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ABSTRACT

The increasing diffusion of electric vehicles (EVs) can challenge the stability of distribution grids. Smart charging
systems can reduce the stress of EV charging on the grid, but the potential of the technology depends on EV
drivers’ participation in smart charging schemes. To investigate this potential, we conducted an online
randomised-controlled experiment with two waves (baseline and experimental phase, N = 222), in which we
examined drivers’ preferences for smart charging and tested a behavioral intervention to increase the number of
smart charging choices. We translated state-of-charge (SoC) information from percentage of battery level into
miles corresponding to the battery level and tailored information, i.e., the number of driving days covered by the
actual SoC based on participants’ personal driving profiles. Participants preferred to use smart charging systems
to decrease costs and to increase renewable energy use. However, they tended to overestimate the importance of
the battery SoC when setting charging preferences. This overestimation was especially evident for participants
who only drive short distances and may be lead to inefficient use of smart charging technology. Translating
battery SoC into tailored information corrected for this bias and increased the number of smart charging choices.

Our findings illustrate how behavioral interventions can be leveraged to attain energy transition goals.

1. Introduction

Electric vehicles (EVs) are expected to play an important role in the
transition to low-carbon transportation (IEA, 2020a; Rietmann et al.,
2020; Wood Mackenzie, 2020). Many governmental energy strategies on
CO4 emission reduction put EVs in the foreground, including supply-side
policies (e.g. stimulating R&D investments) and demand-side policies (e.
g. financial incentives for EV purchases) (IEA, 2020a). At the same time,
public interest in EVs increases as these cars are progressively recog-
nised as environmentally-friendly, viable and price-competitive (Riet-
mann et al., 2020).

The increasing adoption of EVs will lead to significant changes not
only for the transportation market but also for the operation of power
systems. Most importantly, the diffusion of EVs will increase electricity
demand, which may lead to severe congestion on existing distribution
grids (Deb et al., 2018; Fan et al., 2013; Gupta et al., 2021; Hahnel et al.,
2013; Heuberger et al., 2020; Sehar et al., 2017). With conventional (i.
e., uncoordinated) charging systems, which are the most used

technology nowadays, the charging process starts at maximum power as
soon as the cars are plugged in. Such charging systems do not consider
any relevant information about the power system, which can be prob-
lematic as EVs are often charged during electricity demand peaks, such
as in the early evening (Beaufils and Pineau, 2019; Langbroek et al.,
2017; Wolbertus et al., 2018). This additional load causes stress on the
electricity grid as existing demand peaks become intensified.

Technical studies suggest EV smart charging as a promising solution to
secure grid stability and increase renewable energy use (Hossain et al.,
2016; Jian et al., 2018; Kara et al., 2015; Pudjianto et al., 2013). Smart
charging refers to coordinated charging systems that manage the
charging process in order to optimise for collective needs (e.g., main-
taining grid stability) and/or individual preferences of EV owners (e.g.,
charging when electricity prices are low). The basic principle behind the
technology is that, instead of charging the EV at full power immediately
after it has been plugged in, the EV is charged at a variable power to
meet the aforementioned goals (Hahnel et al., 2013; Hossain et al., 2016;
Jian et al., 2018; Kara et al., 2015). As a result, smart charging usually
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takes longer than conventional charging. By charging EVs at reduced
and variable power, smart charging can alleviate the stress on the grid
caused by charging a high number of EVs at the same time. In addition,
smart charging can postpone EV charging to times with high renewable
energy production, thereby transforming EVs into a flexible electricity
demand. This flexibility enables better integration of large shares of
intermittent renewable energy sources such as wind energy and photo-
voltaic (PV) solar energy.

Although a variety of smart charging systems exists with different
degrees of user involvement (Bailey and Axsen, 2015; Sintov and
Schultz, 2015; Wang et al., 2016), in most cases, the potential of smart
charging is intertwined with individuals’ acceptance and use of the
technology (i.e., their charging preferences and strategies). If drivers do
not endorse and use smart charging schemes, their envisioned benefits
will not be realised sufficiently. Therefore, a better understanding of
drivers’ decision-making preferences and strategies towards smart
charging choices is needed to ensure that the potential of the technology
for the energy transition is fully exploited. Accordingly, our research
questions are the following: what are the main factors that influence
drivers’ decisions to opt for smart charging? And how does range in-
formation provided at the point of decision-making influence such
decisions?

We first empirically investigated drivers’ preferences towards smart
charging systems and the underlying determinants of their charging
decisions, i.e., the baseline phase (Wave 1). Specifically, we investigated
whether UK drivers prefer to charge their vehicle right away (immediate
charging) or enable the smart charging option to modulate EV charging
to reduce charging costs, the demand load of the power system, and
increase renewable energy use. Furthermore, we hypothesised and
found that, when making a charging decision, drivers give high impor-
tance to battery state of charge (SoC) information (H1). We moreover
tested a behavioural intervention to increase the amount of smart
charging choices, i.e., the experimental phase (Wave 2). Following the
literature on choice architecture (Beaufils and Pineau, 2019; Huber
et al., 2019; Kara et al., 2015; Momsen and Stoerk, 2014; Pichert and
Katsikopoulos, 2008), we investigated how translating provided infor-
mation on battery SoC into more comprehensible and meaningful units
for the decision-maker affects their charging choices. Based on the
literature indicating that drivers tend to underestimate the amount of
available battery range at the point of decision-making (Bailey and
Axsen, 2015; Das et al., 2020; Huber et al., 2019; Sintov and Schultz,
2015), we translated battery SoC information from percentages into the
number of personal driving days that can be covered by the battery level.
In line with our hypotheses, translating SoC information increased the
likelihood that participants chose smart charging over conventional
charging (H2). We finally assumed that the intervention would affect
more strongly drivers for whom smart charging is actually most suitable.
In accordance, respondents with short daily driving distances allocated
less importance to the SoC information when they were provided with
tailored range information (i.e., battery SoC) (H3).

Our results unravel drivers’ charging decision-making strategies and
offer behavioural insights on how to optimise the use of smart charging
in the future. We provide practical recommendations on how to present
charging-related information to increase smart charging processes, in-
sights from which policymakers, grid operators, and users can benefit.

2. Theoretical background
2.1. Smart charging decisions: behavioural insights

Smart charging refers to flexible systems that allow fulfilling a va-
riety of goals (Das et al., 2020). From a technical and economic point of
view, smart charging systems can contribute, for example, to curtailing
peak demand (van der Kam and van Sark, 2015), minimising distribu-
tion loss (Veldman and Verzijlbergh, 2015), reducing costs to generate
and purchase electricity (Gonzalez Vaya and Andersson, 2012), and
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maximising the use of renewable energies (Hossain et al., 2016). From
the point of view of EV owners, the use of smart charging systems can
similarly result in economic benefits as well as further benefits such as
environmental ones (Gangale et al., 2013; Huber et al., 2019).

