily concentration predictions of the daily 
models to an annual average and compared the predicted values (full- 
model, random-split CV, spatially-blocked CV) to the annual average 
measured concentrations (Table A8). Compared to the models that were 
developed directly at the annual-average scale (Table A5), the CV- and 
spatial-CV- R2 of the aggregated models are higher except for random 
forest and neural network. Particularly the spatially-blocked CV-R2 of 
the two gradient boosting models (XGBoost, LightGBM) increased the 
most in the aggregated models (+5–13%). The aggregated XGBoost and 
LightGBM models have the highest CV- and spatial-CV- R2 values, fol-
lowed by SLR. This is somewhat different from the models developed 
directly at the annual-average scale, where random forest and SLR were 
the outperforming models. Besides the difference in data complexity as 
well as the corresponding suitable model complexity from annual to 
daily scale, a reason could be the difference in training data size for the 
data-hungry boosting learners. This suggests that with the accessibility 
and availability of data, modeling daily concentrations may still be 
useful even if the objective is modeling long-term ambient concentra-
tion. However, the two gradient boosting models highly overfit on the 
training data (full-model-R2 = 1.000, RMSE<1 μg/m3) whereas SLR did 
not overfit as strongly. Also, although SLR performed relatively poorly in 
predicting daily concentrations (CV- R2 < 0.60), the aggregated pre-
dicted concentrations at annual-average scale highly correlate to the 
observed annual-average concentration (CV-R2 = 0.76). This suggests 
that the linear-regression-based model is more capable of explaining 
spatial variations than temporal. On the other hand, the performances of 
random forest and neural network were better when the models were 
developed based on annual average than the annual average aggregated 
from daily estimates, therefore the choice of daily model for aggregated 
annual average concentration estimates may be model-specific. 

Table A9 summarizes and compares several daily land-use statistical 
and machine-learning models for various pollutants from previous 
studies. The performance of random forest, gradient boosting and neural 
network models did not differ greatly in Di et al. (2019), whereas the 
difference is significant in this study. This difference may be related to 
the data-hungry nature of the machine-learning algorithms, the differ-
ence of study area sizes and the resulting difference in sample data size, 
with the contiguous United States being more than 200 times larger than 
Switzerland. The random-split CV-R2 of the linear mixed effect models 
(SLMER) in this study are slightly higher than that of the mixed effect 
model in a previous study (de Hoogh et al., 2019) modeling daily NO2 
concentration across Switzerland (at 1 × 1 km; the “second-stage” model 
in that study). Anand and Monks (2017) developed similar mixed effect 
models based on supervised stepwise variables selection (Eeftens et al., 
2012) for daily NO2 concentrations in Hong Kong. The CV-R2 (0.775) 
was about 9% higher than that of the mixed effect models in the current 
study, however the scale of the study area was much smaller (city-scale; 
with 11 monitoring stations) and the spatial resolution was coarser. 
Compared to the outperforming gradient boosting models, the mixed 
effect models in this study performed similarly in spatially-blocked cross 
validation and slightly lower in random-split cross validation. However, 
the mixed effect models still performed better than random forest and 
neural network. SLR performed poorly at daily scale, explaining only 
<60% of the variability of the spatiotemporal distribution of the daily 
concentrations. Few studies used linear regression models for modeling 
daily concentrations compared to annual. Rahman et al. (2017) applied 
a stepwise linear regression model to estimate daily NO2 concentration 
in Brisbane metropolitan area and used a periodic function of “the day of 
year” and “the day of week” fitted with penalized splines to incorporate 
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seasonality. Similarly, the study showed a relatively low CV-R2 (0.23; 
LOOCV) (note the limited number of monitoring sites in the study). Our 
results suggested that the high temporal variation of concentrations at a 
daily scale may be too challenging to be captured by SLR, a multiple 
linear regression with limited complexity and predictor variables, while 
the mixed effect models developed upon supervised stepwise variables 
selection can better model the variation by the adjustment with 
random-effect structure. 

No clear pattern between the residuals and the model-fitted values 
were observed for the random forest, XGBoost and LightGBM models. An 
overestimation at high model-fitted values was observed in SLR and 
SLMER (Figure A3 (c)). A similar pattern of overestimation at higher 
model-fitted values was also observed in the temporally-blocked cross 
validation of the neural network models. 

