
On the Complexity of Heuristic Synthesis for Satisficing Classical Planning:
Potential Heuristics and Beyond

Malte Helmert, Silvan Sievers, Alexander Rovner, Augusto B. Corrêa
University of Basel, Switzerland

{malte.helmert,silvan.sievers,augusto.blaascorrea}@unibas.ch, alex rovner@hotmail.de

Abstract
Potential functions are a general class of heuristics for clas-
sical planning. For satisficing planning, previous work sug-
gested the use of descending and dead-end avoiding (DDA)
potential heuristics, which solve planning tasks by backtrack-
free search. In this work we study the complexity of devis-
ing DDA potential heuristics for classical planning tasks. We
show that verifying or synthesizing DDA potential heuristics
is PSPACE-complete, but suitable modifications of the DDA
properties reduce the complexity of these problems to the first
and second level of the polynomial hierarchy. We also dis-
cuss the implications of our results for other forms of heuris-
tic synthesis in classical planning.

Introduction
In a classical planning task, we want to find a sequence of
actions, called a plan, transforming an initial world state to
a state where a specific goal is satisfied. One common way
to solve classical planning tasks is to use heuristic search
(Bonet and Geffner 2001). Potential functions (Pommeren-
ing et al. 2015) encode heuristics or other functions in a flex-
ible way as a linear combination of state features. To evalu-
ate the function on a state, we sum the weights of all features
that are true in the state.

This simple form makes potential functions a popular
choice for many different scenarios. For example, in the con-
text of classical planning, they have been used to synthe-
size admissible heuristics (Pommerening et al. 2015; Seipp,
Pommerening, and Helmert 2015) or to detect unsolvable
states (Seipp et al. 2016b). Beyond the classical case, they
have been used to compute multi-agent planning heuristics
(S̆tolba, Fis̆er, and Komenda 2016) and to represent heuris-
tics for generalized planning (Francès et al. 2019).

In this paper, we study the computational complexity of
potential heuristic synthesis for satisficing planning, com-
plementing existing results for optimal planning (Pom-
merening et al. 2015; Pommerening, Helmert, and Bonet
2017). Specifically, we consider the problem of verifying
whether a potential heuristic is descending and dead-end-
avoiding (DDA) and the decision problem analog of synthe-
sizing a DDA potential heuristic. We show that both prob-
lems are PSPACE-complete and thus as hard as planning.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The main source of hardness is related to testing whether
a state is alive, i.e., reachable and not a dead end, which is a
PSPACE-complete problem. We therefore look at variants
of DDA verification and synthesis without aliveness tests
and show completeness results for the first two levels of the
polynomial hierarchy.

The core arguments in our membership proofs do not
rely on the specifics of potential functions. They merely re-
quire that a potential heuristic is represented in polynomial
space and can be evaluated in polynomial time. Therefore,
we can generalize these results to arbitrary heuristics with
these properties, with implications for heuristic synthesis for
satisficing planning in general.

Background
We use the SAS+ planning formalism (Bäckström and
Nebel 1995). A SAS+ planning task (or task for short)
Π = 〈V,A, I, G〉 has the following components. V is a finite
set of state variables v, each with a finite-domain dom(v).
An atom of Π is a pair 〈v, d〉, also written v 7→ d, with v ∈ V
and d ∈ dom(v). A partial state s of Π is a set of atoms of Π
in which no two atoms refer to the same state variable. We
write vars(s) for the set of state variables used in s. A partial
state with vars(s) = V is a state. We interchangeably treat
partial states as sets of atoms or functions from variables to
values, writing s[v] = d to denote (v 7→ d) ∈ s.A is a finite
set of actions a, each with a precondition pre(a) and effect
eff(a), both of which are partial states, and a numerical cost
value cost(a) ∈ R+

0 . If s′ ⊆ s for partial state s′ and state s,
we also write this as s |= s′. Finally, I is a state called the
initial state, and G is a partial state called the goal.

The representation size ‖Π‖ of a task is the length of a
reasonable compact encoding of Π. For example, we can set
‖Π‖ to the total number of atoms plus the total number of
atom occurrences in all actions. As usual in complexity the-
ory (e.g., Garey and Johnson 1979), our results do not de-
pend on details of the encoding. Any polynomially equiva-
lent encoding works.

The semantics of Π is defined as follows. Action a is ap-
plicable in state s if s |= pre(a). If a is applicable in s,
its application results in the successor state sJaK, defined as
sJaK[v] = eff(a)[v] if v ∈ vars(eff(a)) and sJaK[v] = s[v]
otherwise. If a is not applicable in s, sJaK is undefined. We

write succ(s) for the set of successor states of s. Applica-
bility and resulting states are extended to finite action se-
quences π in the natural way. The cost of π = 〈a1, . . . , an〉
is defined as cost(a) =

∑n
i=1 cost(ai).

A goal state of Π is a state s with s |= G. A plan for a
state s of Π is an action sequence π that takes s to a goal
state: sJπK |= G. A plan for I is called a plan for Π.

A state or task is solvable if there exists a plan for it. Oth-
erwise it is called unsolvable. A state s is reachable if there
exists an action sequence π with IJπK = s. A state is alive if
it is reachable and solvable. A state is dead if it is not alive.

A plan for state s is optimal if it has minimum cost among
all plans for s. The cost of such an optimal plan is denoted
by h∗(s), with h∗(s) = ∞ if s is unsolvable. Satisficing
planning is the problem of finding plans for a given task or
proving that the task is unsolvable. (Plans of lower cost are
considered better solutions in satisficing planning, but this
aspect is not important for this paper.) In optimal planning,
only optimal plans are acceptable solutions.

Heuristic Search
Heuristic search is a common approach for both satisficing
and optimal planning. A heuristic for a task Π with states S
is a function h : S → R∪ {∞} whose purpose is to provide
an estimate of the distance from a given state to the near-
est goal state. In optimal planning, heuristics usually aim to
estimate the optimal plan cost h∗(s), and admissibility and
consistency are desirable properties of heuristics in this con-
text (Dechter and Pearl 1985). In satisficing planning, the
role of plan costs is deemphasized, and many heuristics de-
signed for satisficing planning ignore action costs altogether
(e.g., Richter and Westphal 2010; Wilt and Ruml 2014).

Potential Functions and Potential Heuristics
A potential function for a task Π with states S is a function
hpot : S → R ∪ {∞} that is defined in terms of a set of
(state) features F and weights for these features. A feature
F ∈ F is a partial state and can be viewed as a test that all
atoms in this partial state are true in a given state s (s |= F).
If this is the case, we say the feature is present in s. We use
Iverson brackets [s |= F] to denote the value 1 if s |= F (F
is present in s) and 0 otherwise. Feature weights are given
by a weight function w : F → R∪{∞}. Potential functions
add the weights of all features present in a given state:

hpot(s) =
∑
F∈F

w(F)[s |= F].