Benefiting from the aforementioned advantages of smart charging,
however, comes at a cost for the user (Hahnel et al., 2013; Huber et al.,
2019; Sintov and Schultz, 2015; Will and Schuller, 2016). Under smart
charging, the charging process is usually extended or shifted so that the
charging system can optimise the charging process for a specific goal (e.
g., reduce costs; increase the amount of renewable energy). Therefore,
drivers lose driving flexibility as the extended charging time may con-
flict with individual mobility needs. For example, the charging process
might not have been finished or even started when the driver wants to
make an urgent and/or spontaneous trip (Hahnel et al., 2013); in this
case, the battery may not be charged enough to enable the trip.

As smart charging systems only exploit their full potential (e.g.,
increasing grid stability) when drivers opt for smart charging as often as
possible, it is crucial to attaining behavioural insights into the decision-
making strategies drivers pursue when using the charging systems. More
specifically, it is important to examine how often drivers would opt for
smart charging as well as to unravel the underlying processes shaping
these decisions. A growing body of literature has investigated how
drivers evaluate the costs and benefits of smart charging, i.e., whether or
not they accept this technology in the first place (Gangale et al., 2013;
Honebein et al., 2011). However, only a few studies compared different
types of intervention, such as incentives, to increase the use of smart
charging (Friis and Christensen, 2016; Huber et al., 2019; Kacperski and
Kutzner, 2018). For example, Friis and Christensen (2016) studied
shifting EV charging manually (by physically plugging in the EV) under
static time-of-use tariffs in a field trial. However, insights into decision
preferences and strategies for using EV smart charging technology are
still scarce. We contribute to filling this gap by revealing the most
important factors underlying drivers’ charging decision preferences and
identifying a behavioural intervention to increase smart charging
choices.

The literature indicates that individuals are motivated to pursue
different goals when using smart charging (Huber et al., 2019; Will and
Schuller, 2016). Accordingly, environmental concerns and the reduction
of electricity costs seem to be strong motivational factors in adopting
and using smart technologies (Friis and Christensen, 2016; Gangale
et al., 2013; Will and Schuller, 2016). In contrast, drivers are also con-
cerned about fulfilling their individual mobility needs, such as the
aspiration for freedom (Hahnel et al., 2014; Herberz et al., 2020) and
safety (Franke et al., 2012b; Huber et al., 2019). Thus, to what extent
users prioritise the different, partially conflicting goals at stake when
making charging decisions remains an open question.

Literature on bounded rationality illustrates that individuals often
apply decision shortcuts, heuristics, that simplify complex judgments and
decisions such as described charging decisions with conflicting goals
(Kahneman, 2003; Simon, 2000). For example, individuals tend to grant
past choices as indicators of optimal options and stick with options that
do not require any change, i.e., default options (Alos-Ferrer et al., 2016;
Kahneman, 2003; Simon, 2000). Moreover, people tend to base their
decision on the most salient goal they have at the point of
decision-making (Hille et al., 2019; Mertens et al., 2020). Goals have the
function of driving attention towards goal-relevant information, which
in turn receives stronger weight in the decision-making process (Locke
and Latham, 2002).

In the context of smart charging, it can be assumed that drivers’ most
salient intrinsic goal at the point of decision-making is to ensure that the
battery will be recharged (Huber et al., 2019). This objective is not only
inherent to the charging process itself but also corresponds to drivers’
habits (Brook Lyndhurst Ltd, 2015; Delmonte et al., 2020). Drivers are
used to refuelling or charging their (conventional) car right away,
meaning that immediate charging can be considered the default
charging option.
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Moreover, the literature on range concerns offers supporting evi-
dence on the high importance that individuals allocate to EV driving
range. Previous research highlights that range concern is a major barrier
to EV adoption and use (Bailey and Axsen, 2015; Das et al., 2020; Sintov
and Schultz, 2015; van der Kam et al., 2019). Individuals may refrain
from buying EVs because they are worried about being restricted in their
freedom (Hahnel et al., 2014). Moreover, drivers have been shown to
apply a substantial safety buffer in their range utilisation (Huber et al.,
2019).

We draw the following inferences from this review of the literature:
information about the remaining energy in the battery, i.e., the battery
state of charge (SoC) at the time of decision-making is likely to be a
highly salient attribute when drivers decide between smart vs immedi-
ate charging. As a consequence, environmental and financial goals are
likely to have less priority in the decision process, and thus information
related to these goals has less weight for the charging decision. Thus, we
hypothesise that:

H1. When deciding to charge immediately or smartly, individuals
allocate higher importance to the battery state of charge (SoC) than
other factors such as electricity price, electricity mix, and grid stability.

2.2. Choice architecture intervention: tailoring battery state of charge
(SoC) attribute information

If charging decisions are predominantly shaped by battery SoC in-
formation, it is important that drivers understand and use this infor-
mation accurately. Any misperception of battery SoC information could
lead to suboptimal decision-making. This concern is of particular rele-
vance in light of research illustrating that individuals are particularly
prone to misperceptions and decision biases in the energy domain (e.g.,
Attari, 2018). Misperceptions are, to some extent, driven by the fact that
most laypersons have rather fuzzy concepts of energy systems and en-
ergy consumption (Burgess and Nye, 2008; Hahnel et al., 2020; Har-
greavesn et al., 2010; Herberz et al., 2020) and little experience with
units of energy, such as kWh (Herberz et al., 2020; Mertens et al., 2020).
This circumstance increases the likelihood that individuals rely on
cognitive shortcuts and heuristics instead of comprehensively process-
ing the provided information (Kahneman, 2003; Simon, 2000). Whereas
decision heuristics can be effective in helping individuals to make de-
cisions with relatively little cognitive effort, the energy domain provides
various examples where the use of heuristics may lead to systematic
errors, misperceptions and energy inefficient choices (Cowen and
Gatersleben, 2017; Herberz et al., 2020; Marghetis et al., 2019; Mertens
et al., 2020; Pichert and Katsikopoulos, 2008; Schley and DeKay, 2015).

Regarding charging choices, when drivers do not accurately under-
stand provided range information (i.e., battery SoC) the resulting de-
cisions may be biased. For instance, when the SoC of an EV battery is
presented in percentage of energy remaining in the battery, this infor-
mation requires drivers to (1) translate the percentage information into
available range based on the total battery capacity and then to (2)
mentally compare this range value with their own driving demand.
Given the high complexity of this mental task, drivers may be prone to
rely uniquely on percentage quantities to make their decisions, espe-
cially if they are not familiar with the battery capacity. In the literature,
this phenomenon is associated with the numerosity heuristic. It occurs
when individuals focus exclusively on the numerical value instead of
considering as well the units in which the information is expressed
(Burson et al., 2009; Herberz et al., 2020; Pandelaere et al., 2011; Pel-
ham et al., 1994). This heuristic may guide drivers to assume low battery
percentage levels as insufficient, independent of the actual remaining
driving range of the EV. Misperceptions of percentage values, in turn,
may prevent individuals from using smart over immediate charging.
This aspect is particularly problematic when considering that a signifi-
cant majority of individuals drive less than 6 miles (~10 km) a day,
meaning that even a low battery SoC would exceed by far daily driving
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ranges (Pasaoglu et al.,, 2012). In other words, for the majority of
drivers, there is no reason to prefer immediate charging over smart
charging in most occasions (Beaufils and Pineau, 2019; Pearre et al.,
2011).

