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Abstract	
Most	proteins	found	in	the	outer	membrane	of	Gram-negative	bacteria	share	a	common	

domain:	the	transmembrane	β-barrel.	These	outer	membrane	β-barrels	(OMBBs)	occur	

in	 multiple	 sizes,	 and	 different	 families	 with	 a	 wide	 range	 of	 functions	 evolved	

independently	by	amplification	from	a	pool	of	homologous	ancestral	ββ-hairpins.	This	is	

part	of	the	reason	why	predicting	their	three-dimensional	(3D)	structure,	especially	by	

homology	 modeling,	 is	 a	 major	 challenge.	 Recently,	 DeepMind’s	 AlphaFold	 v2	 (AF2)	

became	 the	 first	 structure	 prediction	 method	 to	 reach	 close-to-experimental	 atomic	

accuracy	 in	 CASP	 even	 for	 difficult	 targets.	 However,	 membrane	 proteins,	 especially	

OMBBs,	were	not	abundant	during	its	training,	raising	the	question	of	how	accurate	the	

predictions	are	for	these	families.	In	this	study,	we	assessed	the	performance	of	AF2	in	

the	prediction	of	OMBBs	of	various	topologies	using	an	in-house-developed	tool	for	the	

analysis	of	OMBB	3D	structures,	barrOs.	 In	agreement	with	previous	studies	on	other	
membrane	protein	classes,	our	results	indicate	that	AF2	predicts	OMBB	structures	at	high	

accuracy	independently	of	the	use	of	templates,	even	for	novel	topologies	absent	from	

the	training	set.		These	results	provide	confidence	on	the	models	generated	by	AF2	and	

open	the	door	to	the	structural	elucidation	of	novel	OMBB	topologies	identified	in	high-

throughput	OMBB	annotation	studies.	
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Introduction		

Protein	structure	prediction	is	an	important	tool	to	gain	insights	into	the	function	and	

biological	role	of	macromolecular	machines	from	three-dimensional	(3D)	models.	While	

the	number	of	known	natural	protein	sequences	has	been	increasing	exponentially	[1,2]	

since	the	first	sequencing	of	a	protein	in	the	1950s,	the	experimental	determination	of	

macromolecular	 3D	 structures	 is	 a	 laborious	 task.	 For	 this	 reason,	 and	 even	with	 the	

recent	 considerable	 improvements	 in	 experimental	 biophysical	 methods,	 the	 rate	 by	

which	protein	structures	are	deposited	in	the	Protein	Data	Bank	(PDB)	[3]	is	much	lower	

than	that	by	which	protein-coding	sequences	are	made	available	through	GenBank	or	the	

UniProt	 Knowledgebase.	 One	 way	 of	 tightening	 this	 gap	 is	 to	 use	 computational	

approaches	 such	 as	 homology	 modeling,	 threading,	 or	 ab	 initio	 methods	 for	 protein	
structure	prediction	[4–7].	

The	Critical	Assessment	of	Protein	Structure	Prediction	 (CASP)	 [8]	 experiment	

provides	a	platform	for	the	benchmarking	of	such	methods	and,	since	its	onset	in	the	early	

1990s,	has	fostered	the	development	of	multiple	approaches	exploring	a	wide	range	of	

data	sources	and	computational	techniques.	Until	recently,	homology	modeling	was	the	

method	of	choice	to	model	3D	structures	of	proteins	with	homologs	of	known	structure	

in	 the	 PDB,	while	 ab	 initio	methods	were	 preferred	 for	 all	 others.	However,	 ab	 initio	
modeling	was	rarely	able	to	reach	for	such	difficult	targets	the	same	level	of	accuracy	as	

that	typically	reached	by	homology	modeling.	That	changed	in	2020,	with	DeepMind’s	

second	 version	 of	 the	 AlphaFold	 algorithm	 (AF2)	 providing,	 on	 average,	 close	 to	

experimental	accuracy	levels	for	most	targets	in	the	14th	round	of	CASP	(CASP14)	[9,10],	

and	 later	 significantly	 expanding	 the	 structural	 coverage	 of	 the	 cataloged	 protein	

sequence	space	[11,12].		

AF2	is	a	deep	neural	network	with	two	attention-based	transformation	modules,	

where	evolutionary,	physical,	and	geometric	information	is	used	to	perform	end-to-end	

protein	structure	prediction	[10].	The	first	module,	the	Evoformer,	uses	information	from	

multiple	sequence	alignments	(MSAs)	and	templates	to	generate	a	pair	representation,	a	

contact	map	of	sorts,	for	the	input.	The	second	module,	the	structure	module,	uses	this	

representation	and	the	input	sequence	to	fold	the	target	protein.	The	network	has	been	

trained	with	all	protein	structures	in	the	PDB	as	of	April	30,	2018,	and	it	is	not	tailored	to	

any	specific	class	of	proteins.		
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However,	 the	 PDB	 is	 biased	 towards	 those	 proteins	 that	 are	 ‘easier’	 to	

experimentally	characterize,	with	only	10	%	of	its	content	corresponding	to	membrane	

proteins	 [13].	 For	 this	 reason,	 it	 is	 not	 expected	 that	 AF2	 is	 able	 to	 predict	 the	 3D	

structure	 of	 transmembrane	 proteins	 as	 accurately	 as	 soluble	 ones,	 especially	 when	

multiple	domains	are	present.	In	a	recent	study,	Hegedűs	et	al.	assessed	AF2	structure	
prediction	 of	 α-helical	 transmembrane	 proteins.	 They	 observed	 that	 the	 models	

predicted	 by	AF2	 exhibited	 a	 known	 fold	 of	 α-helical	 transmembrane	 proteins	 for	 all	

1,137	test	cases,	suggesting	that	the	prediction	of	transmembrane	proteins	by	AF2	is	as	

accurate	as	for	soluble	proteins	[14].	