We can think of potential functions as linear combina-
tions of feature indicator functions. Potential functions used
as heuristics are called potential heuristics. Our definition
follows Pommerening et al. (2015) except that we permit
features with weight∞. The dimension of a potential func-
tion with features F is the size of the largest feature in F ,
i.e., max{|F | | F ∈ F}.

The representation size ‖hpot‖ of a potential function de-
notes the length of an encoding of hpot. For example, for fea-
tures F and weights w, one way to define the representation
size is ‖hpot‖ =

∑
F∈F (|F |+ dlog2(|w(F)|+ 1)e), bearing

in mind that polynomial differences in representation size
do not matter for the complexity results in this paper. In this
definition, we assume an explicit representation of hpot as
a list of features and their associated weights. This means
that every feature F contributes its size |F | to the represen-
tation size, and every feature weight contributes its number
of bits in a binary representation to the representation size.
We assume in the following that numbers are represented as
arbitrary-precision integers, but our results apply equally to
arbitrary-precision rational numbers and floating-point rep-
resentations.1

In principle, potential functions can represent arbitrary
functions f : S → R ∪ {∞}: we can treat each state s as
a feature and set its weight to f(s). However, this requires
exponentially many features and hence an exponential rep-
resentation size for the potential function. For practical pur-
poses, we are therefore interested in more restricted potential
functions, for example with bounded dimension.

Complexity Theory
We assume familiarity with the complexity classes NP,
coNP, and PSPACE, with polynomial reductions between
decision problems, and with the notions of hard and com-
plete problems for a complexity class. We also assume fa-
miliarity with deterministic Turing machines (DTMs), ora-
cles, and the characterization PSPACE = NPSPACE. Fur-
thermore, we present complexity results for the first and sec-
ond levels of the polynomial hierarchy, which defines com-
plexity classes Σp

i and Πp
i that generalize the complexity

classes NP and coNP. We only need the Σp
i classes in this

paper, which can be defined based on oracles as

Σp
1 = NP and Σp

i+1 = NPΣp
i for all i ≥ 1.

In other words, Σp
i+1 is the class of decision problems

that can be decided by nondeterministic polynomial-time al-
gorithms with access to an oracle for problems in Σp

i . Note
that Σp

2 = NPNP. These complexity classes form a hierar-
chy between P and PSPACE in the sense that P ⊆ NP =
Σp

1 ⊆ Σp
2 ⊆ · · · ⊆ PSPACE. We refer to Garey and John-

son (1979) and Arora and Barak (2009) for more informa-
tion on these topics.

The decision problem most commonly associated with
satisficing planning is PLANEXISTENCE: is a given task
solvable or not? PLANEXISTENCE is PSPACE-complete
(Bylander 1994).

Potential Heuristics for Satisficing Planning
Potential function synthesis is the problem of computing
suitable features and weights for a given task such that the
resulting potential function hpot has desirable characteris-
tics. So far, theoretical results for this problem are largely
limited to optimal planning. In the work that introduced
potential heuristics, Pommerening et al. (2015) describe a

1Arbitrary-precision floating-point representations require care:
sums of numbers must be kept as sums rather than being reduced
to a common exponent and combined, as reducing to a common
exponent would be an exponential-time operation in general.

polynomial-time algorithm based on linear programming for
synthesizing admissible and consistent potential heuristics
of dimension 1 that optimize an arbitrary linear objective.
For example, their algorithm can find the maximum possi-
ble heuristic value that an admissible and consistent poten-
tial heuristic of dimension 1 can achieve in a given state.

Pommerening, Helmert, and Bonet (2017) generalize this
result to dimension 2. They also prove that testing whether
a given potential heuristic of dimension 3 is consistent is
coNP-complete, suggesting that efficient synthesis beyond
dimension 2 is not possible if P 6= NP.

For satisficing planning, admissibility and consistency of
heuristics are not usually considered important. Hoffmann
(2005) emphasizes the role of local search topology for the
efficiency of heuristic search for satisficing planning. Wilt
and Ruml (2016) provide a measure of heuristic quality for
greedy search algorithm based on qualitative misclassifica-
tions of pairs of states: if h∗(s) < h∗(s′), then a heuristic
h for greedy search should aim to preserve this order, i.e.,
satisfy h(s) < h(s′), but the exact numerical values do not
matter.

Both of these works focus on how far away a given heuris-
tic is from making greedy search algorithms backtrack-free.
Seipp et al. (2016a) investigate how complicated a poten-
tial heuristic must be in order to make greedy search algo-
rithms backtrack-free. They define the correlation complex-
ity of a planning task, which is (roughly speaking) the mini-
mum dimension d for which a potential heuristic that makes
greedy search backtrack-free exists. They show that correla-
tion complexity is upper bounded by 2 in all tasks of several
nontrivial IPC benchmark domains and see this as evidence
that potential heuristics do not need to be complicated or
large for efficient satisficing planning in these domains.

In the rest of this paper we study the computational com-
plexity of synthesizing potential heuristics that give rise to
backtrack-free search for satisficing planning.

Verification and Synthesis
Throughout the paper, we study two kinds of problems: in
verification, we ask if a given heuristic for a given task has
a certain property, such as the DDA property mentioned in
the introduction. This is a decision problem by nature, i.e., it
has a yes/no answer.

Synthesis is about finding a heuristic for a given task with
a certain property and is not naturally a decision problem.
As usual in complexity theory, we study a decision prob-
lem analog of synthesis, asking whether a heuristic with the
given property for a given task exists. Except for one triv-
ial case, all our algorithms for this decision problem are
constructive, and hence our results apply equally to the full
(non-decision problem) version of synthesis.

We parameterize verification and synthesis along two di-
mensions. Firstly, we consider different properties P , where
a property is a predicate that is either true or false for a given
potential function for a given planning task. For example, a
potential function may or may not be DDA for a given plan-
ning task.

Secondly, we consider different restricted classes of po-
tential functions, for example to show that certain hardness

results already hold for potential functions of low dimen-
sion. Mathematically, a potential heuristic class or PH class
is represented by a function C that maps any given planning
task Π to a family C(Π) of potential functions to be consid-
ered when verifying or synthesizing a potential function for
Π. For example, below we introduce C1 as the class of all
potential heuristics of dimension 1, which means that C1(Π)
consists of all such potential heuristics for the specific task
Π. To avoid complexity-theoretic oddities, we only allow PH
classes C for which we can test hpot ∈ C(Π) in polynomial
time in ‖Π‖ and ‖hpot‖.

We can now define verification and synthesis.

Definition 1. VERIFICATION(P, C) is the following deci-
sion problem: given a planning task Π and potential heuris-
tic hpot ∈ C(Π), does hpot have property P for Π?

Definition 2. SYNTHESIS(P, C) is the following decision
problem: given a planning task Π, does there exist a poten-
tial heuristic hpot ∈ C(Π) that has property P for Π?

