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Abstract: E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant
bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We
aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from
dog faeces and drinking water of rural Andean households and determine serotype, phylogroup,
sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their
plasmids. To confirm the identity and AMR profiles, we used the VITEK®2 system. Whole-genome
sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were
identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and
227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring
carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST1

heat-stable toxin. Both genomes carried ESBL genes (blaEC-15, blaCTX-M-8, and blaCTX-M-55). Nine
plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII,
IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is
worrisome given their sources and highlights the importance of One-Health research efforts in remote
Andean communities.

Keywords: phylogenomic analysis; one health; ESBL-producing E. coli; carbapenem resistance;
whole-genome sequencing

1. Introduction

Antimicrobial resistance (AMR)—particularly in the Enterobacteriaceae family—has
become a problem of great relevance worldwide due to its increasing prevalence, and the
emergence of multiple-drug-resistant strains AMR can affect everyone, irrespective of age.
It is estimated that, in 2019, 4.95 million people died from illnesses associated with bacterial
AMR. Of those, 1.27 million deaths, mostly in low- and middle-income countries (LMICs),
were directly attributable to bacterial AMR [1]. Enterobacteria are the most important
etiological agents of serious hospital-acquired and community-onset bacterial infections in
humans [2–5]. In South America, resistance to β-lactam antibiotics and fluoroquinolones is
a major problem when treating enterobacterial infections [6]. In addition, reports of the
emergence of colistin resistance in this region have been recently published [7,8]. South
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American countries show some of the highest rates of AMR in Enterobacteriaceae worldwide.
Huge socioeconomic differences, broad access to antimicrobials, and ineffective health
systems and sanitation problems favour the emergence and spread of resistant bacterial
strains [6]. In this region, antibiotic use is widespread in human medicine and animal
production; thus antibiotic residues and resistant enterobacteria and AMR genes have
been detected in soil, water from different environs, agricultural products (produce), and
livestock. In rural Latin America, anthropogenic activities such as animal husbandry, fish
farming, and agriculture were identified as drivers for antimicrobial resistance dissemi-
nation [9]. The most frequent animal contributions were the carriage and/or transfer of
antimicrobial resistance determinants, the inadequate or unregulated use of veterinary an-
timicrobials, and the spread of resistant bacteria throughout the food supply chain via foods
of animal origin [10]. Water was the most frequently identified among the environmental
contributors to AMR spread in Andean Peru [9,11,12].

β-Lactamases are the leading cause of resistance to β-lactam antibiotics, and β-
lactamase production is the primary mechanism of antibiotic resistance in Escherichia coli [13].
Among β-lactamases, extended-spectrum β-lactamases (ESBLs) that mediate resistance
to all penicillins, third-generation cephalosporins, and aztreonam are of utmost impor-
tance, given that they substantially reduce the available antibiotic treatment options [14].
ESBLs include the extended-spectrum TEM-, SHV-, OXA-, and cefotaxime (CTX)-M type
enzymes [15], while E. coli that produce CTX-Ms are most commonly associated with ES-
BLs [16]. AmpC β-lactamases —which function as cephalosporinases— are also clinically
important. They hydrolyse cephamycins and other extended-spectrum cephalosporins and
are poorly inhibited by clavulanic acid; in some cases, they confer resistance to carbapen-
ems [17].

In Peru, previous studies have investigated ESBLs in enterobacteria isolated from
clinical, community, and peri-urban settings. However, few reports have characterised
ESBL-producing enterobacteria at the molecular level, and if so, mostly in clinical set-
tings [18–22]. Using molecular methods, we previously characterised ESBL-producing
enterobacteria from rural Andean communities [12,23]. However, literature on genomic
characterisation of ESBL bacteria in Peru is very scarce [24–26]. The present study is the
first report of the whole-genome characterisation of ESBL-producing E. coli isolates from
water and farm/companion animals in a rural Andean setting in Peru. This study aims to
confirm the identity and AMR profile and determine the serotype, phylogroup, sequence
type (ST) and clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and type of
plasmids for ESBL-producing E. coli isolates.