Behavioural insights on cognitive misperceptions and biases associ-
ated with suboptimal information provision can provide the foundation
of novel evidence-based behavioural interventions. This notion is sup-
ported by a growing body of literature on the concept of choice archi-
tecture design, illustrating that theory-guided changes in the decision
context can result in more personally and societally beneficial decision
outcomes (Beaufils and Pineau, 2019; Huber et al., 2019; Kara et al.,
2015; Momsen and Stoerk, 2014; Pichert and Katsikopoulos, 2008).
Most relevant for our research, the concept of attribute translation refers
to the notion that expressing the same information in an alternative way
by emphasising highly correlated, but still different aspects of the de-
cision attribute, facilitates the correct use and integration of this piece of
information, resulting in more desirable decisions (Herberz et al., 2020;
Mertens et al., 2020; Ungemach et al., 2018). For example, translating
information on the electricity consumption of household appliances
from kWh into an energy consumption rating increased attention to-
wards energy-efficient options as well as energy-efficient choices
(Mertens et al., 2020).

Inspired by the concept of attribute translation, in our study, we
examine the impact of changes in battery SoC information on smart
charging choices. Specifically, we controlled for the effect of an alter-
native way of battery SoC information presentation already applied in
practice (Miles condition) and tested the effect of a novel tailored way to
present battery SoC information (Tailored condition). First, we trans-
lated battery SoC information from a percentage into the remaining
driving range in miles (Miles condition). We expected that providing the
SoC in miles (Miles condition) increases evaluability of the information
compared to percentage information, and, therefore, the extent to which
the information is accurately integrated into the decision-making pro-
cess. Drivers are familiar with miles as it is the default unit for distance
in the UK, where our study took place. Higher familiarity with an
attribute unit has been associated with higher evaluability (Herberz
et al., 2020; Lembregts and Pandelaere, 2013). Thus, we hypothesise
that:

H2a. Providing information on EV battery SoC in miles that can be
covered by the battery SoC (Miles condition) increases the likelihood
that participants choose smart charging compared to the Control
condition.

Furthermore, we translated the percentage of battery level into how
many working days individuals could drive without charging the EV
based on their personal driving profile (Tailored condition). We expected
that providing personal information on covered working days facilitates
accurate decision-making further, as this information provides a direct
comparison of battery SoC information with drivers’ personal demand.
This translation does not only provide highly evaluable information
about the remaining EV range, but also indicates whether this range is
sufficient to cover one’s individual demand for the upcoming trips.
Additional support for the effectiveness of this translation can be found
in the literature from the health domain in which tailored interventions
are defined as customised information, for instance, provided in
communication material (see Noar et al., 2007, for a review). First re-
sults suggest that tailored information is also an effective means to
promote pro-environmental behaviour (Abrahamse et al., 2007; Ahmed
et al., 2020; Wang and Sun, 2018). Thus, we formalise the following
hypothesis:

H2b. Providing information on EV battery SoC in working days that
can be covered based on drivers’ personal driving profile (Tailored
condition) increases the likelihood that participants choose smart
charging compared to the Miles and Control condition.

We further aimed to investigate the mechanisms underlying
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intervention effects. We expected individuals’ driving profile to mod-
erate the effect of translations on charging decisions. The more an in-
dividual uses the car, the more battery SoC information should play a
determining role in their charging decisions (Will and Schuller, 2016).
Individuals who drive many miles a day need to make sure that post-
poning the charging process will not lead to insufficient battery levels.
On the contrary, for individuals who drive only a few miles a day, bat-
tery SoC information should play a minor role in the charging decision,
as the possibility to run out of battery is very low (Beaufils and Pineau,
2019; Brook Lyndhurst Ltd, 2015; Pasaoglu et al., 2012; Pearre et al.,
2011). We expected the battery SoC translations provided here to assist
drivers in making more accurate judgments in line with their actual
driving profile. Specifically, the translations should affect the weight
participants assign to the battery SoC as a function of their actual driving
demand. These assumptions lead to the following hypothesis:

H3. The presence of translations of the battery SoC information (Miles,
Tailored) affects the importance allocated to the battery SoC information
based on individuals’ actual driving profile. The fewer individuals drive,
the more the translations decrease the importance allocated to the bat-
tery SoC information — especially in the Tailored information condition.

The UK was selected as the target country to test our hypotheses, as it
is a country with a relatively high uptake of EVs and charging infra-
structure (IEA, 2021; Wills, 2020). Furthermore, the UK government has
the explicit ambition to incorporate smart charging based on user
preferences in the build-up of charging infrastructure to be able to
handle the charging demand of the projected 15 million EVs on the road
in 2030 (ofgem, 2021), making our policy recommendations directly
relevant to UK.

3. Methodology

The online study was based on a 2 (study wave: baseline/experi-
mental) X 3 (condition: Control, Miles, and Tailored) mixed experimental
design (see Fig. 1). In both study waves (baseline/experimental phase),
respondents completed a charging choice task in which they decided
whether they would choose immediate or smart EV charging in a series
of charging scenarios. In the choice task, participants made a total of 21
charging choices (immediate vs smart charging) based on a full-profile
conjoint analysis. In Wave 1 (baseline), the information provided was
identical for all participants. In Wave 2 (experimental phase), the in-
formation provided on the battery SoC was experimentally manipulated
(battery SoC information condition: Control, Miles, and Tailored). The
Control condition was identical to Wave 1. In the Miles and Tailored
conditions, we added a translation of battery SoC information into miles
and working days covered by the battery SoC, respectively (see Section
3.4 for more details).

Wave 1
Baseline phase
(August 6, 2020)
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3.1. Participants

We recruited participants on Prolific Academia (online survey plat-
form) with a minimum approval rate of 90%. Participants received 2£ in
total (Wave 1, 7-10 min: 80p; Wave 2, 7-10 min: 80p; Bonus for
completing the entire study: 40p). A power analysis for a repeated
measures ANOVA (3 x 2 mixed design), with a within-between factor
interaction (effect size Cohens’s d = 0.1, @ = 0.05, and power = 0.80)
suggested a sample size of 246 respondents. Based on the research
design including two waves and 21 choice measurements for each wave,
the actual power is supposed to be higher than 0.80 reported above. To
define the sample size at Wave 1, we accounted for a 25% dropout rate
as estimated by the participants’ recruiting platform (i.e., Prolific), as
well as for our defined exclusion criteria, namely a) people who are not
interested in smart charging, and b) people who indicate to drive 0 miles
per day. We thus recruited 400 respondents at Wave 1.

Respondents were required to have a driving license (215 re-
spondents) or to be in the process of obtaining it (7 respondents) as pre-
screening criteria. Selecting potential drivers provides first insights into
overall preferences for smart charging in a population that will be most
likely to have the opportunity to use the technology in the future.

