Nonaqueous chemistry of colloidal group 4 oxo clusters and metal oxide nanocrystals

Dietger Van den Eynden, Rohan Pokratath, and Jonathan De Roo∗

Department of Chemistry, University of Basel, Mattenstrasse 24, BPR 1096, Basel 4058, Switzerland

E-mail: Jonathan.DeRoo@unibas.ch

Abstract

We review the nonaqueous precursor chemistry of the group 4 metals with the purpose of gaining insight in the formation of their oxo clusters and oxide nanocrystals. We first describe the properties and structures of titanium, zirconium, and hafnium oxides. Second, we introduce the different precursors that are used in the synthesis of oxo clusters and oxide nanocrystals. We thus review the structures of group 4 metal halides and alkoxides, and their reactivity towards alcohols, carboxylic acids, etc. Third, we discuss fully condensed, atomically precise metal oxo clusters, which could serve as nanocrystal models. By comparing the reaction conditions and reagents, we provide insight in the relation between cluster structure and the nature of the carboxylate capping ligands. We also briefly discuss the use of oxo clusters. Finally, we review the nonaqueous synthesis of group 4 oxide nanocrystals, including both surfactant-free and surfactant-assisted synthesis. We focus on their precursor chemistry and surface chemistry. By putting these results together, we connect the dots and obtain more insight in the fascinating chemistry of the group 4, but at the same time, we also identify gaps in our knowledge and thus areas for future research.
Contents

1 Introduction .. 4

2 Structural properties of the metals and their oxides 5

3 Precursors and their reactivity 10
 3.1 Metal halides ... 10
 3.1.1 Titanium halides 11
 3.1.2 Zirconium and hafnium halides 13
 3.2 Metal alkoxides ... 15
 3.2.1 General properties 15
 3.2.2 Ligand exchange with alcohol 17
 3.2.3 Reaction with carboxylic acid (anhydride) 18
 3.2.4 Reaction with hydrogen halide 21
 3.2.5 Other exchanges and thermal decomposition 22
 3.3 Metal chloroalkoxides 23
 3.3.1 Mixing metal halides and metal alkoxides 23
 3.3.2 Reaction of titanium chloride with ethers 24
 3.3.3 Thermal decomposition of mixed chloroalkoxides 24

4 Metal oxo clusters ... 27
 4.1 Titanium oxo clusters 28
 4.2 Zirconium oxo clusters 30
 4.2.1 Synthesis and structure 30
 4.2.2 Mechanistic insights 35
 4.2.3 Ligand exchange, NMR characterization and purification 36
 4.3 Hafnium oxo clusters 41
 4.4 Mixed metal oxo clusters 41
4.5 Applications of oxo clusters ... 44
 4.5.1 Metal organic frameworks (MOFs) 44
 4.5.2 Polymer and all-inorganic composites 46
 4.5.3 Oxo cluster catalysts .. 47

5 Colloidal metal oxide nanocrystals 48
 5.1 Surfactant-free synthesis ... 48
 5.1.1 Titania nanocrystals ... 50
 5.1.2 Zirconia nanocrystals ... 53
 5.1.3 Hafnia nanocrystals ... 55
 5.1.4 Lanthanide doped zirconia and hafnia nanocrystals 56
 5.2 Surfactant-assisted synthesis 58
 5.2.1 Reaction of metal chlorides with metal alkoxides 59
 5.2.2 Nucleophilic addition/elimination 69
 5.3 Applications of group 4 metal oxide nanocrystals 74
 5.3.1 Applications of titania nanocrystals 74
 5.3.2 Applications of zirconia nanocrystals 74
 5.3.3 Applications of hafnia nanocrystals 75

6 Conclusion and outlook .. 76

Author biographies .. 77

Acknowledgement .. 78

References ... 78
1 Introduction

The group 4 oxides have a large band gap, a high dielectric constant, and a high refractive index. TiO$_2$ nanocrystals (NCs) are used in solar cells1 and batteries,2 and are photocatalytically active.3 Tantalum or niobium doped titania (TiO$_2$:Ta) NCs find use as electrochromic modulators for smart windows.4,5 ZrO$_2$ is a catalyst support,6,7 and is used in superconducting nanocomposites.8 Finally, HfO$_2$ NCs have recently received significant attention for use in next generation memory devices,9,10 cancer treatment,11,12 and scintillators.13 Additionally, group 4 oxides doped with lanthanides are interesting luminescent materials,$^{14-17}$ and doped hafnia recently generated excitement due to the stabilization of its ferroelectric crystal phase.18

Equally exciting are the oxo clusters of titanium, zirconium and hafnium. In contrast to oxide nanocrystals, oxo clusters are atomically precise and much smaller. To put things into perspective; the archetypical oxo clusters contain only six metal atoms while, e.g., a 5 nm spherical ZrO$_2$ nanocrystal has about 1800 zirconium atoms. Oxo clusters are widely used as secondary building units in metal organic frameworks (MOFs),$^{19-21}$ as building block in 3D printing,22 as catalysts,23,24 or as crosslinker/filler in polymer composites.25,26 Especially the zirconium MOFs excel in thermal stability and are used in the detection and removal of antibiotics and organic explosives,27 as Lewis acid catalyst,28 or as support for CO$_2$ reduction catalysis.29

So far, the field of group 4 oxo clusters and the nanocrystal field have not been bridged. However, they have many features in common; for example the precursors used to synthesize them. To further connect the fields, we can take inspiration from the late transition metal oxo clusters where for example iron oxo clusters were shown to be suitable precursors for iron oxide nanocrystals.30 The conversion of clusters to nanocrystals was also achieved in case of cadmium chalcogenide clusters.$^{31-34}$ Within the group 4 oxo clusters, there has been only a single report where researchers used zirconium oxo clusters as precursors in nanocrystal synthesis.35 However, the crystallite size was only one nanometer and characterization of
the colloidal stability and overall particle size is absent. Alternative strategies should be explored.

Here, we take a first step in bridging the oxo cluster and the nanocrystal field. We review the nonaqueous precursor chemistry that leads to oxo clusters and oxide nanocrystals of the group 4 metal: titanium, zirconium, and hafnium. By removing the complexity of the reaction mixture that is typical for water, reactions in organic solvent can be rationalized and categorized according to their fundamental oxide formation mechanism. Nonaqueous sol–gel chemistry has also the particular advantage of slower reaction rates, leading to more controlled reactions and generally a more crystalline and less aggregated product.36 While crystalline particles of the group 4 oxides have been obtained in supercritical water,37,38 and the crystalline phase can be tuned in certain hydrothermal reactions,39 aggregation of the final NCs is a significant problem in such strategies. In some particular cases, NCs can be de-aggregated using fatty acids, but the hydrothermal reaction time should be extremely short or otherwise irreversible agglomeration occurs.40 For the above reasons, we limit the current review to nonaqueous chemistry.

2 Structural properties of the metals and their oxides

The group 4 metals share many chemical properties. The $+IV$ oxidation state is predominant for all three metals, but titanium can also be reduced to Ti($+III$). This is a recurring theme in the group 4. All three are very similar but whereas zirconium and hafnium almost react identically, titanium is the odd one out, see Table 1. A striking example is the ionic radius, which is 0.74 Å for Ti$^{4+}$ but 0.83 Å and 0.84 Å for Hf$^{4+}$ and Zr$^{4+}$ respectively.41 The similar size for hafnium and zirconium is ascribed to the lanthanide contraction, and enables the formation of solid solutions; Hf$_x$Zr$_{1-x}$O$_2$42. Zirconium and hafnium are also often called the twin metals. Finally, titanium usually has a coordination number of six, while zirconium and hafnium can reach a coordination number of eight, see further.
Table 1: Properties of the group 4 elements.

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Zr</th>
<th>Hf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic number</td>
<td>22</td>
<td>40</td>
<td>72</td>
</tr>
<tr>
<td>Atomic radius (pm)</td>
<td>140</td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td>Ionic radius (pm)</td>
<td>74</td>
<td>84</td>
<td>83</td>
</tr>
<tr>
<td>Electronegativity (Pauling)</td>
<td>1.54</td>
<td>1.33</td>
<td>1.3</td>
</tr>
<tr>
<td>Electronegativity (corrected)</td>
<td>2.23</td>
<td>2.05</td>
<td>2.01</td>
</tr>
<tr>
<td>Maximum coordination number</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

The standard formation Gibbs free energy of all three oxides is highly negative and becomes more negative down the group, see Table 2. The oxides have also very high melting points, high dielectric constants and high refractive indices. While the band gap of titania is close to the blue, the band gap of zirconia and hafnia are deep in the UV. Given the increasing atomic mass, it is no surprise that the density of the oxides increases down the group.

Table 2: Properties of the group 4 metal oxides.46–50

<table>
<thead>
<tr>
<th></th>
<th>TiO\textsubscript{2}</th>
<th>ZrO\textsubscript{2}</th>
<th>HfO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm3)</td>
<td>3.83 (anatase)</td>
<td>5.56 (monoclinic)</td>
<td>9.97 (monoclinic)</td>
</tr>
<tr>
<td></td>
<td>4.17 (brookite)</td>
<td>5.8 (tetragonal)</td>
<td>10.36 (tetragonal)</td>
</tr>
<tr>
<td></td>
<td>4.24 (rutile)</td>
<td>5.99 (cubic)</td>
<td>10.69 (cubic)</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>1870</td>
<td>2715</td>
<td>2758</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>80 (rutile)</td>
<td>25 (monoclinic)</td>
<td>25 (monoclinic)</td>
</tr>
<tr>
<td>Refractive Index at 632.8 nm</td>
<td>2.8</td>
<td>2.2</td>
<td>1.91</td>
</tr>
<tr>
<td>Band Gap (eV)</td>
<td>3 (rutile)</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>3.2 (anatase)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta G_{f}^{0}) (kJ/mol)</td>
<td>-891.2</td>
<td>-1042</td>
<td>-1088</td>
</tr>
</tbody>
</table>

Titania exists in three well-known polymorphs: tetragonal rutile (P4\textsubscript{2}/mmn), tetragonal anatase (I4\textsubscript{1}/amd), and orthorhombic brookite (Pbca). In addition, multiple metastable (e.g., the bronze phase) and high-pressure phases have also been reported. In all structures, titanium is coordinated by six oxygen atoms with two axial and four equatorial bonds forming a distorted TiO\textsubscript{6} octahedron. These octahedrons build up the crystal lattice by either sharing edges or corners in a specific manner depending on the crystal structure. Figure 1 clearly shows that rutile has more corner sharing compared to anatase where edges shar-
ing is more prevalent. In rutile, the coordination of titanium is close to the D_{4h} symmetry, while in anatase, the octahedron is more distorted. However, in both cases, we distinguish a longer axial bond and a shorter equatorial bond, with the bonds in rutile being longer than in anatase, see Figure 1.46 The other polymorphs have different Ti-O bond distances, as well as different octahedron assemblies.

![Figure 1: Illustration of corner and edge sharing octahedron assembly and Ti-O bond distances in (A) rutile and (B) anatase titanium oxide.](image)

Zhang \textit{et al.} investigated the phase stability of titania during crystal growth and found that phase transformation is size dependent (due to a higher contribution from the surface energy in small particles). The most stable phases are; anatase up to 11 nm, brookite in the range 11–35 nm and rutile above 35 nm.59 These results are consistent with thermodynamic calculations.60 However, other parameters such as temperature and pH can also influence the final phase.59 For example, in highly acidic conditions, rutile is more stable than anatase, while anatase is more stable in highly basic conditions.

Zirconium and hafnium oxide possess similar properties and are thus called twin oxides. The three most important polymorphs of the twin oxides are: cubic (Fm-3m), tetragonal...
(P4_2/nmc), and monoclinic (P2_1/c). The cubic phase is thermodynamically favored at high temperatures and is structurally equivalent to the calcium fluorite structure, see Figure 2. The zirconium/hafnium atoms are eight-coordinate. At lower temperatures (2370-2600 °C, depending on the oxide), a slight distortion happens towards the tetragonal phase, but the metal atoms remain eight-coordinate. At room temperature, the monoclinic phase is most stable and can be considered a highly distorted calcium fluorite structure, see Figure 2. In this monoclinic phase, the metal is seven-coordinate. The tetragonal–to–monoclinic phase transformation is accompanied by a large volume decrease, causing undesired cracking of the material upon cooling. To avoid the phase transformations during cooling, the cubic phase is often stabilized with dopants such as yttrium. Yttrium stabilized zirconia (YSZ) is one of the prime examples of stabilized zirconia and retains the cubic crystal structure at room temperature. The oxygen vacancies created by yttrium incorporation are leveraged in solid oxide fuels cells and in other catalytic processes.61

Similar to the case of titania, also zirconia and hafnia show size-dependent phase stability.63–65 Given the significant difference in surface free energy for tetragonal and monoclinic zirconia, the tetragonal phase becomes stable at room temperature below a crystal size of 30 nm. Several colloidal syntheses for monodisperse zirconia are indeed in agreement with this predicted critical size.66–68 Surface calculations of HfO\textsubscript{2} nanocrystals reported a critical
size of 2–10 nm. A more precise value (4 nm) was determined experimentally by a size tunable method to synthesize hafnia nanocrystals.

Stabilizing tetragonal hafnia is relevant for its use as a gate dielectric since first principle studies predict that the dielectric constant for tetragonal hafnia is about four times the value of monoclinic hafnia. Even more polymorphs of hafnia are known, see Figure 3. There are non-polar (centrosymmetric) phases like the cubic phase, but there exist also polar (non-centrosymmetric) phases. These polar phases are responsible for the recently discovered ferroelectric behaviour of hafnia, and they are often stabilized as solid solutions with zirconia or by the inclusion of dopants.

Figure 3: Symmetry-reduction flowchart of low energy phases of hafnia, starting from the m3m cubic point symmetry. These phases, labeled by space group symbols, are categorized into two branches, the nonpolar branch ending at the 2/m point symmetry on the left and the polar branch leading to the 1-point symmetry on the right. Dark yellow and red spheres represent hafnium and oxygen atoms, respectively, while green spheres locate the center of symmetry of those which are centrosymmetric. Reprinted figure with permission from Tran Doan Huan et al., Pathways towards ferroelectricity in hafnia, Phys. Rev. B 90, 064111 (2014). Copyright 2021 by the American Physical Society.
3 Precursors and their reactivity

Since we aim at obtaining more insight in the formation of oxo clusters and oxide nanocrystals, the first step is to understand the chemistry of the precursors. In this section, we discuss metal halides and metal alkoxides, the two most frequently used precursors in non-aqueous syntheses. We will highlight their reactivity with compounds that are relevant for the synthesis of oxo clusters and oxide nanocrystals. However, a full account of the group 4 chemistry is outside the scope of this review.

3.1 Metal halides

Group 4 halides (MX$_4$) exist with X = F, Cl, Br and I. They are highly Lewis acidic and hydrolyse quickly, even with moisture in the air. Therefore, they should be handled under inert atmosphere at all time. Otherwise HX is released and oxo bridges are formed:

\[
\text{M} - \text{X} + \text{H}_2\text{O} \rightarrow \text{M} - \text{OH} + \text{HX} \quad (1)
\]
\[
2 \text{M} - \text{OH} \rightarrow \text{M} - \text{O} - \text{M} + \text{H}_2\text{O} \quad (2)
\]

The reactivity towards air depends on the halide. For example, ZrI$_4$ is even much more sensitive to air than the respective chloride and bromide.78 This could be due to the reduced orbital overlap between I and Zr because of the large size of iodine. In pure water, the hydrolysis and condensation of metal chlorides do not go to completion. The release of HCl decreases the pH of the solution and stops further hydrolysis. For zirconium and hafnium, the primary hydrolysis product is the tetramer [Zr$_4$(OH)$_8$(OH$_2$)$_{16}$]$^{8+}$. $^{79-81}$ Complete hydrolysis is achieved upon adding base. Below, we discuss the titanium halides separately from the zirconium and hafnium halides because their structure and reactivity are significantly different.
3.1.1 Titanium halides

While the other halides of titanium are monomeric liquids, titanium fluoride is a polymeric solid.82 By forming a polymer, the coordination number of titanium is increased from four to six, see Figure 4. TiF\textsubscript{4} and other titanium halides form monomeric Lewis acid–base pairs with a variety of Lewis bases.83–85 For reasonably small Lewis bases, the cis configuration is retrieved, which is explained by an improved orbital overlap in the \(\pi\) bonding between halide p orbitals and titanium d orbitals.86 Only for sterically hindered Lewis bases, the trans configuration is observed.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{Crystal structures of TiF\textsubscript{4} and ZrCl\textsubscript{4}.82}
\end{figure}

The reaction between TiCl\textsubscript{4} and alcohol produces a mixed chloroalkoxide, even in an excess of alcohol and under reflux.87

\[
\text{TiCl}_4 + \text{excess ROH} \longrightarrow \text{TiCl}_2(\text{OR})_2 \cdot \text{ROH} + 2 \text{HCl}
\quad (3)
\]

The reaction does not go to completion, in contrast to the same reaction with SiCl\textsubscript{4}.

\[
\text{SiCl}_4 + 4 \text{ROH} \longrightarrow \text{Si(OR)}_4 + 4 \text{HCl}
\quad (4)
\]
An extra equivalent of alcohol forms a Lewis acid–base pair with the resulting titanium chloroalkoxide. The complex is a dimer, bringing the total coordination number to six, see figure 5A.88 Internal hydrogen bonding from the alcohol to the chloride ligand further stabilizes the dimer complex. The reaction between TiCl$_4$ and a single equivalent of alcohol does not lead to exchange but produces simply the Lewis acid–base adduct, which is a dimer with bridging chloride ligands: [TiCl$_3$(HO$_{\text{iPr}}$)(μ–Cl)]$_2$89. With two equivalents of alcohol, the trichloride dimer was identified, featuring again bridging chloride ligands; [TiCl$_2$(Oi$_{\text{Pr}}$)(HO$_{\text{iPr}}$)(μ–Cl)]$_2$. The reaction of titanium chloride with salicylaldehyde also results in the substitution of two chloride ligands and the final complex has a coordination number of six due to the additional coordination of the aldehyde.90 Initially the structure was believed to have the chlorides in the \textit{trans} geometry. However, the crystal structure of the equivalent complex with 3-tert-butyl-2-hydroxy-5-methylbenzaldehyde indicates that they are in the \textit{cis} geometry, see Figure 5B.91

\begin{center}
\textbf{Figure 5:} (A) The determined structure of Zr(Oi$_{\text{Pr}}$)Cl$_2$.88 (B) The proposed structure of the substitution product of TiCl$_4$ with salicylaldehyde.91
\end{center}

The alcoholysis reaction proceeds equally well for methanol, ethanol, isopropanol and isobutanol. By using the sodium salt of the alcohol, or anhydrous ammonia, the tetrasubstituted complex can be obtained.87,89

\[
\text{TiCl}_4 + 4 \text{NaOR} \rightarrow \text{Ti(OR)}_4 + 4 \text{NaCl} \quad (5)
\]

\[
\text{TiCl}_4 + 4 \text{ROH} + 4 \text{NH}_3 \rightarrow \text{Ti(OR)}_4 + 4 \text{NH}_4\text{Cl} \quad (6)
\]

For the more acidic phenol, the substitution reaction with titanium chloride can proceed to
completion upon refluxing in excess phenol, whereas only the twice substituted product is obtained at room temperature.92 Interestingly, it was not possible to substitute more than two salicylaldehydes (Figure 5B), even upon refluxing with excess salicylaldehyde.

