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Abstract

Introduction

Mycobacterial Interspersed Repetitive Units–Variable Tandem Repeats (MIRU-VNTR) typ-

ing has been widely used for molecular epidemiological studies of tuberculosis (TB). How-

ever, genotyping tools for Mycobacterium tuberculosis (Mtb) may be limiting in some

settings due to high cost and workload. In this study developed a customized stepwise

MIRU-VNTR typing that prioritizes high discriminatory loci and validated this method using

penitentiary system cohort in the country of Georgia.

Methods

We used a previously generated MIRU-VNTR dataset from recurrent TB cases (32 cases)

in Georgia and a new dataset of TB cases from the penitentiary system (102 cases)

recruited from 2014 to 2015. A Hunter-Gaston Discriminatory Index (HGDI) was calculated

utilizing a 24 standard loci panel, to select high discriminatory power loci, subsequently

defined as the customized Georgia-specific set of loci for initial typing. The remaining loci

were scored and hierarchically grouped for second and third step typing of the cohort. We

then compared the processing time and costs of the customized stepwise method to the

standard 24-loci method.

Results

For the customized Georgia-specific set that was used for initial typing, 10 loci were selected

with a minimum value of 0.32 to the highest HGDI score locus. Customized 10 loci (step 1)

typing of 102 Mtb patient isolates revealed 35.7% clustered cases. This proportion was

reduced to 19.5% after hierarchical application of 2nd and 3rd step typing with the corre-

sponding groups of loci. Our customized stepwise MIRU-VNTR genotyping approach

reduced the quantity of samples to be typed and therefore overall processing time and costs

by 42.6% each.
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Conclusion

Our study shows that our customized stepwise MIRU-VNTR typing approach is a valid alter-

native of standard MIRI-VNTR typing panels for molecular epidemiological investigation in

Georgia that saves time, workload and costs. Similar approaches could be developed for

other settings.

Introduction

Genotyping plays an important role in the surveillance and molecular epidemiology of tuber-

culosis (TB). However, the implementation of TB genotyping methods has been limited in

many settings, especially in low- and middle-income countries (LMIC), given that they can be

computationally demanding, time-consuming and costly [1, 2]. Mycobacterial Interspersed

Repetitive Unit-Variable Number of Tandem Repeats (MIRU-VNTR) typing is widely used to

evaluate the population structure, strain genetic diversity, and transmission of the Mycobacte-
rium tuberculosis complex (MTBC) [3, 4]. Globally, the human-adapted MTBC can be classi-

fied into nine phylogenetic lineages that differ in their geographic distribution [5, 6]. This

phylo-geographic genetic diversity also impacts the discriminatory power of MIRU-VNTR

loci in a given population, which has led to the development of customized MIRU-VNTR loci

sets for application in different geographical settings [2, 7, 8]. Compared to the MIRU-VNTR

typing using standard 12, 15 or 24 loci panels proposed by Supply et al [9], customized

approaches have focused on the most sensitive and highly discriminatory loci [10, 11], allow-

ing for reduced workload, labor and consumable-dependent cost and sample processing time.

However, customization and reduction of the MIRU-VNTR loci set, might be inefficient

for reaching higher level of discrimination, especially where the variety of MTBC lineages is

limited and the bacterial population is homogeneous. In such instances, various combinations

of genotyping tools for increasing resolution have been proposed [11–13], but no systematic

approach has yet been established. Considering the limited resources in LMIC, combining sev-

eral distinct typing methods increases the complexity and costs, and the absence of standardi-

zation results in poor comparability between the laboratories. In the present study, we

implemented customized stepwise MIRU-VNTR typing specifically for the epidemiological

setting of Georgia [14]. This approach is based on selecting and developing groups of MIR-

U-VNTR loci, to reduce the number of samples to be typed after each step.

Recently, standard 24-loci MIRU-VNTR typing has been established at the National Refer-

ence Laboratory (NRL) of National Center of Tuberculosis and Lung Diseases (NCTLD) in

Tbilisi, Georgia, which has been used to differentiate between relapse and reinfection in recur-

rent TB cases [15]. In this study, we modified the standard 24-loci MIRU-VNTR panel into a

customized stepwise typing approach for the Georgian Mtb population and applied it to a

patient population from the penitentiary system.