Four hundred and eight respondents completed Wave 1, which was
launched and ended on August 6, 2020. We excluded 23 respondents
that failed more than one out of four attention checks and respondents
who reported difficulties in completing the charging decision task.
Attention checks were added after the provision of information on smart
charging before the charging task (see Section 3.2) to ensure that par-
ticipants understood the basic principles of smart charging (e.g., “Based
on what you just read, which charging strategy does usually use higher
% of renewable energy?”). Moreover, to increase ecological validity of
the study, only respondents that used their car regularly were examined.
Overall, 81 respondents reported driving 0 miles on a working day and
were thus excluded. Finally, only individuals who were interested in
smart charging systems completed the charging decision task at Wave 1
and 2. Respondents who answered, “No, I’d not be interested in a smart
charging system and I CANNOT think of any circumstances that might
change my mind” (n = 23), were automatically excluded from the choice
tasks (Wave 1 and 2).

Of the 271 eligible respondents, 206 completed Wave 2 between
October 14 and October 25, 2020. In Wave 2, we discarded six partici-
pants that failed more than one attention check and one participant that
reported and confirmed to drive 5000 miles a day. The final sample size
of participants was N = 222 (138 female). For the analyses of the full-
profile conjoint results, the sample size was N = 199, as 23 re-
spondents were not interested in smart charging systems (Fig. 1).

Demographics. Participants’ mean age was 37.6 and ranged from 18
to 76 years. Fourteen participants were students, 142 worked full-time,
36 worked part-time, 1 was a caregiver, 9 were homemakers, and 11

Wave 2
Experimental phase
(October 14 - 25, 2020)

Introduction scenario

]
|

H

H

H

H

1

H

i
Would you be interested in a smart :
charging system in case you would ;
possess an electric car? :
H

1

H

H

H

H

1

H

:

1

1

H

H

H

H

1

H

Yes

»

Yes, | already have a smart charging system (n=1)

Yes, I'd be interested in a smart charging system for EVs (n=139)
No, I'd not be interested in a smart charging system at the
moment, | would prefer an uncoordinated charging system (n=59)

No, I'd not be interested in a smart charging system and | CANNOT
think of any circumstances that might change my mind (n=23)

Charging scenario

Control condition
21 choices
(n=58)

Miles condition
21 choices
(n=73)

21 choices

4

Tailored condition
21 choices
(n=68)

Fig. 1. Schematic design of the online two-wave choice experiment. Information on the subsamples (n) is based on the final sample size.
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were unemployed. On average, participants’ yearly household income
was 40,000£ to 45,000£ (SD = 15,000£; 12 participants preferred not to
answer). Also, 33% of participants had no college degree. The rest of the
participants had an associate, bachelor, master, doctoral or professional
degree (see the Supplementary Material for detailed demographic in-
formation). Following the same classification of political orientation as
Lammers and Baldwin (2018) (2 items; Cronbach’s alpha, a = 0.826),
49.3% of participants were self-identified liberals (combined political
orientation score lower than the midpoint), 15.8% were centrist (at the
midpoint), and 34.9% were conservative (above midpoint). Seven par-
ticipants preferred not to answer any of the two questions on political
orientation. Moreover, no differences in demographic variables between
experimental conditions were observed (see the Supplementary Mate-
rial, Table SM6-SM7 for descriptive statistics and Table SM8 for the
corresponding ANOVA results). However, we could observe differences
between our sample and the population of UK drivers (see Supplemen-
tary Material, Table SM5 for the comparison details).

Driving-related information. On average, participants have been
driving for eight years (SD = 3.25). Twelve participants had no con-
ventional car, 175 had one car, and 35 had two cars or more. Seven
participants had a hybrid (no plug-in) car, two had a plug-in hybrid car,
and two had a full electric car that they drove for a year or less.

As we collected our data during the COVID-19 pandemic and
mobility has been dramatically affected by the crisis (IEA, 2020b), we
accounted for pandemic effects on mobility by measuring self-reported
driving behaviour at three different points in time; past (before
COVID-19), present, and future driving behaviour (as suggested by Fell
et al., 2020; see Supplementary Material for the questions formulation
and detailed results). Participants reported the value in miles. For
computation of the tailored SoC information (i.e., days covered by SoC
based on personal driving profile), we used participants’ reported future
driving behaviour at Wave 2, i.e., expected driving behaviour in one
year after data collection (18.88 miles, SD = 18.70).

3.2. Charging scenario

In Wave 1, we first measured a series of driving-related questions
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(see Supplementary Material, Table SM1 for the questions and corre-
sponding results). Then, we provided general information on smart
charging systems and subsequently asked respondents to report their
interest in such a system as well as the main goals they would aim to
pursue with smart charging (Huber et al., 2019; Schmalfuf} et al., 2015;
Will and Schuller, 2016). Specifically, we measured to what extent it
was important for respondents to use smart charging for a) maximising
the share of renewable energy in the battery, b) minimising the costs of
charging, and c) reducing the stress on the grid by charging at off-peak
times on a 7-point scale ranging from 1 = “Not important at all” to 7 =
“Extremely important” (see Supplementary Material for related results).

After reporting smart charging goals, we asked respondents to
envisage having purchased an EV as well as a smart charging system,
and we explained that the upcoming decision task (full-profile conjoint
analysis) was meant to configure their smart charging system (see Huber
et al., 2019 for a similar approach) (Fig. 1). The configuration involved
the decision of charging an EV in an uncoordinated way (immediate
charging) or by means of smart charging (i.e., cost/energy/grid opti-
mised) under various conditions (see Fig. 2 for an example). Prior to the
task, each attribute provided in the charging scenario was described in
detail.

In Wave 2, we tested a behavioural intervention to increase the
number of smart charging choices (see Section 3.4). In Wave 2, the study
structure was identical to Wave 1, but respondents were randomly
assigned to one of the three experimental conditions (see Fig. 1 and
Section 3.4 for more information).

3.3. Charging attributes

We used a conjoint analysis with a traditional full-profile design to
test our hypotheses. We programmed the study on Sawtooth Software
Lighthouse Studio 9.8.1. To balance statistical and informant efficiency
(Orme, 2010), respondents made 21 choices (charging scenarios) in
randomised order (see Fig. 2 for an example of Wave 1 and the Control
condition of Wave 2). The charging scenario was determined by a
randomised combination of the attribute levels. Specifically, we selected
five attributes and the corresponding attribute levels based on the

Please set your default charging strategies.

Please note that the battery range of your EVis 165 miles, the electricity price for inmediate charging is 20

p/kWh and that the time for a complete charge of your EVis 5h on average. Remember that, despite the

choices you make here, you willbe always able to override the default preferences in everyday life if

needed.

Which charging strategy would you prefer for situations similar to the one presented below?