A common requirement for heuristic synthesis is that the
synthesized heuristics are efficiently computable. This is
usually formalized by requiring that the evaluation time for
a given state is bounded by a polynomial in ‖Π‖. For po-
tential functions, this is equivalent to considering a class C
for which there exists a polynomial p with ‖hpot‖ ≤ p(‖Π‖)
for all tasks Π and hpot ∈ C(Π). We call such classes com-
pact. A PH class is compact iff the number of features and
the number of digits of each feature weight are polynomially
bounded by ‖Π‖.

The most commonly considered restriction of potential
functions hpot is to bound their dimension by a constant
k ∈ N0. This automatically bounds the number of features
of hpot by O(nk), where n is the number of atoms of Π.

Definition 3. For k ∈ N0 ∪ {∞}, Ck denotes the PH class
that allows all potential heuristics of dimension at most k.
(In particular, C∞ imposes no restrictions.)

Synthesizing DDA Potential Heuristics
Ideally, one would prefer a state space topology where the
only local minima are at goal states, i.e., every non-goal state
has a successor with a lower heuristic value. This implies
that greedy search algorithms like greedy best-first search or
simple hill-climbing directly reach the goal without back-
tracking. However, such a state space topology can only ex-
ist in state spaces where every state is solvable because hill-
climbing from an unsolvable state must necessarily end up
in a local minimum without reaching a goal state.

To address this issue, Seipp et al. (2016a) define their de-
sirable heuristic properties as follows: a heuristic is descend-
ing if every alive non-goal state has a successor with a lower
heuristic value and it is dead-end-avoiding if dead succes-
sors of alive states s never have a lower heuristic value than
s. A DDA heuristic is descending and dead-end-avoiding.
This is sufficient for greedy best-first search or simple hill-
climbing to solve a solvable task without backtracking.

Definition 4. Let h be a heuristic for a planning task Π with
alive states SA and goal states SG. We say that h is DDA for

Algorithm 1: VERIFICATION(DDA/SDDA, C) decided in
polynomial space.
Input: Planning task Π, heuristic h for Π
Output: Accept if h is (S)DDA for Π, reject otherwise

1: if not IsAlive(Π,GetInitialState(Π)) then
2: for the DDA property: accept
3: for the SDDA property: reject
4: end if
5: for s ∈ GenerateStates(Π) do
6: if IsAlive(Π, s) and not IsGoalState(Π, s) then
7: improving succ← false
8: for t ∈ succ(s) do
9: if IsAlive(Π, t) and h(t) < h(s) then

10: improving succ← true
11: else if not IsAlive(Π, t) and h(t) < h(s) then
12: reject
13: end if
14: end for
15: if not improving succ then
16: reject
17: end if
18: end if
19: end for
20: accept

Π if it satisfies the following two conditions:

∀s ∈ (SA \ SG) ∃t ∈ succ(s) : h(t) < h(s) (1)

∀s ∈ (SA \ SG) ∀t ∈ (succ(s) \ SA) : h(t) ≥ h(s) (2)

A subtlety of this definition of DDA is that it only imposes
restrictions on h for solvable planning tasks. For unsolvable
tasks, there exist no alive states, and as a consequence every
heuristic is DDA. For example, a constant heuristic that gets
stuck immediately without an improving successor never-
theless counts as descending and dead-end-avoiding on un-
solvable tasks.

We find this aspect of the definition somewhat unfortu-
nate, as it means that the DDA property combines two dis-
parate properties: being solvable via local search and being
unsolvable for any reason.2 We nevertheless begin our anal-
ysis with the original DDA property, but we will see that the
associated complexity results do not provide much insight
into the intuitive problem of synthesis. This will be recti-
fied in the following sections, where we consider variants of
DDA.

Theorem 1. VERIFICATION(DDA, C) ∈ PSPACE for all
PH classes C.

Proof. Algorithm 1 decides the verification problem in
polynomial space, showing PSPACE membership. (Ignore
the SDDA property, which is discussed in the following sec-
tion.) It implements the definition of DDA heuristics in a

2The authors that introduced the DDA property (Seipp et al.
2016a) agree with this assessment in personal communications. It
should be pointed out that the focus of their work is exclusively on
solvable tasks, in which case no problems arise.

straightforward way. Lines 1–4 accept (return “yes”) for un-
solvable tasks (equivalently: tasks where the initial state is
not alive), in line with the above discussion. These lines are
not strictly necessary, but make the algorithm reusable for
the following section. Lines 5–19 verify Eq. 1 and 2.

The algorithm only stores two states and a Boolean vari-
able and only calls functions that can be implemented in
polynomial space, so it can itself be implemented in poly-
nomial space. In particular, h is a potential heuristic and can
thus be evaluated in polynomial space, and testing whether a
state is alive is in PSPACE. (A state s is alive if there exists
a plan from the initial state to s and a plan from s to the goal,
which can be tested with two PLANEXISTENCE queries.)

Note that for this problem we do not need to restrict our-
selves to compact PH classes because h is part of the input
and hence ‖h‖ is part of the input size. Every potential func-
tion can be computed in polynomial time in its representa-
tion size.

We now turn to hardness results. Verifying the DDA prop-
erty is already hard in perhaps the most trivial case, poten-
tial heuristics of dimension 0. In this restricted class, only
the empty feature is allowed, and hence all such potential
heuristics are constant functions.
Theorem 2. VERIFICATION(DDA, Ck) is PSPACE-
complete for all k ∈ N0 ∪ {∞}.

Proof. Membership in PSPACE was shown in the previous
theorem.

For hardness, we reduce from plan nonexistence, i.e., the
question whether a given planning task is not solvable. Be-
cause PSPACE is closed under complement, this problem is
PSPACE-complete like PLANEXISTENCE. W.l.o.g., we as-
sume that the initial state of the given planning task Π is not
a goal state. Every planning task can easily be transformed
to satisfy this requirement without affecting its solvability.

For a given planning task Π, we map to the verification
question with task Π and potential heuristic h = 0, i.e., we
claim that Π is unsolvable iff the constant-0 heuristic is DDA
for Π. This is easy to see: if Π is unsolvable, then every
heuristic is DDA, including h. If Π is not unsolvable, it is
solvable. It follows that its initial state is alive and not a goal
state. Because it does not have an improving successor, h is
not DDA, concluding the proof.

Next we consider synthesis. While intuitively SYNTHESIS
appears harder than VERIFICATION, the following result
shows us that this is not always the case.
Theorem 3. SYNTHESIS(DDA, C∞) ∈ P. More precisely,
it can be decided in constant time.

Proof. The question we need to decide is whether any DDA
potential heuristic exists for a given task Π. The answer is
always “yes”, and hence the problem can be solved in con-
stant time.