While important progress in TB control and a substantial decrease in TB incidence in Geor-

gia from 2002 (228 per 100,000) to 2019 (80 per 100,000) has occurred, many challenges to TB

elimination remain, including high rates of drug-resistant TB cases. In particular, the peniten-

tiary system has been identified as a hotspot of TB disease transmission including multidrug-

resistant (MDR)-TB [16–18]. Over the past six years, with the advent of new programmatic

initiatives, cases of TB diagnosed in the penitentiary system have decreased, including MDR

and extensively drug-resistant (XDR) TB, from 33% of all MDR cases in the country in 2011 to

the 4.1% in 2020 (National Surveillance Program, unpublished data). However, the
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penitentiary system remains a persistent site for transmission of drug-resistant TB [17–19],

bearing a risk of infection spillover into the community. Hence, rapid detection of TB trans-

mission in prisons, along with infection surveillance in the country, is crucial, and resource-

adapted molecular methods for surveillance are therefore needed.

Materials and methods

Ethics

Ethical approval for the study was obtained from the relevant Institutional Review Boards

(IRB) of the NCTLD in Georgia and in Switzerland (Ethikkommission Nordwest- und Zen-

tralschweiz). Due to observational nature of the study which do not involve any physical inter-

vention and was solely using the routinely collected samples from TB patient in Georgia, the

need of informed consent was waived by the National Council on Bioethics of Ministry of

Labor, Health and Social Affairs of Georgia, and therefore by local IRB. The data from archived

samples were fully anonymized to guarantee the confidentiality.

Customization and validation of country-specific minimal set of

MIRU-VNTR loci

Genotyping dataset and parameters for customization. In order to develop a custom-

ized loci set for the Mtb strain population in Georgia, we first re-analyzed a dataset from a pre-

vious study of recurrent TB cases, with a retrospective cohort of 32 patients (64 samples) from

2014–2016, typed with the standard 24 loci panel [15]. Inclusion criteria of the samples for the

relapsed cases was availability of the samples in the National Reference Laboratory biobank.

From this dataset, we used allelic data for 37 samples; 27 single Mtb isolates from relapsed

patients and paired isolates from 5 reinfection cases. We defined genotypic clusters with a sin-

gle locus variants (SLV), and calculated discriminatory indexes for each locus of the 24-loci

panel using Hunter and Gaston discriminatory index (HGDI) [20]. Based on the Simpson’s

index of diversity, HGD index was calculated using the online tool http://insilico.ehu.es/mini_

tools/discriminatory_power. Following the HGDI calculations and acknowledged cut-offs, the

loci were classified into high (HGDI�0.6), moderate (0.3�HGDI<0.6) and low (HGDI<0.3)

discriminant categories [18]. We ranked the 24 loci based on their HGDI score and selected

the 10 loci with highest discriminatory indexes.

Genotyping dataset for customized set validation. For the purpose of validating our cus-

tomized set of loci, we focused on patients with pulmonary TB residing and diagnosed in the

penitentiary system in 2014–2015. Cases were not overlapping the recurrent TB case samples

and were identified through the national TB surveillance database and were linked to the

National Reference Laboratory (NRL) sample ID numbers to identify the NRL strain biobank

and phenotypic drug susceptibility testing (pDST) results. We were able to link 136 TB cases

in prisons from 2014.2015, with bio banked Mtb isolates for further use in the study, however,

total of 102 Mtb isolates were recovered from the laboratory biobank and were typed using the

customized 10 loci set. Specifically, the 10 customized MIRU-VNTR loci were multiplexed in

four separate PCRs– 1) MIRU16, MIRU31 and ETRB; 2) MIRU40, MIRU26 and Mtub30; 3)

Mtub 21, QUB11b and QUB26; 4) MIRU39. Negative (H2O) and positive (H37Rv DNA) con-

trols were included in each reaction. PCR amplification was performed under following condi-

tions: the initial denaturation at 95˚C for 15 minutes, followed by 40 cycles of 94˚C for 1

minute, 59˚C for 1 minute and 72˚C for 1.5 minutes with final extension at 72˚C for 10 min-

utes. We used low-resolution electrophoresis for amplification check, followed by higher reso-

lution electrophoresis with 1.8% agarose gel, using 1kb ladder as size marker. A numerical

PLOS ONE Customization and stepwise approach of MIRU-VNTR typing

PLOS ONE | https://doi.org/10.1371/journal.pone.0264472 March 1, 2022 3 / 11

http://insilico.ehu.es/mini_tools/discriminatory_power
http://insilico.ehu.es/mini_tools/discriminatory_power
https://doi.org/10.1371/journal.pone.0264472


code was obtained by comparison of the allelic table published by Supply et al [16]. Genotypic

clusters were defined based on SLV.