2. Materials and Methods
2.1. Study Setting and Design

Hartinger et al. studied the dissemination pathways of AMR in humans, animals,
and the environment in the Cajamarca Region in the northern highlands of Peru. The
cross-sectional study design and sampling scheme are described elsewhere [23]. In brief,
they sampled 40 households. Their study collected two rectal or cloacal swabs of fresh stool
samples from a domestic animal (dog, cat) and/or a farm animal (cow, pig, fowl) from
each household (n = 80). Additionally, two water samples per household were collected,
one from the household’s drinking water (DW) source and/or one from the household’s
primary water source (n = 80). The two ESBL-positive isolates analysed in the present study
originated from two out of 40 households sampled. They were isolated from one water
sample and one dog faeces sample, as shown in Supplementary Materials Figure S1.

2.2. Households’ Characteristics

Hartinger et al. found only one ESBL isolate from a dog and an ESBL isolate from the
DW source from two homes [23]. In these households, animals were allowed to roam freely
in the kitchen and courtyard, and their faeces were found in both areas. Both homes used
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piped water from the public water network system but had no sewage system, as they had
installed latrines instead.

2.3. Microbiological Identification and Antimicrobial Susceptibility Testing

The microbiological identification and the antimicrobial susceptibility testing were
performed using a VITEK® 2 Compact automated system (bioMérieux, Marcy l’Etoile,
France). A colorimetric reagent card (GN) to identify the most significant fermenting
and non-fermenting Gram-negative bacilli was used according to the manufacturer’s
instructions. AST-N249 cards were prepared according to the manufacturer’s instructions.
The minimum inhibitory concentrations for the following antimicrobials were recorded
(ampicillin/sulbactam (SAM), piperacillin/tazobactam (TZP), cefazolin (CFZ), cefuroxime
(CXM), cefotaxime (CTX), ceftazidime (CAZ), cefepime (FEP), ertapenem (ETP), imipenem
(IPM), meropenem (MEM), amikacin (AMK), gentamicin (GEN), ciprofloxacin (CIP), colistin
(CST), and tigecycline (TGC). Previously [23], antimicrobial susceptibility testing for other
antimicrobials has been performed using commercial discs [27]; Escherichia coli ATCC 25922
was used as a reference strain for quality assurance of the susceptibility testing of E. coli.

2.4. Phenotypical and Molecular Identification of ESBL-Producing Ability

The phenotypical ESBL-producing ability of the isolates was determined using the
Jarlier method [28] for the following antibiotics: aztreonam (5 µg disk), ceftazidime
(30 µg disk), cefotaxime (30 µg disk), ceftriaxone (30 µg disk), amoxicillin/clavulanic acid
(30 µg disk) and cefepime (30 µg disk), and confirmed by the combined disc method [27].
Further molecular confirmation was performed using conventional polymerase chain reac-
tion PCR. These procedures have been described elsewhere [23]. Briefly, genes encoding
TEM-, SHV-, OXA-, and CTX-M-type β-lactamases (blaTEM, blaSHV, blaOXA, blaCTX-M-U,
blaCTX-M-2, blaCTX-M-3, blaCTX-M-8, blaCTX-M-9, blaCTX-M-10) were PCR-amplified using the
primers shown previously [23].