In	 this	 short	 report,	 we	 focus	 on	 the	 second-largest	 class	 of	 transmembrane	

proteins:	 the	 outer	 membrane	 β-barrels	 (OMBBs).	 OMBBs	 are	 abundant	 in	 Gram-

negative	bacteria,	but	are	also	 found	 in	 chloroplasts,	mitochondria	and	mitochondria-

associated	organelles	[15–17].	They	have	both	medical	and	biotechnological	importance	

[18–20]	as	they	are	composed	of	an	antiparallel	β-sheet	that	connects	back	to	itself	to	

form	a	 pore	 that	 crosses	 the	 outer	membrane,	where	 they	perform	a	 large	 variety	 of	

biological	 activities	 essential	 for	 survival	 [21].	 They	 are	 found	 in	 a	 large	 spectrum	of	

protein	 families	either	as	 single	domains,	 together	with	other	domains,	or	 in	multiple	

copies	 in	 the	 same	 chain	 [22].	 Different	 OMBB	 families	 are	 composed	 of	 different	

numbers	of	β-strands	[22,48].	The	diameter	of	the	barrel	depends	on	the	numbers	of	β-

strands,	but	also	on	 the	shear	number,	which	 is,	 simply	put,	a	measure	of	 the	parallel	

displacement	of	the	strands	relative	to	each	other	[23–25].	

OMBB	structure	prediction	is	a	challenging	task	as	they	can	be	traced	back	to	a	

pool	of	homologous	ancestral	ββ-hairpins	and	novel	 families	emerge	by	the	reuse	and	

amplification	 of	 smaller	 pieces	 from	 other	 OMBBs	 [26–29].	 In	 the	 special	 case	 of	

homology	modeling,	when	dealing	with	a	novel	family	for	which	no	full-length	template	

is	known	or	for	which	the	full-length	template	corresponds	to	part	of	a	larger	β-barrel,	

the	resulting	model	will	either	correspond	to	(1)	a	mix	of	local	matches	with	mismatching	

shears	that	prevent	the	proper	closing	of	the	barrel,	or	(2)	an	incomplete,	open	barrel	

incompatible	 with	 the	 membrane	 environment.	 Current	 OMBB	 modeling	 approaches	

circumvent	 these	 problems	 by	 using	 external	 information	 specific	 to	 these	 proteins.	

These	 include	 the	 generation	 of	 perfect	 barrel	 structures	 directly	 from	 a	 theoretical	

description	of	a	barrel	[15,23,25,30],	 the	prediction	of	 transmembrane	segments	 from	

sequence	 features	 [31–36]	 and	 their	 fitting	 into	 a	 putative	 membrane	 [37],	 and	 the	
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prediction	 of	 contacts	 between	 those	 segments	 from	 free	 energy	 potentials	 based	 on	

statistical	models	[38–41]	or	evolutionary	couplings	[42,43].		

In	this	short	report,	we	sought	to	evaluate	how	the	family-agnostic	AF2	network	

performs	for	OMBBs.	As	of	the	time	of	AF2	training,	about	100	single-chained	OMBBs	at	

a	maximum	of	70	%	sequence	 identity	 (table	S1)	and	with	8	up	 to	26	β-strands	were	

deposited	 in	 the	 PDB.	 In	 the	 meantime,	 the	 structure	 of	 a	 36-stranded	 OMBB,	 the	

translocon	 of	 the	 Fibrobacteres-Chlorobi-Bacteroidetes	 type	 9	 secretion	 system,	 was	

solved	 by	 cryo-EM	 [44],	 and	more	 than	 30	 previously	 unknown	OMBB	 families	were	

predicted	at	the	sequence	level,	including	the	largest	ever	reported	OMBB,	with	at	least	

38	 predicted	 strands	 [22].	 In	 the	 case	 of	 long-known	 OMBB	 topologies,	 structural	

information	has	been	fed	into	the	network	during	the	training	phase.	Thus,	even	without	

using	homologous	structures	for	modeling,	OMBB	models	of	high	accuracy	are	expected.	

But	since	the	newest	topology	of	a	36-stranded	OMBB	was	discovered	after	the	date	limit	

for	inclusion	in	the	training	set,	it	is	unclear	how	AF2	performs	in	such	cases	and	what	

the	impact	of	using	templates	is.		

	

Methods	

Collection	of	test	case	structures	

Ten	OMBBs	of	known	structure,	covering	topologies	of	8-	to	24-stranded	barrels	(table	

S1)	were	first	used	as	input	for	searches	against	an	HHM	database	of	the	PDB70	(as	of	

February	2021)	with	HHpred	[45]	through	the	MPI	Bioinformatics	toolkit	[46].	Default	

parameters	were	used	and	all	PDB	chains	matched	at	a	p-value	better	than	10	collected.	

These	were	then	analyzed	with	barrOs	in	order	to	(1)	identify	the	matched	PDB	IDs	that	
carry	a	barrel	fold,	(2)	extract	geometric	features	of	the	barrel	region,	and	(3)	extract	the	

sequence	of	the	barrel	domains.	With	this,	129	unique	OMBBs	of	known	structure	were	

collected	 and	 the	 sequences	 of	 the	 detected	 barrel	 regions,	which	 include	 the	 barrel-

forming	strands	and	the	connecting	loops,	were	used	as	input	to	AF2.		

Identification	of	OMBB	folds	and	extraction	of	barrel	geometric	features	with	barrOs	

barrOs	 (for	 barrel	 circle	 searcher)	 is	 an	 in-house-developed	 tool	 that,	 given	 a	 PDB	
structure,	uses	a	graph-based	approach	to	identify	the	strands	that	form	a	barrel	fold	and	

then	uses	them	to	compute	geometric	features.	This	includes	the	number	of	strands,	the	
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barrel	 diameter,	 and	 the	 shear	 number	 of	 the	 barrel	 region.	 The	 method	 is	 family-

agnostic	and	can	take	as	input	(1)	a	PDB	structure,	(2)	a	list	of	PDB	IDs,	or	(3)	HHsearch	

output	 files.	 It	 can	 be	 targeted	 specifically	 to	 transmembrane	 proteins	 by	 using	 the	

Orientations	of	Proteins	in	Membranes	(OPM)	database	[47]	as	a	source	of	3D	structures,	

and	to	OMBBs	specifically	by	combining	it	with	the	results	from	HHsearch.	