Re-evaluation of the customized set and HGD indexes and stepwise

approach development

For the stepwise typing approach development, we used the remaining 14 loci to type 35 Mtb

isolates from the penitentiary system that were clustered after typing with the customized 10

loci set. Additionally, we re-assessed the discriminatory power of each locus based on the com-

bined datasets of i) recurrent TB cases (37 samples) and ii) prison cohort samples for which

full 24 loci results were available (35 samples). The HDGI was re-calculated and the loci were

ranked following the cut-off scores described above. The criteria of locus hierarchy and inclu-

sion into the two-step typing panel was defined by i) HGDIs, calculated within the recurrent

TB cases and penitentiary system cohort; and ii) ability of the locus to discriminate and reduce

proportion of the samples to be typed by the stepwise addition of each locus to the predefined

10 loci customized set (Fig 1).

Cost and time assessment

Along with method modification, we assessed the processing time and approximate direct cost

based on the technician per-hour labor cost, consumables and reagents pricing in Georgia for

a batch of 54 samples processed with the customized stepwise MIRU- VNTR typing (excluding

DNA extraction) and standard 24-locus panel, with 2 additional controls. The number of sam-

ples in a batch was defined based on the number of wells available on our electrophoresis tray.

Results

Customization of the Georgia-specific MIRU-VNTR loci set using typing

results from recurrent TB cases

Utilizing the standard 24-loci panel, MIRU-VNTR typing of 37 samples from our previously

published cohort of recurrent TB cases [15] revealed two highly discriminatory loci, namely—

VNTR4052 (QUB-26) and MIRU26, with an HGDI of 0.83 and 0.64, respectively (Fig 2). Eight

moderately discriminant loci were identified: VNTR2401/Mtub30 (HDGI = 0.56),

VNTR2461/ETR B (HGDI = 0.50), MIRU31/ETR E (HGDI = 0.45), VNTR1955/Mtub21

(HGDI = 0.43), VNTR2163b/QUB-11b (HGDI = 0.34), MIRU39 (HGDI = 0.36), MIRU16

(HGDI = 0.36), MIRU40 (HGDI = 0.32). Another ten loci showed low discriminatory indices:

VNTR424/Mtub04 (HGDI = 0.27), VNTR2165/ETR A (HGDI = 0.27), VNTR3690/Mtub39

(HGDI = 0.22), MIRU10 (HGDI = 0.17), VNTR577/ETR C (HGDI = 0.17), VNTR4156/QUB-

4156c (HGDI = 0.12), MIRU24 (HGDI = 0.11), MIRU02 (HGDI = 0.06), MIRU04/ETR D

Fig 1. Schematic representation of the MIRU-VNTR stepwise approach. Schematic representation of the stepwise

approach, with reduced amount of the samples to be typed after application of each step of locus group, resulting

reduced time, cost and workload.

https://doi.org/10.1371/journal.pone.0264472.g001
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(HGDI = 0.06) and MIRU23 (0.05). Finally, four loci, MIRU20, VNTR2347/Mtub 29,

MIRU27/QUB-5 and VNTR3171/Mtub34 showed no discriminatory power with an HGDI

score of zero (Fig 2). A Georgia-specific panel of ten loci was defined, which included the two

highly and the eight moderately discriminatory loci (Fig 2). The loci in the customized Geor-

gia-specific set were compared to the standard 15- and 12-loci panels [2]. Our customized

panel shared four loci with both the 12- and 15-loci standard panels, while four and one loci

were exclusively shared with the 15-loci set and the 12-loci set, respectively. VNTR2461 with a

moderate discriminatory power in the Georgia-specific panel has so far not been included in

earlier proposed typing sets.