2.5. Genome Sequencing and Bioinformatic Analysis

The genomic DNA was extracted from overnight cultures using the GeneJET ge-
nomic DNA purification kit (Thermo Fisher Scientific, Waltham, MA, USA), according
to the manufacturer’s instructions. DNA concentration was evaluated by Qubit® 4.0 flu-
orometer (Life Technologies, Carlsbad, CA, USA). The genomic library was constructed
using a Nextera XT DNA Library Preparation Kit (Illumina, Inc., San Diego, CA, USA)
and subsequently sequenced using a 2 × 250 paired-end library on a MiSeq platform
(Illumina). The quality control of each sequence was evaluated using Fastqc v0.11.5 [29],
and Trimmomatic v0.38 [30] was used to remove adapters and filter low-quality reads.
The reads were assembled de novo using SPAdes v.3.15.2 [31]. The bioinformatic anal-
ysis was carried out using the tools available at the Center of Genomic Epidemiology
(www.genomicepidemiology.org) (accessed on 1 October 2021), setting identity at ≥90%
and coverage at≥90%. We performed E. coli serotyping (SerotypeFinder v.2.0), in silico phy-
logenetic typing (ClermonTyping (https://github.com/A-BN/ClermonTyping) (accessed
on 1 January 2022), multilocus sequence typing (MLST v.2.0), pathogenicity (Pathogen
Finder v.1.1), virulence genes detection (VirulenceFinder v.2.0), plasmid replicon typing
(PlasmidFinder v.2.1 and MobileElementFinder v.1.0), and ESBL genes detection using
ABRicate v.1.0.1 (https://github.com/tseemann/abricate) (accessed on 1 January 2022)
NCBI and ResFinder databases. Raw Illumina reads were uploaded to GenBank under
BioProject PRJNA816508.The complete outputs for all the results of the bioinformatic tools
are shown in Supplementary Materials Table S2.

3. Results
3.1. Microbiological Identification and Antimicrobial Susceptibility Testing of the E. coli Isolates

For this analysis, only ESBL-phenotypically-positive isolates obtained in the mother
study were included, one from dog faeces (Isolate 1143) and one from the household’s DW

www.genomicepidemiology.org
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source (Isolate 1144). Isolates 1143 and 1144 were identified as E. coli strains with a 93% and
96% probability using VITEK®2 (bioMérieux, Marcy l’Etoile, France) automated reading
and further confirmed by WGS.

Based on the VITEK®2 system, both isolates were resistant to SAM (combined ef-
fect); cephalosporins CFZ, CXM, and CTX; TZP (β-lactam/β-lactamase inhibitor combina-
tion); and MEM (a carbapenem). However, only Isolate 1143 was resistant to important
cephalosporins CAZ and FEP and the combination antibiotic SXT. On the other hand,
only Isolate 1144 was resistant to GEN and CIP, while 1143 was not. We compared the
VITEK®2 automated readings for antimicrobial susceptibility to the disk diffusion assay
results, as shown in Supplementary Materials Table S1. It is noteworthy that Isolate 1144
showed resistance to FEP by the disk diffusion method, contrary to the results obtained
using the automated VITEK®2 platform. The VITEK®2 system identified Isolate 1143 as an
ESBL producer. Isolate 1144, however, was characterised as ESBL negative based on the
MIC results, which were interpreted automatically by the system based on the VITEK®2
breakpoints (see Supplementary Materials Table S1).

3.2. Detection of ESBL-Encoding Genes by PCR and Whole-Genome Sequencing Analysis (WGS)

Detection of the most common β-lactamase-encoding genes (blaTEM, blaSHV, blaOXA,
and blaCTX-M) was carried out using PCR. None of the isolates showed amplification for
blaSHV, and blaOXA genes, but both harboured blaTEM and blaCTX-M genes. WGS anal-
ysis using Resfinder and NCBI identified the presence of genes encoding resistance to
cephalosporins (blaCTX-M-8, blaCTX-M-55, blaEC-15), broad-spectrum β-lactamases (blaTEM-1),
tetracyclines (tet(B), tet(M)), aminoglycosides (aac(3)-Iid, aph(3’)-Iia, aph(3”)-Ib, aph(6)-Id,
aadA1 and aadA2), sulphonamides (sul3), phenicols (floR, cmlA1), fosfomycin (fosA3),
quinolone (qnrB19), and trimethoprim (dfrA12), as shown in Table 1. The genotypic resis-
tance of both isolates correlated with their phenotypical resistance, except for MEM; the
resistance to this carbapenem was only phenotypically observed.