Initial state of charge:75% ofbattery level

Time of day: 8 AM

Increase in renewable energy (RE) for smart charging: +50% ofrenewable energy

Average additional time for smart charging: +2h

Price savings by smart charging:- 12 p/kWh

Immediate charging

O

Smart charging

O

Fig. 2. Example of the charging choice task (Wave 1 and Wave 2 Control condition).
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information observed in practice and provided by the literature (Bailey
and Axsen, 2015; Delmonte et al., 2020; Jian et al., 2018; Kara et al.,
2015; Wang et al., 2016). Table 1 depicts the five attributes and the
corresponding attribute levels used in the charging decision task. Spe-
cifically, two attributes were referring to the given decision situation:
battery SoC of the EV and the time of day. Moreover, three attributes
were providing information on how smart charging would impact the
charging process: increase of charging duration, increase of the amount
of renewable energy, and decrease of charging costs due to smart
charging.

3.4. Translations of battery SoC information

In Wave 2, we tested the effect of two translations of battery SoC
information (Miles and Tailored) on charging decisions i.e., the amount
of chosen smart charging choices. In the Miles condition, we provided
information on the remaining driving range in miles in addition to in-
formation on battery SoC in percentage, based on average EV perfor-
mance. We specified that the battery range of the EV was 165 miles, thus
we computed the corresponding available miles for the three percent-
ages of battery SoC selected (see Table 1).

In the Tailored condition, we provided personalised information on
the battery SoC by indicating how many working days participants could
drive with the remaining driving range. We used individually self-
reported information on the daily driving distances to provide each
participant with a tailored value based on their driving profile, i.e.,
remaining driving range in battery divided by individual average daily
driving distance (see Table 1).

3.5. Analyses

Determinants of drivers’ charging decisions. To test 11, we analysed
stated preferences towards smart charging in Wave 1. The full-profile
conjoint results allowed estimating how the different attributes
affected the decisions in the choice (i.e., attribute utilities and attribute
importance). Whereas utilities refer to the impact of the levels of a given
attribute on choices, relative attribute importance refers to the weight of
a given attribute in the decision process, considering the entire set of
attributes. For the estimation of utilities, a Hierarchical Bayesian esti-
mation was applied. Part-worth utilities reveal, for each attribute, the
extent to which participants preferred one attribute level over others
(Orme, 2010). The utilities are zero-centered, such that “the total sum of
the differences in utility between the worst and best levels of each
attribute across attributes is equal to the number of attributes times 100"
(Sawtooth Software, 2007, p. n.a.). Moreover, the least preferred level is
used as a reference level, which always has negative utility. For the

Table 1
Full-profile conjoint analysis attributes specification and translations.

Energy Policy 162 (2022) 112818

relative importance estimation, the range of part-worth utilities for each
attribute was divided by the total utility range for all attributes and
multiplied by 100 (Moser et al., 2015). We tested whether the impor-
tance assigned to the five attributes in the charging task was signifi-
cantly different. Moreover, we tested for differences in attribute levels
within attributes using extracted utility values.

Attribute translations and charging decisions. To test H2a-b, we exam-
ined the extent to which attribute translations influenced charging
choices. To this end, we ran a multilevel logistic regression model that
estimated the probability of choosing smart charging in the absence and
presence of attribute translations. In the model, wave and attribute
translation served as factors and charging choice as the dependent
variable. To account for the repeated measures design of the charging
task (21 decisions) and individual differences in charging preferences,
we specified in the model a random effect for the task (i.e., the specific
attribute combination of each charging scenario) and subject, respec-
tively. In follow-up models, we added self-reported charging goals, de-
mographics (i.e., age, gender, income, and political orientation), and
driving-related information (i.e., driving experience in years and ex-
pected driving behaviour) as covariates to the model.

The effect of attribute translations on attribute importance. To test H3,
we investigated the moderating role of personal driving behaviour (in-
dividual daily driving distance in a working day) on the effect of attri-
bute translations on the importance allocated to the battery SoC
attribute. To this end, we ran a linear regression analysis with the
importance of the battery SoC attribute at Wave 2 as the dependent
variable and attribute translation, driving behaviours, and their in-
teractions as predictors. To isolate the effect of attribute translations, we
further controlled for the importance of the battery SoC attribute at
Wavel by adding the variable to the model. We tested for simple effects
for the significant interaction between Tailored translation and driving
behaviour. We reported the effect at two focal values, i.e., the 25th and
75th percentiles, of driving behaviour (Spiller et al., 2018).

4. Results
4.1. Determinants of drivers’ charging decisions

We inferred participants’ preferences for smart charging based on
the choices they made in the charging decision task in Wave 1 (baseline
without attribute translations). Participants’ choices reflected a positive
attitude toward smart charging. On average, participants decided to use
smart charging 67.28% of the time. Fig. 3 displays the frequencies of
choosing smart charging over immediate charging across the 21 de-
cisions in the full-profile conjoint task in Wave 1.

Analyses of attribute importance (cf., Table 1 for attributes) revealed

Attribute Attribute levels

Initial state of charge
Wave 1 and Wave 2:

25% of battery level

50% of battery level

75% of battery level

Control
Translation (Wave 2): 25% of battery level = covering 41 miles
Miles without charging

Translation (Wave 2):
Tailored

Time of day:

Increase in renewable
energy (RE) for smart
charging:

Average additional time
for smart charging:

Price savings by smart
charging:

25% of battery level = covering [41 miles/
(daily driving distances)] working days
without charging (based on your driving
profile)

8 am.

+0% of renewable energy

+2h

—0 p/kWh

50% of battery level = covering 82 miles
without charging

50% of battery level = covering [82 miles/
(daily driving distances)] working days
without charging (based on your driving
profile)

6 p.m.

+25% of renewable energy

+4h

—6 p/kWh

75% of battery level = covering 124 miles
without charging

75% of battery level = covering [124 miles/
(daily driving distances)] working days
without charging (based on your driving
profile)

12 am.

+50% of renewable energy

~12 p/kWh
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Fig. 3. Frequency distribution of the number of smart charging choices in Wave 1 (percentage). The maximum value is 21 choices.

Table 2

Average relative importance of attributes in the charging decision task and their standard deviation at Wave 1.

Attribute Importance Standard deviation
Time of day 27.73% 19.47*

Price savings by smart charging 25.15% 17.81*

Initial state of charge 24.01% 15.42*

Increase in renewable energy (RE) for smart charging 15.71% 11.03

Average additional time for smart charging 7.40% 5.83

Total 100.00%

*Notably, these three attributes have a high standard deviation, meaning that the importance attributed to these attributes varied greatly among participants.

that the time of the day, price concerns and the initial SoC were the most
important attributes (see Table 2); paired-samples tests showed no sta-
tistically significant differences between these attributes. The impor-
tance of the initial SoC was not significantly different to price (t(198) =
-.58, p = .564) and time of the day (t(198) = —1.83, p = .069). In line
with H1, the amount of renewable energy guaranteed by smart charging
and the average additional time needed for smart charging played a
significantly smaller role in participants’ charging choices than battery
SoC information (i.e., t(198) = 5.84, p < .001; and t(198) = 13.98,p <
.001 respectively, see Table 2).