For	each	structure	to	be	analyzed,	barrOs	starts	by	extracting	all	Cα	atoms	and	
searches	for	all	β-strands.	This	is	done	by	(1)	running	DSSP	[48,49]	and,	in	parallel,	(2)	

detecting	what	we	denote	as	‘regular	regions’.	Regular	regions	are	continuous	backbone	

segments	where	the	angle	between	the	Cαi-Cαi+2	and	Cαi+1-Cαi+3	vectors	is	lower	than	

25°.	Regular	and	stranded	region	annotations	derived	from	the	DSSP	(‘E’)	output	are	then	

fused,	and	the	resulting	continuous	intervals	referred	to	as	‘strands’.		

Two	strands	where	the	minimum	interstrand	distance	of	 their	Cα	atoms	is	 less	

than	 5	 Å	 are	 considered	 adjacent,	 allowing	 the	 construction	 of	 a	 strand-connectivity	

matrix.	This	matrix	is	then	used	to	build	an	undirected,	labeled	graph,	and	the	cycle_basis	
function	implemented	in	NetworkX	[50]	is	used	to	identify	the	nodes,	i.e.,	the	strands,	that	
form	a	closed	cycle.	Given	that	OMBBs	typically	have	an	even	number	of	strands	(except	

for	 the	 19-stranded	mitochondria-specific	 OMBBs),	 if	 the	 resulting	 number	 of	 barrel-

forming	strands	(the	estimated	topology)	is	uneven,	this	process	is	repeated	using	the	

regular	regions	or	the	DSSP-extracted	strands	until	an	even	topology	is	obtained.	If	the	

result	 remains	 uneven,	 that	 topology	 is	 considered.	 Structures	 without	 detected	

structured	barrels	are	excluded,	and	only	those	with	a	detected	barrel	fold	are	used	for	

further	analysis.	This	includes	the	estimation	of	the	barrel	height,	average	diameter	and	

shear	number,	as	defined	in	Murzin	et	al.	[23].		

Running	AF2	

AF2	models	were	generated	for	the	129	OMBBs	in	three	independent	experiments	with	

AlphaFold	v2.0.1	on	a	local	cluster	instance		with	three	different	parameter	settings:	The	

first	was	performed	with	 the	default	pipeline,	which	 includes	 the	use	of	 all	 templates	

found	 in	 the	 PDB	 (labeled	 ‘M’).	 In	 the	 second,	 AF2	was	 run	without	 considering	 any	

templates	 by	 setting	 the	 --max_template_date	 option	 to	 1900-01-01	 (labeled	

‘Mnotemp’).	 And	 in	 the	 third,	 template	 usage	was	partially	 allowed	by	 setting	 the	--

max_template_date option	to	one	day	prior	to	the	respective	release	date	in	order	
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to	exclude	the	deposited	structure	from	being	used	as	a	template	for	modeling	(labeled	

‘Mreldate’).		

Model	comparison	and	visualization		

All	 AF2	models	 were	 used	 as	 input	 files	 for	 barrOs	 to	 identify	 barrel	 topologies	 and	
extract	 geometrical	 information	 of	 the	 barrel	 domains.	 Calculations	 of	 the	 template	

modeling	score	(TM-score)	and	 the	root-mean-square	deviation	(RMSD)	were	carried	

out	 with	 TM-align	 [51].	 OpenStructure	 was	 used	 to	 calculate	 the	 per-residue	 local	

distance	difference	test	score	(Cα-lDDT)	for	each	model	[52].		

	

Results	
As	a	first	step,	we	evaluated	how	well	AF2	captures	the	core	geometric	features	of	OMBBs	

in	 the	 presence	 and	 absence	 of	 templates,	 especially	 the	 topology	 of	 the	 domain,	 the	

average	diameter	of	the	channel	and	the	shear,	which	measures	the	extent	by	which	the	

strands	 are	 staggered	 (fig.	 1).	 For	 that,	 the	 129	 experimental	 structures	 and	 the	

corresponding	AF2	models	were	used	as	input	for	barrOs.	The	first	observation	is	that	
AF2	predicted	models	with	the	correct	topology	for	most	cases;	out	of	the	129,	there	were	

only	two	test	cases	where	the	number	of	strands	in	the	model	deviated	by	±1.	In	these	

cases,	visual	 inspection	highlighted	that	 the	difference	 is	not	a	result	of	an	 incorrectly	

modeled	topology,	but	due	to	minor	differences	 in	the	experimental	structure	and	the	

AF2	model	that	misled	barrOs	during	the	identification	of	regular	regions	(figs.	S1A-B).		
	

	
Figure	1	.	Predicted	OMBB	topologies	and	geometries.	Differences	(Δ)	of	the	number	of	strands	(A),	shear	
numbers	(B)	and	barrel	diameters	(C)	in	target	structures	and	AF2	models.	Data	of	AF2	models	generated	
with	using	templates	(‘M’),	without	using	templates	(‘Mnotemp’)	and	with	using	templates	up	to	the	release	
date	of	the	target	structure	(‘Mreldate’),	is	shown	in	blue,	orange	and	green,	respectively.	
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Regarding	the	shear	and	barrel	diameter,	there	are	also	only	marginal	differences	

between	the	target	structures	and	the	models	predicted	by	AF2,	with	some	noteworthy	

exceptions.	One	striking	case	is	that	of	Vibirio	cholerae	OmpT	(PDB	ID	6EHD),	where	the	
shear	of	the	model	generated	with	no	templates	(‘Mnotemp’)	was	18	residues	smaller	

(fig.	S1C).	The	reason	here	lies	on	an	extracellular	loop	that	in	both	AF2	models	predicted	

using	templates	(‘M’	and	‘Mreldate’)	and	the	experimental	structure	is	modeled	inwards,	

facing	 the	 channel	 of	 the	 barrel,	 while	 in	 the	 ‘Mnotemp’	 model	 it	 faces	 the	 exterior,	

extending	the	strands	that	build	the	barrel	region	and	leading	to	an	incorrect	value	of	the	

shear.	

The	agreement	between	 the	geometric	 features	of	AF2	models	and	 their	 target	

experimental	structure	is	also	corroborated	by	superposition-based	and	superposition-

free	quality	metrics.	In	the	case	of	superposition-based	metrics,	high	median	TM-scores,	

and	correspondingly	low	RMSD	values,	were	observed	for	all	three	experiments	(fig.	2A-

B).	 The	 highest	median	TM-scores	 (0.98	±	0.02)	were	 obtained	with	 the	AF2	default	

pipeline,	 in	which	template	 information	is	used	for	the	prediction	of	models	(‘M’),	but	

also	 when	 templates	 up	 to	 the	 release	 date	 (‘Mreldate’)	 were	 allowed.	 Excluding	

templates	 completely	 (‘Mnotemp’)	 only	 lead	 to	 marginally,	 and	 not	 statistically	

significant,	lower	TM-scores	(0.97	±	0.02).		