If Π is unsolvable, every potential heuristic is DDA, so the
answer must be “yes”. If Π is solvable, consider the function
that maps each state s to the number of steps needed to reach
a goal state from s (∞ for unsolvable states). This heuristic
is clearly DDA, and without restrictions, potential functions

can represent arbitrary functions including this one. So in
this case the answer is also “yes”.

The lesson we can draw from this trivial result is that
for synthesis, we must be careful regarding the classes of
heuristics we consider. In the following, we therefore focus
on compact PH classes for synthesis where necessary. Like
for verification, we first show membership in PSPACE.
Theorem 4. SYNTHESIS(DDA, C) ∈ PSPACE for all com-
pact PH classes C.

Proof. Guess a potential heuristic for the given task and ap-
ply Theorem 2 to verify in polynomial space that it is DDA.

Because PSPACE = NPSPACE, we can use guesses. Be-
cause C is compact, allowed heuristics have polynomial size
and hence we can make the guess in polynomial time.

With suitable restrictions in place, we can again show that
synthesis is hard even under very severe restrictions.
Theorem 5. SYNTHESIS(DDA, C0) is PSPACE-complete.

Proof. In C0, the only potential heuristics available are con-
stant functions, and hence there exists a DDA heuristic in
C0 iff a constant function is DDA. Since all constant func-
tions are equivalent regarding the DDA property, there is no
meaningful difference to VERIFICATION(DDA, C0), shown
PSPACE-complete in Theorem 2.

In all hardness results so far, the difficulty exploited in the
proofs is not really related to the concept of synthesizing a
backtrack-free heuristic. Rather, we obtain hardness because
VERIFICATION and SYNTHESIS are required to recognize
unsolvable tasks and treat them specially, and it is thus only
natural that they are as hard as testing unsolvability.

The results we have seen can be extended to more
general PH classes. For example, SYNTHESIS(DDA, C1)
and SYNTHESIS(DDA, C2) are also PSPACE-hard, with or
without restrictions to compact PH classes. The proof idea
is a reduction from plan nonexistence: for a given planning
task Π, we construct a planning task Π′ with two discon-
nected parts that must both be solved, one consisting of Π
and one consisting of a fixed solvable task Π1 that is known
not to have DDA heuristics in C1 (analogously for C2). We
can then prove that Π′ has a DDA heuristic in C1 iff it is un-
solvable: if it is unsolvable, it trivially has a DDA heuristic,
and it if is solvable, it cannot have a DDA heuristic in C1
because this would imply that Π1 also has a DDA heuristic
in C1, which we know not to be the case.

Synthesizing SDDA Potential Heuristics
The DDA property studied in the previous section can be
summarized as “Is the task either unsolvable or can a solu-
tion be found without backtracking?”. The disjunctiveness
of this question affects all complexity results, and hence
we did not gain much insight on the practical problem of
synthesis. Therefore, we now move to the non-disjunctive
property “Can a solution be found without backtracking?”.
This requires considering a modified DDA property that en-
sures that the answer for unsolvable tasks is “no” rather than
“yes”. We call this the solvable DDA (SDDA) property.

Definition 5. A heuristic h for a planning task Π is SDDA
if Π is solvable and h is DDA for Π.

We begin with bad news. Similar to DDA, verifying
SDDA is already PSPACE-complete in very restricted
cases. However, this time the hardness argument is much
less trivial, and the reduction actually needs to look inside
solvable tasks and consider state space topology.

Theorem 6. VERIFICATION(SDDA, Ck) is polynomial for
k = 0 and PSPACE-complete for all k ∈ N1 ∪ {∞}.

The hardness result already holds for potential heuristics
of dimension 1 and non-branching tasks, i.e., tasks where
every reachable state has at most one successor.

Proof. For the k = 0 result, note that potential heuristics
of dimension 0 are constant. Constant heuristics are SDDA
iff the initial state is a goal state. This is easily checked in
polynomial time. In the following, assume k ≥ 1.

PSPACE membership is established by Algorithm 1 as
in Theorem 1. Note the DDA/SDDA case distinction in the
algorithm.

For PSPACE-hardness, we polynomially reduce from the
problem of determining whether a DTMM with polynomial
space bound p halts on a given input of length n.

We first construct a planning task Π that mimics the Tur-
ing machine computation. The details of this conversion do
not matter. What is important is that Π can be constructed in
polynomial time, that there is a 1:1 correspondence between
the initial and goal configurations of M and the initial and
goal states of Π and that computation steps of M are in 1:1
correspondence to action applications in Π in all reachable
configurations/states. See Theorem 3.1 by Bylander (1994)
for an example of such a construction.3

We augment Π with a binary counter as follows. Let N
be a number at least as large as the number of DTM config-
urations of M . We add K = dlog(N + 1)e state variables
C0, . . . , CK−1 with domain {0, 1} to Π, which we interpret
as representing the K-digit binary number CK−1 . . . C0. In
the initial state, the values of the Ci form a binary repre-
sentation of N . Note that N grows at most exponentially in
‖M‖ and n, and hence K is polynomial in the input size.

We now modify Π so that every simulated DTM transition
also decrements the number encoded by the Ci variables.
This requires replacing every action of Π with K different
versions, depending on how many digits carry in the decre-
ment. For example, for the case of two carries we add the
preconditions {C2 7→ 1, C1 7→ 0, C0 7→ 0} and effects
{C2 7→ 0, C1 7→ 1, C0 7→ 1}. The counter cannot decre-
ment below 0, but this is not necessary: an accepting com-
putation for M cannot include more than N computation
steps (or else it would repeat a configuration and loop for-
ever). Therefore, after this transformation it is still the case
that M halts on its input iff the planning task has a solution.

It remains to define a potential heuristic hpot for Π. We de-
fine hpot in such a way that hpot(s) is the value of the counter

3In Bylander’s reduction, a single DTM transition actually cor-
responds to a sequence of three action applications because he
wants to convert to a planning task of a particularly simple form.
But it is easy to combine these three actions into a single action.

represented by the Ci variables. This can be done with a 1-
dimensional potential heuristic assigning the weight 2i to the
feature {Ci 7→ 1} for all 0 ≤ i < K.

We have to show that hpot is SDDA for Π iff M halts,
or equivalently, iff Π is solvable. If Π is unsolvable, no
heuristic can be SDDA, so this case is easy. If Π is solv-
able, the alive states are exactly the states that simulate the
DTM computation. Apart from the goal state at the end of
the sequence, each of these states has exactly one successor,
in which the counter (= heuristic value) is decremented by
1, and hence hpot is indeed SDDA.

It is now easy to extend this result to synthesis.

Theorem 7. SYNTHESIS(SDDA, C) ∈ PSPACE for all
compact PH classes C.

SYNTHESIS(SDDA, Ck) is polynomial for k = 0 and
PSPACE-hard for all k ∈ N1 ∪ {∞}.