Table 1. Characterisation of the ESBL-producing E. coli isolates according to origin and source,
sequence type and clonal complex, serotype, virulence genes, resistance phenotype and genotype,
and plasmid type.

ID E. coli
Strains Source ST/CC Serotype Phylogroup Virulence

Genes
Resistance
Phenotype

Resistance
Genotype Plasmid Type

1143 dog
faeces 5259/- -:H46 E

astA, chuA,
cia, gad,

ompT, terC

SAM, TZP,
KZ, CXM,
CTX, CAZ,
FEP, MEM,

SXT

aac(3)-IId, aph(3”)-Ib,
aph(6)-Id, aadA1,

aadA2, floR, blaTEM-1,
blaEC-15, blaCTX-M-8,
tet(M), tet(B) dfrA12

IncI1-IAlpha,
IncR, Inc-

FIB(AP001918),
IncFIC(FII)

1144 drinking
water 227/10 O9:H10 A

capU, cea, cia,
fyuA, iutA,
sitA, irp2,
iroN, terC

SAM, TZP,
KZ, CXM,

CTX, MEM,
CN, CIP

aph(3′)-IIa, cmlA1,
blaCTX-M-55, blaEC-15,

fosA3, qnrB19,
sul3, tet(B)

IncFIB, Col440I,
IncFII,

IncI1-IAlpha,
IncFII(pHN7A8)

Abbreviations: CC, clonal complex; ST, sequence type. Resistance phenotype: SAM, ampicillin/sulbactam; TZP,
piperacillin/tazobactam; KZ, cefazolin; CXM, cefuroxime; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime;
MEM, meropenem; SXT, trimethoprim/sulfamethoxazole; CN, gentamicin; CIP, ciprofloxacin.

Genomic analysis using MLST 2.0 indicated that the E. coli Isolates 1143 and 1144
belonged to ST5259 and ST227, respectively, and 1144 belonged to CC 10. According to the
genomes’ analysis using the ClermontTyping tool, the 1143 and 1144 isolates corresponded
to the phylogenetic groups E and A, respectively. Using SerotypeFinder v.2.0, Isolate 1143
was classified as serotype -:H46, whereas Isolate 1144 belonged to serotype O9:H10, as
presented in Table 1.

3.3. Pathogenicity, Virulence Genes, and Type of Plasmids

Using Pathogenfinder 1.1 and VirulenceFinder 2.0, both isolates were identified as
likely human pathogens, but Shiga-toxin genes were not detected in their genomes. A
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total of 28 different virulence genes were detected from the E. coli genomes. The colicin
ia (cia) virulence gene was detected in both E. coli isolates. Other prevalent virulent genes
included: astA, iroN, chuA, gad, ompT, capU, cea, fyuA, sitA, irp2 iutA, and terC. The astA
gene (gene product: EAST1 heat-stable toxin) was found in Isolate 1143 only.

Using the PlasmidFinder 2.1 and the MobileElementFinder 1.0 tools, four plasmids
were detected for Isolate 1143, IncR (harbouring the aph(3”)-Ib and aph(6)-Id aminoglycoside
resistance genes), IncFIC(FII) (harbouring the florfenicol/chloramphenicol resistance floR
gene), IncI1 (carrying the cia virulence gene), and IncFIB(AP001918). On the other hand,
for Isolate 1144, five plasmids were identified, Col(pHAD28) (harbouring the qnrB19
ciproflaxacin resistance gene), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918).

4. Discussion

We confirmed the identity of the two enterobacteria isolates (1143 and 1144) as E. coli;
Isolate 1143—obtained from dog faeces—was an atypical non-lactose fermenter. Lactose-
negative uropathogenic E. coli strains have been recently isolated from dogs in Brazil [32],
and they cause urinary tract infections in humans [33]. Further, lactose-negative E. coli are
usually enteroinvasive (EIEC), are closely related to Shigella spp., and produce a dysen-
teric form of diarrhoea in humans [34]. Both isolates were likely human pathogens, with
serotypes -:H46 and O9:H10, respectively. The E. coli O9:H10 serotype has been listed
among the typical enteroaggregative (EAEC) E. coli serotypes in Brazil [35], and the same
serotype was identified among samples of Shiga-toxin-producing E. coli (STEC) and En-
teroaggregative E. coli (EAEC) from Mexico [36].