TiCl_4 reacts with acetic acid (HOAc) and acetic anhydride to $\text{TiCl}_2(\text{OAc})_2$.93 The same product is obtained when TiCl_4 is treated with only acetic anhydride (O(Ac)_2). Acetyl chloride is the by-product.

\[\text{TiCl}_4 + 2 \text{O(Ac)}_2 \rightarrow \text{TiCl}_2(\text{OAc})_2 + 2 \text{Ac-Cl} \] \hspace{1cm} (7)

Attempts to further substitute the chloride by refluxing, lead to oxo bridges between titanium centers, showcasing the instability of the TiCl(OAc)_3 complex:

\[\text{TiCl(OAc)}_3 + \text{TiCl}_2(\text{OAc})_2 \rightarrow (\text{OAc})_2\text{ClTi-O-TiCl(OAc)}_2 + \text{Ac-Cl} \] \hspace{1cm} (8)

In anhydrous trifluoroacetic acid (TFA-H) at 70 °C, the compound TiO(TFA)_2 is obtained.94

3.1.2 Zirconium and hafnium halides

While titanium chloride is a monomeric liquid, zirconium and hafnium chloride are polymeric solids with a coordination number (CN) of six, see Figure 4.95 Given also the comparison between the different titanium halides, it seems that the tendency for expanding the coordination number is related to the relative size of metal and halide. For smaller halides and for larger metals, the polymeric structure is favored. Similar to titanium, the monomeric form of zirconium and hafnium chloride can be isolated by coordination with Lewis bases (ethers, typically THF, and esters), thus increasing the coordination number (CN = 6).84,96 The THF complexes have been successfully used in nanocrystal synthesis as precursors with improved solubility.97

Zirconium chloride is less reactive with respect to alcohols, compared to titanium chloride,
and only a single substitution takes place.98-100

\[\text{ZrCl}_4 + \text{excess ROH} \rightarrow \text{ZrCl}_3(\text{OR}) + \text{HCl} \] (9)

Similar to the case of titanium, anhydrous ammonia can drive the reaction towards the tetraalkoxide. However the sodium alkoxide route is not applicable to zirconium because of zirconium’s tendency to form stable heterobimetallic alkoxides with alkali metals.89 When reacting \(\text{ZrCl}_4 \) with 3-tert-butyl-2-hydroxy-5-methylbenzaldehyde, two chloride ligands are exchanged, bringing the total coordination number to six, similar to the case of titanium (Figure 5B).91 When \(\text{ZrCl}_4 \) is refluxed for three hours with phenol, the triphenolate complex is isolated while the fully substituted phenolate complex is only obtained after 14 hours of reflux.92 This shows again a lower reactivity of zirconium compared to titanium. \(\text{ZrBr}_4 \) reacts immediately to the tetraphenolate species and appears thus more reactive than the chloride.101

\(\text{ZrCl}_4 \) slowly reacts with benzoic acid or fatty acids (stearic, palmitic and myristic acid) to the tetracarboxylate under reflux conditions in benzene.102,103

\[\text{ZrCl}_4 + 4 \text{RCOOH} \rightarrow \text{Zr(OOCR)}_4 + 4 \text{HCl} \] (10)

Upon reaction of \(\text{ZrCl}_4 \) with salicylic acid (Ph(OH)(COOH), the trisalicylate was obtained with one deprotonated phenoxy group; \(\text{Zr}[(\text{OOCPhOH})_2(\text{OOCPhO})] \).104 Since the phenols also coordinate the zirconium, the coordination number is again six. In anhydrous trifluoroacetic acid (TFA-H) at 40 °C, the compound \(\text{Zr(TFA)}_4 \) is obtained and at 70 °C, \(\text{Hf(TFA)}_4 \).94

\[\text{ZrCl}_4 + 4 \text{TFA-H} \rightarrow \text{Zr(TFA)}_4 + 4 \text{HCl} \] (11)

\[\text{HfCl}_4 + 4 \text{TFA-H} \rightarrow \text{Hf(TFA)}_4 + 4 \text{HCl} \] (12)

\(\text{ZrCl}_4 \) also reacts with betadiketonates such as acetylacetone, benzoylacetonel and diben-
zoylmethane in benzene.105 However, only three chlorides are substituted.

\[
\text{ZrCl}_4 + 3 \text{Hacac} \rightarrow \text{Zr(acac)}_3\text{Cl} + 3 \text{HCl} \quad (13)
\]

Even heating in the presence of a large excess of betadiketonate does not result in the last substitution. The resulting complex behaves like a salt with a cationic complex of zirconium with 3 betadiketonates (CN = 6) and a chloride anion. Indeed, the anion can be replaced for other anions such as AuCl\textsubscript{4}.105 In the presence of water and sodium acetylacetonate, the fourth substitution is forced and the zirconium tetraacetylacetonate is obtained as a decahydrate. The coordination number in the latter compound is eight, just like in bulk cubic zirconium dioxide. Finally, cyclopentadienyl has also been succesfully used to exchange two chloride atoms from ZrCl\textsubscript{4}.106

3.2 Metal alkoxides

3.2.1 General properties

Another group of often used group 4 metal precursors in nanocrystal synthesis are metal alkoxides (M(OR)\textsubscript{4}). These compounds are less Lewis acidic than the metal chlorides but are still coordinatively unsaturated. They are very sensitive to atmospheric moisture and prone to hydrolysis and condensation. The latter can happen either by reaction of two hydroxide units, or of one hydroxide and one alkoxide:

\[
\text{M–OR} + \text{H}_2\text{O} \rightarrow \text{M–OH} + \text{HOR} \quad (14)
\]

\[
2 \text{M–OH} \rightarrow \text{M–O–M} + \text{H}_2\text{O} \quad (15)
\]

\[
\text{M–OH} + \text{M–OR} \rightarrow \text{M–O–M} + \text{HOR} \quad (16)
\]

However, even air-free storage of Zr(O'O\textsubscript{Bu})\textsubscript{4} and Zr(O'Pr)\textsubscript{4} over a long time resulted in respectively Zr\textsubscript{3}O(O'O\textsubscript{Bu})\textsubscript{10} and Zr\textsubscript{4}O(O'Pr)\textsubscript{14}(HOPr)\textsubscript{2}.107,108 Coordination oligomerization is a
general structural feature of metal alkoxides, if allowed by steric factors. Metal alkoxides with bulky ligands such as tert butoxide, will form monomers (4-fold coordination). In general, oligomerization is favored in electron deficient, large metals. Titanium methoxide and ethoxide are tetraromers in solid state whereas zirconium and hafnium isopropoxide are dimers and have an additional, neutral isopropanol ligand (CN = 6). Oligomerization is indeed directly competing with additional Lewis bases and the most stable compound is determined by the nature of alkoxide and base. Very often, the dimer $M_2(OR)_8L_2$ is formed with octahedral coordination, two bridging alkoxo ligands and the additional Lewis base on opposing axial positions. Intramolecular hydrogen bonding further stabilizes the complex, evidenced by the distortion of Zr-OR bonds, see Figure 6.109,110 The geometry is typical for zirconium and hafnium isopropoxide, complexed with isopropanol or other Lewis bases. Also, titanium isopropoxide forms such a complex with butylamine, benzylamine and cyclohexylamine. Complexes with secondary amines are more difficult to obtain,110 and coordination polymers are retrieved with diamines.111 In the liquid state, the configuration can be different, for example, titanium ethoxide becomes a trimer (5-fold coordination). Titanium alkoxides with bulkier ligands, such as isopropoxide, are monomeric species.112 The zirconium alkoxides remain dimers, also in solution.113

Figure 6: The dimeric structure of many group 4 metal alkoxides, coordinated with Lewis base (primary alcohols or amines). Here we show the hydrogen bonding for the case where the Lewis base is alcohol.

Metal alkoxides react with a variety of protic reagents such as alcohols, alkanolamines, carboxylic acids, diketones, oximes, Schiff bases, hydroxylamines, etc. Substitution of one or more alkoxide ligands typically leads to a lower reactivity towards water and the resulting
compounds were therefore of great significance for sol–gel processing of metal oxides.114–116 In the following we will only discuss the most relevant reactions for oxo cluster and oxide nanocrystal formation. A more elaborate account is found elsewhere.89

3.2.2 Ligand exchange with alcohol

Metal alkoxides feature facile ligand exchange with other alcohols.89

\[
M–OR + R’OH \rightleftharpoons M–OR’ + ROH \tag{17}
\]

This equilibrium and thus the extent of exchange can be steered in several ways. If R’OH has a higher boiling point, the fully exchanged product is retrieved by boiling off ROH. Other factors are: sterics, solubility, the O-H bond strength, and the metal-alkoxide bond strength. The relative exchange strength has the following order: MeOH > EtOH > iPrOH > tBuOH.89,116 Apart from the simple sterics argument, also the possibility for dimerization adds to the exchange enthalpy. For example, whereas zirconium tert butoxide is a monomer, zirconium isopropoxide is a dimer. The influence of sterics on the exchange rate is clearly illustrated by NMR. While only one type of ethoxy signal is observed for a mixture of titanium ethoxide and ethanol (fast exchange), two types of methyl signal are observed for a mixture of titanium tert-butoxide and tert-butanol (slow exchange).89

Electron withdrawing groups decrease both the O-H bond strength (lower pKa) and the metal-alkoxide bond strength. While the first factor favors substitution, the second factor has the opposite effect. From substitution experiments with titanium ethoxide (or isopropoxide) and fluorinated alcohols (RfOH), it follows that the metal-alkoxide bond strength is the most important factor.117

\[
\text{Ti(OR) + excess R}^\text{f}\text{OH} \rightarrow \text{Ti(R}^\text{f})_x(\text{OR})_{4-x} + x \text{ROH} \tag{18}
\]

Upon treating Ti(OiPr)\textsubscript{4} with an excess of HOCH(CF\textsubscript{3})\textsubscript{2} only two alkoxides are exchanged
Full exchange is observed for phenol (R= C₆H₅) and substituted phenols (R= 2,4−F₂C₆H₃, 4−FC₆H₄). However, x = 3 for phenol with too many electron withdrawing group (R = C₆F₅ and 2,6−F₂C₆H₃). Also for Zr(OiPr)₄, full exchange is achieved with phenol. Importantly, alcohol exchange stops when coordination saturation is reached. For example, when exposed to an excess of salycilaldehyde, Ti(OR)₄ (R = Et, iPr or tBu) reacts exothermically to exchange only two of the OR groups. Upon disubstitution, the stable 6-fold coordination is obtained for the complex.

Another strategy for exchanging alkoxides is transesterification.

\[
\text{M−OR + CH}_3\text{COOR' } \rightleftharpoons \text{M−OR’ + CH}_3\text{COOR}
\] (19)

This approach is often preferred when there is a larger difference in boiling points of the esters compared to the parent alcohols.

3.2.3 Reaction with carboxylic acid (anhydride)

Metal carboxylates are thermodynamically favored over alkoxides due to the chelating binding mode. It allows the metals to reach their desired coordination number (6 for Ti and 8 for Zr and Hf). The reaction of titanium ethoxide or isopropoxide with acetic acid anhydride was studied as early as 1957 by Kapoor and Mehrotra. Upon addition of one equivalent of acetic acid anhydride, one equivalent of ester is formed together with the mixed titanium complex of alkoxide and acetate (Figure 7A. A second equivalent reacts in the same way and both reactions are fast and exothermic. The third exchange is slower and the triacetate complex reacts with the diacetate complex to form an oxo bridged dimer. Finally, the last alkoxo group is exchanged by refluxing the dimer with an excess of acetic acid anhydride. It should not come as a surprise that the di−acetate is the last stable monomeric compound since it features already its maximum coordination number of six.

It is interesting to compare this reactivity with the direct ligand exchange of alkoxide for
Figure 7: (A) Reaction of acetic acid anhydride with titanium ethoxide or isopropoxide. (B) Reaction of fatty acids with titanium ethoxide or isopropoxide.

Acetic acid. Titanium ethoxide and isopropoxide undergo facile exchange for two equivalents of fatty acids (R' = n-C_{15}H_{31} and n-C_{17}H_{35}), reaching a coordination number of six (Figure 7B). This reaction liberates two equivalents of alcohol. The third exchange is again slower, and similar to the reaction with acetic acid anhydride, the oxo bridged dimer is formed. However, also a second compound was observed, consistent with the formula TiO(OOCR')_2. Also the reaction of excess acetic acid and butanoic acid with titanium ethoxide and isopropoxide form a mixture of those two compounds. The relative ratio of the two final products depends strongly on the carboxylic acid chain length, see Table 3.

Table 3: Product composition of the reaction of fatty acids with titanium isopropoxide. The number of carbons in the fatty acids is indicated in brackets.

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>TiO(OOCR')_2</th>
<th>O[Ti(OOCR')_3]_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid (1C)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Butanoic acid (4C)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Palmitic acid (16C)</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Stearic acid (18C)</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

With increasing chain length, the TiO(OOCR')_2 product is more favored. Such a dependence gives us insight in the reaction mechanism. Whereas the reaction of the tricarboxylate complex with the dicarboxylate is subject to sterical hinderance from the alkyl chains, the formation of TiO(OOCR')_2 seem less hindered. Therefore, we infer that the latter is formed
by reaction of the tricarboxylate Ti(OR)(OOCR’)\textsubscript{3} with released alcohol, to form ester and
a titanium hydroxide: Ti(OH)(OR)(OOCR’)\textsubscript{2}. Two or more such units can condense via

\[n \text{Ti(OH)(OR)(OOCR’)}_2 \rightarrow [\text{TiO(OOCR’)}_n]^+ + n \text{ROH} \quad (20) \]

An alternative mechanism would be an intra-coordination sphere reaction where the actual
molecular compound TiO(OOCR’)\textsubscript{2} is formed with a Ti-oxygen double bond. In the latter,
titanium would be only five-coordinated and therefore this compound is less likely to be an
intermediate. A third mechanism proposes that the titanium tricarboxylate is never formed.
Instead, the third carboxylic acid directly forms an ester with the titanium dicarboxylate.120

\[\text{Ti(OR)\textsubscript{2}(OOCR’)}_2 + \text{HOOCR’} \rightarrow \text{Ti(OH)(OR)(OOCR’)}_2 + \text{ROOCR’} \quad (21) \]

Several decades later, Sanchez et al. reported that titanium n-butoxide does react with
one equivalent acetic acid to the monoacetate,116 but two equivalents of acetic acid already
lead to the hexameric cluster Ti\textsubscript{6}O\textsubscript{4}(OnBu)\textsubscript{8}(OOCCH\textsubscript{3})\textsubscript{8}.112 Similar clusters were found in
the reaction of titanium ethoxide with 2 equivalents methacrylic acid: Ti\textsubscript{6}O\textsubscript{4}(OEt)\textsubscript{8}(OOCR)\textsubscript{8}.121 Detailed IR spectroscopy by Schubert et al. detected the presence of uncoordinated car-
boxylic acid already after 1.3 equivalents of acid added.121 Ester can be formed from free
acid and free ethanol or catalyzed by titanium as described above, thus liberating water for
the oxo bridges. Comparing these observations to the results of Kapoor and Mehrotra, we
note that the latter only reported the titanium dicarboxylate for palmitic acid and stearic
acid. They did not perform a stepwise reaction with acetic acid. In addition, Kapoor and
Mehrotra heated their solutions to high temperatures (100 and 150 °C) while Schubert and
Sanchez worked at room temperature. Since this pioneering work, a whole variety of different
oxoalkoxo clusters have been synthesized and the structure depends on the specific alkoxide,
the specific carboxylic acid and the number of equivalents added.25 We will discuss these
clusters in more detail in the next section.
The reactions of zirconium isopropoxide isopropanol complex with fatty acids (R’ = n-C_5H_{11}, n-C_{11}H_{23}, n-C_{15}H_{31}, and n-C_{17}H_{35}) are quite similar, but the tricarboxylate product is more stable than the titanium analogue and could be isolated at low temperature.102 When decomposed the tricarboxylate gave the ZrO(OOCR’)_2 product. The tetracarboxylate is formed slowly and reacts with the tricarboxylate:

\[
\text{Zr(OOCR’)}_4 + \text{Zr(OiPr)(OOCR’)}_3 \longrightarrow \text{Zr}_2\text{O(OOCR’)}_6 + \text{R’COOiPr} \quad (22)
\]

With IR and NMR spectroscopy it was confirmed that zirconium propoxide reacts with two equivalents of methacrylic acid to Zr(OR)_2(OOCR’)_2.121 However, it was also noticed that such solutions were not stable for long. Water liberated by esterification causes hydrolysis and the formation of oxo bridges. In contrast to fatty acids, benzoic acid readily forms the tetrabenzoate from zirconium isopropoxide.104 Zr(OiPr)_4 forms the tris salicylate in the reaction with salicylic acid. One phenoxy group binds to zirconium, even in excess of salicylic acid.104 This is the same compound (Zr[[(OOCPhOH)_2(OOCPhO)]) as obtained with zirconium chloride.

3.2.4 Reaction with hydrogen halide

The reaction of metal alkoxides with hydrogen halides yields essentially the same product as the reaction of metal halides with alcohols. In the case of titanium, the dihalide is formed while in the case of zirconium a mixture of trihalide and dihalide is formed.89 The liberated alcohol binds to the metal complex as a Lewis base.

\[
\text{Ti(OR)}_4 + 2\text{HX} \longrightarrow \text{TiX}_2(\text{OR})_2 \cdot \text{ROH} + \text{ROH} \quad (23)
\]

\[
2 \text{Zr(OR)}_4 + 5\text{HX} \longrightarrow \text{ZrX}_3(\text{OR}) \cdot 2 \text{ROH} + \text{ZrX}_2(\text{OR})_2 \cdot \text{ROH} + 2 \text{ROH} \quad (24)
\]
A strategy to obtain any desired chloroalkoxide involves the reaction of the metal alkoxides with acylhalides (chloride and bromide), where the stoichiometry of the final complex is determined by the number of acylhalide equivalents.122

\[M(OR)_4 + x CH_3COCl \rightarrow MCl_x(OR)_{4-x} + CH_3COOR \] \hspace{1cm} (25)

The resulting ester can also coordinate as a Lewis base. These reactions work well for metal ethoxides and isopropoxides but are very slow for tertbutoxides. Upon addition of an excess of acylchloride, the mechanism changes and zirconium chlorotriacetate was obtained.

\[Zr(OtBu)_4 + \text{excess } CH_3COCl \rightarrow ZrCl(OOCCH_3)_3 + 3 \text{tBuCl} + CH_3COO\text{tBu} \] \hspace{1cm} (26)

3.2.5 Other exchanges and thermal decomposition

Equimolar reaction of M(O\text{tPr})\textsubscript{4} (M = Ti, Zr, Hf) with phosphinic acid (R\textsubscript{2}P(O)(OH)) results in a single exchange and the final compound is a dimer with bridging ligands.123 Tetrakis-\(\beta\)-diketonates of titanium cannot be prepared by reacting titanium isopropoxide with excess \(\beta\)-diketones. Only the bisalkoxide bis-\(\beta\)-diketonate was obtained. Interestingly, when Ti(OR)\textsubscript{2}(acac)\textsubscript{2} is reacted with HCl, TiCl\textsubscript{2}(acac)\textsubscript{2} is formed. These results stand in stark contrast to the behaviour of zirconium and hafnium alkoxides, which react in stoichiometric amounts with \(\beta\)-diketonates. One equivalent of acetylacetone leads to the dimer [Zr(O\text{tPr})\textsubscript{3}(acac)]\textsubscript{2} or [Hf(O\text{tPr})\textsubscript{3}(acac)]\textsubscript{2}. Higher substitutions lead to monomeric complexes. The tris-\(\beta\)-diketonates complex is unstable and undergoes a disproportionation to the tetrakis complex and the original alkoxide, for example:107,108

\[4 \text{Zr(OtPr)(acac)}_4 \rightarrow 3 \text{Zr(acac)}_4 + \text{Zr(OtPr)}_4 \] \hspace{1cm} (27)

The similarity between Zr and Hf and the contrast with Ti is obviously related to their relative size. It is clear from the above that the smaller titanium has the tendency to form
complexes with coordination numbers of six, while the larger zirconium and hafnium easily accommodate coordination numbers up to eight.