SYNTHESIS(SDDA, C) is PSPACE-complete for all com-
pact PH classes C that permit 1-dimensional features and
singly-exponential feature weights. The hardness results al-
ready hold for non-branching tasks.

Proof. The membership argument is the same as for DDA
(Theorem 4). For the k = 0 case, using the same argument
as in the proof of Theorem 5, there is no difference between
verification and synthesis, and hence the result follows from
Theorem 6.

For PSPACE-hardness, we use the same reduction as in
Theorem 6, but in this case generating only the planning task
and not the potential function. If the given DTM does not
halt on its input, the planning task is unsolvable and hence
does not have a DDA heuristic. If it halts, it does have a
DDA heuristic, in particular the 1-dimensional DDA heuris-
tic constructed in the proof of Theorem 6, which is permitted
in the PH classes considered for the hardness results of this
theorem. The completeness result follows from the member-
ship and hardness results.

Theorems 6 and 7 show that verifying or synthesizing
SDDA potential heuristics is still as hard as planning itself.
Even worse, it is already hard in the very restricted setting of
1-dimensional heuristics and planning tasks that involve no
actual choice. These results are in contrast to the tractability
results in the 1- and 2-dimensional case for admissible and
consistent potential heuristics by Pommerening et al. (2015;
2017).

Fortunately, this is not the final word on synthesizing po-
tential heuristics for satisficing planning. In the following,
we consider further variants of the DDA property that retain
its useful aspects while having more favorable complexity.

DDA Variants Without Aliveness Tests
Taking a closer look at the definition of the descending
(Eq. 1) and dead-end-avoiding (Eq. 2) properties and the
proofs in the preceding section, it becomes apparent that
deciding whether a state is alive is the main culprit for the
PSPACE-completeness of SDDA verification and synthesis.
In this section, we consider three further variants of the DDA
property that do not depend on aliveness. All variants retain

the key characteristic of DDA and SDDA: for any solvable
task, greedy search algorithms using a heuristic satisfying
any of the variant properties are led towards a goal state
without encountering local minima and hence without back-
tracking.

Our first and simplest variant removes the alive/dead dis-
tinction in the DDA definition altogether, treating every state
as if it were alive. If we replace SA by the set of all states S
in Eq. 1–2, then Eq. 2 becomes tautological, leaving only
a simplified variant of Eq. 1. We call a heuristic with this
property unrestricted DDA (UDDA) because the descending
property is no longer restricted to alive states.
Definition 6. A heuristic h for a planning task Π is UDDA
if it satisfies the unrestricted descending property:

∀s ∈ (S \ SG) ∃t ∈ succ(s) : h(t) < h(s) (3)

UDDA is a simpler property than DDA because it does not
require checking aliveness, but less powerful because tasks
with any unsolvable states cannot have a UDDA heuristic.
As a consequence, unlike SDDA, we do not need to require
the task to be solvable: unrestricted descending already im-
plies solvability.

Not being applicable to any tasks with unsolvable states is
a severe limitation. We therefore consider two further vari-
ants of DDA, which do not get rid of the aliveness tests in
DDA/SDDA altogether. Instead, starting from SDDA, they
replace the “omniscient” tests whether a state is dead or un-
solvable with a decision by the heuristic that a state should
be pruned, i.e., that it has an infinite heuristic estimate.

In the infinity-based pruning DDA (∞DDA) property, the
set of alive states SA in the definition of DDA is replaced by
the set of states Sfin with finite heuristic value, and the re-
quirement that the task is solvable in the definition of SDDA
is replaced by the test I ∈ Sfin. Note that with this change, as
in UDDA, Eq. 2 becomes tautological and can be dropped.
This leads to the following definition.
Definition 7. Let h be a heuristic for a planning task Π with
finite-heuristic states Sfin under h, initial state I and goal
states SG. We say that h is ∞DDA for Π if it satisfies the
following two conditions:

∀s ∈ (Sfin \ SG) ∃t ∈ succ(s) : h(t) < h(s) (4)

I ∈ Sfin (5)
The final and most general variant follows the same idea

as ∞DDA of “pruning” states with infinite heuristic value,
but uses a second potential function to determine which
states receive an infinite heuristic value. This was first sug-
gested by Corrêa and Pommerening (2019) for the problem
of representing the perfect heuristic h∗ as a potential func-
tion. They define heuristics h based on two potential func-
tions hpot

1 and hpot
2 as follows:

h(s) =

{
∞ if hpot

2 (s) > 0

hpot
1 (s) otherwise.

We call heuristics of this form nested potential heuris-
tics. Essentially, the test [hpot

2 (s) > 0] acts as a predicate
that determines which states should be pruned. Decoupling

the predicate from the numerical heuristic value in this way
increases the set of functions that can be compactly repre-
sented.4 Our third problem variant uses the same definition
as∞DDA, but considers nested potential heuristics. We call
it predicate-based pruning DDA (PDDA).

We now study the complexity of verification and synthe-
sis for these DDA variants. It turns out that all three variants
have the same complexity, and therefore we collectively re-
fer to all of them as VDDA for variant DDA in the following.

The outline of our chain of results is as follows: we
first show coNP-membership of verification for VDDA and,
based on this, Σp

2-membership of synthesis for VDDA. Then
we show Σp

2-hardness (and hence completeness) of synthe-
sis for VDDA using a suitable polynomial reduction, which
we then reuse in a simplified form to show coNP-hardness
(and hence completeness) of verification for VDDA.

Theorem 8. VERIFICATION(VDDA, C) ∈ coNP for all PH
classes C.

Proof. We are given a task Π and a potential heuristic h. We
show that the complement of VERIFICATION(VDDA, C) is
in NP with a guess-and-check algorithm: guess a state s of
Π and verify that it violates one of the conditions required
for h to be VDDA.

For UDDA, this entails guessing a state and verifying that
it is not a goal state and does not have a successor of lower
heuristic value. This can clearly be done in nondeterministic
polynomial time.

For ∞DDA or PDDA, either show that the initial state
has an infinite heuristic value or guess a state and show that
it is not a goal state, has a finite heuristic value, and does not
have a successor with lower heuristic value. Again, this is
clearly possible in nondeterministic polynomial time.

Theorem 9. SYNTHESIS(VDDA, C) ∈ Σp
2 for all compact

PH classes C.

Proof. Because Σp
2 = NPNP, it suffices to demonstrate that

SYNTHESIS(VDDA, C) can be solved in nondeterministic
polynomial time if we have access to an NP oracle.

The following algorithm achieves this: first, guess the
parameters of the potential heuristic to be synthesized.
(For PDDA, this involves guessing two potential functions.)
These guesses can be performed in polynomial time because
we are synthesizing a compact heuristic. Then, use an oracle
for the complement of VERIFICATION(VDDA, C) (which is
in NP from the preceding theorem) to test if the guessed
heuristic violates VDDA. If it does not, accept.