MIRU-VNTR typing of the Mtb samples from the penitentiary system

Genotyping with the customized 10-loci set. From total of unique 102 Mtb isolates from

prison TB cases, full allelic data was obtained for 98 (96.1%) samples. MIRU-VNTR genotyp-

ing of 98 Mtb isolates with our customized 10-loci set revealed seven clusters by SLV compris-

ing 35 clustered isolates and 63 singletons (non-clustered isolates). The 35 clustered isolates

were distributed in the seven clusters as follows: cluster 1–12 isolates (34.4%), cluster 2–11

(31.4%), cluster 4–4 (11.4%), cluster 4 to 7 were represented with two (5.7%) isolates per clus-

ter (Fig 3).

For the stepwise typing approach development of the clustered isolates, we used the remain-

ing 14 loci from the standard 24-loci panel not included in our customized 10-loci set. These

resulted in an additional 16 singletons, while the number of clusters remained the same, with a

sample distribution as follows: cluster 1 –five isolates (26.3%), cluster 2, 3, 6 and 7 each with

two isolates (10.5%), while cluster 4 and 5 had three (15.8%) isolates each, resulting in a total

of 19/98 (19.5%) clustered isolates (Fig 3).

Defining loci sets for the stepwise approach. In order to combine loci for the second typ-

ing step, we re-evaluated and compared rankings of HGDI scores (Fig 4A, 4B) by assessing the

number of discriminated samples by each locus added separately to the customized 10-loci set

within the combined dataset. VNTR424/Mtub04 showed an increased HGDI (within the

Fig 2. HGDI scores of 24-loci panel based on recurrent TB cases. Graph represents individual discriminatory index

for 24-loci panel generated from recurrent TB cohort typing results. Green bars indicate “the Georgian customized set”

with high and moderate index loci included in the customized set.

https://doi.org/10.1371/journal.pone.0264472.g002
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Fig 3. Stepwise application of customized and additional 14 loci and distribution of the clustered samples.

Selected loci for the stepwise approach and distribution of the clustered samples after typing with customized 10-loci

set, step two typing with 6 loci and step 3 typing with remaining 8 loci.

https://doi.org/10.1371/journal.pone.0264472.g003

Fig 4. Individual locus HGDI of 10 customized and additional 14 loci. (A) HGDI calculated for the customized 10

loci and (B) the additional 14 loci, based on typing of recurrent TB cases (civil cohort) in blue bars along with same

indexes calculated within penitentiary system samples in orange. Grey bars indicate indexes calculated from combined

datasets with 24 loci typing. Category definition: HGDI�0.6 high discriminatory power, 0.3�HGDI�0.6 moderate

discriminatory power, HGDI<0.3 low discriminatory power.

https://doi.org/10.1371/journal.pone.0264472.g004
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additional 14 loci set) in the penitentiary system compared to recurrent TB typing data (Fig

4B). Four loci–MIRU10, VNTR577/ETR C, VNTR2165/ETR A and VNTR3690/Mtub39

added most to the increase in HGDI. VNTR3171/Mtub34 showed an increased capacity to dis-

criminate between the samples when added to these four loci, while the HGDI of VNTR3171/

Mtub34 on its own was 0.05 and 0 in the penitentiary and recurrent TB cohort was, respec-

tively. Application of the 2nd step loci VNTR424/Mtub04, MIRU10, VNTR577/ETR C,

VNTR2165/ETR A, VNTR3690/Mtub39, and VNTR3171/Mtub34 reduced the number of

clustered isolates from 35 to 22, leading to the reduction of the samples to be genotyped by

37%.

The remaining eight loci (MIRU02, MIRU04/ETR D, MIRU20, MIRU23, MIRU24,

MIRU27/QUB-5, VNTR2347/Mtub 29, and VNTR4156/QUB-4156c) were included in a third

and last step of genotyping. The HGDI of MIRU27/QUB-5 remained zero in both cohorts as it

did not identify any discrete sample from the population. Application of the third step loci on

22 clustered samples identified 2 singletons, defining the final outcome of the customized step-

wise MIRU-VNTR typing of penitentiary system cohort– 19 (19.4%) clustered cases from the

total of 98 samples.