We then looked at part-worth utilities for each attribute level. Fig. 4
illustrates the results of the part-worth utilities for each attribute across
respondents (see Supplementary Material for the results of independent
t-tests comparing attributes levels). Variation in battery SoC significantly
impacted charging choices. Compared to the reference level (i.e., the
least preferred attribute level) of 25% SoC, participants preferred smart
charging to immediate charging significantly more at 75% SoC, and 50%
SoC. Moreover, participants preferred smart charging to immediate
charging significantly more at 75% SoC compared to 50% SoC. More-
over, variation in time of the day significantly impacted charging choices:
compared to the reference level of 8AM, participants preferred smart

charging to immediate charging significantly more at 6PM, and at
12AM. Moreover, participants preferred smart charging to immediate
charging significantly more at 6PM than at 12PM. Furthermore, varia-
tion in the increase in renewable energy significantly impacted choices:
compared to the reference level of 0% increase in renewable energy (RE)
for smart charging, participants preferred smart charging over imme-
diate charging significantly more for 25% increase in RE, and 50% in-
crease in RE. However, there was no difference in charging choices
between 25% and 50% increase in RE. Moreover, variation in the
additional time needed for smart charging, however, did not impact
choices: participants opted for smart charging over immediate charging
similarly when the estimated additional time for smart charging was 2 h
and 4 h. Finally, variation in price savings for smart charging impacted
choices: compared to the reference level of Op/kWh savings for smart
charging, participants preferred smart charging over immediate
charging significantly more when they could save 6p/kWh and 12 p/
kWh. However, there was no statistical difference in charging choices
between 6 and 12 p/kWh savings.



M. Lagomarsino et al.

Energy Policy 162 (2022) 112818

tate of char
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25% of battery level }—{
5.33
50% of battery leve| —
41.75
75% of battery leve|
Time of the da:
Y 8AM -66.00 ———]
43.26
6PM —q
2274
12AM —
Increase in
renewable +0% of RE 344
energy
13.41
+25% of RE|
18.03
+50% of RE|
Average additional 2.93
time for +2h —
smart charging
2,93
+4h —
Price savings
by smart charging -0 p/kwh 65.72 F——r|
29.41
-6 p/kWh —
- 12 p/kWh| f—— 3631
-100 -80 -60 -40 20 0 20 40 60 80 100

Average part-worth utilities

Fig. 4. Average part-worth utilities for all attributes and attribute levels at Wave 1. The part-worth utilities within an attribute sum to O (zero-centered). The least
preferred levels served as reference with negative utilities. Error bars depict 95% confidence intervals.

4.2. Translations of SoC information and charging decisions

Next, we tested whether translations of battery SoC information
increased smart charging choices (H2a-b). Across conditions, the pro-
portion of choices to use smart charging increased from 67.28% at Wave
1 to an average of 71.05% at Wave 2. However, as illustrated in Fig. 5,
there was a significant interaction of wave and attribute translation on
smart charging choices (y2 = 9.38, p = .009 (ANOVA Type 2), see
Supplementary Material, Table SM9: Model 1) indicating that the
changes across waves were subject to the experimental conditions in
Wave 2. In the Control condition, participants’ choices were consistent
across Wave 1 and Wave 2 (OR = 0.98, 95% CI [0.80-1.20], Z = —0.19,
p = .848). In the Miles condition, however, respondents chose signifi-
cantly more often smart charging at Wave 2 compared to the baseline at
Wave 1 (OR wiles = 1.34, 95% CI [1.11, 1.61], Z = 3.06, p = .002), thus
supporting H2a. In the Tailored condition, respondents chose, as well,
significantly more often smart charging at Wave 2 compared to the
baseline at Wave 1 (OR Tajlored = 1.49, 95% CI [1.23, 1.80]1, Z = 4.16, p
< .001), thus supporting H2b. Specifically, in the experimental phase
compared to the baseline phase (battery SoC in percentage) the likeli-
hood that a participant chose smart charging over immediate charging
was 1.34 times more likely in the Miles condition and 1.49 times more
likely in the Tailored condition. In the Control condition, there was no
difference in smart charging choices between the baseline and experi-
mental phase (i.e., OR close to 1).

We then added self-reported smart charging goals (cf., Supplemen-
tary Material Table SM9: Model 2), demographics, and driving behav-
iours (Table SM9: Model 3) as covariates to the model. Results showed a
significant effect of the goal to increase the amount of renewable energy
on smart charging choice (see Supplementary Material, Table SM9:
Model 2; OR Goal:+rE = 1.23, 95% CI [1.11, 1.37], Z = 3.88, p < .001).
The more participants aimed to increase the amount of renewable en-
ergy used for driving, the more they chose smart charging compared to

immediate charging. The remaining goals did not significantly affect
smart charging choices. When controlling for charging goals, de-
mographics and driving behaviours, the interactions between wave and
Miles and Tailored conditions remained significant (see Supplementary
Material, Table SM9: Model 3: OR yjjes = 1.36, 95% CI [1.03, 1.81], Z =
2.14, p = .032; OR Tajlored = 1.53, 95% CI [1.15, 2.04], Z = 2.94,p =
.003).

1.49
Tailored- —O0—
1.34
Miles- —O0—
0.98
Control- —O—
0 1 2 3 4
Odds ratio

Fig. 5. Effect of attribute translations on smart charging choice. Odds ratios
reflect changes in smart charging choices between Wave 1 and Wave 2 as a
function of experimental condition. Error bars depict 95% confidence intervals,
** p< 0.01, *** p< 0.001.
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Experimental Condition:

Miles Tailored

23 miles, 75th percentile

Driving behavior

Fig. 6. Moderating effect of individual driving behaviour (“How many miles do you expect to drive on a typical working day in a year from now?*) on the effect of
battery SoC information the on importance allocated to the state of charge attribute at Wave 2. Error bars depict 95% confidence intervals.

4.3. The effect of SoC information translations on attribute importance

Finally, we tested whether attribute translations affected the
importance of decision attributes in addition to actual choices and
whether this effect was moderated by participants’ driving behaviour
(H3) (cf., Supplementary Material, Table SM10: Model 4). The main
effect of Tailored condition was significant (b = —8.84, p = .015, 95% CI
[-15.93, —1.75]) in that individuals in the Tailored condition overall
allocated significantly less importance to the battery SoC information
than respondents in the Control condition when making the charging
choice.

In line with H3, this effect was qualified by a significant interaction
between the Tailored condition and driving behaviour (b = 0.35, p =
.011, 95% CI [0.08, 0.62]), indicating that tailored information only
decreased the importance of battery SoC information for drivers
covering short driving distances. Fig. 6 illustrates the average impor-
tance of the initial state of charge attribute at 25th and 75th percentiles
of covered driving distance for each condition. Analysis of simple effects
shows that when participants only covered short distances (25th
percentile, average daily driving = 5 miles), the Tailored translation
significantly decreased the importance allocated to battery SoC infor-
mation compared to the Control condition (b = —7.08, p = .026, 95% CI
[-13.29, -.87]). That is, in the Tailored condition, drivers who covered
only short distances assigned relatively little weight to battery SoC in-
formation, in line with their restricted driving behaviour. In the Control
condition, however, those drivers did not adapt the weight assigned to
the battery SoC information to their driving behaviour. Instead, when
participants covered relatively long distances (75th percentile, average
daily driving = 23 miles) there was no significant difference between the
Tailored condition and the Control condition (b = —0.75, p = .777, 95%
CI [—5.94, 4.34]). That is, when drivers covered long distances, the
weight they assigned to battery SoC information in the decision process
was relatively high, independent of the experimental condition. Under
this condition, assigning high relevance to battery SoC information is in
line with individuals’ intensive driving behaviour and the associated
need to assure high battery SoC.