Theorem 10. SYNTHESIS(VDDA, Ck) is polynomial for
k = 0 and Σp

2-hard for all k ∈ N1 ∪ {∞}.
4For example, for a task with n binary state variables, consider

the heuristic fn with fn(s) = 0 if s[v] = 1 for the majority of state
variables and fn(s) = ∞ otherwise. The number of features of a
regular potential heuristic representing fn must grow exponentially
in n, while nested potential heuristics only require a linear number
of features. More generally, the [hpot

2 (s) > 0] predicate can be used
to compactly represent forms of resource reasoning, where states
are pruned if the demand for a resource exceeds the supply.

SYNTHESIS(VDDA, C) is Σp
2-complete for all compact

PH classes C that permit 1-dimensional features and singly-
exponential feature weights.

Proof. The k = 0 case is trivial as in SDDA and involves
testing if the initial state is a goal state and (for∞DDA and
PDDA) testing that the initial heuristic value is finite.

Membership in Σp
2 for compact PH classes was shown

in the preceding theorem. It remains to show Σp
2-hardness

for 1-dimensional features and singly-exponential feature
weights, which implies the other hardness results.

For hardness, we reduce from a variant of QBF that
is complete for Σp

2, specifically QBF with an ∃ . . . ∀ . . .
quantifier prefix and an inner formula in 3DNF (Arora and
Barak 2009, Example 5.6). We are given a QBF formula
ψ = ∃X1 . . . ∃Xn∀Y1 . . . ∀Ymϕ(X1, . . . , Xn, Y1, . . . , Ym)
where ϕ is in 3DNF:

ϕ =

k∨
i=1

(`i1 ∧ `i2 ∧ `i3)

where the `ij are literals over the Xi and Yi variables.
Below, we construct a planning task Π in polynomial time

such that ψ is true iff there exists a VDDA potential heuris-
tic of dimension 1 for Π with at most singly-exponential
weights. Moreover, we create Π in such a way that it is solv-
able iff ψ is true.

If the planning task is unsolvable, no VDDA heuristic can
exist for any of the variants. If the planning task is solvable,
we construct a potential heuristic that is finite for all states.
For finite heuristics, there is no difference between VDDA
variants, so the heuristic is simultaneously UDDA,∞DDA
and PDDA. (For the latter, use a trivial hpot

2 function that
prunes nothing, such as hpot

2 (s) = 0 for all states s.)
Π has the following state variables:

• X1, . . . , Xn are state variables with domain {u,0,1},
initially set to u (“unassigned”), with no goal value.

• Y1, . . . , Ym are state variables with domain {0,1}, ini-
tially set to 1, with goal 0.

• Confirmed is a state variable with domain {0,1}, initially
set to 0, with goal 1.

The state variables Xi and Yi directly correspond to the
logic variables of the same name in ψ. Hence, states in Π
encode assignments to these variables in ψ and vice versa.
The role of the Confirmed variable will become clear after
introducing the actions of Π, which are:

• the action reset, which has no preconditions and sets all
state variables to their initial state value

• for all i = 1, . . . , n and v ∈ {0,1} the action assign(i, v)
with precondition Xi 7→ u and effect Xi 7→ v

• m decrement actions that implement a binary counter
formed by the Yi variables, interpreted as the binary num-
ber Ym . . . Y1 (cf. the proof of Theorem 6). All decrement
actions have Confirmed 7→ 1 as an additional precondi-
tion and Confirmed 7→ 0 as an additional effect.

• for each conjunction `i1 ∧ `i2 ∧ `i3 in ϕ, the action
confirm(i) with preconditions corresponding to the lit-
erals `ij , additional precondition Confirmed 7→ 0 and
effect Confirmed 7→ 1.

We can clearly construct Π in polynomial time.
The role of reset is to ensure that if the planning task is

solvable, all states are alive because the reset action allows
transitioning from any state to the initial state. So either all
states or no states are alive, depending on whether the task is
solvable, as desired. The role of the assign(i, v) actions is to
allow choosing suitable truth values for the Xi variables in
Π, in the same way that we need to identify suitable values
for the (existentially quantified) Xi variables in ψ in order
to show that ψ is true.

The decrement actions add additional meaning to the Yi
variables, which now also encode a binary counter, as ex-
plained in the proof of Theorem 6. The counter is decre-
mented by 1 by each application of decrement. Additionally,
decrement actions can only be used after verifying that the
current assignment to the Yi variables satisfies ϕ, which is
done using the confirm actions.

We now show that the task is solvable iff ψ is true.
Let ψ be true. We show that there exists a plan for Π.

Since ψ is true, there exists a suitable assignment α for the
Xi variables such that for every assignment β to the Yi vari-
ables, α∪β |= ϕ. The plan for Π begins with assign actions
corresponding to the assignment α. After applying these ac-
tions, all Xi state variables have the value 0 or 1. After-
wards, the plan iteratively considers all assignments to the Yi
variables by alternating between confirm actions, which con-
firm that the current assignment satisfies some conjunction
of ϕ, and decrement actions, which decrement the counter
and reset Confirmed to 0. Because α ∪ β |= ϕ for all β, a
suitable confirm action can be found for every β. At the end
of this, all variables have reached their goal value.

For the converse direction, assume that the planning task
is solvable and show that the QBF formula is true. We can
ignore the reset action: because it leads to the initial state,
it never occurs in a non-redundant plan. So let us consider a
plan without reset.

Note that without the reset action, every Xi variable can
be assigned at most once in a plan because assign actions
have Xi 7→ u as a precondition and only reset can set Xi

to u. Let α be an assignment to the Xi logic variables that
matches the assignments made by the plan. If the plan leaves
some Xi unassigned, we can set α(Xi) arbitrarily. Note that
it does not matter at which point in the plan the Xi variables
are assigned; the important point is that each variable can
only receive one of the values 0 and 1 in the plan.

The Yi variables encode a binary counter that starts at the
maximum value 1 . . . 1 (from the initial state Yi = 1 for all
i) and must end at the minimum value 0 . . . 0 (from the goal
Yi = 0 for all i). The only way to reach the goal is to keep
decrementing the binary counter, and this will traverse all
possible assignments β to the Yi logic variables.

We can only decrement the counter after confirming that
ϕ is true for the current assignment because each confirm ac-
tion checks that at least one of the conjunctions is satisfied.

Together, this means that the plan confirms all assignments
to the Yi variables. Therefore ψ is true: there exists a fixed
assignment α to the Xi variables such that for all assign-
ments β to the Yi variables, α ∪ β |= ϕ.