This	testifies	to	an	overall		high	accuracy	of	the	AF2	models	independently	on	the	

use	 of	 templates,	 yet	 there	 are	 a	 few	 outliers	 below	 and	 above	 the	 lower	 and	 upper	

quartile	of	the	TM-score	and	RMSD	distributions,	respectively.	The	lowest	TM-scores	of	

<	 0.5	 (and	 highest	 RMSD	 values	 of	 >	 4	 Å)	 were	 observed	 for	 AF2	models	 of	 the	 8-

stranded	Opa	OMBB	(PDB	ID	2MLH),	which	is	crucial	for	the	recognition	and	engulfment	

of	bacterial	pathogens	Neisseria	gonorrhoeae	or	Neisseria	meningitidis	by	human	cells	
during	 pathogenesis	 [53].	 The	 target	 structure	 used	 is	 one	 of	 the	 20	 calculated	

conformers	with	the	lowest	energy	determined	by	solution	NMR.	While	the	barrel	region	

was	predicted	 accurately,	 only	 the	 extracellular	 loops	did	not	 overlap	with	 the	 target	

structure	(fig.	2C).	This	is	further	highlighted	by	the	superposition-free	per-residue	Cα-

lDDT	(fig.	S2B),	where	 the	scores	are	higher	(>	75)	 for	stranded	regions	 than	 for	 the	

loops	(<	50).	In	this	particular	case,	the	flexibility	of	those	loops	is	in	fact	essential	for	

the	function	of	the	protein,	and	thus	it	is	not	surprising	that	the	AF2	prediction	does	not	

match	the	selected	solution	NMR	structure.		
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Figure	2	.	Full-length	assessment	of	target	structures	and	AF2	models.	(A)	The	median	TM-scores	of	the	‘M’,	
‘Mnotemp’	and	‘Mreldate’	experiments	are	0.98	±	0.02,	0.97	±	0.02	and	0.98	±	0.02,	respectively.	(B)	The	
median	RMSD	values,	as	computed	by	TMalign,	of	the	‘M’,	‘Mnotemp’	and	‘Mreldate’	experiments	are	1.0	±	
0.5,	1.4	±	0.5	and	1.3	±	0.5	Å,	respectively.	(C)	Solution	NMR	structure	and	AF2	model	of	PDB	ID	2MLH	
shown	in	gray	and	blue,	respectively.	The	backbone	traces	of	the	other	19	calculated	conformers	are	shown	
in	light	gray.	
	

This	 trend	 is	 also	 observed	 for	 other	 cases	 where	 the	 TM-score	 is	 above	 0.9,	 an	

uncertainty	 also	 captured	 by	 the	 predicted	 Cα-lDDT	 (pLDDT)	 computed	 by	 AF2.		

Examples	of	an	8-stranded	and	a	12-stranded	OMBB	are	shown	in	figure	3,	highlighting	

the	strikingly	good	prediction	accuracy	of	pLDDT.	Both	the	Cα-lDDTs	and	pLDDTs	reach	

values	between	95	and	100	for	𝛽-strand	regions,	while	the	loops	(specially	those	facing	

the	 extracellular	 side	 of	 the	 outer	 membrane)	 result	 in	 lower	 lDDT	 values,	 with	 no	

striking	differences	between	 the	 three	AF2	 ‘M’,	 ‘Mnotemp’	 and	 ‘Mreldate’	 predictions.	

Limiting	the	analysis	to	the	β-strands	forming	the	barrels	(which	we	refer	to	as	‘barrel	

cores’	for	the	remaining	text)	(fig.	4A),	resulted	in	extremely	high	median	lDDT	values	of	

98.2	±	1.6,	97.0	±	1.9	and	97.1	±	1.9	for	the	models	of	the	‘M’,	‘Mnotemp’	and	‘Mreldate’	

experiments,	 respectively;	 corroborating	 the	 marginal	 deviations	 observed	 in	 the	

different	barrel	geometric	features.		

Interestingly,	while	the	lDDT	and	pLDDT	correlate	well,	their	distribution	for	the	

barrel	core	regions	is	different	independently	of	the	use	of	templates	(fig.	4A),	with	AF2	

underestimating,	on	average,	their	accuracy.	In	four	cases,	however,	the	confidence	of	the	

AF2	models	for	the	barrel	regions	was	above	85	while	the	lDDT	was	lower,	but	still	within	

a	reasonable	range	of	75-80	(fig.	4B).	The	three	first	cases	are	PDB	IDs	6QWR,	2MLH	and	

2K0L,	all	of	which	are	8-stranded	OMBBs	whose	structures	were	determined	by	NMR	

spectroscopy	with	100	or	more	calculated	conformers.	The	fourth	case	corresponds	to	

PDB	 ID	5O8O,	 the	 first	 experimental	 structure	of	 a	19-stranded	mitochondrial	 import	
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receptor	subunit	Tom40.	Its	experimental	structure	was	determined	through	rigid	body	

docking	into	a	6.8-Å	resolution	cryo-EM	map	of	a	homology	model	generated	based	on	

the	 X-ray	 structure	 of	 a	 homologous	mitochondrial	 voltage-dependent	 anion	 channel	

(VDAC)	 [54].	While	 the	 overall	 topology	of	 the	AF2	model	matches	 this	 experimental	

structure	and	the	same	residues	build	up	the	barrel	core,	a	few	strands	exhibit	a	distinct	

frame-shift	 along	 its	axis	 in	all	 three	predicted	models	 (fig.	 S3A),	 resulting	 in	average	

lDDT	values	below	80.	A	more	recent	structure	of	a	homologous	Tom40	determined	by	

cryo-EM	at	higher	resolution	(PDB	ID	6UCU)	[55],	and	which	was	also	a	 target	 in	 this	

study,	agrees	with	the	AF2	model	(fig.	S3B).					

