Trinodal Self-Penetrating Versus cds 3-Dimensional Networks Using Bis(3,2':6',3'-terpyridine) Building Blocks: the Solvent Makes the Difference

Simona S. Capomolla, ${ }^{a}$ Giacomo Manfroni, ${ }^{a}$ Alessandro Prescimone, ${ }^{\text {a }}$ Edwin C. Constable, ${ }^{\text {a }}$ and Catherine E. Housecroft*a
a Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland, e-mail: catherine.housecroft@unibas.ch

© 2022 The Authors. Helvetica Chimica Acta published by Wiley-VHCA AG. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reactions between $\mathrm{Co}(\mathrm{NCS})_{2}$ and $2^{4}, 2^{4}$-[2,5-bis(cyclohexyloxy)-1,4-phenylene]di($1^{3}, 2^{2}: 2^{6}, 3^{3}$-terpyridine) (1), $2^{4}, 2^{4}$-[2,5-bis(cyclohexylmethoxy)-1,4-phenylene]di($1^{3}, 2^{2}: 2^{6}, 3^{3}$-terpyridine) (2), and $2^{4}, 2^{4}$-[2,5-bis(2-phenylethoxy)1,4 -phenylene]di($1^{3}, 2^{2}: 2^{6}, 3^{3}$-terpyridine) (3) under conditions of crystal growth by layering at room temperature lead to 3-dimensional nets with either a cds or trinodal self-penetrating topology depending upon the solvents $\left(\mathrm{MeOH} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{MeOH} / 1,2-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$, or $\mathrm{MeOH} / \mathrm{CHCl}_{3}$) used in the crystallization experiments. The cds network was found for $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2},\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$, while a trinodal selfpenetrating net was observed in $\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$. Preliminary structural data for single crystals from the reactions of $\mathrm{Co}(\mathrm{NCS})_{2}$ and $\mathbf{1}$ or $\mathrm{Co}(\mathrm{NCS})_{2}$ and $\mathbf{3}$ from $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ solvent combinations also evidenced the assemblies of trinodal self-penetrating nets. Both net topologies assemble from a combination of planar, 4-connecting metal and ligand nodes. The role of the solvent in directing the network type is investigated.

Keywords: cobalt, cobalt(II) thiocyanate, coordination network, lattice solvent, ligand nodes, solvent effects, 3,2':6',3"-terpyridine.

Introduction

The use of $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridines $\left(=1^{3}, 2^{2}: 2^{6}, 3^{3}\right.$-terpyridines), in coordination chemistry has gained in popularity over the last decade, although this isomer of terpyridine remains less well exploited than the bis(chelating) $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine $\left(=1^{2}, 2^{2}: 2^{6}, 3^{2}\right.$-terpyridine) and the divergent $4,2^{\prime}: 6^{\prime}, 4^{\prime \prime}$-terpyridine ($=$ $1^{4}, 2^{2}: 2^{6}, 3^{4}$-terpyridine; Scheme 1). ${ }^{[1-5]}$ The coordination chemistry of derivatives of $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime \prime}$-tpy was first explored by Grafino et al. who reported the structure of $\quad\left[\mathrm{Zn}_{2}\left(\mu-4^{\prime}-\mathrm{Ph}-3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}-\mathrm{tpy}\right)(\mathrm{acac})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad\left(4^{\prime}-\mathrm{Ph}-\right.$ $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy $=4^{\prime}$-phenyl-3, $2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridine; Hacac $=$ pentane-2,4-dione). ${ }^{[6]}$ This revealed coordination only through the outer pyridine rings of the $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}-$

[^0]tpy unit. There are now around 123 structures of compounds containing metal-coordinated $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}-$ tpy units in the Cambridge Structural Database (CSD) version 2022.2.0, ${ }^{[7]}$ (searched using ConQuest version 2022.2.0 ${ }^{[8]}$), and these demonstrate that the ditopic nature of the $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy domain is the norm, with the central pyridine ring remaining non-coordinated. There are two examples in which the central pyridine ring is present as the N-oxide. ${ }^{[9]}$ Both $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$ - and $4,2^{\prime}: 6^{\prime}, 4^{\prime \prime}$-tpy can be considered as having divergent donor sets. However, the conformational flexibility of the $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy unit sets it apart from the $4,2^{\prime}: 6^{\prime}, 4^{\prime \prime}$ isomer which has a fixed V -shaped coordination mode (Scheme 1). Conformation I of $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy is suited to the formation of discrete dinuclear complexes, for example, with cyclic structures, ${ }^{[6,10-12]}$ whereas conformations II and III are more typically encountered in coordination polymers and networks. A range of

2,2':6',2"-tpy

4,2':6',4"-tpy

Scheme 1. Structures of three isomers of terpyridine: 2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-tpy typically behaves as a bis(chelate), 4, $2^{\prime}: 6^{\prime}, 4^{\prime \prime}$-tpy typically behaves as a ditopic ligand, and $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy is also a ditopic ligand but with three limiting, planar conformations I, II and III.
$3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridines in which a functional group has been introduced into the 4^{\prime}-position is known, and the conformation of the $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy domain varies with the 4^{\prime}-substituent, ${ }^{[13-22]}$ presumably because of packing interactions. Such conformational flexibility makes functionalized $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy ligands attractive building blocks in coordination assemblies.

Moving from a ditopic 3,2':6', $3^{\prime \prime}$-tpy unit to a tetratopic bis($3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy) domain modifies the role of the ligand from a linker to a 4 -connecting node, and we have recently reported a series of 3 -dimensional networks directed by a combination of 4connecting bis(3,2': $6^{\prime}, 3^{\prime \prime}$-tpy) ligands (Figure 1), and a 4-connecting cobalt(II) center. ${ }^{[23-25]}$ With one exception, ${ }^{[23]}$ two structural motifs for $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathrm{~L})\right]_{n}$ compounds persist: a cds network and a trinodal self-

Figure 1. Structure of a general tetratopic bis($3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy $)$ ligand, L, with functionalized central arene core.
penetrating net. ${ }^{[24,25]}$ An overview of our previous results suggested that, for the range of R groups studied, the choice of the substituent in $\mathbf{1}$ was not the deciding factor, but rather the choice of solvents for crystal growth by layering. For the general family of ligands, L, shown in Figure 1 with $\mathrm{R}=$ propyl, butyl, pentyl, hexyl, heptyl or octyl, we have previously observed that a cds net forms when either 1,2dichlorobenzene or chlorobenzene is used in combination with MeOH in reactions of the ligand with $\mathrm{Co}(\mathrm{NCS})_{2}$ to give solvated $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathrm{~L})\right]_{n} .{ }^{[25]}$ In contrast, a trinodal, self-penetrating network formed when MeOH and chloroform were used in reactions of $\mathrm{Co}(\mathrm{NCS})_{2}$ with L in which $\mathrm{R}=2$-ethylbutyl or 3-methylbutyl. ${ }^{[24]}$ Preliminary data for crystals grown by layering an MeOH solution of $\mathrm{Co}(\mathrm{NCS})_{2}$ over a CHCl_{3} solution of L with $R=n$-butyl confirmed the assembly of a trinodal self-penetrating network. ${ }^{[25]}$ These observations motivated us to move to more sterically demanding R groups while at the same time using different solvent mixtures for the reactions of $\mathrm{Co}(\mathrm{NCS})_{2}$ with ligand L. A phenyl unit also has the potential for π-stacking interactions in the solid state, which may influence the assembly process. Our aim was to see if the structural trends that had so far emerged with alkyloxy substituents would be further supported when the ligand was structurally modified.

Results and Discussion

Ligand Synthesis and Characterization

The ligands selected for the investigation, 1-3, are shown in Scheme 2. Each bears terminal cyclohexyl (Cy) or phenyl groups in the substituents attached to the central arene core of the ligand. Compound $\mathbf{3}$ was prepared as previously reported, ${ }^{[26]}$ and the synthetic routes to $\mathbf{1}$ and $\mathbf{2}$ are summarized in Scheme 2. The second step follows the one-pot strategy described by Wang and Hanan. ${ }^{[27]}$ The precursors 1a, 1b, 2a and 2b were fully characterized (see Figures S1-S15 in the Supporting Information) with NMR spectra assigned using routine 2D methods (see Experimental Section). Attempts to record mass spectra of 1a and 2a (MALDI and electrospray MS) were unsuccessful. Compounds 1 and 2 were characterized by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectroscopic methods, with signals assigned using COSY, NOESY, HMQC and HMBC techniques (see Figures S16-S23 in the Supporting Information). The spectra are consistent with a single $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy environment and with the presence of the cyclohexyl units. The MALDI-TOF mass spectrum of 1 exhibited a base peak at $\mathrm{m} / \mathrm{z} 736.85$ arising from the $[M+\mathrm{H}]^{+}$ion (Figure S24), and for 2, the base peak in the MALDITOF mass spectrum ($\mathrm{m} / \mathrm{z} 765.04$) also arose from the $[\mathrm{M}+\mathrm{H}]^{+}$ion (Figure S25). The solid-state IR spectra of

Scheme 2. Structures of ligands 1-3, and the synthetic route to 1 and 2 with atom labelling for NMR spectroscopic assignments, starting from 1a or 2a. Reaction conditions: i) $\mathrm{BuLi}^{2} \mathrm{Et}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C}$; DMF, $0^{\circ} \mathrm{C}$ warmed to room temperature (ca. $22^{\circ} \mathrm{C}$); ii) EtOH solvent, 3-acetylpyridine, KOH , aqueous NH_{3}, room temperature ca. $22^{\circ} \mathrm{C}$.