It remains to show that if the task is solvable, there exists
a 1-dimensional VDDA potential heuristic hpot with singly-
exponential weights that is finite for every state. Because the
task is solvable, ψ is true. Let α be an assignment to the Xi

variables that witnesses the truth of ψ. We use the following
weights for hpot:

• {Xi 7→ u} has a weight of 1
• {Xi 7→ α(Xi)} has a weight of 0
• the complementary atom {Xi 7→ 1 − α(Xi)} has a

weight of N + 1, with N = n+ 2m+1 − 1
• {Confirmed 7→ 0} has a weight of 1
• {Confirmed 7→ 1} has a weight of 0
• {Yi 7→ 1} has a weight of 2i. We emphasize that the least

significant digit in the number Ym . . . Y1 has index 1, not
0, so the least significant digit has a weight of 2, the next
one a weight of 4, and so on.

Note that N = hpot(I): the n atoms Xi 7→ u (all of weight
1) contribute n, the Yi variables contribute

∑m
i=1 2i =

2m+1 − 2, and Confirmed contributes 1.
We show that the resulting heuristic is indeed VDDA, i.e.,

every non-goal state has a successor of lower heuristic value.
Let us call a state bad if it includes an assignment to some
Xi that contradicts α, and let us call it good otherwise.

Bad states contain at least one bad assignment, contribut-
ing N + 1 to the heuristic value. Therefore, reset is an
improving action, leading to the initial state with heuristic
value N .

In a good state, if not all Xi variables are assigned yet,
assigning Xi to α(Xi) reduces the heuristic value (by 1).
Otherwise, if Confirmed is 0, a confirm action must be
applicable, reducing the heuristic value (by 1). Otherwise,
Confirmed is 1. If the Yi binary counter is already at its min-
imum value, we are in a goal state. Otherwise, we can use
a decrement action to decrement the counter by 1. This re-
duces the heuristic value by 1: the effect of the decrement
action on the Yi variables reduces the heuristic value by 2,
while the effect on Confirmed increases it by 1.

Theorem 11. VERIFICATION(VDDA, Ck) is polynomial
for k = 0 and coNP-complete for all k ∈ N1 ∪ {∞}.

Proof. The case k = 0 is again trivial.
Membership in coNP was shown in Theorem 8.
For hardness, we can use essentially the same construc-

tion as in the previous proof, but without existential vari-
ables in the QBF. So we are given a QBF of the form
ψ = ∀Y1 . . . ∀Ymϕ(Y1, . . . , Ym) with ϕ in 3DNF. This is
the coNP-hard 3DNF tautology problem, the complement
of the 3CNF satisfiability problem.

We construct the same planning task Π as in the previous
reduction for the special case n = 0 (no existential vari-
ables). We also construct the potential heuristic hpot in the
same way as the heuristic described in the previous proof.

Because there are no existential variables, hpot does not de-
pend on finding a “correct” assignment α to these variables
and can hence be constructed directly in polynomial time
with the weights given in the previous proof.

With the same arguments as in the previous proof, hpot is
a VDDA potential heuristic for Π iff the given QBF is true,
and the reduction is polynomial-time.

In summary, the verification and synthesis problems for
the three DDA variants that do not involve aliveness tests
are complete for the first and second level of the polynomial
hierarchy, in contrast to the PSPACE-completeness for the
original DDA and SDDA properties. This suggests that these
variants are more suitable for practical synthesis algorithms
than the original DDA property or SDDA and that they could
be tackled by compilations to other problems that fall into
these levels of the polynomial hierarchy, such as (restricted)
QBF solving.

While this is certainly positive news, there are also neg-
atives: our results show that the islands of tractability at di-
mensions 1 and 2 that exist for synthesizing admissible and
consistent potential heuristics do not exist for any of the
DDA variants. Therefore, practical synthesis algorithms for
this setting remain a formidable challenge.

Beyond Potential Heuristics
Before we conclude, we briefly discuss which of our results
are specific to potential heuristics and which ones apply to
heuristic synthesis more generally. Broadly construed, every
algorithm that selects a specific heuristic from a large fam-
ily of candidate heuristics is a form of heuristic synthesis.
This includes selecting pattern databases or pattern database
collections (e.g., Edelkamp 2006; Haslum et al. 2007),
merge-and-shrink strategies (Sievers and Helmert 2021), flu-
ent merging strategies (van den Briel, Kambhampati, and
Vossen 2007), learning interesting conjunctions for critical-
path heuristics (e.g., Keyder, Hoffmann, and Haslum 2012;
Steinmetz and Hoffmann 2017), approaches that learn neu-
ral networks that represent heuristics (e.g., Ferber, Helmert,
and Hoffmann 2020) and many other examples.

All the membership results we showed (for PSPACE,
coNP or Σp

2) are universal in the sense that they only re-
quire that the synthesized heuristics can be represented in
polynomial space and evaluated in polynomial time. These
are very loose requirements that are satisfied by all the above
examples. At the extreme end of the spectrum, we can define
a compact heuristic family as “all computer programs up to
a polynomial length bound”. If we add a polynomial timeout
to the heuristic evaluation and return an arbitrary value (such
as∞) for states where this timeout is exceeded, this family
has all properties required by our membership proofs, and
hence VDDA synthesis for this family of heuristics is in Σp

2.
At this point, heuristic synthesis is essentially the synthe-
sis of arbitrary programs, with clear connections to synthe-
sis problems that arise for other flavors of planning, such as
generalized planning (e.g., Srivastava, Immerman, and Zil-
berstein 2011; Bonet and Geffner 2018; Francès et al. 2019;
Ståhlberg, Francès, and Seipp 2021). Therefore, one of the
consequences of our study is that the new variants of the

DDA property, giving rise to a Σp
2 synthesis problem, have

an intrinsic advantage over the original DDA property, for
which we only get a PSPACE membership result.

In contrast, the hardness results are specific to poten-
tial heuristics. In some sense, these hardness results can be
viewed as positive results regarding the expressiveness of
potential heuristics because they show that potential heuris-
tics are sufficiently expressive for capturing the essence of
problems at the second level of the polynomial hierarchy,
such as ∃∀-QBF. In particular, the potential heuristics used
in these reductions, together with a verification that they
have the variant DDA property, are polynomial-sized wit-
nesses for the solvability of these planning tasks even though
the shortest plans for these tasks are exponentially long. In
this way, our results also contribute to old questions regard-
ing the synthesis of compact plans for tasks requiring expo-
nentially long solutions, as studied for example in the work
of Bäckström and Jonsson (2012).

Conclusion

We investigated the computational complexity of synthesiz-
ing potential heuristics for satisficing planning. We showed
that both verifying and synthesizing descending and dead-
end avoiding (DDA) heuristics is PSPACE-complete even
in the restricted case of potential heuristics of dimension 1.

However, we discussed variants of the DDA property that
reduce the complexity of verification and synthesis to the
first and second levels of the polynomial hierarchy. Again,
the membership results are accompanied by matching hard-
ness results that already hold for dimension 1.

The membership results are not limited to potential
heuristics. They hold for all heuristics that can be repre-
sented in polynomial space and evaluated in polynomial
time. In particular, this suggests that the new DDA variant
properties are more amenable for heuristic synthesis than the
original DDA property.