Finally, the metal alkoxides thermally decompose at various temperatures, depending on the nature of the alkoxide. For example, when heated at the 340 °C for three hours, zirconium ethoxide only slowed a slight decomposition while the isopropoxide decomposed to oxide, releasing propene and isopropanol. The tert-butoxide and tert-amyloxide are even less thermally stable and also release alkene and alcohol upon heating to 250 °C.

3.3 Metal chloroalkoxides

3.3.1 Mixing metal halides and metal alkoxides

When metal halides and metal alkoxides are mixed at room temperature, ligands are rapidly redistributed among the metal centers.

\[\text{MX}_4 + \text{M(OR)}_4 \rightarrow 2\text{MX}_2(\text{OR})_2 \]

(28)

The equimolar reaction between titanium chloride and titanium ethoxide indeed delivers predominantly \(\text{TiCl}_2(\text{OEt})_2 \), but also contains small amounts of \(\text{TiCl}_3(\text{OEt}) \) and \(\text{TiCl}(\text{OEt})_3 \). Titanium chloro alkoxides have a tendency towards complete disproportionation when heated under vacuum.

\[2\text{TiCl}_3(\text{OMe}) \rightarrow \text{TiCl}_2(\text{OMe})_2 + \text{TiCl}_4 \]

(29)

In solution, the disproportionation reaction has an equilibrium constant of approximately \(10^{-4} \), indicating a non–random distribution. One can calculate the speciation in solu- tion for various alkoxide to Ti ratios, see table 4. In an equimolar mixture of \(\text{Ti(OR)}_4 \) and \(\text{TiCl}_4 \), the ratio OR/Ti = 2 and the dominant species is \(\text{TiCl}_2(\text{OR})_2 \). Small amounts of \(\text{TiCl}_3(\text{OR}) \) and \(\text{TiCl}(\text{OR})_3 \) are also present. Unfortunately, solution NMR cannot distinguish the various species at room temperature because of fast exchange.
Table 4: Calculated speciation (in percent) in a mixture of Ti(OR)$_4$ and TiCl$_4$. The percentage of Ti(OR)$_4$ is below 10^{-3} in all cases.

<table>
<thead>
<tr>
<th>OR/Ti</th>
<th>TiCl$_4$</th>
<th>TiCl$_3$(OR)</th>
<th>TiCl$_2$(OR)$_2$</th>
<th>TiCl(OR)$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>98</td>
<td>1</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>1.7</td>
<td>10^{-3}</td>
<td>30</td>
<td>70</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>10^{-6}</td>
<td>1</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td>2.3</td>
<td>10^{-10}</td>
<td>10$^{-2}$</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

3.3.2 Reaction of titanium chloride with ethers

In general, ethers forms a Lewis–Base Adduct with titanium chloride (e.g., TiCl$_4$ · 2 OEt$_2$). However, the thermal stability of these complexes is limited. The decomposition (etherolysis) temperature of the ether complex decreases in the series: dioxane (180 °C) > tetrahydrofuran (125 °C) > anisole (45 °C). It is not possible to isolate the diisopropyl ether complex of TiCl$_4$ since it decomposes immediately at room temperature. Instead, TiCl$_3$(OiPr) and isopropyl chloride are obtained according to Equation 30.

$$\text{TiCl}_4 + 2 \text{OiPr}_2 \longrightarrow \text{TiCl}_3(\text{OiPr}) + \text{iPr}−\text{Cl} \quad (30)$$

The result is again a mixed chloroalkoxide.

3.3.3 Thermal decomposition of mixed chloroalkoxides

In 1997, Vioux et. al. reported the formation of titania gels from either (i) titanium chloride with titanium isopropoxide, or from (ii) titanium chloride and diisopropyl ether. Both reactions lead to Ti−O−Ti bridges through pre-coordination and subsequent condensation between Ti−Cl and Ti−OiPr moieties. Since this alkylhalide elimination mechanism turned out to be quite general we write the chemical equations using the generic symbols M for metal, X for halide and R for alkyl groups, see Equation 31.

$$\text{M}−\text{X} + \text{RO}−\text{M} \longrightarrow \text{M}−\text{O}−\text{M} + \text{R}−\text{X} \quad (31)$$
In case of titanium chloride and titanium isopropoxide mixtures, the mixed chloroalkoxides are formed by ligand distribution (Equation 28). In case of titanium chloride and diisopropyl ether, the chloroalkoxide is formed by alkoxylation (= etherolysis, Equation 30).

Vioux et al. studied the kinetics of the condensation and alkoxylation reactions via solution NMR. In contrast to the extreme reactivity of titanium alkoxides towards hydrolysis and condensation, the non–hydrolytic condensation proceeds slowly. In mixtures of Ti(O\text{\textit{i}Pr})_4 and TiCl_4, isopropyl chloride was found as sole co–product, confirming the mechanism in Equation 31. The reaction progress (amount of \textit{i}PrCl) has a sigmoidal shape and the induction time increases with an increasing ratio of \textit{i}Pr/Ti (R), see Figure 8. Given the speciation in Table 4, it appears that TiCl_3(OR) is most reactive. In its absence (at R = 2.3), the reaction does not even take place within the observed time window. While it is possible that TiCl_3(OR) catalyzes the condensation reaction (just like FeCl_3 and AlCl_3 catalyze the condensation between Si–Cl and Si–OR), the sigmoidal kinetics point towards an autocatalytic mechanism. Neither isopropyl chloride nor titania gel had a significant effect on the reaction rate and therefore, it is most likely that the intermediate TiOCl_2 is the active catalyst. This agrees with the higher reactivity of TiOCl_2 compared to Ti(O\text{\textit{i}Pr})Cl_3 in the polymerization of olefins.126

The equimolar reaction between TiCl_4 and Ti(O\text{\textit{i}Pr})_4 can be compared to the reaction between TiCl_4 and 2 equivalents isopropyl ether since both reactions yield theoretically an OR/Ti ratio of 2. At room temperature, the first alkoxylation reaction (Equation 30) proceeds in 20 min, yielding basically TiCl_3(OR), which is likely coordinated by isopropyl ether. The second alkoxylation reaction is much slower (Figure 9), and condensation does not occur within the first 24 hours. At 100 °C, the second alkoxylation reaction reaches full yield and condensation starts after three hours. This induction period is much shorter than for the equimolar reaction between TiCl_4 and Ti(O\text{\textit{i}Pr})_4, and this is probably due to the speciation of the mixture with higher concentrations of TiCl_3(OR).

This alkylhalide elimination strategy has been exploited to make mixed gels of zirco-
Figure 8: Extent of condensation at 100 °C in mixtures of Ti(OiPr)₄ and TiCl₄, with varying OiPr/Ti ratios (R). R = 1, 1.7, 2, and 2.3. Replotted with the data from reference.¹²⁵ Note that there appears to be a mistake in the original paper. The main text of the paper states an induction period of 300 hours for a ratio of 2.3 but the original figure shows an induction time of 20 hours for the ratio 2.3, and a much longer induction delay for a ratio of 2. We assume that the extensive description in the text is correct and that the figure contains the error.

Figure 9: Extent of alkoxylation and condensation at 20 °C and 100 °C, for the reaction between TiCl₄ and 2 equivalents of iPr₂O. Replotted with the data from reference.¹²⁵
Nium and titanium oxides, which were subsequently crystallized in ZrTiO$_4$ at 700 °C.127,128 Homogeneous gels were obtained at 110 °C from either

- Ti(OiPr)$_4$ and ZrCl$_4$
- TiCl$_4$ and Zr(OEt)$_4$
- TiCl$_4$, ZrCl$_4$ and R$_2$O (R = iPr, Et, nPr)

Given that in these processes, ligand redistribution is rapid, both homo and heterocondensation could in principle take place. However, EDX and ICP elemental analysis confirmed the equimolar ratio in both the gel and the crystallized product. Alkyl chloride was detected by GC and NMR. Interestingly, a 50:50 ratio of iPrCl and nPrCl was found in the reaction with n-propyl ether. When the alkyl chloride was distilled off, a 20:80 ratio was found. The authors conclude that an S$_N$1 reaction mechanism is unlikely since it would lead to rearrangement of the carbocation and thus iPrCl as the main product. The observed isomerization to iPrCl is explained by the presence of strong Lewis acids which are known to catalyzed the isomerization of alkyl halides. The extent of catalytic isomerization is reduced by distilling off the alkyl halide. Therefore, the authors propose that, for primary alkoxides, the reaction follows an S$_N$2 mechanism. Based on the final degree of condensation in the gels, the effectiveness of the oxygen donor was ranked as iPr$_2$O > Zr(OEt)$_4$ > Et$_2$O > Ti(OiPr)$_4$ > nPr$_2$O.

4 Metal oxo clusters

We define here oxo clusters as an arrangement of metal atoms connected by oxo bridges. A prototypical example is Zr$_6$O$_4$(OH)$_4$(OOCR)$_{12}$, where six zirconium atoms are arranged as an octahedron, see Figure 10. Every zirconium atom has a coordination number of eight, reminiscent of tetragonal/cubic zirconia. The largest Zr-Zr distance in the cluster is 0.5 nm. Since their surface is also capped by ligands, one can regard such clusters as the smallest
possible nanocrystals, with the additional benefit that they are atomically defined (polydispersity = 0 %). They can be crystallized and their structure determined via single crystal XRD. Although many mixed oxoalkoxy clusters exist, such (carboxylate capped) clusters have been extensively reviewed before.25,80,129,130 In addition, there are also oxoalkoxy cluster with phosphonate and phosphinate ligands.130,131 However, oxoalkoxy compounds are not stable to atmospheric water. Here we focus on fully condensed (= no alkoxy ligands) oxo clusters with either carboxylate or phosphonate ligands, since those are the most representative models for oxide nanocrystals. Finally, we only describe clusters synthesized by nonaqueous methods. A comprehensive overview of clusters obtained from water (e.g., capped with sulfate ligands) is found elsewhere.80

Figure 10: Structure of Zr\textsubscript{6}O\textsubscript{4}(OH)\textsubscript{4}(OOCR)\textsubscript{12} formed from zirconium propoxide and methacrylic acid. On the left is only the core presented while on the right all covalently attached ligands are shown. Hydrogens are not shown for clarity.

4.1 Titanium oxo clusters

As we have seen in the section on precursors, the reaction of titanium alkoxides with carboxylic acids is not a straightforward ligand exchange. One equivalent of acid simply exchanges for an alkoxide ligand but more equivalents lead to oxo bridges and ester. The ester can be formed from released alcohol with excess acid or by direct reaction of titanium alkoxide with titanium carboxylate. In the first possible mechanism water is formed which can hydrolyze the alkoxide, with subsequent condensation steps forming oxo bridges. In the
second mechanism an oxo bridge is directly formed. Either way, ester formation seems to be Lewis acid catalyzed by the titanium alkoxide. The ester could also be formed when free alcohol reacts with free acid however, when mixing alcohol with acid (without metal precursor) no ester formation is observed. Hence, this pathway can be excluded.

At room temperature, titanium alkoxides react with an excess acetic acid to a poorly crystalline titanium oxoacetate with the molar formula TiO(OOCMe)$_2$.119,120 The nature of the alkoxide does not change the final product but more sterically hindered alkoxides react slower (at room temperature).120 In contrast, a solvothermal synthesis leads to well-defined, crystalline Ti$_8$O$_8$(OOCR)$_{16}$ clusters, where R = CH$_3$, Ph, or C(CH$_3$)$_3$.132 For example, titanium isopropoxide reacts with 10 equivalents benzoic acid in acetonitrile to Ti$_8$O$_8$(OOCPh)$_{18}$.

\[
\text{Ti(OiPr)$_4$ + 10 PhCOOH} \xrightarrow{100^\circ\text{C, 15h}_{\text{ACN}}} \text{Ti}_8\text{O}_8\text{(OOCPh)}_{18}
\] (32)

The cluster is isolated as yellow crystals (99 % yield) with solvent and water co-crystallized: Ti$_8$O$_8$(OOCPh)$_{18}$ · (CH$_3$CN)$_2$ · H$_2$O The structure of the clusters is depicted in Figure 11. Eight corner-sharing TiO$_6$ octahedra form a ring with 16 bridging carboxylate ligands. Eight carboxylate ligands are equatorial and eight are axial with respect to the ring. Equatorial and axial ligand can be differentiated by 13C MAS solid state NMR since they appear as two signals at 176.9 and 175.8 ppm, distinct from pure benzoic acid (172 ppm). A similar cluster structure was obtained with pivalic acid (HOOCC(CH$_3$)$_3$), but the initial white crystals needed to be recrystallized in THF. The tert-butyl groups provide a higher solubility to the cluster, enabling liquid NMR measurement, where again two sets of resonances are found in the 13C NMR spectrum. The cluster with acetate ligands is microcrystalline (precluding single crystal XRD analysis) but the clusters can be interconverted in one another by ligand exchange (by mass action) showing that the cluster core is identical in all cases. The Ti$_8$O$_8$(OOCR)$_{18}$ clusters are stable towards nucleophiles (like water), can be handled without precaution, and can be stored for weeks without structural change. This stands in
contrast to an earlier report of Ti$_8$O$_8$(OOCR)$_{16}$ clusters, where R = C(CH$_3$)$_3$, CH$_2$C(CH$_3$)$_3$, or C(CH$_3$)$_2$Et.133 Although the crystal structure of the pivalic acid capped clusters show the same structure are discussed before, all three clusters were unstable to air. This might be related to the synthesis, which involved the reaction of only 2 equivalents of carboxylic acids with titanium isopropoxide at room temperature in toluene, followed by crystallization using the slow evaporation method. The yields were also low (24-55 \%).

Interestingly, already in 1995 a similar ring shaped cluster was reported with pentafluorobenzoic acid.134 This highly acidic molecule reacts with titanium chloride towards the cluster and produced the acylchloride as by-product upon refluxing in toluene.

$$8\text{TiCl}_4 + 24 \text{C}_6\text{F}_5\text{COOH} \xrightleftharpoons{\text{reflux, 4h, toluene}} \text{Ti}_8\text{O}_8(\text{OOCC}_6\text{F}_5)_8 + 8 \text{C}_6\text{F}_5\text{COCl} + 24\text{HCl}$$ (33)

4.2 Zirconium oxo clusters

4.2.1 Synthesis and structure

As discussed before, the addition of 2 equivalents of carboxylic acids to zirconium alkoxide first leads to a zirconium dicarboxylate complex, but over time esterification occurs. The formed water causes hydrolysis and condensation. In contrast to the case of titanium, crystalline oxocarboxo zirconium clusters are readily obtained at room temperature, possibly
due to the lower reactivity of zirconium. Indeed, fast reactions typically lead to amorphous products. In the following, we describe reactions of zirconium alkoxides with carboxylic acids where water is formed in-situ by esterification. Attempts to add small amounts of water to control cluster formation were typically less reproducible.135

Crystalline $\text{Zr}_6\text{O}_4\text{(OH)}_4\text{(OOCR)}_{12}$ (Zr6) and $\text{Zr}_4\text{O}_2\text{(OOCR)}_{12}$ (Zr4) clusters were first synthesized from zirconium propoxide and 5 or 21 equivalents of methacrylic acid respectively.136 The structure of $\text{Zr}_6\text{O}_4\text{(OH)}_4\text{(OOCR)}_{12}$ is shown in Figure 10. The zirconium atoms are arranged in an octahedron and on every triangular face of the octahedron either a μ_3–O or a μ_3–OH connects the three zirconium atoms. The cluster core is capped by 12 carboxylates of which three are chelating and nine are bridging two zirconium atoms (edge-bridging the octahedron). Interestingly, all three chelating ligands are on the same face of the octahedron and the cluster has C_{3v} symmetry (Figure 10). The cluster also co-crystallizes with extra methacrylic acid, which is hydrogen bonded to the cluster core. In the highly compact Zr6 cluster, every zirconium atom has a coordination number of eight. The Zr4 cluster has a more open structure and one zirconium atom is even only 7-coordinate. Zr4-methacrylate has two isomers in the solid state; a symmetric and an asymmetric one.136,137 In the Raman spectrum, the Zr-O-Zr modes appear at 190 and 250 cm$^{-1}$ for Zr6-methacrylate and at 230 cm$^{-1}$ for Zr4-methacrylate.113,138

While the Zr4 cluster has only been obtained under specific circumstances with methacrylic acid, the Zr6 cluster core appears as a more universal structural motif. Also 5-norbornene-2-carboxylic acid yields the Zr6 cluster.139 Slight variations were obtained with methacrylic, isobutyric and benzoic acid where one bridging ligand (opposite the chelating face) becomes monodentate and a propanol (or water) molecule fills the empty coordination site, e.g, $\text{Zr}_6\text{O}_4\text{(OH)}_4\text{(OOCR)}_{12}\text{(PrOH)} \cdot 3\text{RCOOH}$.140,141 Again tree carboxylic acids co-crystallize with the cluster. The opening and closing of the bridging ligand seems to be a reversible process since all coordinated alcohol could be removed by vacuum.141 Interestingly, it is possible to obtain a pure, high symmetrical Zr6 cluster with pivalic acid or 2,2-dimethylbutanoic
acid, when two equivalents of acid is reacted with Zr(O\text{Pr})_4 or Zr(O\text{Me})_2\text{Et}_4, in a mixture of hexane and isopropanol.\cite{142} Initially, the reaction mixture is turbid but it becomes clear after 12 hours. Crystals of the Zr\textbf{6} cluster were isolated by slow evaporation. The observed yield (61-67 \%) agrees with the overall reaction stoichiometry:

\[
6 \text{Zr(OR')}_4 + 20\text{RCOOH} \xrightarrow{RT} \text{Zr}_6\text{O}_4\text{(OH)}_4\text{(OOCR)}_{12} + 8\text{RCOOR'} + 16\text{R'OH} \quad (34)
\]

The structure has no chelating ligands, only edge-bridging carboxylates, as evidenced by single crystal XRD and IR spectroscopy. A sharp but weak OH stretch was clearly observed at 3672 cm\(^{-1}\) in IR, indicating the absence of hydrogen bonding. The four protons do migrate between all eight \(\mu_3\)-O bridges, causing disorder in the crystal. The compounds are insoluble in aliphatic solvents and sparingly soluble in aromatic solvents. Interestingly, early DFT calculations showed that an isolated Zr\textbf{6} cluster with only edge-bridging ligands (\(O_h\) symmetry) is more stable than the (experimentally observed) cluster with three chelating ligands.\cite{143} Most likely, hydrogen bonding lowers the free energy of the chelated cluster. Indeed, in the rare case where no carboxylic acid was co-crystallized, the structure with all edge-bridging ligands was observed.\cite{142}

Other carboxylic acids such as acetic, acrylic, propionic, 3-mercaptopropionic, 5-hexynoic, and 3-butenoic yield the dimer of this Zr\textbf{6} cluster: \([\text{Zr}_6\text{O}_4\text{(OH)}_4\text{(OOCR)}_{12}]_2 \cdot x\text{RCOOH} (\text{Zr12}).\]140,144–146 One can formally construct the dimer when two bridging ligands of Zr\textbf{6} (opposite the chelating face) are no longer edge-bridging but instead link two cluster cores (Figure 12). Also the clusters synthesized with mixtures of acetic/methacrylic acid or propionic/methacrylic acid crystallized according to the Z\textbf{12} structure. Interestingly, the bridging ligands were either acetate or propionate, never methacrylate.144 The preference of methacrylate decreases in the series: chelating \(>\) edge-bridging \(>>\) cluster-bridging. Although this has never been explicitly stated by others, we infer that steric hindrance at the carbon adjacent to the carbonyl is the determining factor in forming the structures Zr\textbf{6} or Zr\textbf{12}. This
is supported by an overview of the different ligands and their corresponding cluster structure (Figure 13). It is clear that the Zr6 cluster is formed as soon as the α carbon is secondary (or tertiary). Steric hindrance at the β position does not preclude the formation of the dimer. Both the Zr6 and Zr12 cluster are quite stable in air and neutral water, but decompose in acidic or basic conditions, forming lower nuclearity or polymeric species respectively. For long term storage however, we have found that the clusters are best stored under inert atmosphere.