1 and 2 are similar (Figures S28 and S29), with strong absorptions at 2930 and $2922 \mathrm{~cm}^{-1}$, respectively, assigned to the cyclohexyl groups, and absorptions in the fingerprint region arising predominantly from vibrations within the terpyridine domains. Figure 2 displays the solution absorption spectra of $\mathbf{1}$ and $\mathbf{2}$ which are dominated by intense absorptions arising from $\pi^{*} \leftarrow \pi$ transitions. The spectra are reminiscent of those of structurally related 1,4-bis(n-alkyloxy)-2,5$\operatorname{bis}\left(3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}\right.$-terpyridin- 4^{\prime}-yl) benzene ligands. ${ }^{[28]}$

Colorless block-shaped single crystals of 1 were grown at room temperature by slow evaporation of a chloroform solution of the compound. The compound crystallizes in the monoclinic space group $P 2_{1} / \mathrm{C}$ with half the molecule of $\mathbf{1}$ in the asymmetric unit. The second half of the molecule is generated by inversion, and Figure 3 shows the molecular structure. The $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy unit adopts conformation I (Scheme 1) with the angles between the least squares planes of the pyridine rings containing $\mathrm{N} 1 / \mathrm{N} 2$ and $\mathrm{N} 2 / \mathrm{N} 3$ being 24.9 and 19.3°. Bond lengths and angles are unexceptional, although it is worth noting that a comparison of the bond lengths of $01-\mathrm{C} 17=1.377(5) \AA$ and $\mathrm{O} 1-\mathrm{C} 19=1.457(5) \AA$ indicates extension of π-conjugation from the arene ring across $\mathrm{C} 17-\mathrm{O}$. The C17-O1-C19 bond angle of $119.3(3)^{\circ}$ is consistent with sp^{2} hybridization. The pyridine ring containing N2 is twisted through 38.5° with respect to the plane of the arene ring containing atom C 15 , consistent with minimizing inter-ring $\mathrm{H} \cdots \mathrm{H}$ contacts. The CHCl_{3} molecule is disordered and has been modelled over two sites of equal occupancies. In the lattice, adjacent molecules of 1 engage in face-to-face π-stacking interactions between thee pyridine rings containing

Figure 2. Solution absorption spectra $\left(\mathrm{CHCl}_{3}, 2.0 \times\right.$ $10^{-5} \mathrm{moldm}^{-3}$) of 1 and $\mathbf{2}$. See Experimental Section for values of $\lambda_{\text {max }}$ and $\varepsilon_{\text {max }}$.

Figure 3. The structure of ligand 1 in $1 . \mathrm{CHCl}_{3}$. H -atoms and the solvent molecule are omitted for clarity; ellipsoids are plotted at 40% probability level. Symmetry code: $i=1-x, 1-y, 1-z$.

N2 and N3ii (symmetry code $\mathrm{ii}=1-x,-1 / 2+y, 3 / 2-z$). The angle between the planes of the rings is 5.6°, and the centroid...centroid distance is $3.65 \AA$, making this an efficient packing interaction. ${ }^{[29]}$ This leads to the assembly of chains of molecules running parallel to the crystallographic b-axis (Figure 4).

Reactions of $\mathrm{Co}(\mathrm{NCS})_{2}$ with Ligands 1 - $\mathbf{3}$

Ligands 1-3 were reacted with cobalt(II) thiocyanate under ambient conditions by layering a methanol solution of $\mathrm{Co}(\mathrm{NCS})_{2}$ over a chloroform, chlorobenzene or 1,2-dichlorobenzene solution of the ligand. Pink single crystals grew after around two weeks, and the reaction vessels were left to allow sufficient crystalline material to accumulate. No attempt was made to optimize yields and after crystals had been selected for single X-ray analysis, the remaining crystals were analyzed by powder X-ray diffraction (PXRD) and solid-
state IR spectroscopy (see later). Combinations of $\mathrm{Co}(\mathrm{NCS})_{2} / 1$ from $\mathrm{MeOH} /$ chlorobenzene, $\mathrm{Co}(\mathrm{NCS})_{2} / 2$ from $\mathrm{MeOH} / 1,2$-dichlorobenzene, $\mathrm{Co}(\mathrm{NCS})_{2} / 3$ from $\mathrm{MeOH} / 1,2$-dichlorobenzene, and $\mathrm{Co}(\mathrm{NCS})_{2} / 2$ from $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ produced X-ray quality crystals for which the structures are detailed below.

Crystal Structures of $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
The compounds $\left[\mathrm{Co}(\mathrm{NCS})_{2}(1)\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, [Co$\left.(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ crystallize in the monoclinic space groups $P 2_{1} / \mathrm{c}$ or $\mathrm{P} 2_{1} /$ n (see Experimental Section) and the contents of the asymmetric units are displayed in Figures S30-S32. In each case, the asymmetric unit contains half of a bis($3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy) ligand with the second half generated by inversion. The three structures are similar to one another, with the Co atom in an octahedral environment with a trans-arrangement of thiocyanato ligands. Figures 5,a-5,c illustrate that each of ligands 1, 2 and $\mathbf{3}$ coordinates to four $\mathrm{Co}(\mathrm{II})$ centers through the outer pyridine rings of the $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy units, and atom Co1 in each structure coordinates to four different bis($3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}-t p y$) ligands. The Co-N bond lengths (Table 1) are typical. In each compound, the 3,2':6', $3^{\prime \prime}$ tpy domain adopts conformation II (Scheme 1), although note that Scheme 1 shows limiting, planar conformations, and the angles between the planes of the pyridine rings in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(1)\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, [Co$\left.(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(3)\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ range from 5.0 to 28.7° (Table 1). The variation in the angles is possibly a response to the different steric requirements of the R groups $\left(\mathrm{Cy}, \mathrm{CH}_{2} \mathrm{Cy}\right.$ versus $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$) in ligands 1-3, although the overlay of the three structures in Figure 5,d illustrates that the conformational changes do not have a significant impact of the directionalities of the N -Co vectors. The

Figure 4. Molecules of $\mathbf{1}$ interact through pyridine...pyridine ring π-stacking to generate chains following the b-axis.

Figure 5. Ligands $\mathbf{1 , 2}$ and $\mathbf{3}$ act as 4 -connecting nodes in (a) $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, (b) $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and (c) $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$, respectively. H -atoms and solvent molecules are omitted for clarity. (d) An overlay of the three structural units containing ligands 1 (green), 2 (red), and 3 (blue).
angles between the planes of the pyridine ring containing N 2 and the arene spacer in coordinated ligands 1, 2 and 3 are similar (Table 1) and are consistent with minimizing repulsive $\mathrm{H} \cdots \mathrm{H}$ interactions.

Both the cobalt(II) center and $\operatorname{bis}\left(3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}\right.$-tpy) ligand are 4-connecting nodes, and each is essentially planar leading to the assembly of a 3-dimensional network with a cds topology (Figure 6). Thus, the networks in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(1)\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, [Co$\left.(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(3)\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$

Figure 6. Part of the $c d s$ net in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ as representative of the nets in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, [Co$\left.(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$. Co and ligand nodes are shown in maroon and orange, respectively.
follow the pattern established for solvated [Co$\left.(\mathrm{NCS})_{2}(\mathrm{~L})\right]_{n}$ containing bis($3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}-$ tpy $)$ ligands with $\mathrm{R}=$ propyl, butyl, pentyl, hexyl, heptyl or octyl (Figure 1) and in which the lattice solvent is also 1,2dichlorobenzene. ${ }^{[25]}$ In $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2},[\mathrm{Co}-$ $\left.(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$, the disordering of some of the solvent molecules makes detailed discussion of the structural roles of the

Table 1. Selected structural parameters for the cobalt(II) coordination networks.