In future work, we would like to investigate practical al-
gorithms for potential heuristic synthesis. Based on the re-
sults in this paper, one idea worth exploring is compilation
to problems in the second level of the polynomial hierarchy
for which well-developed solvers exist, such as (restricted
forms of) QBF. Another potential avenue is to use induc-
tive techniques to “guess” a candidate heuristic as in recent
approaches for generalized planning (Francès et al. 2019;
Ståhlberg, Francès, and Seipp 2021) and using SAT solvers
for the resulting coNP-complete verification problem.

Acknowledgments

We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639). Moreover, this research was partially sup-
ported by TAILOR, a project funded by the EU Horizon
2020 research and innovation programme under grant agree-
ment no. 952215.

References
Arora, S.; and Barak, B. 2009. Computational Complexity: A
Modern Approach. Cambridge University Press.
Bäckström, C.; and Jonsson, P. 2012. Algorithms and Limits
for Compact Plan Representations. Journal of Artificial Intelli-
gence Research, 44: 141–177.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–655.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic Search.
Artificial Intelligence, 129(1): 5–33.
Bonet, B.; and Geffner, H. 2018. Features, Projections, and
Representation Change for Generalized Planning. In Lang, J.,
ed., Proceedings of the 27th International Joint Conference on
Artificial Intelligence (IJCAI 2018), 4667–4673. IJCAI.
Bylander, T. 1994. The Computational Complexity of Proposi-
tional STRIPS Planning. Artificial Intelligence, 69(1–2): 165–
204.
Corrêa, A. B.; and Pommerening, F. 2019. An Empirical Study
of Perfect Potential Heuristics. In Lipovetzky, N.; Onaindia,
E.; and Smith, D. E., eds., Proceedings of the Twenty-Ninth In-
ternational Conference on Automated Planning and Scheduling
(ICAPS 2019), 114–118. AAAI Press.
Dechter, R.; and Pearl, J. 1985. Generalized Best-First Search
Strategies and the Optimality of A∗. Journal of the ACM, 32(3):
505–536.
Edelkamp, S. 2006. Automated Creation of Pattern Database
Search Heuristics. In Edelkamp, S.; and Lomuscio, A., eds.,
Proceedings of the 4th Workshop on Model Checking and Arti-
ficial Intelligence (MoChArt 2006), 35–50.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Net-
work Heuristics for Classical Planning: A Study of Hyperpa-
rameter Space. In De Giacomo, G., ed., Proceedings of the 24th
European Conference on Artificial Intelligence (ECAI 2020),
2346–2353. IOS Press.
Francès, G.; Corrêa, A. B.; Geissmann, C.; and Pommerening,
F. 2019. Generalized Potential Heuristics for Classical Plan-
ning. In Kraus, S., ed., Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI 2019), 5554–
5561. IJCAI.
Garey, M. R.; and Johnson, D. S. 1979. Computers and In-
tractability — A Guide to the Theory of NP-Completeness.
Freeman.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig, S.
2007. Domain-Independent Construction of Pattern Database
Heuristics for Cost-Optimal Planning. In Proceedings of
the Twenty-Second AAAI Conference on Artificial Intelligence
(AAAI 2007), 1007–1012. AAAI Press.
Hoffmann, J. 2005. Where ‘Ignoring Delete Lists’ Works: Lo-
cal Search Topology in Planning Benchmarks. Journal of Arti-
ficial Intelligence Research, 24: 685–758.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-Relaxed
Plan Heuristics. In McCluskey, L.; Williams, B.; Silva, J. R.;
and Bonet, B., eds., Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Scheduling
(ICAPS 2012), 128–136. AAAI Press.
Pommerening, F.; Helmert, M.; and Bonet, B. 2017. Higher-
Dimensional Potential Heuristics for Optimal Classical Plan-
ning. In Singh, S.; and Markovitch, S., eds., Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence (AAAI
2017), 3636–3643. AAAI Press.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015.
From Non-Negative to General Operator Cost Partitioning. In
Bonet, B.; and Koenig, S., eds., Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (AAAI 2015),
3335–3341. AAAI Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner: Guid-
ing Cost-Based Anytime Planning with Landmarks. Journal of
Artificial Intelligence Research, 39: 127–177.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New Op-
timization Functions for Potential Heuristics. In Brafman,
R.; Domshlak, C.; Haslum, P.; and Zilberstein, S., eds., Pro-
ceedings of the Twenty-Fifth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2015), 193–201.
AAAI Press.
Seipp, J.; Pommerening, F.; Röger, G.; and Helmert, M. 2016a.
Correlation Complexity of Classical Planning Domains. In
Kambhampati, S., ed., Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016), 3242–
3250. AAAI Press.
Seipp, J.; Pommerening, F.; Sievers, S.; Wehrle, M.; Fawcett,
C.; and Alkhazraji, Y. 2016b. Fast Downward Aidos. In Muise,
C.; and Lipovetzky, N., eds., Unsolvability International Plan-
ning Competition: Planner Abstracts, 28–38.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A Com-
positional Theory of Transformations of Factored Transition
Systems. Journal of Artificial Intelligence Research, 71: 781–
883.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A new
representation and associated algorithms for generalized plan-
ning. Artificial Intelligence, 175(2): 393–401.
Ståhlberg, S.; Francès, G.; and Seipp, J. 2021. Learning Gener-
alized Unsolvability Heuristics for Classical Planning. In Zhou,
Z.-H., ed., Proceedings of the 30th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2021), 4175–4181. IJCAI.
Steinmetz, M.; and Hoffmann, J. 2017. State Space Search No-
good Learning: Online Refinement of Critical-Path Dead-End
Detectors in Planning. Artificial Intelligence, 245: 1–37.
S̆tolba, M.; Fis̆er, D.; and Komenda, A. 2016. Potential
Heuristics for Multi-Agent Planning. In Coles, A.; Coles, A.;
Edelkamp, S.; Magazzeni, D.; and Sanner, S., eds., Proceedings
of the Twenty-Sixth International Conference on Automated
Planning and Scheduling (ICAPS 2016), 308–316. AAAI Press.
van den Briel, M.; Kambhampati, S.; and Vossen, T. 2007. Flu-
ent Merging: A General Technique to Improve Reachability
Heuristics and Factored Planning. In ICAPS 2007 Workshop on
Heuristics for Domain-Independent Planning: Progress, Ideas,
Limitations, Challenges.
Wilt, C.; and Ruml, W. 2014. Speedy versus Greedy Search.
In Edelkamp, S.; and Barták, R., eds., Proceedings of the Sev-
enth Annual Symposium on Combinatorial Search (SoCS 2014),
184–192. AAAI Press.
Wilt, C.; and Ruml, W. 2016. Effective Heuristics for Subop-
timal Best-First Search. Journal of Artificial Intelligence Re-
search, 57: 273–306.