Both isolates were confirmed as ESBL producers given their genomes encoded ESBL
genes (blaCTX-M-8, blaCTX-M-55, blaEC-15), contrary to the VITEK®2 automatised system’s
classification of Isolate 1144 as a non-ESBL producer. The VITEK®2 ESBL test has a varying
sensitivity for detecting ESBL-producing enterobacteria correctly; it ranges between 86%
and 98.1% [37,38]. The VITEK®2 AST N249 card used in our study identified Isolate 1143 as
an ESBL producer, but not Isolate 1144, since it was not resistant to FEP and CAZ. However,
Isolate 1144 showed a phenotypical resistance to other oxyimino cephalosporins CXM
and CTX.

Isolate 1143 and Isolate 1144 belonged to phylogroups E and A, respectively. Phy-
logroup E includes the O157:H7 EHEC lineage, which is only a small subset of the whole
genetic diversity found within the group. Phylogroup-E strains are rarely isolated com-
pared to other phylogroup strains. They have been isolated from animals, the environment,
and humans, and virulent/resistant strains are linked to humans [39]. Thus, finding an
ESBL-producing, potentially pathogenic, phylogroup-E isolate in dog faeces points to a
probable transmission route from humans. On the other hand, most phylogroup-A strains
are human commensals and can be found in wastewater [40] and animals, especially
poultry [41]. Notably, in our setting, backyard chicken farming is widespread (83% of
households), and farm animals, in general, are administered antibiotics by the owners
without prescription nor technical supervision (unpublished data from our research group).
Other studies carried out in rural locations in Peru show similar findings [42,43]. Chickens
roam freely, and household members are in contact with their animals and their scattered
faeces. On the other hand, the piped water supply and the soil near the houses were con-
taminated with faecal coliforms originating from the environment, humans, or animals [23].
The fact that both isolates in this study displayed resistance to carbapenems is of great
concern, given that this “third line” antimicrobial medication is exclusively for human
use [44]. Thus, the ESBL/AmpC carbapenem-resistant E. coli isolates found in DW and dog
faeces could originate from other farm animals or humans and be transmitted by different
pathways, as shown by Hartinger et al. in our study area [23].

Isolates 1143 and 1144 belonged to ST/CC 5259/- and 227/10, respectively. We found
that E. coli ST227 are considerably common and have been frequently reported around the
world. In the public database EnteroBase (https://enterobase.warwick.ac.uk) (accessed
on 1 February 2022), we found 84 publicly available E. coli ST227 genome assemblies from

https://enterobase.warwick.ac.uk
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human, animal, and environmental sources. In Tunisia, an ST227 carbapenem-resistant
E. coli isolate of human origin was reported in 2016, carrying the blaOXA-48, blaCTX-M-15,
blaTEM, and blaOXA-1 genes [45]. A carbapenem-resistant E. coli isolate of the ST227 lineage
was isolated from clinical samples in Lebanon, carrying the blaOXA-48 and the blaTEM-1
genes [46]. E. coli ST5259 are scarce; only two were found in EnteroBase, one of them
originated from poultry in Ecuador and the other from humans in the United States of
America. In China, an E. coli ST5259 genome of human origin was mentioned as part of
BioProject PRJNA400107, being reported along with other E. coli genomes as carriers of the
mcr-1 gene, which is a plasmid-mediated colistin resistance gene [47].