Figure 12: Relation between a Zr6 and a Zr12 cluster. In both clusters, there are chelating and bridging ligands. In the Zr12 cluster, some ligands bridge the two cluster monomers. Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Larger (monomeric) clusters are also known. For example, zirconium propoxide reacts with salicylic acid to Zr16O6(OH)4(OOCPhOH)8(OOCRPhO)8. At the core of the cluster there is the Zr6 octahedron Zr6O4(OH)4(OOCPhOH)4(OOCRPhO)88−, with all carboxylates edge-bridging. Two Zr2O(OOCPhOH)44+ units are condensed to this core. Each phenolate on the core binds to the attached zirconium atoms, see Figure 14A. The largest clusters obtained via nonaqueous methods are Zr18O21(OH)2(OOCPh)28 (from ZrCl4, benzoic acid and thiourea in acetonitrile), and Zr26O18(OH)30(HCOO)38 (from ZrOCl2 · 8 H2O and formic acid in DMF). The latter contains a central Zr6 octahedron, connected by the four equatorial zirconium atoms to four more Zr6 octahedra, see Figure 14B. The structure is intrinsically porous.

ZrOCl2 · 8 H2O has been used as a cost effective precursor for clusters. The Zr12-acetate clusters were obtained from ZrOCl2 in DMF (110 °C, 1 day). Note that ZrOCl2 · 8 H2O is actually the tetrameric cluster: Zr4(OH)8(H2O)168+, charge balanced by chlorides. The clus-
Figure 13: Overview of the different carboxylic acids used for cluster formation, grouped according to the specific cluster structure.

Figure 14: (A) Coordination of double deprotonated salicylic acid in the $\text{Zr}_{10}\text{O}_6(\text{OH})_4(\text{OOCPhOH})_8(\text{OOCRPhO})_8$ cluster. (B) Structure of the $\text{Zr}_{26}\text{O}_{18}(\text{OH})_{30}(\text{HCOO})_{38}$ cluster with the formate ligands omitted.
ter has 8 μ_2-OH bridges and is quite different from the Zr$_4$-methacrylate cluster. ZrOCl$_2$ · 8 H$_2$O is also a good starting point for the formation of a diverse set of zirconium oxo clusters in aqueous media. The reader is referred to a dedicated review by Parac-Vogt et al. for a description of cluster products via the aqueous route.80

4.2.2 Mechanistic insights

For the above, it is clear that cluster formation (from zirconium alkoxide and carboxylic acids) proceeds in three steps: (i) ligand exchange (alkoxide for carboxylate), (ii) esterification, and (iii) condensation. The overall chemical equation for the reaction is written in Equation 34. While the ligand exchange step has been studied to some extent, mechanistic studies on the esterification or condensation steps are rare. As an exception, Gross et al. performed an EXAFS study to gain a better understanding of the reaction between zirconium butoxide and methacrylic acid.113 Zirconium butoxide in butanol is a dimeric complex with a coordination number for Zr of six and a single Zr-Zr backscattering interaction (Figure 15). Upon addition of methacrylic acid, the coordination number increases over time to eight and the Zr-Zr interactions increases to two. The Zr-Zr distance is 3.4 Å, which is shorter than the 3.51 Å distance in the final Zr$_6$ cluster. These results are consistent with a Zr$_3$ triangular intermediate, a structural motif that is known for several oxoalkoxo structures. Unfortunately, the final Zr$_6$-methacrylate cluster precipitated from solution and its time-dependent concentration could not be tracked by EXAFS. Gross et al. also analyzed the rate of ester formation in various solvents which shows the relative trend: THF $<<$ benzene $<$ DCM. The coordinating solvent THF is believed to block coordination sites on zirconium and thus slow down the reaction. While the above results give us some insight, a fully comprehensive picture of the mechanism is still missing.

To gain some empirical insight in cluster formation, we have assembled Table 5 with an overview of the synthetic conditions for the different zirconium oxo clusters. It appears that zirconium propoxide (70 w% solution in propanol) can be easily exchanged for zirconium
butoxide (80w% solution in butanol) and identical results are obtained. However, in mixed cluster syntheses (see below), there are cases where this change does have an impact. When mixing different metal alkoxides they will have different reaction rates and therefore different reaction products can be obtained. Most cluster syntheses are performed without solvent but in case of \(\text{Zr}_6 \)-acetate clusters, dichloromethane improves the crystallinity of the final product (and co-crystallizes). The \(\text{Zr}_6 \) cluster is only formed when there are at least two alkyl substituents at the \(\alpha \) position of the carboxylic acid, otherwise the \(\text{Zr}_{12} \) dimer is formed, see also Figure 13. It is unclear how to steer the synthesis between \(\text{Zr}_4 \) - and \(\text{Zr}_6 \)-methacrylate. Although it was initially reported that 4-5 equivalents of methacrylic acid delivered \(\text{Zr}_6 \) and 7-20 equivalents resulted in \(\text{Zr}_4 \), one can find counterexamples in Table 5.

4.2.3 Ligand exchange, NMR characterization and purification

The carboxylate ligands are easily exchanged for other carboxylic acids. This is already clear from the \(^1\text{H} \) NMR spectrum of \(\text{Zr}_6 \)-methacrylate clusters where only a single set of
Table 5: Synthetic procedures to zirconium oxo clusters

<table>
<thead>
<tr>
<th>Precursor</th>
<th>RCOOH</th>
<th>RCOOH/ Zr ratio (mol/L)</th>
<th>Zr</th>
<th>Solvent</th>
<th>Time</th>
<th>Temp</th>
<th>outcome</th>
<th>Reported yield</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr(OPr)₄</td>
<td>methacrylic acid</td>
<td>21</td>
<td>0.5</td>
<td>/</td>
<td>7</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>quant</td>
<td>136</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>methacrylic acid</td>
<td>6.5</td>
<td>1</td>
<td>/</td>
<td>1</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>86 %</td>
<td>137</td>
</tr>
<tr>
<td>Zr(OPr)₄</td>
<td>methacrylic acid</td>
<td>8.2</td>
<td>0.9</td>
<td>/</td>
<td>2</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>94 %</td>
<td>137</td>
</tr>
<tr>
<td>Zr(OPr)₄</td>
<td>methacrylic acid</td>
<td>5.3</td>
<td>1.1</td>
<td>/</td>
<td>1</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>quant</td>
<td>136</td>
</tr>
<tr>
<td>Zr(OPr)₄</td>
<td>methacrylic acid</td>
<td>9</td>
<td>0.8</td>
<td>/</td>
<td>11</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>140 %</td>
<td>140</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>benzoic acid</td>
<td>81</td>
<td>0.02</td>
<td>n-propanol</td>
<td>14</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>very low</td>
<td>140</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>benzoic acid</td>
<td>25</td>
<td>0.08</td>
<td>n-butanol</td>
<td>12</td>
<td>reflux</td>
<td></td>
<td>63 %</td>
<td>141</td>
</tr>
<tr>
<td>Zr(OPr)₄</td>
<td>pivalic acid</td>
<td>10</td>
<td>0.6</td>
<td>/</td>
<td>1</td>
<td>80 °C</td>
<td>no single crystal XRD</td>
<td>Zr₄ cluster</td>
<td>76 % 151</td>
</tr>
<tr>
<td>Zr(OPr)₄ or Zr(OC(Me)₂Et)₄</td>
<td>pivalic acid</td>
<td>2</td>
<td>0.6</td>
<td>HO host / hexane</td>
<td>2</td>
<td>days</td>
<td>RT</td>
<td>no single crystal XRD</td>
<td>Zr₄ cluster</td>
</tr>
<tr>
<td>Zr(OPr)₄ or Zr(OC(Me)₂Et)₄</td>
<td>2,2-dimethyl butanoic acid</td>
<td>2</td>
<td>0.6</td>
<td>HO host / hexane</td>
<td>2</td>
<td>days</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>67 % 142</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>isobutyric acid</td>
<td>7</td>
<td>0.9</td>
<td>/</td>
<td>4</td>
<td>weeks</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>37 %</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>isobutyric acid</td>
<td>7</td>
<td>0.9</td>
<td>/</td>
<td>1</td>
<td>week</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>91 %</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>methacrylic acid</td>
<td>6.58</td>
<td>0.12</td>
<td>heptane</td>
<td>1</td>
<td>week</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>acetic acid</td>
<td>10</td>
<td>0.5</td>
<td>CH₂Cl₂</td>
<td>3</td>
<td>hours</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>68 %</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>acetic acid</td>
<td>29</td>
<td>0.5</td>
<td>/</td>
<td>12</td>
<td>hours</td>
<td>Zr₁₂ cluster</td>
<td>117 %</td>
<td>152</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>acetic acid and methacrylic acid</td>
<td>39</td>
<td>0.3</td>
<td>DMF</td>
<td>1</td>
<td>day</td>
<td>110 °C</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>64 %</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>propionic acid</td>
<td>10</td>
<td>0.8</td>
<td>/</td>
<td>8</td>
<td>hours</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>75 %</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>propionic acid and methacrylic acid</td>
<td>7</td>
<td>1</td>
<td>/ 24 hours</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>85 %</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Zr(acac)₄</td>
<td>propionic acid</td>
<td>26</td>
<td>0.4</td>
<td>/</td>
<td>1</td>
<td>hour</td>
<td>100 °C</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>70 %</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>3-mercaptopropionic acid</td>
<td>7.27</td>
<td>0.92</td>
<td>/ 3 days</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>63 %</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr(OPr)₄</td>
<td>vinylacetic acid</td>
<td>6.5</td>
<td>1.1</td>
<td>/</td>
<td>3</td>
<td>days</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>111 %</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>dimethyl acrylic acid</td>
<td>3.8</td>
<td>0.4</td>
<td>toluene</td>
<td>20</td>
<td>days</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>88 %</td>
</tr>
<tr>
<td>Zr(OPr)₄</td>
<td>3,3-dimethyl butanoic acid</td>
<td>2</td>
<td>0.5</td>
<td>HO host / hexane</td>
<td>2</td>
<td>days</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>65 %</td>
</tr>
<tr>
<td>Zr(OPr)₄</td>
<td>salicylic acid</td>
<td>5.24</td>
<td>0.12</td>
<td>n-propanol</td>
<td>14</td>
<td>days</td>
<td>RT</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>136 %</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>5-hexynoic acid</td>
<td>3.9</td>
<td>0.8</td>
<td>/ 3 weeks</td>
<td>RT / 12 days -21 °C</td>
<td>Zr₄O₄(OOCR)₁₂</td>
<td>14.4 %</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>

* co-crystallized solvent or carboxylic acid was reported but omitted from this formula
resonances is observed because of fast exchange between the bound carboxylates and the co-
crystallized carboxylic acid.141,143 After careful removal of the free acid, three different sets
of ligands were observed, see Figure 16A. The resonance with the highest ppm value in 13C
NMR was assigned to the chelating ligands. Those chelating ligands appeared the most labile
and dynamic in solution.144 The Zr_{12}-acetate cluster shows five different resonances at room
temperature and the Zr_{12}-propionate cluster shows an even more complex pattern of CH$_2$
resonances (Figure 16B). By decreasing the temperature to -40 °C, the structure becomes
less dynamic and one can more clearly observed different CH$_2$ environments (Figure 16B).144

![Figure 16: (A) HMBC NMR spectrum of the Zr_6-methacrylate clusters at room tem-
perature. (B) Spectra of Zr_{12}-propionate cluster in toluene-d_8 at different temperatures.
Adapted from Puchberger et al.144 Copyright © 2006 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.](image)

Upon repetitive addition of excess propionic acid and subsequent evaporation, the original
methacrylate ligands on the Zr6-methacrylate cluster could be completely exchanged. Taking the Zr12 mixed propionate/methacrylate (3:9) cluster – with the propionates in the cluster-bridging position – and exposing it to multiple cycles of excess propionic acid, again removed all original methacrylate ligands. In the first case, the Zr6-propionate cluster was formed and in the second case the Zr12-propionate. When the Zr12-propionate cluster was treated excessively with acetic acid, the ligand exchange was however not complete. According to NMR integration the ratio of acetate to propionate was 3:1 in the final product. From the above results, the authors concluded that the Zr6 and Zr12 cluster could not be converted into one another and that the cluster-bridging ligands are not available for ligand exchange. Since the NMR signatures of the Zr6- and Zr12-propionate clusters are distinct, they indeed do not simply interconvert in solution at room temperature. However, the inertness of the cluster-bridging ligands towards ligand exchange is not fully proven, in our opinion. Since the exchange relied on mass action and evaporation of the free acid, the lower boiling point of acetic acid might have hampered the ligand exchange. A more convincing proof would consist of exchanging the Zr12-acetate clusters with propionic acid, instead of the other way round. Whether the Zr12 dimer can be broken by heating has not been studied as such, but Zr6 MOFs can be synthesized from a Zr12 precursor, indicating that the dimer can be converted to the monomer under particular conditions.

The Zr4 cluster is more dynamic than the Zr6 or Zr12 clusters. At room temperature only a single set of resonances is observed in NMR (even after removal of free acid). At -80 °C, four different sets of resonances are observed and the chelating ligands were again the most dynamic. The ligand exchange reaction of the Zr4-methacrylate cluster for pivalic acid ligands was successful and retained the cluster core. Finally, ligand scrambling was observed when pure Zr4-methacrylate and Zr4-pivalate are mixed.

The Zr4 and Zr6 clusters react differently with acetylacetone (a typical chelating ligand).
The Zr\textsubscript{4} cluster degrades according to Equation 35.155

\[
\text{Zr}_4\text{O}_2(\text{OOCR})_{12} + 8 \text{acac-H} \rightarrow 4 \text{Zr(acac)}_2(\text{OOCR})_2 + 4 \text{RCOOH} + 2 \text{H}_2\text{O} \quad (35)
\]

In contrast, even an 50-fold excess of acetylacetone results in only a double exchange on the Zr\textsubscript{12} cluster, forming [Zr\textsubscript{6}O\textsubscript{4}(OH)\textsubscript{4}(OOCR)\textsubscript{11}(acac)]\textsubscript{2}.156 Per Zr\textsubscript{6} cluster core, one chelating carboxylate was replaced with one chelating acetylacetonate. This really showcases the higher stability of the Zr\textsubscript{6} cluster. Even more, Zr(acac)\textsubscript{4} reacts with an excess of propionic acid at 160 °C to the mixed Zr\textsubscript{12}-acetate/propionate cluster.153

Hydrogen bonding plays a crucial role in these oxo clusters. We already discussed that co-crystallized acid interacts with the cluster core via hydrogen bonding.144 The OH of a free carboxylic acid hydrogen bonds to an oxygen of a bound ligand, and the carbonyl of the free acid binds simultaneously with the μ_3–OH. Schubert \textit{et al.} also proposed that during a rearrangement from the chelating to the bridging mode, the transition state is stabilized by hydrogen bonding to a μ_3–OH.143 More recently, Tsai \textit{et al.} investigated ligand exchange reactions on a Zr\textsubscript{6} cluster using DFT calculations, see Figure 17.157 The approach of a carboxylic acid to the cluster and subsequent hydrogen bonding was found to be exothermic and without barrier. Furthermore, proton transfer from the new to the old ligand considerably lowered the activation barrier for exchange. Therefore, more acidic ligands exchange faster.

![Figure 17: The mechanism of carboxylate exchange are derived from DFT calculations by Tsai \textit{et al.}157 Reprinted with permission from reference.157 Copyright 2019 American Chemical Society.](image-url)
Despite the ease of ligand exchange, obtaining the pure, exchanged cluster is not trivial. Crystallization is limited since it is poorly applicable to disordered, mixed ligands shells or flexible ligands. Purification by evaporation is also limited to the lower carboxylic acids (with sufficiently low boiling points). Recently, a purification method for Ti$_8$ and Zr$_6$ oxo clusters with mixed ligand shells was developed based on resins with amine groups. Unfortunately, about 20% free acid persisted in the final product.

4.3 Hafnium oxo clusters

Hafnium forms clusters that are isostructural to the zirconium clusters, see Table 6. Hf$_{12}$ clusters were thus synthesized from acetic acid and hafnium butoxide, while Hf$_4$ and Hf$_6$ clusters were obtained with methacrylic acid. The Hf$_6$ cluster has the structural formula: Hf$_6$O$_4$(OH)$_4$(OOCR)$_{12}$(BuOH), with one carboxylate ligand binding monodentately and the free coordination spot being filled by butanol.