The relative variable importance of the satellite-observation NO2 
products is higher at daily scale compared to the monthly and annual 
models for each algorithm (Table A10; Figure A5). Date (or day of year 
and its cosine-transformed numeric variable) is another important var-
iable for all models. Traffic intensity (at various radii of moving window 
size) is also a highly important predictor variable for all models. 
Boundary layer height and wind speed are the meteorological variables 
that are most important in the different models. 

3.4. Uncertainties 

Annual, monthly or daily models that were trained with the obser-
vations in spatially-blocked CV-folds 1, 3, 4, 5 and predicted on obser-
vations in fold 2 have the highest bias (fold-specific CV-RMSEs; yellow 
bars in Fig. 1(b)). In comparison, the differences between the CV-RMSEs 
of the other folds are relatively small. Figure A4 summarizes the fold- 
specific RMSE of the temporally-blocked cross validation of the 
monthly and daily models. It can be observed in all algorithms that the 
bias in winter months is higher than the bias in summer months. The 
highest bias exists in the hold-out predictions of February. 

3.5. Model-estimated concentration surfaces 

Fig. 3(a) shows the model-estimated annual average NO2 concen-
trations at 100 × 100 m for 2019 zoomed in Zürich and the surrounding 
area with the Lake of Zürich in the middle. All models predicted high 
annual mean concentrations (~40 μg/m3) at Zürich downtown and the 
surrounding heavy traffic corridors. More variations, mainly surround-
ing road networks, were depicted in the concentration surfaces esti-
mated by SLR and NN, whereas the pattern was less obvious in the 
surfaces estimated by RF, XGBoost and LightGBM. RF and XGBoost 
models predict a smoother surface and wider decay of concentration 
from the major roads. One difference of the surfaces estimated by 
XGBoost and LightGBM to the other models is the island-like fragmented 
distribution of higher concentration areas, mainly along road networks. 
This pattern may be caused by the overfitting nature of gradient 
boosting models reflected in the relatively lower spatially-blocked CV. 
Furthermore, the Schwyz area, located at the bottom right corner of the 
maps, was estimated with lower concentration by SLR and NN compared 
to RF, XGBoost and particularly LightGBM. This points to a character-
istic while using decision-tree-based models for regression tasks: the 
predicted values are never outside the training set values for the 
response variable. On the one hand, this means that the models would 
not predict negative or extremely high values as linear-regression 
models do. On the other hand, the predicted values are restricted to 
the range of the training data. 

Similarly, in the model-predicted monthly average concentrations 
(Fig. 3 (c)), high concentrations were predicted at Zürich downtown and 
the surrounding heavy traffic corridors by all models. A seasonality of 
higher concentrations in winter months and lower concentrations in 
summer months can be observed. The seasonality was most obvious in 
the estimated surfaces of SLR and SLMER and was less in that of 

LightGBM. SLR and SLMER predicted more areas with negative con-
centration values, reflecting the observation of underestimation pattern 
at lower fitted values in the residual distributions (Figure A3). In com-
parison, the linear-regression-based models predict similar spatial pat-
terns at a monthly level but with varying concentration levels, while for 
the machine-learning models, not only the levels vary between months 
but also the spatial patterns. 

3.6. Limitations and potential improvements 

Although the models presented here were able to explain a large 
portion of the NO2 variation across Switzerland, some regions seemed to 
be more challenging to predict. The highest uncertainties for all models 
occurred in Ticino (Southwestern Switzerland) with a constant under-
estimation and higher prediction error in spatially-blocked CV (Fig. 2). 
We suspect that the pollution characteristics in Southern Switzerland 
may be different from that in the rest of the country, related to the area’s 
geographical proximity to the Po Valley in northern Italy which is 
known for its high air pollutant levels and is considered an area with the 
worst air quality in Europe (Bigi et al., 2012). The Ticino basin located 
on the south of the Alps is climatically different from the Swiss Central 
Plateau with generally warmer temperatures and geographically more 
similarly to the Po valley. The overall higher pollution level in the area 
and difference in climate could result in the higher estimation bias in the 
area despite the inclusion of the satellite observation which may reflect 
the difference in pollution level. 