Many of the identified virulence genes were associated with iron acquisition systems,
and a small part was associated with toxin production, metal resistance (tellurite), and
other virulence determinants, as shown in Supplementary Materials Table S2. The cia
gene—involved in killing other bacteria—was found in both isolates. The iron uptake
genes detected were: iroN, chuA, fyuA, iutA, and sitA. The chuA gene encodes an outer
membrane hemin receptor, and the fyuA gene encodes the yersiniabactin receptor, and both
contribute most during infection of the urinary tract by uropathogenic E. coli [48]. The chuA
gene was detected in Isolate 1143, whereas the fyuA gene was found in Isolate 1144 along
with the other iron acquisition genes. This flags Isolate 1144 as a possible uropathogenic
strain, given it harboured many genes that enable iron uptake, best suited for iron-deprived
environments such as human urine [49]. On the other hand, Isolate 1143 harboured the astA
gene, encoding the EAST1 heat-stable toxin, which is associated with enteroaggregative
E. coli (EAEC) in humans and enterotoxigenic E. coli (ETEC) in porcines [50]. None of the
isolates’ genomes harboured Shiga-toxin genes.

The blaCTX-M-55 is one of the most abundant ESBL genes in the Enterobacteriaceae family,
with a rising prevalence in E. coli from livestock and humans, especially in China [51,52].
It is usually carried by plasmids, but it has also been found chromosomally [52]. In
Canada, enterobacteria isolated from turkeys carried the blaCTX-M-55 gene mediated by IncF
plasmids [53]. In Japan, the blaCTX-M-8 gene was found in E. coli from humans and retail
chicken meat, and its transmission was associated with IncI1 plasmids [54].

Unlike blaCTX-M-55 and blaCTX-M-8, which code for Class A ESBL, the blaEC-15 gene
product belongs to the Class C β-lactamases [55], also known as AmpC-type β-lactamases.
In comparison to ESBL (including Class A β-lactamases), AmpC-type β-lactamases hy-
drolyse broad- and extended-spectrum cephalosporins (cephamycins as well as oxyimino-
β-lactams) but are not inhibited by clavulanic acid or other β-lactamase inhibitors. EC
β-lactamases—encoded in blaEC genes—are a specific type of AmpC β-lactamases found
in E. coli [56]. In a recent One-Health study in Canada, the blaEC-15 gene was detected in
E. coli isolates from different human, animal, and environmental sources. It did not occur
in all isolates, having a prevalence of 16% [57] The fact that both isolates in our study
carried genes for Class A ESBL and AmpC β-lactamases has great clinical importance,
given that AmpC/ESBL E. coli cannot be treated with clavulanic acid, which complicates
the treatment [58]. However, we did not include a cephalosporin/clavulanic acid combi-
nation in the disc diffusion assay, so resistance to clavulanic acid was not phenotypically
confirmed. Further, both isolates expressed resistance to other antibiotics such as fluo-
roquinolones and a carbapenem, narrowing treatment options even further. According
to Guzmán-Blanco et al. [59], in Latin America, the rates of nosocomial infection caused
by ESBL-producing enterobacteria—especially CTX-M enzyme producers—are higher
than in other regions. A One-Health-based study in Brazil—the biggest country in the
region—showed that ESBL-producing E. coli carrying a diversity of blaCTX-M gene variants
and mcr-1 genes are endemic across their territory at the interface between humans and
animals [60]. ESBL-producing enterobacteria can also be resistant to cefepime and exhibit
resistance to fluoroquinolones and ampicillin/sulbactam, as well as to aminoglycosides
and piperacillin/tazobactam. Fortunately, more than 90% of ESBL-producing enterobac-
teria are still susceptible to carbapenems [59], although reports of carbapenem-resistant
enterobacteria alarmingly increase in Latin American countries [61].
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Despite the phenotypic resistance to meropenem of both isolates in our study, we did
not find evidence of well-known carbapenemase-encoding genes—blaKPC, blaNDM, blaNDM,
blaIMP, blaVIM and blaOXA-48—or their variants [62]. Thus, non-carbapenemase mechanisms
could be suspected for the isolates in our study. For instance, point mutations in porin
genes reduce membrane permeability to carbapenems, in combination with hyperproduc-
tion of the β-lactamase AmpC or ESBL. Therefore, the isolates could be characterised as
non-carbapenemase, carbapenem-resistant E. coli [63,64]. In Singapore, the emergence of
this type of bacteria in clinical settings was suggested to result from selective antibiotic
pressure along with de novo mutations or genetic reassortment in carbapenem-sensitive
enterobacteria [65].