4.4 Mixed metal oxo clusters

Clusters consisting of multiple metals have also been synthesised, see Table 6. A 1:3 mixture of Ti(OBu)$_4$ and Zr(OBu)$_4$ with four equivalents of methacrylic acid leads to a mixture of three clusters: Ti$_2$Zr$_4$O$_4$(OBu)$_2$(OOCR)$_{14}$, Ti$_4$Zr$_6$O$_4$(OBu)$_6$(OOCR)$_{10}$ and Ti$_2$Zr$_6$O$_6$(OOCR)$_{20}$. Replacing Zr(OBu)$_4$ with Zr(OPr)$_4$ exclusively yields the Ti$_4$Zr$_6$O$_4$(OBu)$_6$(OOCR)$_{10}$ cluster. This shows that the choice between Zr(OBu)$_4$ and Zr(OPr)$_4$ can impact the final product. Using a 1:1:1 mixture of Ti(OBu)$_4$, Zr(OBu)$_4$ and Hf(OBu)$_4$, the Ti$_2$Zr$_5$HfO$_6$(OOCR)$_{20}$ cluster is obtained. All the above mixed clusters have an open structure, comprising TiO$_6$ octahedra and ZrO$_7$ or ZrO$_8$ polyhedra (or the hafnium equivalents), see Figure 18. Similar open structures are obtained from the metal alkoxides and methacrylic acid for the mixed titanium-yttrium clusters, e.g., Y$_2$Ti$_4$O$_4$(OOCR)$_{14}$(MeO(CH$_2$)$_2$OH). In an alternative approach titanium isopropoxide is reacted with several lanthanide acetates and methacrylic acid, resulting in LnTi$_4$O$_4$(OiPr)$_2$(OOCR)$_{11}$ (Ln = La, Ce), Ln$_2$Ti$_6$O$_6$(OOCR)$_{18}$(HOiPr).
Table 6: Synthetic procedures to hafnium oxo clusters and mixed metal clusters

<table>
<thead>
<tr>
<th>Precursor</th>
<th>RCOOH</th>
<th>RCOOH/ M ratio</th>
<th>M (mol/L)</th>
<th>Solvent</th>
<th>Time</th>
<th>Temp</th>
<th>outcome</th>
<th>Reported yield</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hf(OBu)₄</td>
<td>methacrylic acid</td>
<td>4</td>
<td>1.2</td>
<td></td>
<td>1 hour</td>
<td>RT / 15 days 4°C</td>
<td>Hf₆O₄(OOCR)₁₂</td>
<td>73 %</td>
<td>158</td>
</tr>
<tr>
<td>Hf(OBu)₄</td>
<td>methacrylic acid</td>
<td>7.55</td>
<td>0.34</td>
<td>benzene</td>
<td>1 hour</td>
<td>RT / 20 days 4°C</td>
<td>Hf₆O₄(OH)₄(OOCR)₁₂₆</td>
<td>51 %</td>
<td>158</td>
</tr>
<tr>
<td>Hf(OBu)₄</td>
<td>acetic acid</td>
<td>10</td>
<td>0.52</td>
<td>CH₂Cl₂</td>
<td>1 day</td>
<td>RT</td>
<td>[Hf₂O₄(OH)₂(OOCR)₁₂]₆</td>
<td>98 %</td>
<td>144</td>
</tr>
<tr>
<td>Zr(OBu)₄</td>
<td>methacrylic acid</td>
<td>4</td>
<td>1.3</td>
<td></td>
<td>1 hour</td>
<td>RT</td>
<td>Ti₂Zr₂H₂O₈(OOCR)₂₀</td>
<td>30 %</td>
<td>158</td>
</tr>
<tr>
<td>Hf(OBu)₄</td>
<td>acetic acid</td>
<td>16</td>
<td>0.15</td>
<td>ACN</td>
<td>1 day</td>
<td>100°C</td>
<td>Ti₆Zr₂O₁₂(OOCR)₁₆</td>
<td>/</td>
<td>159</td>
</tr>
<tr>
<td>ZrCl₄</td>
<td>propionic acid</td>
<td>12</td>
<td>0.15</td>
<td>ACN</td>
<td>1 day</td>
<td>100°C</td>
<td>Ti₆Zr₂O₁₂(OOCR)₁₆</td>
<td>/</td>
<td>159</td>
</tr>
<tr>
<td>ZrCl₄</td>
<td>benzoic acid</td>
<td>7.27</td>
<td>0.15</td>
<td>DMF</td>
<td>1 day</td>
<td>140°C</td>
<td>Ti₆Zr₂O₁₂(OOCR)₁₆</td>
<td>/</td>
<td>159</td>
</tr>
<tr>
<td>ZrCl₄</td>
<td>p-toluic acid</td>
<td>6.68</td>
<td>0.15</td>
<td>DMF</td>
<td>1 day</td>
<td>140°C</td>
<td>Ti₆Zr₂O₁₂(OOCR)₁₆</td>
<td>/</td>
<td>159</td>
</tr>
<tr>
<td>ZrCl₄</td>
<td>p−Bu−benzoic acid</td>
<td>5</td>
<td>0.15</td>
<td>ACN</td>
<td>1 day</td>
<td>100°C</td>
<td>Ti₆Zr₂O₁₂(OOCR)₁₆</td>
<td>/</td>
<td>159</td>
</tr>
<tr>
<td>Ti(O'iPr)₄</td>
<td>methacrylic acid</td>
<td>7</td>
<td>0.7</td>
<td></td>
<td>1 week</td>
<td>RT</td>
<td>Y₂Ti₄O₈(OOCR)₁₄</td>
<td>87 %</td>
<td>160</td>
</tr>
<tr>
<td>Y(O(CH₂)₂OMe)₃</td>
<td>methacrylic acid</td>
<td>4.5</td>
<td>1.44 - 1.53</td>
<td></td>
<td>1-2 weeks</td>
<td>RT</td>
<td>Lu₂Ti₄O₈(OOCR)₁₈</td>
<td>37 - 84 %</td>
<td>161</td>
</tr>
<tr>
<td>Ln(acetate)₃</td>
<td>methacrylic acid</td>
<td>4.5</td>
<td>0.04</td>
<td>ACN / 2 days 85°C</td>
<td>Lu₂Ti₄O₈(OOCR)₁₈</td>
<td>37 - 84 %</td>
<td>161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(acetate)₃</td>
<td>acetic acid or p-toluic acid or anthracene-9-carboxylic acid</td>
<td>2.9</td>
<td>0.61</td>
<td>ACN</td>
<td>2 days</td>
<td>60 °C</td>
<td>Lu₂Ti₄O₈(OOCR)₁₈</td>
<td>45 - 49 %</td>
<td>162</td>
</tr>
</tbody>
</table>

*a co-crystallized solvent or carboxylic acid was reported but omitted from this formula
(Ln = La, Ce, Nd, Sm) or Ln$_2$Ti$_4$O$_4$(OOOCR)$_{14}$(HOOCR)$_2$ (Ln = Sm, Eu, Gd, Ho). One clearly observes a preference for a particular structure depending on the size of the lanthanide ion.

Figure 18: The connected polyhedra of cluster Ti$_2$Zr$_5$HfO$_6$(OOOCR)$_{20}$. The light gray octahedra represent the TiO$_6$ unit. The corners of the polyhedra are oxygen atoms.158 Reproduced from Ref.158 with permission from the Royal Society of Chemistry.

More condensed mixed metal clusters were recently synthesized through a solvothermal reaction.159 The resulting Ti$_8$Zr$_2$O$_{12}$(OOOCR)$_{16}$ (R = Me, Et, Ph, Ph-Me, Ph-tBu) clusters can be conceived as an expansion of the Zr$_6$ cluster core (Figure 19), where the four equatorial zirconium atoms are replaced by a cube of 8 titanium atoms. In the Ti$_8$Zr$_2$O$_{12}$(OOOCR)$_{16}$ cluster, four μ_2–O make up the equatorial plane, each bridging two titanium atoms. The Ti$_8$O$_{24}^{24+}$ center is connected to a zirconium atom on the top and bottom by eight μ_3–O, resulting in the Ti$_8$Zr$_2$O$_{12}^{16+}$ core of the cluster.

Figure 19: (a) Zr$_6$O$_4$(OH)$_4$(COO)$_{12}$ cluster; (b) the relationship between Zr$_6$O$_4$(OH)$_4$(COO)$_{12}$ and Ti$_8$Zr$_2$O$_{12}$(COO)$_{16}$ clusters; (c) Ti$_8$Zr$_2$O$_{12}$(COO)$_{16}$ cluster.21 Reprinted with permission from reference.21 Copyright 2018 American Chemical Society.

Taking almost the same Ti$_8$ center and attaching two lanthanides atoms instead of zirconium atoms, results in the cluster: Ln$_2$Ti$_8$(μ_2–O)$_2$(\mu_3–O)$_8$(\mu_2–OH)$_2^{16+}$ (Ln = Eu,
The only difference in the center is that there are not four μ_2-O bridges, but two and two additional μ_2-OH bridges. This is obviously a charge balancing act as a consequence of replacing one Zr$_4^{\text{+}}$ with one Ln$_3^{\text{+}}$. The clusters are capped with acetic acid, p-toluic acid, or anthracene-9-carboxylic acid. The Eu$_2$Ti$_8$-acetate cluster has the highest photoluminescence quantum yield (PLQY = 15.6 \%) since the PL is quenched by the aromatic ligands. The Ln$_2$Ti$_8$-acetate clusters are water soluble and form stable 3-4 nm aggregates. As expected, the PLQY is lower in water (10 \%).

4.5 Applications of oxo clusters

4.5.1 Metal organic frameworks (MOFs)

In DMF/methanol mixtures, titanium isopropoxide reacts at 150 °C with terephtalic acid to a MOF (MIL-125) with the Ti$_8$O$_8$(OH)$_4$(OOCR)$_{12}$ cluster as secondary building unit. MIL-125 shows interesting photochromic behaviour: absorbed alcohol reduces Ti(IV) to Ti(III) upon exposure to light, leading to a dark purple color. The Ti(III) is reoxidized in the presence of oxygen. The same MIL-125 MOF can be produced from a pre-synthesized Ti$_8$O$_8$(OOCR)$_{16}$ cluster with terephtalic acid in DMF/methanol. The cluster does not retain its exact structure during the MOF synthesis since it is complexed by 16 carboxylates in the original cluster while complexed by 12 carboxylates and 4 hydroxides in the MOF. However, a particular advantage of using the pre-synthesized clusters is that the formation of TiO$_2$ (a side product of the direct synthesis) is avoided and the yields are higher. Recently, even Ti$_{44}$ oxo–alkoxo–carboxo clusters were found to be effective precursors for synthesizing Ti-MOFs with the Ti$_8$O$_8$(OOCR)$_{16}$ node. Since the cluster nuclearity has changed, we infer that the titanium oxo cluster can dissolve and reform during MOF synthesis. A further limitation of using preformed oxo clusters could be their solubility. For example, efforts to produce a MOF from Ti$_6$O$_6$(OiPr)$_6$(OOCR)$_6$ (with OOCR being 4-aminobenzoate) through reversible imine bonds with benzene-1,4-dialdehyde failed due to the low solubility of the cluster.
In 2008, the Zr6 cluster was first used as building block to create MOFs (UiO-66 and UiO-67) by directly reacting an aromatic dicarboxylic acid and ZrCl4 in DMF (120 °C, 24 hours). Such MOFs had an exceptionally high thermal stability (540°C) and are stable in water, DMF, benzene and acetone. Dehydroxylation of the cluster core starts at 250°C and is completed at 300°C. Two of the four OH bridges leave the structure with an additional proton, yielding a Zr6O6 cluster core with a Lewis acidic seven-coordinated zirconium. While the cluster structure is changed considerably, this process maintains the overall integrity of the MOF and is reversible. Incoorporation of trifluoroacetate during the synthesis and its subsequent thermal removal even further enhances the Lewis acidity of UiO-66, evidenced by the enhanced cyclization rate of citronellal to isopulegol. Zr-MOFs are also catalytically active towards peptide bond hydrolysis, thus acting as artificial proteases. Many more zirconium MOFs have been developed in the last two decades and these are reviewed elsewhere. Also hafnium based MOFs are known, which are often isoreticular with the zirconium MOFs.

In 2010, the Zr6-methacrylic cluster was used as a well-defined precursor for UiO-66. The reaction conditions were mild (120 °C, 24 hours), but the MOF crystal size was smaller compared to the direct synthesis method from ZrCl4. More interestingly, the direct synthesis of a MOF from ZrCl4 and trans,trans muconic acid failed, while a nanocrystalline MOF (isostructural to UiO-66) was obtained with the Zr6-methacrylic cluster, even at room temperature. In another example, the Zr12-acetate cluster was used as precursor and depending on the linker, the dimeric nature of cluster was retained in the final MOF. Also mixed metal clusters were used as precursors for MOFs. Several MOFs were recently synthesized at room temperature by mechanochemical synthesis from the Zr6-methacrylate cluster or the Zr12-acetate cluster. In this way, the highest quality UiO-97 was obtained, which a surface area of 2250 m²/g, and outstanding catalytic activity in the hydrolysis of dimethyl 4-nitrophenyl phosphate (a nerve agent). Multimetallic MOFs were recently produced via mechanochemical synthesis by combining Zr12-acetate and Hf12-acetate clusters with
bridging ligands. The above results suggest that the zirconium and hafnium oxo clusters remain intact during MOF synthesis.

4.5.2 Polymer and all-inorganic composites

Zr6-methacrylate clusters have 12 methacrylate ligands with each a polymerizable double bond. Schubert et al. used these clusters as cross-linkers during the radical polymerization of methylmethacrylate or styrene. While cluster fractions of 0.5-1 mol% (equivalent to 3.2-6.3 w%) yield glassy, transparent polymers, a white solid is obtained for 2 mol% or 100 mol% (no monomer added). In contrast to undoped polymer, the cluster-polymer composites were insoluble. They only swell in solvent, the extent of which decreases with increasing cluster concentration (= increasing cross-linking density). The composites have also a higher thermal stability because thermal depolymerization is inhibited. The Zr4-methacrylate cluster reacts similarly and can achieve an even higher cross-linking density, possibly due to its more open structure. Polymerization with 10 w% of Zr4-methacrylate, results in a improved bend strength (47 MPa) and improved bend modulus (1900 MPa). The composite maintains its strength even after storage in water for seven days. In general, there are two effects in such composites: cross-linking and inert filler effect. The higher cross-linking ability causes the decrease in the swellability and the increase in glass transition temperature. The filler effect delays the thermal degradation. Oxo clusters also improved the mechanical properties of shape memory materials without compromising the shape memory effect itself. Next to the mechanical properties, also the (di)electrical properties are influenced by the inclusion of oxo clusters (conductivity, dielectric constant, etc). The Zr4-methacrylate cluster has also been used in a photopolymerization process with methylmethacrylate monomer, producing hard and transparent coatings. Depending on the type of carboxylic acid, the clusters can be used in other types of polymerization reactions as well. Zr6 clusters capped with 5-norbornene-2-carboxylic acid were used as cross linkers in ring opening metathesis polymerizations. Zr12 clusters capped with 3-mercaptopropionic
acid were embedded in polymethylmethacrylate using a photothiol-ene polymerization.145,184 The cluster reinforced polymer featured improved hardness. The above composite materials fit in a wider class of cluster-reinforced polymers featuring also titanium, tin, silicon, and tungsten oxo clusters.135,185,186 The effect of oxo clusters on the structural and functional properties of these organic-inorganic composites was reviewed in more detail elsewhere.187

Going one step further, Zr\textsubscript{4} or Hf\textsubscript{4}-methacrylate clusters were co-polymerized with (hydrolyzed) methacryloxymethyl)triethoxysilane and subsequently calcined at 800 - 1000\textdegree C.188,189 The resulting all-inorganic composites consisted of silica and ZrO\textsubscript{2} or HfO\textsubscript{2} nanoparticles. A portion of the nanoparticles was crystalline but the majority was amorphous. By combining both Zr\textsubscript{4} and Hf\textsubscript{4}-methacrylate clusters, the ternary system ZrO\textsubscript{2}–HfO\textsubscript{2}–SiO\textsubscript{2} was accessed.190 This strategy of using composite precursors was thoroughly reviewed elsewhere.191

Zirconium and hafnium oxo clusters have received increasing attention as building block for extreme UV patterning, and 3D printing.22,151 The principle is similar as with the composites but here the photosensitivity of the methacrylate ligands is exploited to cross-link the cluster and thus change their solubility. The resolution of the laser determines the resolution of the final pattern or even 3D structure.

4.5.3 Oxo cluster catalysts

Zr\textsubscript{6}-methacrylate and Zr\textsubscript{12}-vinylacetate clusters were used to activate hydrogen peroxide.23 Under these oxidative conditions, Zr-peroxo complexes are formed, which serve as catalysts for the oxidation of methyl p-tolyl sulfide to its corresponding sulfoxide and sulfone. This is a model reaction for the oxidative desulfurization of fuels. Improved performance was achieved by using Zr\textsubscript{4}-methacrylate clusters and incorporation in polymer composites.138,192,193 On the other hand, Hf\textsubscript{18}O\textsubscript{10}(OH)\textsubscript{26}(SO\textsubscript{4})\textsubscript{13}·(H\textsubscript{2}O)\textsubscript{33} clusters were used as heterogeneous catalyst for the selective hydrolysis of proteins.24
5 Colloidal metal oxide nanocrystals

Nonaqueous strategies are very effective in producing highly crystalline oxide nanocrystals. A comprehensive, general overview of the different mechanisms in nonaqueous synthesis is provided elsewhere.194,195 In the following overview of group 4 oxide nanocrystals, we make a distinction between surfactant-free and surfactant-assisted strategies. We will discuss synthetic strategies, surface chemistries, and the current level of mechanistic insight (also pointing out areas that require more research). Finally, we highlight several applications of group 4 metal oxide nanocrystals.

5.1 Surfactant-free synthesis

In the absence of surfactants, nonaqueous chemistry often provides amorphous gels. A prime example is the formation of titania gels from titanium chloride and titanium isopropanoxide, which was discussed in section 3.3. However under particular conditions, crystalline nanoparticles can be obtained. Benzyl alcohol turned out to be one of the most versatile solvents in this respect.196 A metal precursor is typically dissolved in benzyl alcohol and heated in a pressurized vessel (steel bomb or microwave vessel) and a nanocrystal powder is retrieved at the end of the reaction. Table 7 provides an overview of the group 4 oxide nanocrystal syntheses in benzyl alcohol and these reactions are discussed in more details in the following sections. Despite the fact that these syntheses result in aggregated powders it is often possible to functionalize the nanocrystal surface with ligands to obtain stable colloidal dispersions with minimal or no residual agglomeration. Stability in nonpolar solvent is typically provided by fatty acids,197–201 and stability in polar solvents is achieved using 2-[2-(2-methoxyethoxy)ethoxy]acetic acid,202–204 or 2-aminoethyl phosphoric acid.15
Table 7: Synthetic procedures to synthesize group 4 oxide nanocrystal in benzyl alcohol.