Compound	$\mathrm{Co}-\mathrm{N}_{\text {NCS }}[\AA]$	$\mathrm{Co}-\mathrm{N}_{\mathrm{py}}$ $[\AA \AA]$	Angle between planes of py rings containing $\mathrm{N} 1 / \mathrm{N} 2$ and N2/N3 [${ }^{\circ}$]	Angle between planes of py containing N 2 and arene [${ }^{\circ}$]
$\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	2.078(5)	$\begin{aligned} & \text { 2.154(5), } \\ & \text { 2.266(4) } \end{aligned}$	9.0, 20.0	43.9
$\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	2.066(3)	$\begin{aligned} & \text { 2.199(3), } \\ & \text { 2.229(3) } \end{aligned}$	5.0, 28.7	50.7
$\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	2.060(3)	$\begin{aligned} & 2.168(3), \\ & 2.241(3) \end{aligned}$	15.1, 25.9	51.6
$\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$	2.080(5) (for Co1), 2.091(6) (for Co2)	$\begin{aligned} & 2.187(4), \\ & 2.257(4) \\ & \text { (for Co1) } \\ & 2.147(5), \\ & 2.150(4) \\ & \text { (for Co2) } \end{aligned}$	$\begin{aligned} & 9.3,16.4^{[a]} \\ & 31.0,35.5^{[b]} \end{aligned}$	$\begin{aligned} & 46.7^{[a]} \\ & 34.3^{[b]} \end{aligned}$

[^1]solvent molecules difficult. In $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, one 1,2 -dichlorobenzene molecule is ordered, while the second is disordered and was modelled over two sites of occupancies of 70 and 30%. The ordered $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ molecule lies over the pyridine ring containing N 2 , with a centroid....centroid distance of $4.1 \AA$ and inter-plane angle of 9.5°, leading to a weak face-toface π-stacking interaction. In $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, the disordered 1,2-dichlorobenzene molecule was modelled over three sites of occupancies 20,30 and 50%; however, there is evidence for face-to-face stacking with the pyridine ring containing N 2 . Although the structure of $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ suffers significant disorder, both in the solvent molecules and phenylethyl group (see the caption to Figure S32), there is evidence once again for face-toface stacking between the central pyridine ring of the tpy unit and a chlorobenzene molecule. However, these are not the sole packing interactions involving the solvent molecules. It is relevant to consider that the unsolvated $c d s$ networks in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n}$, $[\mathrm{Co}-$ $\left.(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n}$ have large voids. Using a probe radius of $1.2 \AA$, the voids were calculated in Mercury 2022.2.0 ${ }^{[30]}$ to be ca. 40% in each of the structures with ligands $\mathbf{1}$ and 2; the void space in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(3)\right]_{n}$ is also large, but we have not quantified it because of the disordered phenylethyl substituents.

Figure 7 shows the $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n}$ network and the manner in which the 1,2 -dichlorobenzene molecules occupy the channels; although the cyclohexyl substituents point into the channels, the remaining solvent accessible void remains large, and the dimensions of the aromatic solvent molecules match well to those of the channels.

Crystal
Structure
of $\left.\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{\mathrm{n}} \cdot 5.5 \mathrm{nCHCl}\right]_{3} \cdot 0.2 \mathrm{nMeOH}$
With a change in the crystallization solvent system from $\mathrm{MeOH} / \mathrm{C}_{6} \mathrm{H} 5 \mathrm{Cl}$ or $\mathrm{MeOH} / 1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ to $\mathrm{MeOH} / \mathrm{CHCl}_{3}$, it was possible to isolate single crystals of $\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$. The compound crystallizes in the monoclinic space group C2/c, and the asymmetric unit contains two independent half-molecules of $\mathbf{2}$, both second halves being generated across inversion centers. The crystallographically independent cobalt atoms, Co1 and Co2 are both octahedrally sited and are coordinated by trans-NCS ${ }^{-}$ligands and the Ndonors of four different ligands $\mathbf{2}$. Selected bond lengths and inter-ring angles are given in Table 1. Each bis($3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}-$ tpy $)$ ligand coordinates to two Co1 and two Co2 atoms, and both crystallographically independent $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}-t$ tpy units adopt conformation II (Scheme 1). Thus, the local environments of ligand 2, Co1 and Co2

Figure 7. Part of the network in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (a) without and (b) with solvent molecules (shown in space-filling representation).
(Figure 8) mimic those of the ligands and metal centers in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2},\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.

However,

Figure 8. Repeating
unit
in $\left[\mathrm{CO}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 \mathrm{nMeOH} ; \mathrm{H}$-atoms and solvent molecules are omitted and symmetry generated Co atoms are labelled: symmetry codes $\mathrm{i}=1-x, 1+y, 1 / 2-z ; \mathrm{ii}=3 / 2-x, 3 / 2-y$, $1-z ;$ iii $=\frac{3}{2}-x,{ }^{1} / 2+y,{ }^{1} / 2-z ;$ iv $=1 / 2+x, \frac{1}{2}+y, 1+z ;$ v $=\frac{3}{2}-x$, $1 / 2-y, 1-z$. See Figure S33 for additional atom labels.
$\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5 \cdot 5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$, the combination of four chemically distinct planar, 4-connecting nodes defined by Co1, Co2 and the centroids of the two independent phenylene rings results in the assembly of a complex 3 -dimensional network. Since the two ligand nodes are topologically equivalent (as described in our previous work ${ }^{[24]}$), the net is trinodal. The network is selfpenetrating as shown in Figure 9 and is analogous to that found in $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{~L}_{1}\right)\right]_{n} \cdot n \mathrm{MeOH} \cdot 3 n \mathrm{CHCl}_{3}$ and $[\mathrm{Co}-$ $\left.(\mathrm{NCS})_{2}\left(\mathrm{~L}_{2}\right)\right]_{n} \cdot 0.8 n \mathrm{MeOH} \cdot 1.8 n \mathrm{CHCl}_{3}$ where ligands L_{1} and L_{2} are in the family defined in Figure 1 with $\mathrm{R}=2$-ethylbutyl and 3-methylbutyl, respectively. ${ }^{[24]}$

Combinations of $\mathrm{Co}(\mathrm{NCS})_{2} / \mathbf{1}$ and $\mathrm{Co}(\mathrm{NCS})_{2} / 3$ from $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ gave rise to crystals for which only preliminary structural data could be obtained. However, in both cases, the data confirmed the assembly of trinodal self-interpenetrating networks analogous to that found for $\left[\mathrm{Co}_{2}\left(\mathrm{NCS}_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}\right.$. As in the structures described in the previous section, the void space in the non-solvated $\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n}$ lattice is large (ca. 34%, calculated using a probe radius of $1.2 \AA$ with Mercury 2022.2.0 ${ }^{[30]}$. The persistence of the trinodal selfinterpenetrating net when the crystallization solvent mixture is $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ and the absence of the cds net under these crystallization conditions suggests that the cavities accessible to solvent in the trinodal self-interpenetrating net are compatible with the relatively small

Figure 9. (a) Part of the trinodal $\left(6^{2} .8^{4}\right)\left(6^{4} .8^{2}\right)\left(6^{5} .8\right)_{2}$ net in $\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$ with the Co 1 nodes shown in maroon, Co 2 nodes in blue, and ligand centroid nodes in orange. (b) Part of the lattice showing self-penetration defined by the interlocking of the shortest circuits shown in green and magenta.
CHCl_{3} and MeOH molecules, but not chlorobenzene or 1,2-dichlorobenzene.

Bulk Material Characterization

After selection of single crystals for structure determination, the remaining crystals in each reaction tube were analyzed by solid-state IR spectroscopy and powder X-ray diffraction. Figures $\mathrm{S} 34-\mathrm{S} 37$ display the IR spectra of $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, [Co$\left.(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}, \quad\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} \quad$ and $\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$, respectively. The complexes containing ligands $\mathbf{1}$ or $\mathbf{2}$ give rise to IR absorptions around $2930 \mathrm{~cm}^{-1}$ which resemble those in the free ligands (compare Figures S34, S35 and S38 with Figures S28 and S29) and are assigned to the cyclohexyl groups. The coordinated NCS^{-}ligands lead to very strong absorptions $\left(v_{\mathrm{CN}}\right)$ at $2056 \mathrm{~cm}^{-1}$ in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(1)\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \quad$ (Figure S34), $2064 \mathrm{~cm}^{-1}$ in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(2)\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \quad$ (Figure S37), $2054 \mathrm{~cm}^{-1}$ in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(3)\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ (Figure S36), and $2064 \mathrm{~cm}^{-1}$ in $\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$ (Figure S35).

PXRD data for the bulk material for [Co$\left.(\mathrm{NCS})_{2}(1)\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(3)\right]_{n} \cdot 2 \cdot 5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ revealed excellent fits between the experimental PXRD patterns and those predicted from the single-crystal structures (Figure 10,a and 10, c), thus confirming that the cds coordination nets observed in each single crystal structure represented the bulk material. For $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, the experimental powder pattern contains all the predicted peaks, but there are additional peaks present at low values of 2θ (Figure 10,6) indicating the presence of at least one other species in the bulk material. Crystals of $\left[\mathrm{CO}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$ were extremely sensitive to solvent loss and it was not possible to obtain a PXRD pattern that was consistent with the predicted pattern from the single crystal structure.