	
Figure	3.	 	Predicted	and	calculated	Cα-lDDT	values	per	residue	 for	 two	examples.	(A)	PDB	ID	1P4T,	an	
OMBB	with	 8	𝛽-strands.	 (B)	 and	 of	 target	 PDB	 ID	 4RL8,	 an	 OMBB	with	 twelve	𝛽-strands.	 Boxes	 and	
numbers	 indicate	 the	𝛽-strands.	The	average	correlation	coefficients	between	predicted	and	calculated	
lDDTs	over	the	three	models	shown	in	(A)	and	(B)	are	0.895	±	0.005	and	0.756	±	0.009,	respectively.		
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Figure	4	.	Superposition-free	assessment	of	target	structures	and	AF2	models.	(A)	Predicted	and	calculated	
Cα-lDDT	scores	of	barrel	 core	𝛽-strands	are	shown	 in	dark	and	 light	 colors,	 respectively.	 (B)	The	 four	
targets	 with	 lDDTs	 of	 strands	 below	 80.	 Shown	 are	 only	 the	 residues	 considered	 as	 regular	 regions.	
Experimental	structures	and	AF2	models	are	shown	in	gray	and	blue,	respectively.		
	
Most	of	these	cases,	however,	were	either	part	of		or	had	full-length	homologs	in	the	AF2	

training	 set,	 thus	 such	 high	 accuracy	 is	 expected	 a	 priori.	 Of	 higher	 interest	 is	 the	
performance	of	AF2	for	cases	of	novel	topology,	unknown	to	AF2.	Unfortunately,	only	one	

such	case	is	available	in	the	PDB	and	corresponds	to	the	only	known	36-stranded	OMBB	

(PDB	ID	6H3I)	[44].	It	forms	the	translocon	of	the	Fibrobacteres-Chlorobi-Bacteroidetes	

type	9	secretion	system	and	its	structure	was	deposited	in	the	PDB	after	April	30,	2018	

(table	S1).	Although	AF2	had	never	“seen”	a	36-stranded	barrel,	the	barrel	core	and	its	

geometric	features	were	predicted	accurately,	regardless	of	the	use	of	templates	(fig.	5).	

In	all	cases,	however,	local	backbone	conformations	of	the	barrel	region	in	the	AF2	model	

are	closer	to	standard	geometries	of		β-sheets	than	those	in	the	experimental	structure.	

This	 is	 not	 a	 surprising	 result	 as	 the	 target	 is	 a	 3.5	 Å	 cryo-EM	 structure	 and	 lower	

resolutions	lead	to	higher	uncertainties	of	the	atomic	coordinates.	In	the	model	generated	

with	 templates,	 even	 the	 intra-	 and	 extracellular	 loops	 matched	 those	 in	 the	 target	

structure	with	high	accuracy,	as	also	seen	in	the	comparison	of	predicted	and	calculated	
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Cα-lDDT	values	(fig.	S2A).	There	were	only	minor	displacements	in	the	loop	regions	of	

the	model	predicted	without	any	template	information.		

	

Figure	 5.	 AF2	 models	 of	 the	 36-stranded	 translocon	 in	 the	 type	 9	 secretion	 system	 (PDB	 ID	 6H3I).	
Predictions	were	generated	with	template	(A)	and	without	template	(B)	information.	Excluding	templates	
from	 the	 AF2	 algorithm	 resulted	 in	 minor	 displacements	 in	 loop	 regions,	 while	 the	 barrel	 core	 was	
predicted	accurately	nonetheless.	The	experimental	structure	and	AF2	models	are	shown	in	gray	and	in	
color,	respectively.	
	
Discussion	
Given	 the	 under-representation	 of	 transmembrane	 proteins	 in	 the	 PDB,	 and	

consequently	in	the	training	set	of	AF2,	 it	 is	 imperative	to	evaluate	how	the	algorithm	

performs	for	such	an	important	class	of	proteins.	While	a	study	was	previously	carried	

out	 for	 α-helical	 transmembrane	 proteins	 [14],	 we	 focused	 on	 the	 second-largest	

category:	the	outer	membrane	β-barrels	(OMBBs),	especially	those	found	at	the	surface	

of	 Gram-negative	 bacteria	 and	 their	 eukaryotic	 homologs.	 Gram-positive,	 multimeric	

transmembrane	 β-barrels,	 which	 evolved	 by	 convergence	 [56],	 as	well	 as	multimeric	

OMBBs,	which	are	formed	by	separate	polypeptide/protein	chains,	such	as	those	forming	

the	anchor	domain	of	trimeric	autotransporter	adhesins	[57],	were	not	considered.	We	

identified	129	non-redundant	single-chained	OMBBs	in	the	PDB,	with	topologies	ranging	

from	8	to	36	strands.	In	all	cases,	AF2	predictions	were	highly	accurate;	all	experiments	

resulted	in	extremely	high	median	TM-scores	above	0.97	and	low	median	RMSD	values	
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below	1.4	 Å	 and,	 overall,	 no	 significant	 differences	were	 observed.	 For	 all	 cases,	 AF2	

correctly	predicted	the	topology	of	the	domain	as	well	as	the	shear	and	average	diameter,	

demonstrating	 that	 in	 the	 case	 of	 OMBBs	 the	 accuracy	 of	 the	 prediction	 is	 not	

substantially	affected	by	the	use	or	omission	of	templates.		

However,	 targets	with	 structures	deposited	 in	 the	PDB	prior	 to	April	 30,	 2018	

were	part	of	the	training	set.	So	even	when	removing	the	experimental	structure	from	the	

template	list,	structural	information	might	still	be	used	to	predict	the	model	as	it	is	stored	

in	the	network.	The	only	case	in	our	test	set	with	a	topology	completely	new	to	the	AF2	

network	was	the	36-stranded	OMBB	from	the	Fibrobacteres-Chlorobi-Bacteroidetes	type	

9	secretion	system	translocon	[44].	Although	the	network	has	never	seen	a	36-stranded	

OMBB,	 its	 predictions	 were	 highly	 accurate,	 even	 improving	 on	 the	 geometry	 of	 the	

backbone	of	an	experimental	low-resolution	structure.	AF2	predicted	correctly	the	36-

stranded	 topology,	 as	 well	 as	 the	 diameter	 and	 the	 shear	 of	 the	 barrel,	 but	 also	 the	

intricate	folds	of	the	extracellular	loops	at	an	extremely	high	level	of	detail	that	translates	

into	an	overall	lDDT	of	86.	The	models	for	this	test	case	were	of	the	same	accuracy	as	for	

those	of	well-known	 topologies,	 indicating	 that	 structural	 information	of	 templates	or	

close	homologs	is	not	essential	for	a	correct	prediction.	