<table>
<thead>
<tr>
<th>MO₂</th>
<th>Precursor</th>
<th>[M] (mol/L)</th>
<th>Temp. (°C)</th>
<th>time</th>
<th>crystal phase</th>
<th>size (nm)</th>
<th>reported yield</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>TiCl₄</td>
<td>0.11</td>
<td>40</td>
<td>7 days</td>
<td>anatase</td>
<td>4.0</td>
<td>/</td>
<td>205</td>
</tr>
<tr>
<td>TiO₂</td>
<td>TiCl₄</td>
<td>0.22</td>
<td>40</td>
<td>7 days</td>
<td>anatase</td>
<td>4.1</td>
<td>/</td>
<td>205</td>
</tr>
<tr>
<td>TiO₂</td>
<td>TiCl₄</td>
<td>0.45</td>
<td>40</td>
<td>7 days</td>
<td>anatase</td>
<td>5.0</td>
<td>/</td>
<td>205</td>
</tr>
<tr>
<td>TiO₂</td>
<td>TiCl₄</td>
<td>0.90</td>
<td>40</td>
<td>7 days</td>
<td>anatase</td>
<td>5.6</td>
<td>/</td>
<td>205</td>
</tr>
<tr>
<td>TiO₂</td>
<td>TiCl₄</td>
<td>0.45</td>
<td>50</td>
<td>24 h</td>
<td>anatase</td>
<td>5.0</td>
<td>/</td>
<td>205</td>
</tr>
<tr>
<td>TiO₂</td>
<td>TiCl₄</td>
<td>0.45</td>
<td>75</td>
<td>24 h</td>
<td>anatase</td>
<td>6.1</td>
<td>/</td>
<td>205</td>
</tr>
<tr>
<td>TiO₂</td>
<td>TiCl₄</td>
<td>0.45</td>
<td>100</td>
<td>24 h</td>
<td>anatase</td>
<td>7.3</td>
<td>/</td>
<td>205</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>ZrCl₂OPr</td>
<td>0.27</td>
<td>200</td>
<td>3 min</td>
<td>cubic</td>
<td>2.3</td>
<td>98 %</td>
<td>206</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>ZrO₁Pr</td>
<td>0.17</td>
<td>210</td>
<td>3 days</td>
<td>cubic</td>
<td>3.5</td>
<td>/</td>
<td>200</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>ZrO₁Pr</td>
<td>0.29</td>
<td>210</td>
<td>2 days</td>
<td>cubic</td>
<td>3 - 4</td>
<td>95 %</td>
<td>197</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>ZrO₁Pr</td>
<td>0.32</td>
<td>220</td>
<td>3 days</td>
<td>monoclinic</td>
<td>4.5</td>
<td>/</td>
<td>203</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>ZrO₁Pr</td>
<td>0.32</td>
<td>270</td>
<td>3 days</td>
<td>tetragonal</td>
<td>4.5</td>
<td>/</td>
<td>203</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>ZrO₁Pr</td>
<td>0.13</td>
<td>270</td>
<td>4 h</td>
<td>cubic</td>
<td>3 - 4</td>
<td>98 %</td>
<td>199</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>ZrO₁Pr</td>
<td>0.13</td>
<td>230</td>
<td>6 h</td>
<td>cubic</td>
<td>3.0</td>
<td>23 %</td>
<td>199</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>ZrCl₄</td>
<td>0.13</td>
<td>230</td>
<td>6 h</td>
<td>monoclinic</td>
<td>3.8</td>
<td>95 %</td>
<td>199</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>ZrOEt</td>
<td>0.13</td>
<td>230</td>
<td>6 h</td>
<td>cubic</td>
<td>3.0</td>
<td>25 %</td>
<td>199</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>Zr(ac)₄</td>
<td>0.13</td>
<td>230</td>
<td>6 h</td>
<td>cubic</td>
<td>2.8</td>
<td>47 %</td>
<td>199</td>
</tr>
<tr>
<td>ZrO₂:Eu</td>
<td>ZrO₁Pr +</td>
<td>0.29</td>
<td>230</td>
<td>3 days</td>
<td>cubic</td>
<td>3 - 4</td>
<td>/</td>
<td>207</td>
</tr>
<tr>
<td>ZrO₂:Eu</td>
<td>Eu(ac)₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZrO₂:Eu</td>
<td>ZrO₁Pr +</td>
<td>0.19</td>
<td>230</td>
<td>3 days</td>
<td>cubic</td>
<td>3 - 4</td>
<td>81 %</td>
<td>15</td>
</tr>
<tr>
<td>ZrO₂:Eu</td>
<td>Eu(ac)₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfO₂</td>
<td>HfO₁Bu</td>
<td>0.04</td>
<td>300</td>
<td>2 days</td>
<td>monoclinic</td>
<td>3.0</td>
<td>/</td>
<td>206</td>
</tr>
<tr>
<td>HfO₂</td>
<td>HfOEt</td>
<td>0.07</td>
<td>250</td>
<td>2 days</td>
<td>monoclinic</td>
<td>6 × 3</td>
<td>/</td>
<td>208</td>
</tr>
<tr>
<td>HfO₂</td>
<td>HfCl₄</td>
<td>0.03</td>
<td>220</td>
<td>3 days</td>
<td>monoclinic</td>
<td>4 - 9</td>
<td>/</td>
<td>209</td>
</tr>
<tr>
<td>HfO₂</td>
<td>HfCl₄</td>
<td>0.01</td>
<td>220</td>
<td>3 days</td>
<td>monoclinic</td>
<td>5.0</td>
<td>quant.</td>
<td>210</td>
</tr>
<tr>
<td>HfO₂</td>
<td>HfCl₄</td>
<td>0.03</td>
<td>220</td>
<td>3 h</td>
<td>monoclinic</td>
<td>4.0</td>
<td>quant.</td>
<td>210</td>
</tr>
<tr>
<td>HfO₂</td>
<td>HfCl₄</td>
<td>0.09</td>
<td>220</td>
<td>3 h</td>
<td>monoclinic</td>
<td>5.0</td>
<td>/</td>
<td>198</td>
</tr>
<tr>
<td>HfO₂</td>
<td>HfO₁Bu</td>
<td>0.12</td>
<td>220</td>
<td>4 days</td>
<td>monoclinic</td>
<td>4.0</td>
<td>/</td>
<td>204</td>
</tr>
<tr>
<td>HfO₂:Eu</td>
<td>HfO₁Bu +</td>
<td>0.12</td>
<td>220</td>
<td>4 days</td>
<td>cubic</td>
<td>3.0</td>
<td>/</td>
<td>211</td>
</tr>
<tr>
<td>HfO₂:Eu</td>
<td>Eu(ac)₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfO₂:Eu</td>
<td>HfO₁Bu +</td>
<td>0.12</td>
<td>220</td>
<td>4 days</td>
<td>cubic</td>
<td>3.0</td>
<td>/</td>
<td>211</td>
</tr>
<tr>
<td>HfO₂:Eu</td>
<td>Eu(ac)₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*microwave heating For doping percentages higher than 8 %, otherwise monoclinic.
5.1.1 Titania nanocrystals

In the reaction of TiCl$_4$ and benzyl alcohol, TiO$_2$ NCs are formed with a size that can be tuned (4-8 nm) by changing the reaction conditions.205 Higher temperature and higher precursor concentration lead to larger NC sizes, see also Table 7. Under all conditions (as low as 40 °C), the anatase crystal phase of titania is retrieved (Figure 20). The addition of dopamine or 4-tert-butylcatechol allows dispersing the nanocrystals in water or tetrahydrofuran respectively.212

![Figure 20: XRD powder patterns of nanocrystalline anatase samples prepared with a constant benzyl alcohol to TiCl$_4$ ratio of 20 at (a) 40 °C, (b) 100 °C, and (c) calcined at 450 °C.213 Reprinted with permission from reference.213 Copyright 2002 American Chemical Society.]

Regarding the precursor chemistry, alkoxo species are formed \textit{in–situ} by ligand exchange.

\[
\text{TiCl}_4 + x \text{BnOH} \rightarrow \text{TiCl}_{4-x} \text{(OBn)}_x + x \text{HCl}
\]

(36)

Given the general reactivity of titanium chloride towards alcohols (see section 3), x is most
likely two. The formed chloroalkoxide species can condense to metal oxide nanocrystals, eliminating benzyl chloride (or benzyl ether, to a lesser extent).

\[
\text{TiCl}_2(\text{OBn})_2 \rightarrow \text{TiO}_2 + 2 \text{BnCl}
\]

The condensation reaction likely follows a mechanism involving a pre–coordination and an \(S_N1\) nucleophile substitution (Figure 21). This is supported by the stability of the benzyl carbocation and the low reaction rate of primary alcohols.\(^{214,215}\)

![Figure 21: Condensation reaction (alkyl halide or ether elimination) according to a mechanism of pre–coordination and \(S_N1\) nucleophilic substitution.]

As an alternative to the ligand exchange pathway (Equation 36), it was proposed that benzyl alcohol could react directly with titanium chloride (Equation 38).\(^{195}\)

\[
\text{Ti}–\text{Cl} + \text{ROH} \rightarrow \text{Ti}–\text{OH} + \text{RCl}
\]

The two pathways are hard to distinguish since both essentially yield HCl and benzyl chloride as co–products after condensation. The presence of some amount of benzyl ether in the reaction mixture seems to support the ligand exchange pathway,\(^{194}\) but a more detailed kinetic study is necessary to distinguish between the different mechanisms.

Regarding the crystallization mechanism, detailed (in–situ) x-ray scattering studies have shown that the particles are slightly anisotropic (elongated along the c–axis) and only formed after an induction time of 60 min at a reaction temperature of 85 °C.\(^{216}\) The nanocrystals grow first isotropically, and subsequently switch to anisotropic growth.\(^{216}\) The yield devel-
opment could be fitted by a sigmodial growth curve, with an additional sedimentation term. Sigmoidal kinetics are typically related to autocatalytic processes, but the precise underlying mechanism is still unclear. Interestingly, these kinetics are highly reminiscent of the ones observed by Vioux, see section 3.3.

Also other solvents can be used in the nonaqueous synthesis of titania. The tertiary alcohol tert–butanol readily reacts with TiCl$_4$ to TiO$_2$ NCs (3 nm) at 80 °C. When TiF$_4$ is used, the tert–butyl fluoride product was detected using 19F NMR, which is the expected product for the S$_{N}$1 alkylhalide elimination mechanism. On the other hand, the reaction of TiCl$_4$ with tert–amyl alcohol at 80 – 100 °C results in TiO$_2$ NCs and follows predominantly an E1 mechanism. The stable tertiary carbocation eliminates a proton and titanium hydroxide is formed, see Figure 22. The titanium hydroxide further condenses to titania, with the elimination of water. The results in amyl alcohol bring up the question whether the E1 elimation is also active for the reaction in tert–butanol.

\[
2\text{Ti-OH} \rightarrow \text{Ti-O-Ti} + \text{H}_2\text{O}
\] (39)

![Figure 22: Precursor decomposition according to an E1 mechanism.](image)

A similar E1 elimination pathway was found during the synthesis of TiO$_2$ from titanium isopropoxide in benzylamine at 200 °C. Benzylamine does not exchange for isopropoxide due to the unfavorable pKa difference. It is interesting that isopropyether was not detected, thus excluding the S$_{N}$1 pathway. Instead titanium isopropoxide releases propene and forms titanium hydroxide. The latter condenses with titanium isopropoxide motieties to oxide and releases isopropanol.

\[
\text{TiOH} + \text{RO-Ti} \rightarrow \text{Ti-O-Ti} + \text{HOR}
\] (40)

Even though benzylamine also self-condenses to dibenzylamine – producing ammonia, TiO$_2$
was formed and not TiN, showcasing the high oxophilicity of titanium.

5.1.2 Zirconia nanocrystals

ZrO$_2$ NCs have been synthesized via an S$_N$1 nucleophile substitution mechanism. Smarsly et al. first synthesized ZrCl$_2$(OR)$_2$ from zirconium chloride via two steps (Equations 41–42) or from zirconium propoxide and acetyl chloride (Equation 25).\(^{206}\)

\[
\text{ZrCl}_4 + \text{excessROH} \rightarrow \text{ZrCl}_3\text{OR} + \text{HCl} \tag{41}
\]

\[
2 \text{ZrCl}_3\text{OR} + \text{Zr(OR)}_4 \rightarrow \text{ZrCl}_2(\text{OR})_2 \tag{42}
\]

The resulting precursor is mixed with hexanol and benzyl alcohol and ZrO$_2$ NCs (2-2.5 nm) are formed in a few minutes at 200 °C under microwave radiation, see Figure 23. Benzyl chloride was found as the main reaction by–product, confirming the mechanism. Only at an equal ratio of alkoxide to chloride, crystalline material (cubic zirconia) was obtained. The nanocrystals are dispersible in water, up to 45 w% ZrO$_2$.

![Figure 23: ZrO$_2$ nanocrystal synthesized from ZrCl$_2$(OR)$_2$ in benzylalcohol. (A) TEM image and (B) XRD diffractogram showing cubic zirconia. \(^{206}\) Reproduced from Ref.\(^{206}\) with permission from the Royal Society of Chemistry.](image)

ZrO$_2$ NCs are also produced on a large scale by reacting zirconium isopropoxide (complexed with isopropanol) in benzyl alcohol for 2 days at 210 °C.\(^{197,200}\) Benzyl ether and isopropanol were detected by 13C NMR as the main reaction by–products, suggesting ligand
exchange as a first step.

\[
\text{Zr(OrPr)}_4 + x \text{BnOH} \rightarrow \text{Zr(OrPr)}_4 \text{(OBn)}_x + x \text{iPrOH} \quad (43)
\]

In a second step, the alkoxide groups condense to form the oxide.

\[
\text{Zr} - \text{OBn} + \text{BnO} - \text{Zr} \rightarrow \text{Zr} - \text{O} - \text{Zr} + \text{Bn} - \text{O} - \text{Bn} \quad (44)
\]

After synthesis, the particles can be easily dispersed in nonpolar solvents by the addition of carboxylic acids, e.g., octadecanoic acid (Figure 24). Using zirconium isopropoxide, the NCs are 3-4 nm in size and have the cubic crystal structure. However, using the cheaper zirconium n-propoxide (70 w% in propanol), the NCs are 4.5 nm and a mixture of tetragonal and monoclinic zirconia. The monoclinic fraction can be minimized by performing the reaction at 270 °C but the resulting particles cannot be dispersed with carboxylic acids. A note is in order regarding the distinction between the cubic and tetragonal phase of zirconia. Due to the broadening of the reflections, XRD cannot make the distinction and other techniques such as Raman spectroscopy, or x-ray Pair Distribution Function analysis are required. It is likely that most (if not all) of the cubic phases that are mentioned in this section are actually tetragonal.

Figure 24: TEM images of ZrO$_2$ nanocrystals after post-functionalization with octadecanoic acid at two different magnifications. Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

The reaction of zirconium isopropoxide in benzyl alcohol can be accelerated under mi-
crowave heating and reaches full yield after 4 hours at 270 °C. Here, 4 nm tetragonal (or cubic) zirconia is obtained. At 230 °C, zirconium isopropoxide, zirconium ethoxide, or zirconium acetate yield tetragonal zirconia while zirconium chloride yields monoclinic zirconia (see also Table 7). The difference in crystal structure was ascribed to the presence of HCl in the latter reaction mixture. The presence of water can also steer the outcome of the synthesis and is even capable of transforming tetragonal ZrO₂ NCs into monoclinic NCs upon prolonged heat treatment at 210 °C. Small amounts of water, generated by ZrO₂-catalyzed alcohol dehydration, cause monoclinic impurities in the final product. By adding sodium as a dessicant to the reaction mixture, phase pure tetragonal ZrO₂ was obtained.

5.1.3 Hafnia nanocrystals

Monoclinic HfO₂ NCs were synthesized from Hf(OEt)₄ in benzyl alcohol at 200 °C. The NCs are ellipsoidal with a long axis of around 6 nm and a short axis of 3 nm. The by-products are mainly dibenzyl ether, with trace amounts of ethyl benzyl ether. Diethyl ether was not detected. Therefore, it was concluded that the first step in this mechanism is ligand exchange between ethoxide and benzyl alcohol.

\[
\text{Hf(OEt)}_4 + x \text{BnOH} \rightarrow \text{Hf(OEt)}_{4-x}(\text{OBn})_x + x \text{EtOH} \quad (45)
\]

In a second step, the alkoxide groups condense to form the oxide.

\[
\text{Hf} - \text{OR} + \text{RO-Hf} \rightarrow \text{Hf} - \text{O-Hf} + \text{R-O-R} \quad (46)
\]

Primary alcohols are ideal substrates for S_N2 reactions and benzyl alcohol is both reactive in a S_N1 and S_N2 mechanism. Since the ethyl ethers were hardly observed, the condensation reaction most likely proceeds through an S_N1 mechanism, as shown before in Figure 21.

When hafnium tert-butoxide is heated in benzyl alcohol at 300 °C, 3 nm monoclinic hafnia is obtained after 48 hours. Similar particles (4 nm) are obtained by heating the mixture
at 220 °C for 4 days. When the same precursor is heated in benzylamine, 2.6 nm cubic hafnia is obtained. Given the absence of an ether elimination mechanism in benzylamine, we speculate that the oxide is formed by an E1 mechanism. The oxygen deficient reaction mixture is most likely responsible for oxygen vacancies and thus stabilization of the cubic phase.

The synthesis of monoclinic HfO$_2$ NCs from HfCl$_4$ in benzyl alcohol at 220 °C also delivers large quantities of dibenzylether. The process probably involves a ligand exchange, releasing HCl.

$$\text{HfCl}_4 + x \text{BnOH} \rightarrow \text{HfCl}_4 - x(\text{OBn})_x + x \text{HCl} \quad (47)$$

The formed alkoxo ligands can undergo an ether elimination condensation. However, it cannot be fully excluded that benzyl chloride was transiently formed and subsequently reacted with benzyl alcohol to dibenzyl ether and HCl. The large excess of ether (up to 80 % of the final reaction mixture) is due to the Williamson ether synthesis, catalyzed by HCl. When the reaction is performed over three days with conventional heating in a pressure bomb, the nanocrystals are slightly larger (5 nm) compared to three hours of microwave heating (4 nm). In both cases, full yield was achieved. After microwave synthesis, the nanocrystal aggregates can be dispersed in ethanol or water, since they are charge stabilized by HCl (produced during synthesis), see Figure 25. The aggregates can be broken up in chloroform by a combination of carboxylic acid ligands and a suitable base. The base is necessary to remove the initially present HCl from the surface. In nonpolar solvents, HCl cannot be displaced by carboxylic acids because HCl is a stronger acid. However, under basic conditions, the carboxylate anion outcompetes the chloride ligand (Figure 26).

5.1.4 Lanthanide doped zirconia and hafnia nanocrystals

The benzyl alcohol route can also produce ZrO$_2$ and HfO$_2$ NCs doped with lanthanides. Europium acetate and zirconium isopropoxide isopropanol complex react at 230 °C to cubic zirconia, with varying doping levels from 1-13 %. Note the higher temperature required
Figure 25: Size distribution by DLS of HfO\(_2\) NCs dispersed in either ethanol (as synthesized) or chloroform (with dodecanoic acid and oleylamine, dispersion was five times purified). The insets show the corresponding TEM images.\(^{198}\) Reprinted with permission from reference.\(^{198}\) Copyright 2014 American Chemical Society

Figure 26: The exchange of HCl for carboxylic acids is unfavorable due to the pKa difference. By adding a base (amine), the proton transfer step is eliminated and carboxylate can replace chloride.
compared to the pure zirconia synthesis (210 °C). The NCs are 4 nm in size and have an optimized PLQY of 8.7 % at 11 % Eu doping. The nanocrystals can be dispersed in chloroform by eicosanoic acid. A similar procedure with zirconium n-propoxide and either europium or terbium acetate also produces excellent yields (80 %). The particles could be dispersed in water by a surface functionalization with 2-aminoethyl phosphoric acid. The Eu-doped particles have red emission (PLQY = 33 %) and the terbium doped particles have green emission (PLQY = 5 %), see Figure 27. Lanthanide doped HfO₂ NCs were synthesized from the corresponding lanthanide acetate, hafnium tertbutoxide and benzyl alcohol at 220°C. Below 5 % lanthanide doping, the monoclinic structure is obtained, while above 5 % the cubic structure is stabilized.

![Figure 27](image)

Figure 27: (a) Eu-doped ZrO₂ (10 mol % Eu) and (b) Tb-doped ZrO₂ (10 mol % Tb) nanocrystals in water. (c) PL excitation (left) and PL emission (right) spectra for both types of nanocrystals when either indirectly excited at 280 nm (solid line) or directly excited at 395 nm for Eu and at 380 nm for Tb (dotted line). Reprinted with permission from reference. Copyright 2012 American Chemical Society.