Conclusions

The bis($3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy) ligands 1, 2 and $\mathbf{3}$ act as 4connecting nodes and react with $\mathrm{Co}(\mathrm{NCS})_{2}$ under conditions of crystal growth by layering at room temperature to produce 3-dimensional nets with either a cds or trinodal self-penetrating topology. Both these nets contain planar, 4-connecting metal and ligand nodes. The choice of solvents $\left(\mathrm{MeOH} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right.$, $\mathrm{MeOH} / 1,2-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, or $\mathrm{MeOH} / \mathrm{CHCl}_{3}$) used in the crystallization experiments is critical, with the aromatic solvents occupying channels in the cds nets found for
(a)

(b)

(c)

Figure 10. PXRD (CuK $\alpha 1$ radiation) patterns for (a) [Co$\left.(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, (b) $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and (c) [Co$\left.(\mathrm{NCS})_{2}(3)\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$. Each experimentally obtained pattern (red) is compared with the best fit from the Rietveld refinement analysis (black). Bragg peak positions (green) and differences between the calculated and experimental plots (blue) are also displayed.
$\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2},\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, and $\left[\mathrm{Co}(\mathrm{NCS})_{2}(3)\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$. In contrast, the smaller CHCl_{3} and MeOH molecules are accommodated in cavities in the trinodal self-penetrating net in $\left[\mathrm{CO}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$. Preliminary structural data for single crystals grown by layering a MeOH solution of $\mathrm{Co}(\mathrm{NCS})_{2}$ over a CHCl_{3} solution of 1 or 3 confirmed the assemblies of trinodal self-penetrating nets in both products. PXRD data for the bulk materials of $\left[\mathrm{Co}(\mathrm{NCS})_{2}(1)\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ and [Co$\left.(\mathrm{NCS})_{2}(3)\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ confirm that the single crystal structures are representative of the bulk sample; solvent loss from crystals of $\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(2)_{2}\right]_{n} \cdot 5 \cdot 5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$ contributed to the poor match between experimental and predicted powder patterns. The solvent-dependent, selective assembly of either a cds or trinodal self-penetrating 3dimensional network in reactions of $\mathrm{Co}(\mathrm{NCS})_{2}$ with 1, 2
and 3 is consistent with our previous results using different 1,4-bis(alkyloxy)-2,5-bis(3,2':6', $3^{\prime \prime}$-terpyridin-4^{\prime}-yl)benzene ligands. ${ }^{[24,25]}$

Experimental Section

General

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra were recorded on a Bruker Avance III-500 spectrometer equipped with a BBFO probe head at 298 K . The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR chemical shifts were referenced with respect to residual solvent peaks ($\delta 7.26 \mathrm{ppm}$ for CHCl_{3} and δ 77.2 ppm for CDCl_{3}, respectively with $\delta \mathrm{TMS}=0$). Matrix-assisted laser desorption ionization time-offlight (MALDI-TOF) mass spectra were recorded on a Shimadzu MALDI 8020 instrument using α-cyano-4hydroxycinnamic acid (CHCA) or 2,5-dihydroxybenzoic acid as the matrix as detailed in the captions to figures in the Supporting Information. PerkinElmer UATR Two and Shimadzu UV-2600 instruments were used to record FT-IR and UV-Vis absorption spectra, respectively. Melting points were determined using a Stuart melting point SMP 30 device. Elemental analyses and high-resolution electrospray (HR-ESI) mass spectra were performed using a Vario MICRO Cube device and Bruker maXis 4G QTOF instrument, respectively. Analytical thin-layer chromatography was conducted with pre-coated silica gel $60 F_{254}$ aluminum sheets (Merck KGaA) and visualized using UV light (254 nm and 366 nm). Flash column chromatography was performed on a Biotage Selekt system with pre-packed silica gel columns (50 g Biotage Sfär Silica High Capacity Duo $20 \mu \mathrm{~m}$) using ethyl acetate in cyclohexane (gradient) as eluent and monitoring and collecting at 366 nm .

3-Acetylpyridine and cyclohexyl bromide were purchased from Acros Organics and $\left[\mathrm{Co}(\mathrm{NCS})_{2}\right]$ from Alfa Aesar, and (bromomethyl)cyclohexane and 2,5-dibromobenzene-1,4-diol were from Fluorochem. Crystal growth experiments were carried out under ambient conditions using glass test-tubes (i.d. $=$ $13.6 \mathrm{~mm}, 24 \mathrm{~mL}$). Ligand $\mathbf{3}$ was prepared according to a previously reported method. ${ }^{[26]}$

Compound 1a

2,5-Dibromohydroquinone $(4.00 \mathrm{~g}, 14.9 \mathrm{mmol}$, 1.0 equiv.), bromocyclohexane ($15.6 \mathrm{~mL}, 127 \mathrm{mmol}$, 8.5 equiv.) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(17.51 \mathrm{~g}, 126.7 \mathrm{mmol}$, 8.5 equiv.) were combined in dry DMF (100 mL) and
the mixture was heated to $100^{\circ} \mathrm{C}$ and stirred for 48 h under N_{2}. The mixture was then allowed to cool to room temperature, poured onto ice water (200 mL) and stirred for 20 min . The resulting suspension was extracted with chloroform ($3 \times 150 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (silica, 100% dichloromethane) yielding 1a ($910 \mathrm{mg}, 2.10 \mathrm{mmol}, 14.1 \%$) as offwhite crystals. M.p. $92.8-95.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right) ; 4.16\left(t t, J=8.3,3.7,2 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right)$; 1.96-1.88 ($\left.m, 4 \mathrm{H}, \mathrm{H}^{\mathrm{b}-\mathrm{eq}}\right)$; 1.85-1.77 ($\left.m, 4 \mathrm{H}, \mathrm{H}^{\mathrm{c}-\mathrm{eq}}\right)$; 1.65-1.57 ($m, 4 \mathrm{H}, \mathrm{H}^{\mathrm{b}-\mathrm{ax}}$); 1.57-1.50 ($m, 2 \mathrm{H}_{,} \mathrm{H}^{\mathrm{d}-\mathrm{eq}}$); 1.41-1.30 ($m, 6 \mathrm{H}, \mathrm{H}^{\mathrm{c}-\mathrm{ax}+\mathrm{d}-\mathrm{ax})}$) ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz , $\left(\mathrm{CDCl}_{3}\right): 149.3\left(\mathrm{C}^{2}\right) ; 121.4\left(\mathrm{C}^{3}\right) ; 113.0\left(\mathrm{C}^{1}\right) ; 78.5\left(\mathrm{C}^{\mathrm{a}}\right) ; 31.7$ $\left(C^{b}\right) ; 25.7 \quad\left(C^{d}\right) ; 23.6 \quad\left(C^{c}\right)$. UV-Vis $\quad\left(\mathrm{CHCl}_{3}, 6 \times\right.$ $10^{-5} \mathrm{moldm}^{-3}$): $302\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4,170\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{O}_{2}$: C $50.02, \mathrm{H} 5.60$; found: $\mathrm{C} 50.34, \mathrm{H}$ 5.64.

Compound 2a

2,5-Dibromohydroquinone ($2.50 \mathrm{~g}, \quad 9.33 \mathrm{mmol}$, 1.0 equiv.), (bromomethyl)cyclohexane $(4.6 \mathrm{~mL}$, $33 \mathrm{mmol}, 3.5$ equiv.) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(4.50 \mathrm{~g}$, $32.6 \mathrm{mmol}, 3.5$ equiv.) were combined in dry DMF $(100 \mathrm{~mL})$ and the mixture was heated to $100^{\circ} \mathrm{C}$ and stirred for 16 h under N_{2}. The mixture was then allowed to cool to room temperature, poured onto ice water (150 mL) and was stirred for 20 min . The resulting suspension was extracted with chloroform $(3 \times 150 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was reprecipitated under gentle stirring from a hot $\mathrm{EtOH}(25 \mathrm{~mL})$ and chloroform (15 mL) solution over 16 h . The resultant precipitate was collected by filtration, washed with EtOH and dried in vacuo to yield $\mathbf{2 a}(2.43 \mathrm{~g}, 5.28 \mathrm{mmol}, 56.7 \%)$ as a white solid. M.p. $130.0-132.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.06(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{H}^{3}\right) ; 3.74\left(\mathrm{~d}, \mathrm{~J}=6.3,4 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 1.92-1.86(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{c}-\mathrm{eq}}\right) ; 1.86-1.80\left(m, 2 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right) ; 1.80-1.73(m, 4 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{d}-\mathrm{eq}}\right) ; 1.74-1.67\left(m, 2 \mathrm{H}, \mathrm{H}^{\mathrm{e}-\mathrm{eq}}\right) ; 1.30(q t, J=12.5,3.3$, $\left.4 \mathrm{H}, \mathrm{H}^{\mathrm{d}-\mathrm{ax}}\right) ; 1.20\left(q t, J=12.7,3.2,2 \mathrm{H}, \mathrm{H}^{\mathrm{e}-\mathrm{ax}}\right) ; 1.14-1.02$ $\left(m, 4 \mathrm{H}, \mathrm{H}^{\mathrm{c}-\mathrm{ax}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 150.3\left(\mathrm{C}^{2}\right)$; $118.5\left(C^{3}\right) ; 111.2\left(C^{1}\right) ; 75.8\left(C^{\text {a }}\right) ; 37.8\left(C^{b}\right) ; 29.9\left(C^{c}\right) ; 26.6$ (C^{e}); $25.9\left(\mathrm{C}^{\mathrm{d}}\right)$. UV-Vis $\left(\mathrm{CHCl}_{3}, 6 \times 10^{-5} \mathrm{moldm}^{-3}\right): 302$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 5,060\right)$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{O}_{2}: \mathrm{C}$ 52.19, H 6.13; found: C 52.21, H 6.18 .