Moreover, there was no main effect of the Miles condition (b =

—3.40, p = .332, 95% CI [-10.30, 3.50]) nor an interaction effect of the
Miles condition and driving behaviour on choices (b = 0.22, p = .092,
95% CI [—0.04, — 0.47]). Additionally, the main effect of driving
behaviour was not significant (b = -.16, p = .096, 95% CI [—0.34,
—0.03]) indicating that, in the absence of Tailored information, partic-
ipants assigned similar importance to battery SoC information inde-
pendent of their actual driving behaviour. Finally, the main effect of the
covariate battery SoC attribute importance at Wave 1 was significant (b
= 0.31, p < .001, 95% CI [0.18, 0.44]), meaning that the more re-
spondents allocated importance to the battery SoC information at Wave
1, the more they did at Wave 2.

5. Discussion

Smart charging is a promising technology to reduce costs and CO5
emissions associated with EV charging as well as to reduce stress for the
grid resulting from intensified electricity demand (Hossain et al., 2016;
Jian et al.,, 2018). To tap the full potential associated with smart
charging, however, future users should engage in smart charging
schemes. In a randomised-controlled online experiment with two waves
(baseline and experimental phase), we examined drivers’ charging de-
cisions and the underlying processes in the context of EV smart charging.
Our analysis shows that participants chose smart charging over imme-
diate charging in 67.28% of choices in the baseline phase. However,
given the relatively short daily driving distances it is indicated that using
smart would have been a viable option in most occasions (—~100% of the
times). Moreover, respondents assigned high importance to battery SoC
information when making charging decisions, independent of their
actual driving behaviour (£11). That is, even drivers covering short daily
distances based their decisions to a large extent on the battery SoC at the
point of decision-making, even though the available range would be
sufficient to cover their actual demand.

Our findings corroborate previous research demonstrating that lay-
persons tend to misjudge energy information as it is often presented in
units about which they have limited knowledge (e.g., kWh, percentages
of battery level). As a consequence, laypersons are likely to refer to
simplified information and cognitive shortcuts in their decision-making
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(Cowen and Gatersleben, 2017; Herberz et al., 2020; Marghetis et al.,
2019; Mertens et al., 2020; Pichert and Katsikopoulos, 2008; Schley and
DeKay, 2015). The high importance assigned to battery SoC is moreover
in line with previous research highlighting the role of range concerns in
EV-related decisions and the potential decision biases derived from
these concerns (Charilaos et al., 2017; Franke et al., 2012a). In agree-
ment with the previous literature, we observed that respondents’ de-
cisions were primarily driven by the goal of having the car fully charged
as fast as possible (Delmonte et al., 2020; Huber et al., 2019). As a
consequence, most drivers overestimated the importance of battery SoC
information, which resulted in inefficient charging decisions for them
and the overall power system.

We assumed that battery SoC information expressed in percentage
contributed to this misalignment between actual driving behaviour and
the relatively high relevance assigned to battery SoC information. In line
with the choice architecture literature (Beaufils and Pineau, 20109;
Huber et al., 2019; Kara et al., 2015; Momsen and Stoerk, 2014; Pichert
and Katsikopoulos, 2008), providing more evaluable information in
miles (H2a), and especially tailored information on the individual
working days covered by the battery SoC (H2b), supported respondents
to make decision that are more in line with their actual demand,
resulting in a higher amount of smart charging choices. According to our
Hypothesis 3, the effect of this tailored battery SoC information was
particularly pronounced for drivers who drive short distances in their
everyday life (H3). That is, the behavioural intervention specifically
addressed the target group of drivers that should be less concerned by
the battery SoC due to their restricted driving behaviour. However, a
better understanding of the SoC information did not increase the se-
lection of smart charging choice for individuals who instead drive long
distances regularly, as smart charging may indeed be incompatible with
their mobility needs.

Our intervention seem to facilitate two cognitive steps that are
required to transform battery SoC information in percentage into
evaluable information in the decision process. In the first step, per-
centage information needs to be translated into available range, which
needs, in the second step, to be compared with one’s actual demand. In
line with our hypotheses, we observed that facilitating both steps by
means of range and tailored information could increase smart charging
choices, with stronger effects in the Tailored condition. Whereas range
information is already displayed in various existing EVs, tailored battery
SoC information could be likewise implemented with little effort in
practice. Data on daily driving patterns could be accessed and commu-
nicated to the smart charging system, which then translates battery SoC
information into tailored information. Whereas the effect size of our
intervention may appear relatively small and the increase in smart
charging decisions between the intervention phase (Wave 2) and the
baseline (Wave 1) were only slightly higher in the Tailored condition as
compared to the range (Miles) condition, scaling up this low-cost inter-
vention to the general population could result in significant positive
impacts on energy costs, renewable energy usage, and grid stability.

Our research also has limitations that can point to new avenues for
future research. First, we did not limit our study to EV users but targeted
a broad spectrum of drivers, as we aimed to provide first insights on
overall preferences for smart charging in the population and thus on the
potential of this technology on a large scale. However, due to this choice
we were not able to analyse how actual EV experience influences the
charging decision. For example, it could be expected that the observed
strong assigned importance to battery SoC information as observed here
decreases with EV experience (Franke et al., 2012b; Krems et al., 2010).
Even though the large importance assigned to battery SoC may dilute
with experience, the found overreliance on associated information can
nevertheless be considered relevant for the success of smart charging, as
charging habits are most likely to be formed in the early stages after
technology adoption (Alos-Ferrer et al., 2016).

Second, we are aware that the external validity of our results is
influenced by the scenario-based setup of our study. However, as the
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current number of EV drivers and especially the number of available
smart charging systems is still limited, an analysis of drivers’ decisions in
the field with actual EV drivers and smart charging systems was not
possible at this stage. We think that our results can nevertheless provide
an empirical basis for future research on choice architecture design and
smart charging based on field trials.

Third, we acknowledge that the way we presented the charging
scenarios may have affected participants’ choices. By highlighting how
smart charging performs in comparison to immediate charging, it is
possible that we draw attention toward the smart charging option and
thus increased the subjective value of this option. As a result, it is
conceivable that smart charging choices would even be lower under
conditions where benefits of this option are less salient. We think it
would be an interesting research avenue to investigate more systemat-
ically whether and how the framing of EV charging attributes influences
drivers’ charging decisions.