In terms of temporal variation, February was most challenging to 
predict for all models (Figure A5). The estimated concentration levels of 
February 2019 were already the highest compared to the other months 
(Fig. 3), yet a constant underestimation was still observed. Temporally- 
blocked CV suggested that the behavior of NO2 concentration in 
February was most different from the other months as the models 
trained with the observations of the other months generalized and 
predicted poorly on the observations in February (Figure A4). 

This study has limitations, which may contribute to uncertainties of 
the modeling results and predictive performance. The spatial-temporal 
predictor variable, the meteorology dataset, is a product of climate 
reanalysis dataset combining global data from models and observations, 
which comes with uncertainties (Hersbach et al., 2018). Uncertainties 
also exist in the spatial predictor variables like land use, traffic, and 
emission inventories. For example, the NOx emission inventory data was 
conducted in 2015, and the road network and traffic volume database 
were from 2010. Any changes in the emissions and land use between the 
time the data was produced and 2019 are not reflected in the data, 
causing miss-alignment of real-world information in the models. There 
are also uncertainties in the satellite-derived column NO2 data, 
including the NO2 retrieval algorithm, the imputation models (full--
model OOB-R2: 0.898), and the CAMS modeled NO2 data that was used 
in the imputation models. These uncertainties in the input data may 
introduce uncertainties of the modeling results. 

Another limitation is related to the scale of this study. Switzerland is 
relatively small, and so is the heterogeneity across the study area. In this 
study, geographically weighted regression (GWR) performed not too 
different from basic multiple linear regression (Fig. 1(b), Table A5) and 
the spatial variability of the regression coefficients of GWR was low 
(Figure A2). For larger areas the difference could be more significant. 
The influence of landscape heterogeneity on model performance was 
observed in this study as the higher prediction errors occurred in 
Southern Switzerland. The higher uncertainties in Southern Switzerland 
with differing pollution characteristics showed a potential limitation of 
the transferability of the models. As traffic-related LUR models often 
perform poorly in areas with significant non-traffic sources (Beelen 
et al., 2010; Novotny et al., 2011), our models which were developed 
with the majority of the monitoring sites on the north of the Alps pre-
dicted poorly in Southern Alps areas where the contribution from 
emissions in the Po Valley were not captured. Marcon et al. (2015) also 
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pointed out the limitation of transferring LUR models to nested areas 
with different characteristics. Therefore, the observations in this study 
may not be consistent if similar approaches were adopted for larger 
study areas or areas with different pollution characteristics. 

The relative performance of the models depends on many factors, 
and the sample size used for training the models is highly relevant. The 
study developed models for only a year limited by the availability of the 
TROPOMI data. Including data of more years or more monitoring sites 
and the consequent larger sample size for model training may improve 
the performance of some models. For example, the performance of 
boosting models might be better with milder overfitting if the data size is 
bigger for better generalization. Besides sample size, we believe that 
temporal resolution (the long-/short-term variability) is still the most 
relevant factor to the performance of the models based on our obser-
vations in the study. The increasing complexity of the data from annual 
to daily temporal resolution can directly relate to the increasing 
complexity of the best-performing models. 

There are some possible ways to improve the predictions, for 
example the development of an ensemble model aggregating the esti-
mation of different models. Recent studies (Di et al., 2019, 2020) inte-
grating random forest, gradient boosting and neural network with a 
geographically-weighted GAM ensemble model estimating NO2 and 
PM2.5 over the contiguous United States showed that despite the small 
incremental R-squared compared to the individual base learner models, 
the ensemble models resulted in a more linear relationship between 
measured and predicted NO2 and PM2.5 and were more stable across 
years, seasons, locations or pollution concentration levels (Di et al., 
2019, 2020). The model projection maps (Fig. 3) also showed incon-
sistency of pollution patterns even between the best-performing models 
measured by cross-validation R2 and RMSE, and overfitting 
gradient-boosting models may introduce noise in the estimated con-
centration surfaces. An ensemble model may be able to smooth the es-
timations of different models and achieve a more stabilized overall 
estimation. Furthermore, analysis of the time-series structure of the 