Compound 1b

Compound 1a ($800 \mathrm{mg}, 1.85 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the solution was cooled to $0^{\circ} \mathrm{C}$ under N_{2}. BuLi (15% in hexanes, 1.6 m , $4.6 \mathrm{~mL}, 7.4 \mathrm{mmol}, 4.0$ equiv.) was added at $0^{\circ} \mathrm{C}$ over a period of 15 min , and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . Dry DMF ($580 \mu \mathrm{~L}, 7.4 \mathrm{mmol}, 4.0$ equiv.) was added, and the mixture was stirred for 16 h , allowing the mixture to slowly warm from $0^{\circ} \mathrm{C}$ to room temperature. The now light yellow suspension was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and subsequently extracted with chloroform ($3 \times$ 100 mL). The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography (silica, AcOEt in cyclohexane $0-10 \%$ gradient). After the removal of solvent from the fractions collected, the yellow solid was recrystallized from a hot solution of petroleum ether (5 mL) and EtOH (5 mL). The yellow solution was allowed to slowly cool to $-20^{\circ} \mathrm{C}$ and was left to crystallize for 48 h . The resultant crystals were collected by filtration, washed with petroleum ether and dried in vacuo to give 1b ($129 \mathrm{mg}, 390 \mu \mathrm{~mol}$, 21.1%) as a yellow crystalline solid. M.p. 109.4$111.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{CHO}}\right.$); $\left.7.43\left(s, 2 H^{3}\right)^{3}\right) ; 4.42\left(t t, J=8.3,3.7,2 H, H^{\mathrm{a}}\right) ; 2.01-1.94$ $\left(m, 4 \mathrm{H}, \mathrm{H}^{\mathrm{b}-\mathrm{eq}}\right) ; 1.84-1.73\left(m, 4 \mathrm{H}, \mathrm{H}^{\mathrm{ceq}}\right) ; 1.67-1.55(m$, $\left.6 \mathrm{H}, \mathrm{H}^{\mathrm{b}-\mathrm{ax}+\mathrm{d}-\mathrm{eq}}\right) ; 1.50-1.29\left(m, 6 \mathrm{H}, \mathrm{H}^{\mathrm{c}-\mathrm{ax}+\mathrm{d}-\mathrm{ax}}\right) .{ }^{13} \mathrm{C}-$ NMR ($\left.126 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): 190.0 \quad\left(\mathrm{C}^{\mathrm{CHO}}\right)$; $154.1 \quad\left(\mathrm{C}^{2}\right)$; 130.6(C'); $113.7\left(C^{3}\right) ; 77.4\left(C^{\text {a }}\right) ; 31.7\left(C^{b}\right) ; 25.6\left(C^{d}\right) ; 23.6$ $\left(C^{C}\right)$. UV-Vis $\quad\left(\mathrm{CHCl}_{3}, \quad 2 \times 10^{-5} \mathrm{moldm}^{-3}\right): \quad 275 \quad(\varepsilon /$ $\left.\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 14,400\right), 283$ sh (12,170), $408(5,050)$. MALDI-TOF-MS: $331.29\left(\left[\mathrm{M}+\mathrm{H}^{+}\right.\right.$; calc. 331.19). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$: C 72.70, H 7.93; found: C 72.85, H 8.12.

Compound 2b

Compound 2a ($2.00 \mathrm{~g}, 4.34 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$, and the solution was cooled to $0^{\circ} \mathrm{C}$ under N_{2}. BuLi (15% in hexanes, 1.6 m , $10.9 \mathrm{~mL}, 17.4 \mathrm{mmol}, 4.0$ equiv.) was added at $0^{\circ} \mathrm{C}$ over a period of 15 min , and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . Dry DMF ($1.4 \mathrm{~mL}, 17 \mathrm{mmol}, 4.0$ equiv.) was added, and the mixture was stirred for 16 h , allowing the mixture to slowly warm from $0^{\circ} \mathrm{C}$ to room temperature. The now light yellow suspension was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and subsequently extracted with chloroform ($3 \times$ 100 mL). The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude material
was purified by column chromatography (silica, AcOEt in cyclohexane $0-10 \%$ gradient). After the removal of solvent from the fractions collected, the yellow solid was recrystallized from a hot solution of petroleum ether (15 mL) and AcOEt (5 mL). The yellow solution was allowed to cool slowly to room temperature and was left to crystallize for 16 h . The resultant crystals were collected by filtration, washed with petroleum ether and dried in vacuo to give 2b $(530 \mathrm{mg}$, $1.48 \mathrm{mmol}, 34.1 \%$) as a yellow crystalline solid. M.p. $141.3-143.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.53(\mathrm{~s}, 2$ $\left.\mathrm{H}, \mathrm{H}^{\mathrm{CHO}}\right) ; 7.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right) ; 3.88\left(d, \mathrm{~J}=5.9,4 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 1.90-$ $1.82\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{b}+\mathrm{c}-\mathrm{eq})}\right.$; $1.78(\mathrm{ddd}, \mathrm{J}=13.8,4.4,2.3,4 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{d}-\mathrm{eq}}\right) ; 1.74-1.67\left(m, 2 \mathrm{H}, \mathrm{H}^{\mathrm{e}-\mathrm{eq}}\right) ; 1.31(q t, J=12.5,3.1$, $\left.4 \mathrm{H}, \mathrm{H}^{\mathrm{d}-\mathrm{ax}}\right) ; 1.25-1.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{e}-\mathrm{ax}}\right) ; 1.14-1.04(\mathrm{~m}, 4$ $\left.\mathrm{H}, \mathrm{H}^{\mathrm{c}-\mathrm{ax}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 189.6 ($\mathrm{C}^{\mathrm{CHO}}$); $155.5\left(C^{2}\right) ; 129.5\left(C^{1}\right) ; 111.7\left(C^{3}\right) ; 74.7\left(C^{a}\right) ; 37.8\left(C^{b}\right)$; $30.0\left(C^{\mathrm{C}}\right) ; 26.5\left(\mathrm{C}^{\mathrm{e}}\right) ; 25.9\left(\mathrm{C}^{\mathrm{d}}\right)$. UV-Vis ($\mathrm{CHCl}_{3}, 2 \times$ $\left.10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right): 275\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 14,980\right), 283 \mathrm{sh}$ (12,620), 406 (5,840). MALDI-TOF-MS: $359.07\left(\left[M+\mathrm{H}^{+}\right.\right.$; calc. 359.22). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}: \mathrm{C} 73.71, \mathrm{H} 8.44$; found: C 73.84, H 8.65.