On	average,	 the	per-residue	 lDDT	is	 lower	for	 loops,	especially	those	facing	the	

extracellular	side	of	the	outer	membrane	and	independently	of	the	use	of	templates.	This	

is	likely	the	result	of	the	higher	flexibility	of	extracellular	loops	observed	in	experimental	

structures,	which	is	important	for	protein	function.	Such	flexibility	makes	it	difficult	to	

predict	 a	 static	 snapshot	 of	 those	 regions	 at	 an	 atomic	 level	 of	 detail,	 which	 in	 turn	

decreases	their	pLDDT.	Larger	differences	were	also	observed	for	cases	where	the	target	

was	either	solved	by	solution	NMR	or	low	resolution	cryo-EM.	The	same	was	observed	in	

CASP14,	where	AF2	also	performed	worst	for	NMR	structures	[58].	More	recently,	Fowler	

et	al.	examined	this	by	measuring	the	accuracy	of	solution	NMR	structures	and	comparing	
them	 to	 AF2	 predictions	 [59].	 They	 concluded	 that,	 in	 general,	 AF2	models	 are	more	

accurate	 than	 NMR	 ensembles.	 This	 is	 especially	 the	 case	 of	 β-sheet	 proteins,	 which	

include	OMBBs,	 providing	 a	 consistent	 explanation	 for	 the	 observed	 low	 lDDT	values	

when	 comparing	 AF2	models	 with	 NMR	 structures.	 However,	 when	 evaluating	 these	

values,	it	must	be	noted	that	the	lDDT	scores	are	merely	a	measure	of	how	similar	the	

AF2	 models	 and	 the	 experimental	 structures	 are,	 without	 providing	 information	 on	

which	structure	is	closer	to	the	truth.	Still,	and	although	the	test	set	is	small,	these	results	
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provide	confidence	in	the	models	for	OMBBs	generated	with	AF2,	especially	those	with	

previously	unknown	topologies.	

	

Data	and	code	availability	
The	models	 generated,	 as	 well	 as	 the	 structural	 features	 extracted	 for	 them	 and	 the	

reference	structures,	are	available	in:	https://www.modelarchive.org/doi/10.5452/ma-

ombbaf2.	 barrOs	 can	 be	 downloaded	 from:	

https://git.scicore.unibas.ch/schwede/barrOs.	In	the	repository,	detailed	instructions	on	

how	 to	 use	 it	 for	 the	 general	 analysis	 of	 proteins	 with	 an	 expected	 barrel	 fold	 are	

provided,	 and	 the	HHsearch	 results	used	 in	 this	work	are	provided	 in	 the	Examples	

folder.		
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Supplementary	Information	
Table	S1	 Targets	used	for	AF2	modeling.	Initial	seeds	for	HHsearch	are	shown	in	bold	print.		

PDB	ID	and	
chain	 Organism	 Topology	 Shear	

number	
Diameter	
(Å)	 Release	date	

2POR_A	 Rhodobacter	capsulatus	 16	 20	 34.75	 07/15/93	
1PHO_A	 Escherichia	coli	 16	 20	 33.17	 10/31/93	
1A0T_Q	 Salmonella	enterica	 18	 22	 37.30	 03/18/98	
1AF6_B	 Escherichia	coli	 18	 22	 36.57	 03/25/98	
1AF6_C	 Escherichia	coli	 18	 22	 36.39	 03/25/98	
1A0S_Q	 Salmonella	enterica	 18	 22	 37.87	 06/10/98	
3PRN_A	 Rhodobacter	blasticus	 16	 20	 33.61	 08/12/98	
1FEP_A	 Escherichia	coli	 22	 24	 41.63	 01/13/99	
1QJ8_A	 Escherichia	coli	 8	 8	 15.16	 10/10/99	
1QD5_A	 Escherichia	coli	 12	 16	 23.23	 10/25/99	
1QD6_D	 Escherichia	coli	 12	 16	 23.18	 10/25/99	
1QJP_A	 Escherichia	coli	 8	 10	 15.05	 06/30/00	
1I78_A	 Escherichia	coli	 10	 12	 21.12	 10/03/01	
1KMO_A	 Escherichia	coli	 22	 24	 40.40	 03/06/02	
1P4T_A	 Neisseria	meningitidis	 8	 9	 15.41	 07/22/03	
1UYN_X	 Neisseria	meningitidis	 12	 14	 22.62	 03/18/04	
1XKW_A	 Pseudomonas	aeruginosa	 22	 24	 40.98	 10/04/05	
2ERV_A	 Pseudomonas	aeruginosa	 8	 9	 14.99	 04/11/06	
2GUF_A	 Escherichia	coli	 22	 24	 41.76	 12/05/06	
2HDI_A	 Escherichia	coli	 22	 24	 41.31	 05/08/07	
2JMM_A	 Escherichia	coli	 8	 9	 14.63	 07/03/07	
2VDF_A	 Neisseria	meningitidis	 10	 12	 18.64	 10/23/07	
2QOM_A	 Escherichia	coli	 12	 13	 23.21	 11/13/07	
2VQI_A*	 Escherichia	coli	 24	 N/A*	 N/A*	 05/27/08	
3BRY_A	 Ralstonia	pickettii	 14	 16	 27.70	 06/10/08	
2ZFG_A	 Escherichia	coli	 16	 19	 33.42	 07/29/08	
3DWO_X	 Pseudomonas	aeruginosa	 14	 14	 24.12	 12/16/08	
2K0L_A	 Klebsiella	pneumoniae	 8	 9	 15.92	 12/23/08	
3EFM_A	 Bordetella	pertussis	 22	 25	 41.84	 03/31/09	
3FHH_A	 Shigella	dysenteriae	 22	 24	 40.35	 07/14/09	
2WJR_A	 Escherichia	coli	 12	 14	 23.10	 10/13/09	
3AEH_A	 Escherichia	coli	 12	 14	 22.91	 07/07/10	
2X55_A	 Yersinia	pestis	 10	 13	 19.19	 07/28/10	
2X27_X	 Pseudomonas	aeruginosa	 8	 9	 14.15	 12/15/10	
2X9K_A	 Escherichia	coli	 14	 16	 27.22	 01/26/11	
3QQ2_A	 Bordetella	pertussis	 12	 14	 24.23	 04/13/11	
3PGU_A	 Escherichia	coli	 14	 14	 23.79	 05/25/11	
3RFZ_B	 Escherichia	coli	 24	 27	 46.63	 06/01/11	
3NSG_C	 Salmonella	enterica	 16	 19	 32.43	 07/13/11	
2LHF_A	 Pseudomonas	aeruginosa	 8	 10	 15.47	 08/24/11	
3SLT_A	 Escherichia	coli	 12	 14	 22.20	 11/16/11	
3QRA_A	 Yersinia	pestis	 8	 8	 13.43	 11/23/11	
2Y0H_A	 Pseudomonas	aeruginosa	 18	 23	 35.52	 12/21/11	
2Y0L_A	 Pseudomonas	aeruginosa	 18	 22	 34.76	 12/21/11	
3SYB_A	 Pseudomonas	aeruginosa	 18	 22	 36.01	 02/08/12	
3SZV_A	 Pseudomonas	aeruginosa	 18	 22	 35.43	 02/08/12	
3SYS_A	 Pseudomonas	aeruginosa	 18	 22	 36.11	 02/08/12	
3SY7_A	 Pseudomonas	aeruginosa	 18	 22	 35.71	 02/08/12	
3SZD_B	 Pseudomonas	aeruginosa	 18	 22	 35.18	 02/08/12	
3V8X_A	 Neisseria	meningitidis	 22	 24	 40.35	 02/29/12	
4E1T_A	 Yersinia	pseudotuberculosis	 12	 14	 23.04	 06/13/12	
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PDB	ID	and	
chain	 Organism	 Topology	 Shear	