daily mean full-model residuals revealed the presence of periodicity and 
autoregressive structure in the residuals (Figure A5), indicating that 
there were still temporal variations remained unexplained by the 
models. The inclusion of temporal cosine waves as model predictor 
variables may be helpful to take into account the periodicity pattern and 
adjust the model estimations (Shumway and Stoffer, 2017). Including 
lagged predicted values in the models may also adjust the model esti-
mates and correct the autoregressive structure in the residuals. For 
linear-regression-based models, generalized least square models with 
the assignment of AR(p) or ARMA(p,q) dependency structure could be 
considered as an alternative to adjust the models. For neural network, 
recurrent neural network (RNN), which uses sequential data or 
time-series data, is commonly used for time-series models in machine 
learning. RNNs are distinguished by their “memory” as they take in-
formation from prior inputs to influence the current input and output 
(Goodfellow et al., 2016). While recent studies (Liu et al., 2020; Tsai 
et al., 2018) have used RNNs for air pollution forecasting at fixed points, 
developing land-use air pollution models with RNNs for spatiotemporal 
distribution across surfaces are seldom investigated. Using RNNs may 
improve the model performance in time series modeling compared to 
the basic neural networks. Last but not least, static traffic volume data 
(version 2010) was used as a proxy of traffic-related emission sources. 
The common underestimation at the site “Camignolo”, a traffic site in 
rural area, suggested a potential underestimation of traffic volume. The 
daily model residual time-series showed a weekly periodicity, which 
also exists in the pattern of traffic flow from weekdays to weekends. NO2 
is a highly traffic-relevant pollutant and the traffic-related variables 
showed high importance in the models. The inclusion of an updated or a 
dynamic instead of static traffic volume data may be helpful to reflect 
the variation and periodic pattern of emitted NO2 in the models. 

4. Conclusions 

This study compared various land-use statistical and machine- 

Fig. 2. A graphical summary of the model R-squared values at annual, monthly, and daily scale. The black lines indicate the maximum and minimum fold-specific R- 
squared values. 
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learning models estimating ground-level NO2 concentrations of 2019 
across Switzerland at high spatial resolution (100 × 100 m) at annual, 
monthly and daily temporal resolution. Overall, an increasing 
complexity of the best performing models can be observed together with 
the increasing complexity of data from annual to daily temporal reso-
lution. Linear-regression-based models are powerful in explaining long- 
term spatial distribution of NO2, and when the sample size is limited to 
one single year like in this study. At annual- and monthly-average scale, 
spatially-blocked cross validation showed the robustness of the super-
vised stepwise linear models in space. Linear-regression-based models 
are, however, limited in explaining short-term temporal variation. Un-
derestimation at low fitted values and overestimation at high fitted 
values exist in the prediction of linear-regression-based models at 
monthly and daily scale because the effects were modeled and extrap-
olated assuming linearity. For small study areas, like Switzerland, with 
limited heterogeneity, GWR may not predict better compared to basic 
multiple linear regression. In contrast, machine-learning models showed 
high capability in explaining short-term temporal variation and are 
particular helpful for modeling NO2 at a high temporal resolution 
(daily). Some algorithm-specific characteristics were also observed. 
Gradient boosting machines (XGBoost and LightGBM) performed the 
best at daily scale but persistently overfit on the training data despite the 
control of overfitting with cross validation hyperparameter grid search. 
The overfitting nature of gradient boosting may result in unusual pat-
terns in the model-estimated concentration surface. Random forest is 
relatively stable compared to gradient boosting despite lower statistical 
performance. Neural network performed not as high as the ensemble- 
tree models because of the smaller study area and sample size. For 
predicting daily concentrations, SLMER or XGBoost may be considered 
whilst acknowledging the potential overestimation at high levels for 

SLMER and the overfitting for XGBoost. In general, the temporal and 
spatial scale of the study is a particularly important factor on which the 
choice of the suitable model type should be based. Validation is required 
whatever approach is used and enlarging the sample size (e.g., data of 
more years) for model development can be favored to improve model 
predictive performance. 
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Fig. 3. The model-estimated NO2 concentrations at 100 × 100 m for 2019 around Zürich. (a) An OpenStreetMap indicating the area (© OpenStreetMap contrib-
utors). (b) Annual average. The estimated concentration surface of GWR was not presented because the GWR models were almost identical to SLR given the low 
variability of regression coefficients in space. (c) Monthly average. Columns represent the months (1–12) and rows represent the different models. (*: best per-
forming models). 
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