Compound 1

Compound 1b ($100 \mathrm{mg}, 303 \mu \mathrm{~mol}, 1.0$ equiv.) was dissolved at room temperature in $\mathrm{EtOH}(5 \mathrm{~mL}$). 3Acetylpyridine ($170 \mu \mathrm{~L}, \quad 1.5 \mathrm{mmol}, 5.0$ equiv.) and crushed KOH ($85 \mathrm{mg}, 1.5 \mathrm{mmol}, 5.0$ equiv.) were then added to the yellow solution and slow addition of aqueous $\mathrm{NH}_{3}(32 \%, 4.4 \mathrm{~mL})$ followed. The mixture turned over a dark red into an orange suspension and was stirred at room temperature for 7 d . The solid that formed was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$ $(3 \times 5 \mathrm{~mL})$ followed by EtOH ($3 \times 5 \mathrm{~mL}$) and dried in vacuo. The title compound 1 was isolated as a lightbrown solid ($109 \mathrm{mg}, 147 \mu \mathrm{~mol}, 48.6 \%$). Decomposition $>262^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.39(d, \mathrm{~J}=$ 2.3, $4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}$); $8.72\left(d d, J=4.8,1.7,4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 6}\right) ; 8.56(d t$, $\left.J=8.0,2.0,4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 4}\right) ; 8.05\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{B}}\right) ; 7.50(d d, J=8.0$, $\left.4.8,4 \mathrm{H}^{\mathrm{H}} \mathrm{H}^{\mathrm{A}}\right) ; 7.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{C} 3}\right) ; 4.29(t \mathrm{t}, \mathrm{J}=8.2,3.6,2 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{a}}\right) ; 1.97-1.87\left(m, 4 \mathrm{H}, \mathrm{H}^{\mathrm{b}-\mathrm{eq}}\right.$); 1.72-1.61 ($m, 4 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{c}-\mathrm{eq}}\right) ; 1.59-1.43\left(m, 6 \mathrm{H}, \mathrm{H}^{\mathrm{b}-\mathrm{ax}+\mathrm{d}-\mathrm{eq}}\right) ; 1.38-1.16(m, 6$ $\mathrm{H}, \mathrm{H}^{\mathrm{c}-\mathrm{ax}+\mathrm{d}-\mathrm{ax}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($126 \mathrm{MHz}, \mathrm{CDCl} 3$): 154.7 ($\mathrm{C}^{\mathrm{B} 2}$); 150.1 ($\left.{ }^{\text {A6 }}\right)$; 149.3 ($\mathrm{C}^{\mathrm{C} 2}$); 148.4 ($\mathrm{C}^{\mathrm{C} 1}$); 148.3 ($\mathrm{C}^{\text {A2 }}$); 135.0 $\left(C^{A 3}\right) ; 134.8\left(C^{A 4}\right) ; 130.7\left(C^{B 4}\right) ; 123.9\left(C^{A 5}\right) ; 120.4\left(C^{B 3}\right)$; $117.9\left(C^{\text {C3 }}\right) ; 77.4\left(C^{\mathrm{a}}\right) ; 31.9\left(C^{\mathrm{b}}\right) ; 25.5\left(C^{\mathrm{d}}\right) ; 23.5\left(C^{\mathrm{c}}\right)$. UVVis $\left(\mathrm{CHCl}_{3}, 1 \times 10^{-5} \mathrm{moldm}^{-3}\right): 261$ sh $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1} 45,820\right), 277$ sh $(39,770), 313(16,950), 354$ sh (8,010). MALDI-TOF-MS: 737.11 ($[M+\mathrm{H}]^{+}$; calc. 737.36). HR-ESI MS: $737.3589\left([M+H]^{+}\right.$; calc. 737.3599). Sat-

A MeOH (5 mL) solution of $\mathrm{Co}(\mathrm{NCS})_{2}(1.8 \mathrm{mg}$, $10 \mu \mathrm{~mol})$ was layered over a 1,2-dichlorobenzene solution (4 mL) of ligand 2 ($7.7 \mathrm{mg}, 10 \mu \mathrm{~mol}$). Pink block-shaped crystals grew after 15 d . A single crystal was selected for X-ray diffraction and the remaining crystals were analyzed by PXRD and FT-IR spectroscopy.
$\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$
A $\mathrm{MeOH}(5 \mathrm{~mL})$ solution of $\mathrm{Co}(\mathrm{NCS})_{2}(1.8 \mathrm{mg}$, $10 \mu \mathrm{~mol})$ was layered over a chloroform solution (4 mL) of ligand 2 ($7.7 \mathrm{mg}, 10 \mu \mathrm{~mol}$). Orange blockshaped crystals grew after 15 d . A single crystal was selected for X-ray diffraction and the remaining crystals were analyzed by PXRD and FT-IR spectroscopy.
$\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
A $\mathrm{MeOH}(8 \mathrm{~mL})$ solution of $\mathrm{Co}(\mathrm{NCS})_{2}(1.8 \mathrm{mg}$, $10 \mu \mathrm{~mol})$ was layered over a chlorobenzene solution (5 mL) of ligand 3 ($7.8 \mathrm{mg}, 10 \mu \mathrm{~mol}$). Pink block-like crystals visible to the eye were first obtained after 17 d, and a single crystal was selected for X-ray diffraction. The remaining crystals were analyzed by powder X-ray diffraction and FT-IR spectroscopy.

Crystallography

Single crystal data were collected on a STOE StadiVari Eulerian 4-circle diffractometer (CuK α radiation) equipped with a Dectris Eiger2 1 M detector, or using a STOE StadiVari diffractometer equipped with a Pilatus300 K detector and with a Metaljet D2 source (GaK α radiation) with data processing using STOE software (X-Area 1.90, STOE, 2020). Structures were solved using Superflip ${ }^{[31,32]}$ and Olex2. ${ }^{[33]}$ The model was refined with ShelXL v. 2018/3. ${ }^{[34]}$ All H atoms were included at geometrically calculated positions and refined using a riding model with $\mathrm{U}_{\text {iso }}=1.2$ of the parent atom. Structure analysis and structural diagrams used CSD Mercury 2022.2.0. ${ }^{[30]}$

In some structures, the S-atom of the $[\mathrm{NCS}]^{-}$unit and the cyclohexyl or phenylethyl substituent suffered from disorder, and details of the treatment of the disorders and site occupancies are given in the Supporting Information in the relevant figure captions. In $\quad\left[\mathrm{Co}(\mathrm{NCS})_{2}(1)\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \quad$ and $\quad[\mathrm{Co}-$ $\left.(\mathrm{NCS})_{2}(3)\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ geometrical restraints for the aromatic ring and restraints for their thermal parame-
ters had to be used to treat the disordered 1,2dichlorobenzene molecules, chlorobenzene respectively, in the modelling process. The cyclohexyl substituent in $\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ showed large thermal motion requiring restraints for the thermal parameter. A solvent mask was applied to treat part of the solvent region in $\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$. The electron density removed was accounted for in terms of added solvent molecules and these were added to the formulae and all appropriate numbers.

PXRD data were collected at 295 K in transmission mode using a Stoe Stadi P diffractometer equipped with CuKa1 radiation ($\mathrm{Ge}(111$) monochromator and a DECTRIS MYTHEN 1 K detector). Whole-pattern profile matching analysis ${ }^{[35-37]}$ of the diffraction patterns was done using the package FULLPROF SUITE (v. January 2021) ${ }^{[36,37]}$ applying a previously determined instrument resolution function based on a NIST640d standard. The structural models were derived from the single crystal X-ray diffraction data. Refined parameters in Rietveld were scale factor, zero shift, lattice parameters, background points, sulfur atomic positions and peak shapes as a Thompson-Cox-Hastings pseudoVoigt function. Preferred orientations as a MarchDollase multi-axial phenomenological model were incorporated into the analysis.

Ligand 1. CHCl_{3}

$\mathrm{C}_{49} \mathrm{H}_{45} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}, M_{r}=856.26$, colorless block, monoclinic, space group $P 2_{1} / c, a=12.4528(3), b=17.0985(4), c=$ $9.8901(3) \AA, \quad \beta=95.032(2)^{\circ}, \quad V=2097.73(10) \AA^{3}, \quad D_{c}=$ $1.356 \mathrm{~g} \mathrm{~cm}^{-3}, T=150 \mathrm{~K}, Z=2, \mu\left(\mathrm{CuK}_{\alpha}\right)=2.365 \mathrm{~mm}^{-1}$, 13047 reflections measured, 4072 unique ($R_{\text {int }}=$ 0.0459). Refinement of 3495 reflections (278 parameters) with $I>2 \sigma(I)$ converged at final $R_{1}=0.1296\left(R_{1}\right.$ all data $=0.1440), w R_{2}=0.2793\left(w R_{2}\right.$ all data $\left.=0.2911\right)$, gof $=1.021$. CCDC-2204762.
$\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$
$\mathrm{C}_{62} \mathrm{H}_{52} \mathrm{Cl}_{4} \mathrm{CoN}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}, M_{r}=1205.96$, pink block, monoclinic, space group $P 2_{1} / c, \quad a=14.5686(3), \quad b=$ 15.4967(2), $\quad c=16.2412(3) \AA, \quad \beta=115.8540(10)^{\circ}, \quad V=$ $3299.69(10) \AA^{3}, \quad D_{c}=1.214 \mathrm{~g} \mathrm{~cm}^{-3}, \quad T=150 \mathrm{~K}, \quad Z=2$, $\mu\left(\mathrm{CuK}_{\alpha}\right)=4.479 \mathrm{~mm}^{-1}, 31299$ reflections measured, 6498 unique ($R_{\text {int }}=0.0493$). Refinement of 5392 reflections (329 parameters) with $I>2 \sigma(I)$ converged at final $R_{1}=0.1409\left(R_{1}\right.$ all data $\left.=0.1579\right), w R_{2}=0.3042\left(w R_{2}\right.$ all data $=0.3143)$, gof $=0.980$. CCDC-2204764.
$\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$
$\mathrm{C}_{76} \mathrm{H}_{64} \mathrm{Cl}_{8} \mathrm{CoN}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}, M_{r}=1528.00$, pink block, monoclinic, space group $P 2_{1} / n, \quad a=16.1522(4), \quad b=$ 13.7867(3), $\quad c=17.1059(4) \AA, \quad \beta=111.381(2)^{\circ}, \quad V=$ $3547.07(15) \AA^{3}, \quad D_{c}=1.431 \mathrm{~g} \mathrm{~cm}^{-3}, \quad T=150 \mathrm{~K}, \quad Z=2$, $\mu\left(\mathrm{GaK}_{\alpha}\right)=3.814 \mathrm{~mm}^{-1}, 62521$ reflections measured, 6851 unique ($R_{\text {int }}=0.0691$). Refinement of 5483 reflections (418 parameters) with $I>2 \sigma(I)$ converged at final $R_{1}=0.0594\left(R_{1}\right.$ all data $\left.=0.0802\right), w R_{2}=0.1472\left(w R_{2}\right.$ all data $=0.1683)$, gof $=1.072$. CCDC-2204763.