Fourth, the long-term consequences of the COVID-19 crisis on
mobility behaviour are uncertain, and changes in mobility behaviour
might influence the potential for EV smart charging. A decrease in car
(or EV) trips due to, for example, an ongoing popularity of home-
working could increase the attractiveness of smart charging, as drivers
would have to worry less about the battery charging level. However, a
low demand for charging would also lead to little flexibility offered by
EVs, unless the charging infrastructure also allows the discharging of EV
batteries to deliver energy management services, known as vehicle-to-
grid. In contrast, an increase in car trips due to ongoing concerns that
public transportation may increase the risk of infection, could decrease
the attractiveness of smart charging. This scenario would increase the
importance for grid operators to avoid large peaks in charging demand,
for instance in the early evening when people return from work. Finally,
changes in commuting patterns will also determine the extent to which
flexibility could be offered during office hours in work areas and resi-
dential areas, respectively. Smart charging could play an important role
in all these scenarios, but user preferences could significantly differ
depending on the evolution of mobility behaviour in the coming months
and years.

6. Conclusion and policy implications

EVs play an important role in energy transition strategies worldwide
(IEA, 2020a; Rietmann et al., 2020). Uptake of EVs, however, needs to
be coupled with optimised usage of renewable energies for charging and
a grid-friendly integration of the technology (Hossain et al., 2016; Jian
etal., 2018; Kara et al., 2015). Smart charging systems can contribute to
these objectives but require the participation of the end-user to exploit
its full potential. For policymakers, this means that the mere adoption of
smart charging systems will not be sufficient to ensure that the tech-
nology will contribute to an ecological, economic, and grid-friendly
integration of EVs.

In line with the literature on choice architecture (Beaufils and
Pineau, 2019; Huber et al., 2019; Kara et al., 2015; Momsen and Stoerk,
2014; Pichert and Katsikopoulos, 2008) and tailored interventions
(Abrahamse et al., 2007; Ahmed et al., 2020; Wang and Sun, 2018), our
research illustrates that low-cost and low-invasive behavioural in-
terventions have the potential to increase smart charging usage and thus
could serve as an important instrument to support the effective imple-
mentation of the technology. Specifically, policy makers could develop
guidelines not only on what information should be displayed to EV smart
charging users but also on how this information should be presented.
Similar to common practice with electricity appliances in many coun-
tries, governments could require car manufacturers and charging point
operators to provide users with transparent and user-friendly informa-
tion. For example, the UK government already highlighted its intention
to “coordinate with the Electric Vehicle Energy Taskforce and industry
to make sure that users have access to the right information and advice
to choose the right goods or services for their needs, and to get products
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set up in line with their preferences™ (ofgem, 2021, p. 32). Our results
can inform the development of such recommendations by illustrating
how providing tailored information can increase the usage of smart
charging options.

Overall, our results illustrate that individuals are inclined to use
smart charging but they seem to have difficulties to understand and
integrate the various pieces of information relevant for smart charging
decisions; information that may satisfy various conflicting goals. Con-
trary to assumptions made by the information deficit model (for a dis-
cussion, see Suldovsky, 2017), providing users with relevant
information alone does not seem to be sufficient to guarantee that they
will successfully translate knowledge into behaviour (Owens, 2016). It is
essential as well to ensure that users understand the provided informa-
tion and integrate it into their decision-making process. Choice archi-
tecture interventions, and attribute translations in particular, can
support users by making pertinent information salient at the point of
decision-making and by signalling choice options that best aligns with
their personal goals and demands. As supported by our findings,
providing tailored information about battery SoC may not only decrease
drivers’ range anxiety, but also boost users’ willingness to provide more
temporal flexibility in the charging process, especially for those users
who can provide flexibility based on their driving profile. The effect of
this intervention is beneficial for securing grid stability, but may also
strengthen drivers’ confidence towards EV and smart charging systems.
Taking these benefits together, leveraging behavioural insights as pre-
sented here to increase technological impact and user satisfaction should
be of great interest for car manufacturers, policymakers and charging
point operators.

The behavioural intervention we proposed could be coupled with
classic policy instruments such as financial incentives. In accordance,
our decision analysis revealed that cost reduction was among the most
important decision attributes. A more in-depth analysis of part-worth
utilities, however, showed that a cost reduction from 0 to 6 Cents
strongly affected charging decisions, whereas an additional cost reduc-
tion from 6 to 12 Cents did not significantly affect choices. In line with
previous research, this neglect of the magnitude of benefits indicates
that individuals tend to rely more strongly on subjective affect rather
than on cognitive calculation-based processes (Hsee and Rottenstreich,
2004). It seems that drivers rather expect some financial benefit of any
magnitude to be willing to restrict their freedom by opting for smart
charging but are relatively insensitive to gradual price changes. We
could observe the same decision pattern for the increase in renewable
energy due to smart charging as changes from 0% to 25% strongly
affected drivers’ decisions. In contrast, changes in the share of renew-
able energy from 25% to 50% were almost ineffective. This information
is highly relevant for the design of smart charging incentive structures.
For example, rather than aiming to provide linearly increasing monetary
benefits, incentives could be calibrated to the threshold at which users
perceive the savings as a significant benefit.

We would moreover like to stress that user engagement in smart
charging schemes, as examined here, should be seen as an opportunity to
raise awareness, inform, and increase citizen participation in the energy
transition rather than as a mere instrument to secure grid stability and
increase renewable energy use. In this perspective, a mere automa-
tisation of smart charging choices without user integration is likely to
fail and decrease the acceptance of the technology. In accordance, the
literature illustrates that people strive to have control over their
charging processes and assign high relevance to their individual
mobility freedom (Huber et al., 2019; Sintov and Schultz, 2015; Will and
Schuller, 2016). Our design thereby may point to a practical and effi-
cient solution in which users configure the systems by setting decision
defaults that then become implemented into the charging schedule by
the system. In the medium and long term, intelligent algorithms using
artificial intelligence could suggest changes in choice patterns, for
instance, when set defaults unnecessarily privilege immediate over
smart charging.
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Future research could also test the effect of setting smart charging as
the default option. Although this intervention may be an effective
strategy to increase the use of smart charging, our intervention has the
added value of making the information more accessible and easier to be
understood, while relying on the status quo does not imply any learning
effect and builds on a cognitive bias (i.e., status quo bias) rather than
increasing competencies of the decision maker (Hertwig and Grii-
ne-Yanoff, 2017). In accordance, the tailored intervention was espe-
cially effective for car drivers with short daily driving distances, and
thus targeted drivers for which smart charging is most feasible. In
contrast, setting smart charging as the default option might overall
nudge drivers to use smart charging and in turn could even be risky for
drivers who drive long distances and have to rely on high battery SoC.

Overall, our research illustrates how behavioural insights can be
leveraged to ensure more effective implementation of technological
innovations to push the energy transition forward. Specifically, our
findings can help to design smart charging interfaces, develop more
effective incentives structures, and point to opportunities to couple
behavioural insights with classic policy instruments. Finally, our
research illustrates that a successful energy transition needs EV policy
design that goes beyond mere investments in technology.
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