5.2 Surfactant-assisted synthesis

Surfactant-assisted syntheses generally lead to the highest quality of nanocrystals, especially regarding polydispersity and colloidal stability. For the group 4, a popular and powerful strategy involves the reaction of metal halides with metal alkoxides in tri-n-octylphosphine oxide above 300°C. Other methods are typically based on nucleophilic substitution (ester or amide formation).
5.2.1 Reaction of metal chlorides with metal alkoxides

Table 8: Synthetic procedures to synthesize group 4 oxide nanocrystal via surfactant assisted reactions between metal chloride and metal alkoxides.

| MO₂ | surfactant | Precursors | |M| (mol/kg) | Temp. | time | crystal phase | size (nm) | reported yield | Ref |
|------|------------|------------|--------------|---------------|--------|------|---------------|----------|----------------|-----|
| TiO₂ | 1.6 eq TOPO | TiCl₄ + TiOPr | 0.2 | 300 °C | 5 min | anatase | 9.2 | < 50 % | 226 |
| TiO₂ | 1.6 eq TOPO | TiCl₄ + TiOPr | 0.2 | 300 °C | 5 min | anatase | 7.3 | < 50 % | 226 |
| TiO₂ | 13.0 eq TOPO | TiCl₄ + TiOPr | 0.2 | 300 °C | 5 min | anatase | 5.5 | < 50 % | 226 |
| TiO₂ | 1.6 eq TOPO | TiBr₄ + TiOPr | 0.2 | 300 °C | 5 min | anatase | 6.1 | < 50 % | 226 |
| TiO₂ | 1.6 eq TOPO | TiI₄ + TiOPr | 0.2 | 300 °C | 5 min | anatase | 3.8 | < 50 % | 226 |
| TiO₂ | 4.7 eq TOPO | TiCl₄ + TiOPr | 0.3 | 300 °C | 20 min | anatase | 3.5 × 12-18 | / | 227 |
| TiO₂ | 4.2 eq TOPO | TiCl₄ + TiOPr | 0.3 | 300 °C | 20 min | anatase | 2.7 × 14-22 | / | 227 |
| TiO₂ | 2.2 eq TOPO | TiCl₄ + TiOPr | 0.3 | 300 °C | 20 min | anatase | 2.7 × 17-28 | / | 227 |
| ZrO₂ | 5.8 eq TOPO | ZrCl₄ + ZrO’Pr | 0.15 | 340 °C | 2 h | tetragonal | 4.0 | 90 % | 68 |
| ZrO₂ | 5.8 eq TOPO | ZrBr₄ + ZrO’Pr | 0.15 | 340 °C | 2 h | tetragonal | 4.0 | 90 % | 68 |
| ZrO₂ | 5.8 eq TOPO | ZrCl₄ + ZrO’Pr | 0.15 | 340 °C | 2 h | tetragonal | 3.7 | 80 % | 228 |
| ZrO₂ | 5.8 eq TOPO | ZrCl₄ + ZrO’Pr | 0.15 | 340 °C | 2.5 h | tetragonal | 3.7 | 50 % | 228 |
| ZrO₂ | 6.5 eq TOPO | ZrCl₄ + ZrO’Pr | 0.4 | 340 °C | 2 h | tetragonal | 4.0 | 60 % | 228 |
| HfO₂ | 6.5 eq TOPO | HfCl₄ + HO’Pr | 0.4 | 360 °C | 2 h | tetragonal | 5.5 | / | 42 |
| HfO₂ | 6.5 eq TOPO | HfCl₄ + HO’Pr | 0.4 | 400 °C | 2 h | monoclinic | 3.4 × 7.6 | / | 42 |
| HfO₂ | 6.5 eq TOPO | HfBr₄ + HO’Pr | 0.4 | 360 °C | 2 h | monoclinic | 3.7 | / | 42 |
| HfO₂ | 6.5 eq TOPO | HfCl₄ + HO’Pr | 0.4 | 340 °C | 2 h | monoclinic | 2.4 × 6.9 | / | 66 |
| HfO₂ | 6.5 eq TOPO | HfCl₄ + HO’Bu | 0.4 | 340 °C | 2 h | monoclinic | 2.3 × 13 | / | 62 |
| HfO₂ | 6.5 eq TOPO | HfCl₄ + HO’Pr | 0.4 | 360 °C | 2 h | monoclinic | 3.5 × 9.2 | / | 230 |
| HfO₂ | 1.5 eq OLAm | HfCl₄ + HO’Pr | 0.4 | 315 °C | 2 h | monoclinic | 2.6 × 10.5 | / | 230 |
| HfO₂: Ce | 6.5 eq TOPO | HfCl₄ + CeO’Bu | 0.4 | 340 °C | 2 h | tetragonal | 3.1 | / | 72 |
| HfO₂: La | 6.5 eq TOPO | HfCl₄ + LaO’Pr | 0.4 | 340 °C | 2 h | tetragonal | 3.3 | / | 72 |
| Zr,Hfₓ₂O₂ | 6.5 eq TOPO | ZrCl₄ + HfO’Pr | 0.4 | 360 °C | 2 h | tetragonal | 4.3 | / | 42 |
| Zr,Hfₓ₂O₂ | 6.5 eq TOPO | ZrCl₄ + HfO’Pr | 0.4 | 360 °C | 2 h | tetragonal | 4.6 | / | 42 |
| Zr,Hfₓ₂O₂ | 6.5 eq TOPO | HfCl₄ + ZrO’Pr | 0.4 | 340 °C | 2 h | tetragonal | 5.6 | / | 66 |
| Zr,Hfₓ₂O₂ | 6.5 eq TOPO | ZrCl₄ + HfO’Pr | 0.4 | 340 °C | 2 h | tetragonal | 5.6 | / | 66 |
| Zr,Hfₓ₂O₂ | 6.5 eq TOPO | HfCl₄ + ZrO’Pr | 0.4 | 340 °C | 2 h | monoclinic | 2.5 × 5.7 | / | 66 |
| Zr,Hfₓ₂O₂ | 6.5 eq TOPO | ZrCl₄ + HfO’Pr | 0.4 | 340 °C | 2 h | monoclinic | 2.8 × 5.1 | / | 66 |

* with a small rutile impurity
* with a small monoclinic impurity

Titanium oxide nanocrystals. In 1999, Colvin et al reported the synthesis of anatase TiO₂ NCs, see Figure 28.²²⁶ Titanium chloride was dissolved in heptadecane with 12.5 m% tri- n-octylphosphine oxide (TOPO) as surfactant (1.6 equivalents to Ti), and titanium isopropoxide was injected at 300 °C.

\[
\text{TiCl}_4 + \text{Ti(OiPr)}_4 \xrightarrow{0.2 \text{ mol/kg, } 300^\circ\text{C}, \text{TOPO, heptadecane}} 2 \text{TiO}_2 + 4 \text{iPrCl}
\]

(48)

The nanocrystals are very crystalline but somewhat aggregated and irregular in size and shape. In the absence of TOPO, the reaction is finished in seconds and the crystallite size is
above 10 nm. In the presence of TOPO, the reaction slows down (5 min until completion) and yields smaller nanocrystals (5.5 nm in pure TOPO and 7.3 nm in the mixture). This is consistent with surfactant binding to the nanocrystal surface, slowing down the particle growth rate, leading to more particles with smaller sizes.231

![Figure 28: TEM characterization of anatase titania nanocrystals synthesized from titanium chloride and titanium isopropoxide in TOPO/heptadecane at 300°C.226 Reprinted with permission from reference.226 Copyright 1999 American Chemical Society.]

Also other titanium halide and alkoxides can be used. While the reaction rate is insensitive to the halide, it increases with the branching of the alkoxide (Me < Et < iPr < tBu). This confirms again that the reaction proceeds primarily through an S\textsubscript{N}1 or E1 mechanism. Surprisingly, the reaction rate did not have an influence on the nanocrystal size. Varying the halide from fluoride to iodide did change the size from 9.2 nm to 3.8 nm. Note that using TiI\textsubscript{4}, a small rutile impurity was detected via XRD. The impact of the halide on size and crystal structure is not surprising since HCl was found bound to the TiO\textsubscript{2} NC surface, together with hydrogen bonded TOPO and also dioctylphosphinic acid (a decomposition product of TOPO).97 As such, we hypothesize that the larger halide ligands slow the growth
rate of the nanocrystals. Under basic conditions (presence of amine), all original surface species can be exchanged for oleic acid, yielding a uniform ligand shell.\(^7\)

The reaction products where characterized via GC–MS and in case of Ti(OEt)\(_4\), mostly ethylchloride was detected. In case of Ti(OiPr)\(_4\), propene and 2-chloropropane was detected. The presence of propene could be due to a competing E1 mechanism (see above) or because of the dehalogenation reaction of 2-chloropropane:

\[
\text{CH}_3\text{--CHCl--CH}_3 \rightarrow \text{CH}_2\text{=CH--CH}_3 + \text{HCl} \tag{49}
\]

To explain the formation of crystalline material and not the formation of gels, the authors hypothesized that the titanium halide is the crystallization agent.\(^{226}\) However, upon injection of the second precursor, ligand redistribution competes with direct halide elimination. As a result titanium chloroisopropoxides are formed. It is possible that simply the high reaction temperature or the presence of HCl (see further) provides the necessary energy to induce chemical reversibility and allow the elimination of defects. Other researchers obtained (poorly crystalline) anatase TiO\(_2\) upon injection of titanium isopropoxide in TOPO at 300 °C, without titanium chloride.\(^3\) This reaction most likely follows the E1 pathway.

Alivisatos et al. used a similar procedure but introduced lauric acid as a co–surfactant and varied the TOPO/lauric acid ratio while keeping the total amount of surfactant at 5.2 equivalents to Ti.\(^{227}\) Low concentrations of lauric acid yielded bullet (3.5 × 12 nm) and diamond (3.5 × 18 nm) shaped NCs. High concentrations of lauric acid delivered nanorod with lengths up to 28 nm. The authors attributed the anisotropic growth to selective binding of lauric acid to the (001) facets. When the nanorods are left in the reaction mixture for 24 hours, they ripen to spheres.\(^{227}\)

Zirconium oxide nanocrystals. Zirconium chloride and zirconium isopropoxide isopropanol complex are dissolved at 80 °C in pure, molten TOPO and heated to 340 °C for 2 hours to form 4 nm ZrO\(_2\) NCs, see Figure 29.\(^{68}\) While originally ZrCl\(_4\) was used,\(^ {68}\) its
polymeric structure causes irreproducibility in dissolution and instead the monomeric THF complex was introduced.97

\[1.25 \text{ZrCl}_4 + \text{Zr(OiPr)}_4 \cdot \text{iPrOH} \underset{0.45 \text{ mol/kg, 340°C}, \text{TOPO}}{\rightarrow} 2.25 \text{ZrO}_2 + 5 \text{iPrCl}\] (50)

![Figure 29: Zirconia nanocrystals synthesized in TOPO from zirconium chloride and zirconium isopropoxide.68 Reprinted with permission from reference.68 Copyright 2003 American Chemical Society.](image_url)

Similar to the above described synthesis of TiO\textsubscript{2}, smaller nanocrystals are obtained with ZrBr\textsubscript{4} (3 nm). However, there are also some differences. First, a heat–up method is used for ZrO\textsubscript{2}, not a hot–injection. Second, the reaction temperature is higher. Third, Ti(OiPr)\textsubscript{4} is a liquid, while Zr(OiPr)\textsubscript{4} \cdot iPrOH is a solid, precluding injection. Fourth, the ratio of ZrCl\textsubscript{4} and Zr(OiPr)\textsubscript{4}.iPrOH is 1.25. Joo \textit{et al.} introduced this ZrCl\textsubscript{4} excess to compensate for the extra isopropanol in the isopropoxide complex. Fifth, the reaction is performed in pure TOPO. Finally, and most importantly, the resulting nanocrystals are exceptionally monodisperse and of unprecedented crystalline quality, as confirmed by Pair Distribution Function analysis.222 Banerjee \textit{et al.} varied the nature of the alkoxide (Et, Pr, iPr, Bu, tBu) and found that the final ZrO\textsubscript{2} NCs have consistently the tetragonal crystal structure.66
authors also report slight changes in final nanocrystal diameter (4.2-5.7 nm), depending on the alkoxide.

Unfortunately, the surface chemistry is highly complex. While it was initially assumed that TOPO was the sole ligand, small amounts of TOPO decompose to potent ligands; dioctylphosphinic acid and P,P'-(dioctyl) pyrophosphonic acid.42,97 The latter is the self-condensation product of octylphosphonic acid. In addition, the reaction mixture contains large amounts of HCl. Consequently, the surface is covered by HCl, hydrogen bonded TOPO, dissociated dioctylphosphinic acid and deprotonated P,P'-(dioctyl) pyrophosphonate, see Figure 30.97 Under basic conditions (amine), oleic acid can replace chloride, TOPO and dioctylphosphinic acid but not P,P'-(dioctyl) pyrophosphonate. A uniform ligand shell could only be obtained by ligand exchange for a phosphonic acid.97 Phosphonic acids have a much higher binding affinity for oxide surfaces than carboxylic acids.232

\[\text{Figure 30: The surface chemistry of ZrO}_2 \text{ NCs synthesized via an alkyl halide elimination in TOPO.} \]

The precursor chemistry and the precursor conversion mechanism was recently studied in detail.229 Upon dissolution of the reagents, the mixed chloroalkoxide is formed as the actual precursor, see Equation 51).

\[\text{ZrCl}_4 + \text{Zr(O}^\text{iPr})_4 \cdot ^\text{iPrOH} \longrightarrow 2 \text{ZrCl}_2(\text{O}^\text{iPr})_2 + ^\text{iPrOH} \quad (51) \]

As expected based on section 3, the zirconium dichloride diisopropoxide is unreactive to
isopropanol. There is thus no need to work with an excess of ZrCl$_4$. Upon heating to 340 °C, the precursor decomposes, generating extra isopropanol and regenerating ZrCl$_4$ (evidenced by 1H and 31P NMR spectroscopy respectively). Quantitative GC measurements revealed a large amount of propene and only a minor fraction of isopropyl chloride. From this data, the mechanism in Figure 31 was proposed. In a first step, the precursors decomposes according an E1 elimination (releasing propene). Subsequently, the ligands redistribute and the hydroxide moieties condense with isopropoxide, forming zirconia and isopropanol. While this is a formal pathway, reality could be more complex and not necessarily sequential. Other condensation steps can be conceived, with the elimination of HCl or water. However, both these elimination products can react with the isopropoxide, releasing isopropanol, and the overall outcome will be the same as the one presented in Figure 31. The E1 based mechanism has a theoretical yield of 50 % while the S$_N$1 mechanism predicts 100 % yield.

$$\text{ZrCl}_2(\text{O}^{i}\text{Pr})_2 \rightarrow \text{ZrO}_2 + 2 \text{iPrCl}$$

Based on the experimental yield of 60 %, the ratio of E1 and S$_N$1 is 80:20. Given that ZrCl$_4$ is formed as a by-product of the reaction, it could be used as a precursor for the seeded-growth of the ZrO$_2$ NCs. Repeated injections of zirconium isopropoxide isopropanol complex (dissolved in TOPO at 150°C), regenerates the active chloroalkoxide precursor, and the nanocrystals grow from 4 nm to 5.4 nm.229 The procedure simultaneously increases the yield since a higher fraction of zirconium precursor ends up in the final ZrO$_2$ NC. This approach has the potential to grow even larger nanocrystals and thus provide a reliable, size–tunable synthesis.

Hafnium oxide nanocrystals. HfO$_2$ nanocrystals were synthesized from HfCl$_4$ and Hf(OiPr)$_4$ · iPrOH in pure TOPO by Brus et al.42 At 360 °C, quasi–spherical 5.5 nm HfO$_2$ NCs in the tetragonal crystal structure were obtained, although small impurities of monoclinic hafnia are present. The same mechanism and surface chemistry was found to apply as
Figure 31: The proposed pathway for the formation of zirconia nanocrystals is based on E1 elimination, ligand redistribution, and condensation reactions.229 Reprinted with permission from reference.229 Copyright 2022 American Chemical Society

for zirconia NCs.97,229

\[
\text{HfCl}_4 + \text{Hf(OiPr)}_4 \cdot \text{iPrOH} \xrightarrow{0.4 \text{ mol/kg}, 360-400^\circ\text{C} \text{TOPO}} \text{HfO}_2 + \text{HfCl}_4 + 2 \text{C}_3\text{H}_6 + 3 \text{iPrOH} \quad (53)
\]

Similar to the TiO\textsubscript{2} and ZrO\textsubscript{2} case, smaller NCs (3.7 nm) are obtained with HfBr\textsubscript{4}. In addition, the crystal phase changed to the monoclinic structure. This reminds us of the rutile impurities in TiO\textsubscript{2} with titanium iodide. At 400 °C, hafnia nanorods (3.4 × 7.6 nm) are formed with the monoclinic crystal structure.42

In contrast to the original report of Brus et al., other authors obtained monoclinic hafnia nanorods at temperatures varying from 315 - 360 °C.66,230 Interestingly, the HfO\textsubscript{2} nanorods synthesized in TOPO exhibited paramagnetic behaviour due to oxygen defects.230 The defected nature of the nanorods was confirmed by TEM and UV-Vis (absorption below the band gap energy). Even more defected HfO\textsubscript{2} nanorods with a reduced bandgap were synthesized in octadecene and oleylamine at 315 °C. The latter nanorods feature a strong ferromagnetic component, next to a paramagnetic component, and have a strong absorption in UV-VIS around 4.6 and 5.4 eV. Nanocrystals that were annealed at 750 °C displayed diamagnetic character, confirming the relation between oxygen defects and the magnetic properties. No ferromagnetic nanocrystals are obtained when oleic acid is added in addition to oleylamine.
This is likely due to a change in mechanism towards nucleophilic addition elimination (see further). The authors briefly mention that ferromagnetic nanocrystals could be obtained in octadecene or benzyl ether at lower temperature (200-300 °C) but no characterization is provided. A word of caution is in place since octadecene has been shown to polymerize at these reaction temperatures and the resulting polymer impurity is difficult to separate from the formed nanocrystals. In addition, given the known reaction of ethers with titanium halides, also benzyl ether is most likely not an inert solvent.

Banerjee et al. reported the monoclinic crystal structure for different types of alkoxide precursors (Et, iPr, nBu, tBu, 2-Et-Hex). However, they observe large size differences. For the primary alkoxides (Et, nBu), the NCs are very small (2-3 nm). With increased branching (iPr, tBu), nanorods are obtained with increased aspect ratio. For hafnium tert–butoxide, nanorods 2.3 nm in diameter and 13 nm in length were obtained. The authors report a lower yield for the reaction with Hf(OEt)_4 compared to Hf(OtBu)_4. Therefore, the observed size differences are likely due to the faster kinetics of hafnium tert–butoxide. Furthermore, it was possible to grow even longer nanorods (2.9 × 32 nm, see Figure 32) by periodically injecting the reaction mixture with small amounts of Hf(OtBu)_4 precursor, in an effort to keep the monomer concentration below the nucleation threshold and promote growth. The final ratio of tert–butoxide to chloride increase is 10, and this seeded growth mechanism can be rationalized in the same way as for the case of zirconia. Structurally, the nanorods consist of multiple crystalline domains, separated by twinning planes, see Figure 32. It is believed that the nanocrystals nucleate in the tetragonal structure and undergo a phase transformation upon cooling.

Tetragonal HfO_2 NCs are obtained by reacting one equivalent of hafnium chloride with one equivalent of cerium tert-butoxide or lanthanum isopropoxide. The nanocrystals are smaller than 4 nm and contain either 2.4 % Ce or 4.7 % La. The author attribute the stabilization of the tetragonal phase to the small nanocrystals size. However, this contradicts the earlier observation of 2-3 nm monoclinic HfO_2 obtained from hafnium ethoxide. It is
more likely that also the incorporation of the lanthanide plays a crucial role, given similar results for the surfactant-free synthesis in benzyl alcohol.211

Mixed metal oxide nanocrystals. Given the almost identical ionic radius of Zr4+ and Hf4+, hafnia and zirconia easily form solid solutions of any composition in bulk. Brus et al synthesized Hf\textsubscript{x}Zr\textsubscript{1-x}O\textsubscript{2} nanocrystals with compositions varying from x = 0.11 – 0.84 by adjusting the ratio of zirconium and hafnium precursors.42 Care was taking to balance the number of isopropoxides and halides (of course disregarding the coordinated isopropanol). ICP analysis shows that the Zr/Hf ratio is consistently higher in the final nanocrystals, compared to the reagent mixture.42,66 This indicates a higher reactivity of Zr compared to Hf and an incomplete reaction. The incorporation of hafnium seems to depend on the choice of precursor. For example, from an equimolar mixture of HfCl\textsubscript{4} and Zr(O\textit{i}Pr)\textsubscript{4}, Hf\textsubscript{x}Zr\textsubscript{1-x}O\textsubscript{2} nanocrystals are obtained with x = 0.35, while for an equimolar mixture of Hf(O\textit{i}Pr)\textsubscript{4} and ZrCl\textsubscript{4}, x = 0.45.42

Hf\textsubscript{x}Zr\textsubscript{1-x}O\textsubscript{2} NCs with x < 0.5 are quasi–spherical and have the tetragonal structure.42 If HfBr\textsubscript{4} or ZrBr\textsubscript{4} are used, instead of the chlorides, the particles are smaller and still tetragonal. For x < 0.5, the reaction temperature does not have a significant effect on the morphology or phase of the NCs. In contrast, NCs with x > 0.5 form in the tetragonal structure at 360 °C, but the NCs are polydisperse and have irregular shape. At 400 °C, monoclinic nanorods...
are formed, 3.4 nm in diameter and 7.6 nm in length.42 Steigerwald \textit{et al.} later explained the tetragonal to monoclinic phase transformation by a Martensitic tranformation.67 In a Martensitic transformation all the atoms in a crystallite move simultaneously, in contrast to diffusion mediated transformations. They argue that tetragonal NCs already form at 340 °C after 10 min, and heating further to 400 °C takes 30 min. Therefore, the monoclinic nanorods must be formed by transformation of previously formed NCs. The tetragonal to monoclinic transformation is associated with 4 % volume increase, resulting in nanorods with twinned structures.