$$
\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}
$$

$\mathrm{C}_{109.90} \mathrm{H}_{103.10} \mathrm{Cl}_{16.50} \mathrm{Co}_{2} \mathrm{~N}_{16} \mathrm{O}_{4.40} \mathrm{~S}_{4}, \quad M_{r}=2549.40, \quad$ orange block, monoclinic, space group $C 2 / c, a=$ 37.8243(5), $\quad b=17.4894(2), \quad c=27.6601(4) \AA, \quad \beta=$ $135.1620(10)^{\circ}, V=12901.9(3) \AA^{3}, D_{c}=1.312 \mathrm{~g} \mathrm{~cm}^{-3}, T=$ $150 \mathrm{~K}, Z=4, \mu\left(\mathrm{CuK}_{\alpha}\right)=6.191 \mathrm{~mm}^{-1}, 119069$ reflections measured, 12759 unique ($R_{\text {int }}=0.0640$). Refinement of 9771 reflections (695 parameters) with $I>2 \sigma(I)$ converged at final $R_{1}=0.1360\left(R_{1}\right.$ all data $\left.=0.1553\right)$, $w R_{2}=$ 0.3477 ($w R_{2}$ all data $=0.3710$), gof $=1.051$. CCDC2204766.
$\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
$\mathrm{C}_{69} \mathrm{H}_{52.5} \mathrm{Cl}_{2.5} \mathrm{CoN}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}, \quad M_{r}=1237.36$, pink block, monoclinic, space group $P 2_{1} / n, a=15.0141(2), b=$ 14.5575(3), $\quad c=16.8220(2) \AA \AA, \quad \beta=115.0370(10)^{\circ}, \quad V=$ 3331.26(9) $\AA^{3}, \quad D_{c}=1.234 \mathrm{~g} \mathrm{~cm}^{-3}, \quad T=130 \mathrm{~K}, \quad Z=2$, $\mu\left(\mathrm{GaK}_{\alpha}\right)=2.662 \mathrm{~mm}^{-1}, 43829$ reflections measured, 6694 unique ($R_{\text {int }}=0.0607$). Refinement of 5387 reflections (369 parameters) with $I>2 \sigma(l)$ converged at final $R_{1}=0.0980\left(R_{1}\right.$ all data $\left.=0.1139\right), w R_{2}=0.2424\left(w R_{2}\right.$ all data $=0.2521$), gof $=1.040$. CCDC -2204765 .

Supplementary Material

Supporting information for this article is available on the WWW under https://doi.org/10.1002/hlca. 202200131. Figures S1-S9: NMR spectra of compounds 1a, 2a, 1b and 2b. Figures S10 and S11: Mass spectra of compounds $\mathbf{1 b}$ and 2b. Figures S12-S15: Solid-state IR spectra of the compounds $\mathbf{1 a}, \mathbf{2 a}, \mathbf{1 b}$ and $\mathbf{2 b}$. Figures S16-S23: NMR spectra of the ligands 1 and 2. Figures S24-S27: Mass spectra of the ligands 1 and 2. Figures S28 and S29: Solid-state IR spectra of the ligands 1 and 2. Figures S30-S33: Structural figures with atom numbering. Figures S34-S37: Solid-state IR
spectra of the coordination compounds [Co$\left.(\mathrm{NCS})_{2}(\mathbf{1})\right]_{n} \cdot 2 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}, \quad\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathbf{2})\right]_{n} \cdot 4 n \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, $\left[\mathrm{Co}_{2}(\mathrm{NCS})_{4}(\mathbf{2})_{2}\right]_{n} \cdot 5.5 n \mathrm{CHCl}_{3} \cdot 0.2 n \mathrm{MeOH}$ and $[\mathrm{Co}-$ $\left.(\mathrm{NCS})_{2}(\mathbf{3})\right]_{n} \cdot 2.5 n \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.

Acknowledgements

We acknowledge the support of the Swiss National Science Foundation (grant number 200020_182559) and the University of Basel.

Data Availability Statement

Data will be made available on zenodo.org.

Author Contribution Statement

Experimental: S. S. C. and G. M.; Crystallography: G. M. and A. P.; powder diffraction and analysis: S. S. C. and G. M.; manuscript writing and structure analysis: S. S. C., G. M. and C. E. H.; manuscript editing: all authors; funding, project concepts and supervision: C. E. H. and E. C. C. All authors have read and agreed to the published version of the manuscript.