Plasmids play a major role in the dissemination of AMR genes in Gram-negative bac-
teria. Usually, they harbour multiple physically connected genetic determinants, conferring
resistance to different classes of antibiotics simultaneously, such as extended-spectrum
β-lactams, carbapenems aminoglycosides, sulfonamides, and quinolones [66,67]. Plasmid
families, including IncF, IncI1, IncI2, IncX, IncA/C, and IncHI2, play an important part in
ESBL gene spread [67]. It is noteworthy that both E. coli genomes carried Incl1 plasmid. Our
findings show that for Isolate 1143, some AMR genes were harboured in plasmids or other
mobile genetic elements, e.g., aminoglycoside resistance genes in the IncR plasmid and the
blaTEM-1 gene (resistance to ampicillins) were found to be carried in the Tn2 transposon
(https://transposon.lstmed.ac.uk/tn-registry) (accessed on 1 January 2022). Conversely,
for Isolate 1144, the ciprofloxacin resistance gene (qnrB19) was carried by Col440I; this is a
plasmid recently associated with enterobacteria-carrying ESBL and carbapenemases genes
isolated from environment and humans in South Africa [68]. In our analysis, we found that
many AMR genes appeared to be inserted in the chromosome—such as blaCTX-M-55 and
blaCTX-M-8—pointing to the mobility of these genes from mobile genetic elements to the
chromosome and vice versa and between different plasmids [69].

Our study has some limitations. The presence of AMR genes harboured in plasmids
points to horizontal transfer of AMR determinants. However, conjugation assays should be
performed for these isolates to confirm the transfer of genes via plasmids to other bacteria.
In addition, isolates were not tested to phenotypically confirm AmpC, pathogenicity,
and/or EAST1 toxin production. Due to laboratory limitations and restrictions, it was
impossible to perform these confirmatory assays. Another limitation is the low number of
isolates available for characterisation, which may have limited the scope of detection of
important resistance/virulence genes and plasmids.

5. Conclusions

Isolates 1143 and 1144 were identified as ESBL-producing E. coli, with serotypes -:H46
and O9:H10; phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. They
were characterised as potential human pathogens, and they carried multiple virulence
genes; Isolate 1143 ST5259 harboured the astA gene, encoding the EAST1 heat-stable toxin.
Both genomes were carriers of a blaEC-15 gene (AmpC), displaying carbapenem resistance,
but not harbouring carbapenemase genes. Other ESBL genes (blaCTX-M-8 and blaCTX-M-55)
among various AMR genes were detected, mainly located in plasmids or the chromosome.
E. coli of the ST227 lineage were reported in other countries, while E. coli ST5259 reports
were rare. Both isolates were found in a remote area in the highlands of Peru, which is of
public health concern considering the likely anthropogenic origin derived from incorrect
and often unrestricted use of antibiotics in both humans and livestock. Our results can
help identify and track E. coli strains that pose a risk to human, animal, and environmental
health in rural Andean communities. The E. coli isolates originated from an animal and
DW, highlighting the importance of comprehensive research for preventive action along
the One-Health continuum in isolated Andean communities. The sharing of living spaces
between humans and animals and the use of contaminated DW could facilitate the transfer
of these pathogens to all environs in the community. Thus, new research paths to limit
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the spread of AMR should focus on the epidemiology of ESBL/AmpC E. coli, particularly
carbapenem-resistant strains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11050692/s1, Figure S1: Obtention of the E. coli isolates
1143 and 1144; Table S1: Antibiotic susceptibilitya profile for E. coli Isolates 1143 and 1144 determined
by the VITEK®2 system and compared to the disk diffusion assay resultsb; Table S2: Outputs of
bioinformatic tools.
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