number	
Diameter	
(Å)	 Release	date	

2POR_A	 Rhodobacter	capsulatus	 16	 20	 34.75	 07/15/93	
4E1S_A	 Escherichia	coli	 12	 14	 23.54	 06/13/12	
4EPA_A	 Yersinia	pestis	 22	 24	 40.53	 06/20/12	
4GEY_A	 Pseudomonas	putida	 16	 21	 32.95	 10/24/12	
4B7O_A	 Neisseria	meningitidis	 22	 24	 42.96	 01/23/13	
2YNK_A	 Escherichia	coli	 18	 20	 34.42	 05/15/13	
4FQE_A	 Dickeya	dadantii	 12	 14	 23.10	 06/26/13	
4FUV_A	 Acinetobacter	baumannii	 8	 10	 19.57	 07/10/13	
4FRT_A	 Pseudomonas	aeruginosa	 18	 22	 35.37	 07/24/13	
4FSO_A	 Pseudomonas	aeruginosa	 18	 22	 35.30	 07/24/13	
4FSP_A	 Pseudomonas	aeruginosa	 18	 22	 35.42	 07/24/13	
4FT6_A	 Pseudomonas	aeruginosa	 18	 22	 35.77	 07/24/13	
4K3B_A	 Neisseria	gonorrhoeae	 16	 22	 36.24	 09/04/13	
4K3C_A	 Haemophilus	ducreyi	 16	 22	 34.69	 09/04/13	
4C00_A	 Escherichia	coli	 16	 8	 32.54	 09/25/13	
3WI5_A	 Neisseria	meningitidis	 16	 20	 33.66	 01/01/14	
4CU4_A	 Escherichia	coli	 22	 24	 41.19	 04/09/14	
4C4V_B	 Escherichia	coli	 16	 22	 35.12	 04/23/14	
4MEE_A	 Escherichia	coli	 12	 14	 23.02	 06/04/14	
4C69_X	 Mus	musculus	 19	 20	 35.03	 06/04/14	
2MLH_A	 Neisseria	gonorrhoeae	 8	 9	 16.96	 06/25/14	
4Q35_A	 Shigella	flexneri	 26	 30	 53.57	 06/25/14	
4N74_A	 Escherichia	coli	 16	 20	 32.36	 10/15/14	
4RLC_A	 Pseudomonas	aeruginosa	 8	 9	 14.67	 04/22/15	
4QL0_A	 Bordetella	pertussis	 16	 20	 32.73	 06/17/15	
4RL8_A	 Pseudomonas	putida	 12	 14	 23.45	 07/29/15	
4RDR_A	 Neisseria	meningitidis	 22	 24	 41.05	 08/19/15	
4RJW_A	 Pseudomonas	aeruginosa	 16	 20	 31.27	 10/21/15	
5FP2_A	 Pseudomonas	aeruginosa	 22	 24	 41.82	 12/09/15	
5DL6_A	 Acinetobacter	baumannii	 18	 22	 35.73	 02/03/16	
5DL7_A	 Acinetobacter	baumannii	 18	 21	 35.02	 02/03/16	
5DL5_A	 Acinetobacter	baumannii	 18	 22	 34.69	 02/03/16	
5D0O_A	 Escherichia	coli	 16	 22	 35.61	 03/09/16	
4D65_B	 Providencia	stuartii	 16	 20	 33.75	 03/09/16	
4Y25_A	 Escherichia	coli	 16	 18	 30.66	 03/16/16	
5FP1_A	 Acinetobacter	baumannii	 22	 24	 40.69	 05/11/16	
5FOK_A	 Pseudomonas	aeruginosa	 22	 24	 42.42	 05/11/16	
5FR8_A	 Acinetobacter	baumannii	 22	 23	 38.30	 05/11/16	
5IV8_A	 Klebsiella	pneumoniae	 26	 30	 50.60	 05/18/16	
5IXM_A	 Yersinia	pestis	 26	 30	 51.43	 05/18/16	
5IVA_A	 Pseudomonas	aeruginosa	 26	 30	 47.78	 05/18/16	
5FVN_B	 Enterobacter	cloacae	 16	 20	 33.38	 08/10/16	
4ZGV_A	 Pectobacterium	atrosepticum	 22	 24	 41.32	 08/31/16	
5LDV_A	 Campylobacter	jejuni	 18	 22	 36.33	 10/26/16	
5FQ8_B	 Bacteroides	thetaiotaomicron	 22	 24	 41.94	 12/21/16	
5O8O_A	 Neurospora	crassa	 19	 20	 35.20	 08/16/17	
5O65_B	 Pseudomonas	sp.	 12	 14	 24.09	 08/23/17	
5MDR_A	 Vibrio	harveyi	 16	 20	 33.65	 12/20/17	
5ONU_A	 Vibrio	cholerae	 16	 20	 33.39	 01/03/18	
5M9B_A	 Pseudomonas	aeruginosa	 22	 24	 38.64	 02/21/18	
6EHB_A	 Vibrio	cholerae	 16	 20	 33.70	 04/25/18	
6EHD_A	 Vibrio	cholerae	 16	 2	 32.56	 04/25/18	
5O77_A	 Klebsiella	pneumoniae	 16	 19	 32.37	 06/20/18	
6GIE_A	 Acinetobacter	baumannii	 14	 14	 24.63	 09/19/18	
6CD2_C	 Escherichia	coli	 24	 25	 47.13	 10/03/18	
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PDB	ID	and	
chain	 Organism	 Topology	 Shear	