References

[1] C. E. Housecroft, "Divergent 4, $2^{\prime}: 6^{\prime}, 4^{\prime \prime}$ - and $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridines as linkers in 2- and 3-dimensional architectures', CrystEngComm 2015, 17, 7461-7468.
[2] C. E. Housecroft, E. C. Constable, ‘Ditopic and Tetratopic 4,2':6', $4^{\prime \prime}$-Terpyridines as Structural Motifs in 2D- and 3DCoordination Assemblies', Chimia 2019, 73, 462-467.
[3] C. E. Housecroft, E. C. Constable, 'The terpyridine isomer game: from chelate to coordination network building block', Chem. Commun. 2020, 56, 10786-10794.
[4] C. E. Housecroft, E. C. Constable, 'Isomers of Terpyridine as Ligands in Coordination Polymers and Networks Containing Zinc(II) and Cadmium(II)', Molecules 2021, 26, 3110.
[5] R. R. Panicker, A. Sivaramakrishna, 'Remarkably flexible $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridines and their group $8-10$ transition metal complexes - Chemistry and applications', Chem. Rev. 2022, 459, 214426 and references therein.
[6] J. Grafino, M. Vargas, M. T. Garland, A. Ibáñez, R. Gaviño, R. Baggio, 'The novel ligand 4 '-phenyl-3,2':6',3"-terpyridine (L) and the supramolecular structure of the dinuclear complex $\left[\mathrm{Zn}_{2}(\mu-\mathrm{L})(\mathrm{acac})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (acac = acetylacetonato)', Inorg. Chem. Comm. 2008, 11, 1388-1391.
[7] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, 'The Cambridge Structural Database', Acta Crystallogr., Sect. B 2016, 72, 171-179.
[8] I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor, 'New software for searching the Cambridge Structural Database and visualising crystal structures', Acta Crystallogr., Sect. B 2002, 58, 389-397.
[9] J.-Y. Cheng, F.-W. Ding, P. Wang, C.-W. Zhao, Y.-B. Dong, 'Synthesis, Structure, and Ligand-Centered Catalytic Properties of $M^{\text {II }}$ Coordination Polymers ($\mathrm{M}=\mathrm{Zn}^{\text {II }}, \mathrm{Cd}^{\text {II }}, \mathrm{Hg}^{\text {II }}$) with Open Pyridyl N-Oxide Sites', ChemPlusChem 2016, 81, 743 751.
[10] M. Zhao, J. Tan, J. Su, J. Zhang, S. Zhang, J. Wu, Y. Tian, 'Syntheses, crystal structures and third-order nonlinear optical properties of two series of Zn (II) complexes using the thiophene-based terpyridine ligands', Dyes Pigm. 2016, 130, 216-225.
[11] Y. M. Klein, A. Lanzilotto, A. Prescimone, K. W. Krämer, S. Decurtins, S.-X. Liu, E. C. Constable, C. E. Housecroft, ‘Coordination behavior of 1-(3,2':6',3"-terpyridin-4'yl)ferrocene: structure and magnetic and electrochemical properties of a tetracopper dimetallomacrocycle', Polyhedron 2017, 129, 71-76.
[12] J. Granifo, R. Gaviño, E. Freire, R. Baggio, 'The new sulphurcontaining ligand 4^{\prime}-(4-methylthiophenyl)-3, $2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridine (L1) and the supramolecular structure of the dinuclear complex $\left[\mathrm{Zn}_{2}(\mu-\mathrm{L1})(\mathrm{acac})_{4}\right]$ (acac $=$ acetylacetonato): The key role of non-covalent S \ldots O contacts and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds', J. Mol. Struct. 2011, 1006, 684-691.
[13] D. Rocco, A. Prescimone, E. C. Constable, C. E. Housecroft, 'Switching the Conformation of $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-tpy Domains in 4'-(4-n-Alkyloxyphenyl)-3, $2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-Terpyridines', Molecules 2020, 25, 3162.
[14] Y. Watanabe, D. Yokoyama, T. Koganezawa, H. Katagiri, T. Ito, S. Ohisa, T. Chiba, H. Sasabe, J. Kido, 'Control of Molecular Orientation in Organic Semiconductor Films using Weak Hydrogen Bonds', Adv. Mater. 2019, 31, 1808300.
[15] X. Tian, Y. Zhu, M. Zhang, J. Tan, Q. Zhang, X. Wang, J. Yang, H. Zhou, J. Wu, Y. Tian, ‘Mild acidic-enhanced mitochondrial-targeting by a neutral thiophene based terpyridine molecule with large two-photon action crosssection', Dyes Pigm. 2017, 139, 431-439.
[16] W. Du, H. Wang, Y. Zhu, X. Tian, M. Zhang, Q. Zhang, S. C. De Souza, A. Wang, H. Zhou, Z. Zhang, J. Wu, Y. Tian, 'Highly Hydrophilic, Two-photon Fluorescent Terpyridine Derivatives Containing Quaternary Ammonium for Specific Recognizing Ribosome RNA in Living Cells', ACS Appl. Mater. Interfaces 2017, 9, 31424-31432.
[17] Y. Shi, K. Wang, Y. Tsuchiya, W. Liu, T. Komino, X. Fan, D. Sun, G. Dai, J. Chen, M. Zhang, C. Zheng, S. Xiong, X. Ou, J. Yu, J. Jie, C.-S. Lee, C. Adachi, X. Zhang, 'Hydrogen bondmodulated molecular packing and its applications in highperformance non-doped organic electroluminescence', Mater. Horiz. 2020, 7, 2734-2740.
[18] Y.-Z. Shi, K. Wang, S.-L. Zhang, X.-C. Fan, Y. Tsuchiya, Y.-T. Lee, G.-L. Dai, J.-X. Chen, C.-J. Zheng, S.-Y. Xiong, X.-M. Ou, J. Yu, J.-S. Jie, C.-S. Lee, C. Adachi, X.-H. Zhang, 'Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "SelfDoping" Organic Light-Emitting Diode', Angew. Chem. Int. Ed. 2021, 60, 25878-25883.
[19] C. Zhang, Y. Zhao, D. Li, J. Liu, H. Han, D. He, X. Tian, S. Li, J. Wu, Y. Tian, 'Aggregation-induced emission (AIE)-active molecules bearing singlet oxygen generation activities: the tunable singlet-triplet energy gap matters', Chem. Commun. 2019, 55, 1450-1453.
[20] X. Guo, M. Bian, F. Lv, Y. Wang, Z. Zhao, Z. Bian, B. Qu, L. Xiao, Z. Chen, 'Increasing electron transporting properties and horizontal molecular orientation via meta-position of nitrogen for " $(A)_{n}-D-(A)_{n}$ " structured terpyridine electrontransporting material', J. Mater. Chem. C 2019, 7, 1158111587.
[21] J. Zhang, H. Wang, 'Photophysical investigaions and the bioimaings of $\alpha-, \beta-\gamma$-pyridine-based terpyridine derivatives', J. Mol. Struct. 2018, 1157, 457-462.
[22] Y. M. Klein, A. Prescimone, E. C. Constable, C. E. Housecroft, 'Coordination behaviour of 1-(4, $2^{\prime}: 6^{\prime}, 4^{\prime \prime}$-terpyridin-4'yl)ferrocene and 1-(3,2':6',3"-terpyridin-4'-yl)ferrocene: predictable and unpredictable assembly algorithms', Aust. J. Chem. 2017, 70, 468-477.
[23] Y. M. Klein, E. C. Constable, C. E. Housecroft, A. Prescimone, 'A 3-dimensional $\left\{4^{2} .8^{4}\right\}$ lvt net built from a ditopic bis($3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridine) tecton bearing long alkyl tails', CrystEngComm 2015, 17, 2070-2073; correction: CrystEngComm 2022, 24, 5170-5170.
[24] G. Manfroni, A. Prescimone, S. R. Batten, Y. M. Klein, D. J. Gawryluk, E. C. Constable, C. E. Housecroft, ‘Trinodal SelfPenetrating Nets from Reactions of 1,4-Bis(alkoxy)-2,5bis ($3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridin-4'-yl)benzene Ligands with Cobalt(II) Thiocyanate', Crystals 2019, 9, 529.
[25] S. S. Capomolla, G. Manfroni, A. Prescimone, E. C. Constable, C. E. Housecroft, 'A Tail Does Not Always Make a Difference: Assembly of $c d s$ Nets from $\mathrm{Co}(\mathrm{NCS}) 2$ and 1,4-bis(n-Alkyloxy)-2,5-bis(3,2':6', $3^{\prime \prime}$-terpyridin-4'-yl)benzene Ligands', Molecules 2022, 27, 4995.
[26] G. Manfroni, B. Spingler, A. Prescimone, E. C. Constable, C. E. Housecroft, 'Multitopic 3,2':6',3'-terpyridine ligands as 4-connecting nodes in two-dimensional 4,4-networks', CrystEngComm 2022, 24, 7073-7082.
[27] J. Wang, G. S. Hanan, 'A Facile Route to Sterically Hindered and Non-Hindered 4^{\prime}-Aryl- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-Terpyridines', Synlett 2005, 1251-1254.
[28] S. S. Capomolla, G. Manfroni, A. Prescimone, E. C. Constable, C.E. Housecroft, 'Versatility within $(4,4)$ networks assembled from 1,4-bis(n-alkyloxy)-2,5-bis(3,2':6, $3^{\prime \prime}$-terpyr-idin- 4^{\prime}-yl)benzene and $\left[\mathrm{Cu}(\mathrm{hfacac})_{2}\right]$ (Hhfacac $=1,1,1,5,5,5-$ hexafluoropentane-2,4-dione)', Polyhedron 2022, 224, 116005.
[29] C. Janiak, 'A critical account on $\pi-\pi$ stacking in metal complexes with aromatic nitrogen-containing ligands', Dalton Trans. 2000, 3885-3896.
[30] C. F. Macrae, I. Sovago, S. J. Cottrell, P.T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, 'Mercury 4.0: from visualization to analysis, design and prediction', J. Appl. Cryst. 2020, 53, 226-235.
[31] L. Palatinus, G. Chapuis, ‘SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions', J. Appl. Cryst. 2007, 40, 786-790.
[32] L. Palatinus, S. J. Prathapa, S. van Smaalen, 'EDMA: a computer program for topological analysis of discrete electron densities', J. Appl. Cryst. 2012, 45, 575-580.
[33] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, 'OLEX2: a complete structure solution, refinement and analysis program', J. Appl. Cryst. 2019, 42, 339-341.
[34] G. M. Sheldrick, 'Crystal structure refinement with SHELXL', Acta Crystallogr., Sect. C 2015, 27, 3-8.
[35] A. Le Bail, H. Duroy, J. L. Fourquet, 'Ab-initio structure determination of LiSbWO_{6} by X-ray powder diffraction', Mat. Res. Bull. 1988, 23, 447-452.
[36] G. S. Pawley, 'Unit-cell refinement from powder diffraction scans', J. Appl. Cryst. 1981, 14, 357-361.
[37] J. Rodríguez-Carvajal, 'Recent advances in magnetic structure determination by neutron powder diffraction', Physica B 1993, 192, 55-69.
[38] T. Roisnel, J. Rodríguez-Carvajal, 'WinPLOTR: a Windows Tool for Powder Diffraction Patterns Analysis', in 'Materials Science Forum', Vol. 378-381, Trans Tech Publications, Ltd. 2001, pp. 118-123.

Received October 10, 2022
Accepted November 4, 2022

[^0]: Supporting information for this article is available on the WWW under https://doi.org/10.1002/hlca. 202200131

[^1]: ${ }^{[a]}$ For the tpy unit containing N1 N2 N3. ${ }^{[b]}$ Tpy unit containing N4 N5 N6.