Banerjee \textit{et al.} reported that the composition and structure of $\text{Hf}_x\text{Zr}_{1-x}\text{O}_2$ NCs can be steered by the nature of the alkoxide (Et, Pr, iPr, nBu, tBu, 2-Et-Hex).66 For equimolar Zr and Hf reagent mixtures, x varied from 0.27-0.49. For most metal alkoxide/ metal chloride combinations, $x = 0.37$ and the structure is tetragonal. Notable exceptions are

- Hf(OtBu)$_4$ and Zr(OtBu)$_4$ yield monoclinic nanorods.
- Hf(OEt)$_4$ and Zr(OEt)$_4$ yield $x = 0.44$
- Zr(OnPr)$_4$ yields $x = 0.49$
- Hf(O(2−Et−Hex))$_4$ yields $x = 0.27$

The authors acquired most of their data at 340 °C because of the better crystal quality, but mention that similar trends were observed at 300 and 400 °C. Interestingly, Banerjee \textit{et al.} observes no difference in composition between a reaction of HfCl$_4$ and Zr(OiPr)$_4$, and a reaction of Hf(OiPr)$_4$ and ZrCl$_4$, nor for the other alkoxides.66 Finally, the authors hypothesize that the monoclinic structure is favored in faster reactions and thus represent the kinetic product while the tetragonal phase is more thermodynamically stable in nanocrystals < 30 nm. This seems to contradict the theory of Martensitic transformation.

Brus \textit{et al.} did not succeed in synthesizing ZrTiO$_4$ or HfTiO$_4$ nanocrystals. The Ti precursors are much more reactive than the Hf or Zr precursors and therefore, no cross-
condensation happened. Only anatase TiO$_2$ NCs are retrieved.42 Indeed, Doong et al. studied the cross-condensation between titanium and zirconium in more detail and found that only small amounts of Zr were incorporated in the TiO$_2$ NCs.234 Even in the case where ICP-MS and XPS suggested higher contents of Zr, the XRD did not show any reflections of ZrTiO$_4$.

Discussion. From the above collection of results, we infer that the reactivity of the metals can be ranked as Ti $>>$ Zr $>$ Hf. The precursor conversion follows mostly an S_N1 and E1 mechanism, with E1 being the dominant mechanism for zirconia and hafnia. Consequently, the rate of the reaction increases with branching of the alkoxide. While the alkoxide has no influence on the size for TiO$_2$, there are small differences for ZrO$_2$, and even larger sizes differences of HfO$_2$ nanorods. Given the slower kinetics of Zr and Hf, this is most likely due to incomplete reaction of the slower precursors. The nature of the halide has little influence on the rate but changes the NC size and sometimes even the crystal structure. There seems to be some disagreement on the structure of HfO$_2$ and Hf$_x$Zr$_{1-x}$O$_2$ NCs, with some authors reporting a tetragonal structure below 360 °C and others a monoclinic structure. Finally, while the precursor conversion mechanism of these reactions is thus well–studied, insight in the precise mechanism of nucleation and growth is still missing, hampering the development of more complex oxide NCs.

5.2.2 **Nucleophilic addition/elimination**

Nucleophilic addition and elimination is another mechanism for oxide formation. The carbonyl carbon of a carboxylic acid can be attacked by nucleophiles such as alcohols/alkoxides or amines. In one particular strategy, a metal carboxylate directly reacts with a metal alkoxide, giving an ester as a coproduct.

\[
M\text{–OO}CR + RO\text{–M} \rightarrow M\text{–O}–M + RCOOR
\]
Mixed metal oxide gels can be obtained, e.g., from the reaction between zirconium propoxide and silicon acetate. One can also start from metal carboxylates and react them with alcohols (alcoholysis) or amines (aminolysis) to form esters or amides respectively.

\[M\text{–}OOCR + ROH \rightarrow M\text{–}OH + RCOOR \quad (54) \]

\[M\text{–}OOCR + RNH_2 \rightarrow M\text{–}OH + RCONHR \quad (55) \]

The metal hydroxide species formed in this process can further condense to oxide with the elimination of water. While many oxide NCs are prepared by reacting metal acetates with benzyl alcohol, this strategy has not been pursued for the group 4 oxides. This could be related to the difficulty in preparing pure metal acetates (or other carboxylates) for these metals. As a notable exception, trifluoroacetates have been prepared directly from the respective metal chloride, see section 3. Using oleylamine and hafnium trifluoroacetate, monoclinic HfO_2 NCs (5 nm) were produced in almost quantitative yield, see Figure 33. The authors mention a gel-like phase at 290 °C, and a subsequent decrease in viscosity at 330 °C, presumably because of crystallization of the gel into NCs. Similarly, monoclinic ZrO_2 NCs (5.5 nm) are formed. The amide of trifluoroacetic acid and oleylamine was detected via mass spectrometry. Similar attempts with zirconium acetate, oleate and trichloroacetate failed. In addition, the crystallinity is lower using saturated amines such as octadecylamine. The same strategy with TiO(TFA)_2 also yields anatase TiO_2 NCs (6 nm).

Titanium oleate species are formed in situ by the dissolution of TiCl_4 or TiF_4 in octadecene by oleic acid (see also section 3). The uncharacterized precursors (possibly TiCl_2(OOCR)) were injected in an octadecanol or oleylamine solution in octadecene and heated to 290 °C to form very small seed crystals. Subsequent slow injection of more precursor solution leads to growth of the nanocrystals with control over crystal structure (anatase and brookite), shape, and the exposed facets by choice of nucleophile (alcohol or amine) and halide (chloride or fluoride), see Figure 34. By adding other transition metal oleates to the
precursor solution, doped brookite TiO$_2$ nanorods were synthesized from TiCl$_4$ following a pure aminolysis strategy.239 The above syntheses produces large amounts of polymerized octadecene because the polymerization is catalyzed by titanium halides and it is recommended to use octadecane instead.233

![Figure 33: (A) Scheme of the aminolysis of hafnium trifluoroacetate into HfO$_2$ NCs. (B) TEM image and (C) powder XRD pattern of the NCs showing a monoclinic crystal structure. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.](image)

The reaction of titanium isopropoxide ([Ti] = 0.9 M) in pure oleic acid (3.5 equivalents) yields anatase TiO$_2$ NCs at 270 °C.240 It is interesting to note how similar this reaction is to

![Figure 34: TEM images of TiO$_2$ NCs synthesized using different precursors and co–surfactants (apart from oleic acid). Reprinted with permission from reference. Copyright 2012 American Chemical Society.](image)
the formation of titanium oxo clusters, the main differences being the temperature and the length of the carboxylic acid. This pure esterification mechanism yields a mixture of spherical NCs and nanorods. The nanorod diameter decreases when also oleylamine is introduced in the reaction mixture, thus changing the mechanism to a mixed ester/amide formation. Another group simultaneously explored the same chemistry but used 1-octadecene as solvent and thus the titanium concentration was much lower (0.13 M). Under these conditions, no TiO$_2$ NCs were obtained with 5 equivalents of oleic acid. Injection of 1 – 4 equivalents of oleylamine at 260 °C is required to obtain TiO$_2$. Under the right conditions, the TiO$_2$ nanorods can self-organize in superstructures. Alternatively, TiO$_2$ NCs were obtained by a low temperature esterification (100 °C) after 48 hours; titanium isopropoxide reacts with oleic acid and ethylene glycol, in the presence of a base, e.g., triethylamine. In light of the discussion on precursor chemistry and cluster formation, we find it most likely that in the above reactions, first a ligand exchange takes place, consuming two equivalents of oleic acid.

\[
\text{Ti(OR)}_4 + 2 \text{RCOOH} \rightarrow \text{Ti(OR)}_2(\text{OOCR})_2 + 2 \text{ROH}
\]

Instead of a third ligand exchange, esterification takes place and it seems likely that clusters are formed as intermediates. Amide and ester formation are a strategy of attacking the carboxylate capping ligands on the clusters and allow for further condensation and growth into nanocrystals. However, efforts to use Zr6-methacrylate clusters as well-defined precursors for ZrO$_2$ NCs have not been successful so far. We hypothesize a few possible reasons for this failure: (i) the methacrylate ligands will crosslink at the reaction temperature (400 °C), (ii) titanium oxo clusters are more labile than zirconium oxo clusters, (iii) no amine or alcohol was added to the reaction to induce alcoholysis or aminolysis.

Niobium doped anatase TiO$_2$ NCs were synthesized by Milliron et al. from titanium ethoxide (1 mmol), niobium chloride, oleic acid (1 mmol), octadecanol (13 mmol) in octadecene at 290 °C. A pure esterification mechanism would limit the yield to 50%. However,
the authors report 75% yield and a control experiment shows that oxide nanocrystals are also obtained without oleic acid. The mechanism is thus a mixture of several non-hydrolytic processes. The size (10-15 nm) and morphology (cube or short rod) of the particles depend on the dopant concentration. Recently the method was expanded to W and Mo doped TiO$_2$ NCs. Furthermore, tantalum doped TiO$_2$ NCs were synthesized from the metal ethoxides, oleic acid, oleylamine, octadecanol and ammonium fluoride. After reaction at 280 °C for 60 min, 9-12 nm TiO$_2$ NCs with up to 22% atom Ta were retrieved (Figure 35). The addition of ammonium fluoride is essential to obtain complete tantalum incorporation. The size of the NCs can be somewhat tuned by varying the oleic acid and oleylamine ratio.

An attempt was made to react a series of hafnium alkoxides with oleylamine and oleic acid to hafnium oxide, but only amorphous, aggregated particles were obtained. From the above description, it seems that titania nanocrystals can be easily synthesized by the nucleophilic addition/elimination mechanism, but the strategy is less suitable for zirconium and hafnium oxide. As a dopant, it was possible to incorporate Ti, Zr, and Hf in In$_2$O$_3$ nanocrystals, but the overall concentration of the group 4 metals was low (about 1%).

Figure 35: Photograph and TEM image of tantalum doped TiO$_2$ NCs, which are used as electrochromic material in smart windows. Reprinted with permission from reference. Copyright 2018 American Chemical Society.
5.3 Applications of group 4 metal oxide nanocrystals

5.3.1 Applications of titania nanocrystals

TiO$_2$ nanocrystals (NCs) are an essential component of dye-sensitized solar cells, also known as the Graetzel cells. The TiO$_2$ NCs are covered with a ruthenium based dye which is responsible for light absorption. The energy levels of the dye and titania are aligned such that the excited electron is transferred from the dye to titania and subsequently to the electrode. The hole is transferred to the counterelectrode via the electrolyte. Dyes are currently being developed with more abundant metals such as copper. In the realm of sustainable energy, titania is also an attractive anode material for lithium ion batteries since it has a high theoretical specific capacity (335 mA h g$^{-1}$).2 Especially the bronze polymorph has attracted interest since it can accommodate more lithium than the other titania phases. The high surface area associated with nanocrystals is beneficial to enhance the charging rate. Given that the bandgap of titania is 3.2 eV, it absorbs blue and UV light. Consequently, titania nanocrystals have been used as a photocatalyst, often to break down organic matter.3,40 Titania coated glass can be envisaged as self-cleaning windows.248 Doping of titania NCs with tantalum or niobium introduces free carriers in the conduction band and grants the NCs an infrared plasmon resonance.4,5 Such doped nanocrystals were integrated in smart windows as electrochromic material: depending on the applied potential, the coated glass is (i) transparent for visible and infrared light, or (ii) absorbing infrared light, or (iii) absorbing both visible and infrared light (Figure 35).

5.3.2 Applications of zirconia nanocrystals

Zirconia nanocrystals are great building blocks for material science. Shaw \textit{et al.} used ZrO$_2$ nanocrystals to fabricate crack-free coatings.228,249,250 After deposition, the organic ligands are removed by an oxygen plasma, and the particles simultaneously sinter together (providing mechanical strength to the coating). Note that the ligand original mixture of TOPO,
octylphosphinic acid and octylphosphonic acid anhydride, leads to residual phosphate in the final material. By ligand exchange with oleic acid prior to deposition, this could be minimized. On the other hand, Talapin et al. obtained patterns of zirconia (and titania and hafnia) by a method that was coined DOLFIN (direct optical lithography of functional inorganic nanomaterials). The surface is first functionalized with photoactive ligands. Irradiation by UV light triggers the decomposition of the ligand, and as a result, the nanocrystals are no longer soluble. Patterns are obtained by a three-step process: layer deposition, illumination through a mask, and washing off unexposed nanocrystals. Zirconia nanocrystals are also used in nanocomposites. For example, composites of ZrO\textsubscript{2} NCs and epoxy polymer feature a high refractive index. Such nanocomposites are useful to encapsulate LEDs since the nanocomposite reduces the refractive index mismatch between the semiconductor LED material and air, thereby improving the light-extraction efficiency. The high refractive index was further exploited in volume holography. All-inorganic nanocomposites of ZrO\textsubscript{2} nanocrystals and YBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{7−δ} superconductors have superior conductive properties over the pure superconductor. YBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{7−δ} is a type II superconductor and in high magnetic fields moving vortex currents destroy the superconducting state. The inclusion of nanocrystals pins the vortexes, enhancing the critical current at high magnetic fields. Finally, europium and terbium doped ZrO\textsubscript{2} NCs, stabilized by 2-aminoethyl phosphoric acid ligand, were developed for targeted bioimaging. By coupling the amino group of the ligand with biotin via an amide bond, the nanocrystals obtained a high affinity for avidin. As a result, avidin could be detected via time-resolved Fluorescence Resonance Energy Transfer (FRET).

5.3.3 Applications of hafnia nanocrystals

HfO\textsubscript{2} NCs are being developed as components in next generation memory devices, based on memristors. While memristors are traditionally fabricated with thin films of pure oxides, also assemblies of ligand capped nanocrystals can be switched from a high to a low
resistance state. The voltage required to switch from one state to the other, depends on the ligand length and is minimized for shorter ligands.10 Hafnia nanocrystals are also among the few nanomaterials that made it to real clinical translation.255 They are used in cancer treatment to locally enhance radiotherapy. The nanocrystals are directly injected in the tumor tissue and convert x-rays into reactive oxygen species that destroy the tumor.11,12 The high x-ray absorption cross section of hafnia was also exploited in scintillators and medical imaging.13,256 Nanocomposites of polymer, nanocrystals and dyes were fabricated, where the hafnia absorbs the photons and transfers it to a cascade of dyes, which convert it to visible light. In medical CT (computed tomography), hafnia nanocrystals serve as contrast agents that absorb X-rays more efficiently than soft tissue.256 Hafnia NCs doped with lanthanides have also been explored as luminescent probes.14 However, europium doped hafnia NCs, that were capped with 2-[2-(2-methoxyethoxy)ethoxy]acetic acid, are not very stable in water and buffer solutions, causing aggregation during the staining of cells. Finally, hafnia nanocrystals have been used as catalysts for (trans)esterification reactions.257 The fatty acid substrate was also used as ligand, thereby eliminating the competition of ligands (necessary for colloidal stability) and substrates for the active surface sites.

6 Conclusion and outlook

We provided a comprehensive overview of the nonaqueous chemistry of the group 4 metals, in the context of oxo cluster and oxide nanocrystal formation. Since oxo clusters are the building blocks of MOFs, we thus bridge here two major research communities that otherwise have little interaction: MOFs and nanocrystals. We could link these research fields by starting from the fundamental chemistry: the reactivity of the precursors. Throughout the review, we have focused on the mechanism of precursor conversion and critically evaluated the state-of-the-art, clearly indicating which conclusions are solid and which areas needs further attention. From our literature survey, it is also clear that there are hardly any
studies on the crystallization mechanism (nucleation and growth) of oxide nanocrystals (via nonaqueous strategies). We thus identify this as a major gap, which probably stands in the way of building more complex oxide nanocrystals. Once the mechanisms are known, colloidal inorganic chemistry can rationally implement the concept of retro-synthesis and total inorganic synthesis, similar to organic chemistry. We envision total inorganic synthesis as a rational step-by-step synthetic strategy for building complex architectures such as core-shell-shell systems with these group 4 oxides. Even for the relatively more simple case of oxo clusters, there is currently little information on the precise formation mechanism other than conceptually vague stages; ligand exchange, esterification and condensation. However, access to the crystallization mechanism would enable researchers to further expand the portfolio of available clusters. From the perspective of a nanoscientist, oxo clusters are exciting because they provide the atomic precision that we strive for. Oxo clusters are sometimes seen as the smallest possible nanocrystals and thus as model systems for nanocrystals. However, it is currently unclear what the similarities and differences between the two systems are, especially regarding chemical stability and surface chemistry. This merits further research. Finally, a pending question is how to bridge the cluster and the nanocrystal realms. While cluster cores are typically 0.5 - 1 nm in size, the smallest nanocrystals are about 2.5 nm in size. It is yet unclear how to access the intermediate size range. We conclude that the chemistry of group 4 oxo clusters and oxide NCs is highly relevant to modern applications, and that there are still plenty of fundamental chemistry questions left unanswered and ready to be explored.

Author biographies

Dietger Van den Eynden completed his Bachelor and Master in chemistry at Ghent University, studying covalent adaptable networks. In 2019 he started his joint PhD under the supervision of Prof. Dr. De Roo at the University of Basel and Prof. Dr. De Buysser at
Ghent University. His research focusses on precise group 4 metal oxo-clusters and nanocrystals, from precursor chemistry to application.

Rohan Pokratath completed his Bachelor in Chemical Engineering from the University of Kerala and Master in Material Science from the Indian Institute of Technology Bombay. He is currently pursuing his Ph.D. under the supervision of Prof. Jonathan De Roo. His research focuses on synthesizing and characterizing group IV metal oxide nanocrystals.

Jonathan De Roo completed his Bachelor and Master in chemistry at Ghent University and obtained his PhD in 2016 on the topic; Surface chemistry of metal oxide nanocrystals. During his PhD, he was also three months at ETH Zurich to study the surface of CsPbBr3 nanocrystals. He conducted postdoctoral research at Columbia University, working on crystallization mechanisms and the design of new ligands. In 2019, he joined the University of Basel as Tenure Track Assistant Professor. His research team focuses on mechanistic aspects in the synthesis of ceramic nanocrystals and atomically precise oxo clusters. Both precursor conversion and crystallization mechanisms are studied.

Acknowledgement

The authors thank the University of Basel for financial support.

References

(3) Kaniyankandy, S.; Ghosh, H. N. Efficient Luminescence and Photocatalytic Behaviour

(70) Ushakov, S. V.; Navrotsky, A.; Yang, Y.; Stemmer, S.; Kukli, K.; Ritala, M.;

(88) Wu, Y.-T.; Ho, Y.-C.; Lin, C.-C.; Gau, H.-M. Stepwise Reactions of TiCl4 and Ti(OiPr)Cl3 with 2-Propanol. Variable-Temperature NMR Studies and Crystal Struc-
tures of $[\text{TiCl}_2(\text{OiPr})(\text{HOiPr})(\mu-\text{Cl})]_2$ and $[\text{TiCl}_2(\text{OiPr})(\text{HOiPr})(\mu-\text{OiPr})]_2$. *Inorg. Chem.* 1996, 35, 5948–5952.

91

(124) Weingarten, H.; Van Wazer, J. R. Exchange of Parts between Molecules at Equi-

(239) Zhang, Z.; Wu, Q.; Johnson, G.; Ye, Y.; Li, X.; Li, N.; Cui, M.; Lee, J. D.; Liu, C.;

Graphical TOC Entry