number	
Diameter	
(Å)	 Release	date	

2POR_A	 Rhodobacter	capsulatus	 16	 20	 34.75	 07/15/93	
6HCP_B	 Acinetobacter	baumannii	 22	 24	 40.25	 10/10/18	
6H3I_A	 Flavobacterium	johnsoniae	 36	 40	 71.37	 11/07/18	
6H3I_F	 Flavobacterium	johnsoniae	 14	 14	 25.14	 11/07/18	
6EUS_B	 Acinetobacter	baumannii	 16	 20	 33.16	 11/14/18	
6BPN_A	 Escherichia	coli	 22	 24	 41.46	 11/28/18	
6FOK_A	 Pseudomonas	aeruginosa	 22	 24	 41.41	 03/13/19	
6E4V_A	 Escherichia	coli	 22	 24	 40.90	 04/10/19	
6QGW_A	 Escherichia	coli	 16	 22	 36.21	 06/26/19	
6I96_A	 Pseudomonas	aeruginosa	 22	 24	 39.50	 08/28/19	
6OFR_A	 Escherichia	coli	 22	 24	 41.42	 10/02/19	
6TZK_A	 Escherichia	coli	 16	 9	 29.99	 10/23/19	
6UCU_A	 Saccharomyces	cerevisiae	 19	 20	 35.26	 11/06/19	
6QWR_A	 Pseudomonas	oleovorans	 8	 10	 14.36	 03/18/20	
6V78_C	 Klebsiella	pneumoniae	 16	 19	 33.89	 04/01/20	
6V78_A	 Klebsiella	pneumoniae	 16	 19	 33.89	 04/01/20	
6R2Q_B	 Shewanella	baltica	 26	 26	 43.33	 04/22/20	
6V81_A	 Escherichia	coli	 22	 24	 41.62	 05/06/20	
6SLN_A	 Porphyromonas	gingivalis	 22	 24	 42.11	 05/20/20	
6WIL_A	 Acinetobacter	baumannii	 16	 20	 33.86	 11/04/20	
6Z34_A	 Pseudomonas	putida	 14	 14	 28.35	 11/04/20	
6WIM_A	 Escherichia	coli	 16	 20	 32.93	 11/04/20	
6ZLT_B	 Bacteroides	thetaiotaomicron	 22	 24	 42.43	 11/11/20	
6Z8I_B	 Bacteroides	thetaiotaomicron	 22	 24	 42.12	 11/18/20	
6Z8A_A	 Pseudomonas	aeruginosa	 22	 23	 39.78	 11/25/20	
7ACG_A	 Pseudomonas	aeruginosa	 18	 22	 35.83	 12/16/20	

*The	initial	target	is	not	part	of	the	PDB70	database	and	was	not	therefore	used	for	AF2	modeling.		
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Figure	S1.	Outliers	of	the	topology	analysis.	(A)	In	the	AF2	model	‘M’	of	target	PDB	ID	6CD2,	two	strands	
were	merged	into	one	single	regular	region	due	to	a	short	intracellular	loop,		leading	to	a	miscalculation	of	
a	23-stranded	instead	of	a	24-stranded	topology.	(B)	In	the	cryo-EM	structure	of	target	PDB	ID	6UCU,	two	
strands	were	falsely	 identified	as	one	due	to	missing	coordinates	of	an	extracellular	 loop,	resulting	in	a	
calculated	topology	of	18	 instead	of	19	strands.	(C)	 In	 the	AF2	model	 ‘Mnotemp’,	an	extracellular	 loop,	
which	 in	 the	experimental	 structure	points	 inwards	 into	 the	channel,	was	predicted	 facing	 the	outside.	
Since	parts	of	it	were	assessed	as	regular	regions	by	barrOs,	the	calculated	shear	number	differed	greatly	
from	those	of	the	X-ray	experimental	structure.	Experimental	structures,	‘M’	and	‘Mnotemp’	AF2	models	
are	shown	in	gray,	blue	and	orange,	respectively.		
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Figure	S2.	Predicted	and	calculated	Cα-lDDT	values	for	two	examples.	(A)	Target	PDB	ID	6H3I,	an	OMBB	
with	36	𝛽-strands.	(B)	Target	PDB	ID	2MLH,	an	OMBB	with	8	𝛽-strands.	Gray	boxes	with	numbers	indicate	
𝛽-strands.	
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Figure	S3.	Experimentally	determined	and	predicted	structures	of	Tom40	proteins.	The	AF2	model	(blue)	
of	 target	PDB	 ID	5O8O	displays	 a	 shift	 in	 some	𝛽-strands	as	 compared	 to	 its	deposited	6.8-Å	 cryo-EM	
structure	 of	 N.	 crassa	 Tom40	 (gray).	 This	 shift	 is	 also	 observed	 in	 the	 3.1-Å	 cryo-EM	 structure	 of	 S.	
cerevisiae	Tom40	(PDB	ID	6UCU,	light	green)	as	well	as	in	a	homology	model	of	the	target	with	PDB	ID	
6UCU	as	template	(dark	green).	The	homology	model	was	generated	using	SWISS-MODEL	[60].	
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