Processing time for the customized stepwise MIRU-VNTR typing

Considering a conventional method with two gel trays with 32-well gel comb, it is possible to

run 54 samples with 2 controls and 8 molecular size markers. To compare the total amount of

time required for our customized stepwise genotyping approach and for the standard 24-loci

method, we calculated the processing time for 56 samples (including controls) for both meth-

ods. Our calculation included the following steps: master mix preparation (20 min.), adding

sample DNA (20 min.), PCR (165 min.), and loading samples for gel electrophoresis (40 min.),

running the gel (240 min), dying (20 min.) and imaging (8 min).

Applying the full 24-loci panel on the 102 patient isolates resulted in a total of 2,448 ampli-

cons to run on gel electrophoresis, with a total processing time of 387.6 person-hours. By con-

trast, our customized stepwise typing approach resulted in a reduced number of amplicons to

be processed from 2,448 to 1,020 (41.7%) after 1st step customized 10 loci typing. This was fol-

lowed by 210 (8.6%) amplicons after applying the 2nd step typing with 6 loci, and to 176 (7.2%)

amplicons to be typed for the 3rd step with the remaining 8 loci. Hence, our customized step-

wise approach resulted in a total of 1,406 amplicons to run, with 41.7% and 8.6% reduction of

typing with 1st step customized loci and 2nd step typing with an additional 6 loci, respectively.

Compared to the 387.6 person-hours with 24-loci panel typing, the stepwise approach required

222.6 person-hours, which corresponds to a reduction in total processing time of 42.6%.

Cost comparison of the customized stepwise genotyping approach

The price of the 24-loci MIRU-VNTR per sample based on consumable prices in Georgia in

addition to laboratory technician salary per-hour was approximately 1,124 Euros, while the

customized stepwise approach using the 10-6-8 loci panels sequentially resulted in a decreased

cost of approximately 648 Euros. This corresponds to a cost reduction of 42.6% compared to

the standard method, indicating a major dependence of the total cost on the sample quantity

and processing time.

Discussion

We adapted the standard 24-loci MIRU-VNTR panel for the Georgian TB population by i)

reducing the number of loci to a customized set of 10 loci for an initial step of genotyping; ii)

developing a stepwise typing approach to retain adequate discriminatory power; iii) applying
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this approach on a retrospective TB patient cohort in a penitentiary system in Georgia. Our

findings demonstrate that the customized stepwise MIRU-VNTR tying approach reduces the

processing time, cost and workload, while achieving equal discriminatory power to 24 stan-

dard MIRU-VNTR loci panel. The modified MIRU-VNTR typing can be a benefit for the TB

disease transmission control in the most effective way, especially for LMIC.

For the purpose of the MIRU-VNTR customization, we modified the 24-loci panel based

on the discriminatory power of each loci using HGDI. Initially, we chose the 10 highest HGDI

score loci and compared them to the standardized 12- and 15-loci panel sets (Table 1). While

four loci included in our customized set were shared with both the standard sets, one locus

was shared only with the 12-loci panel, four loci only with the 15-loci panel, and one locus—

VNTR2461 (ETRB) was not present either of the two standard sets. The bias of 15-loci and

24-loci panels towards MTBC lineage 4 has been well-documented [9]. In Georgia, most

MTBC belongs to lineage 4 and lineage 2/Beijing. Deviation from the standard loci panels is

mostly influenced by HGDI sensitivity to local strain variation. Therefore, our results from

assessing a customized set, based on the MTBC lineages circulating in Georgia, are consistent

with previous studies showing the influence of strain diversity on the discriminatory power of

genotyping methods [8, 10, 11]. This variation thus should be considered when choosing

appropriate methodologies for molecular epidemiological studies, whereby customizing based

on local strain variation is one possible way, particularly in resource-limited settings [10, 11,

21].

Table 1. MIRU-VNTR 24 loci set with individual HGDI and inclusion in standardized and customized genotyp-

ing panel.

Locus (24 loci panel) 12 Loci Panel 15 Loci Panel Customized 10–loci set

MIRU 02 X

MIRU 04 X X

MIRU 40 X X X

MIRU 10 X X

MIRU 16 X X X

MIRU 20 X

MIRU 23 X

MIRU 24 X

MIRU 26 X X X

MIRU 27 X

MIRU 31 X X X

MIRU 39 X X

VNTR 424 X

VNTR 577 X

VNTR 1955 X X

VNTR 2163b X X

VNTR 2165 X

VNTR 2347

VNTR 2401 X X

VNTR 2461 X

VNTR 3171

VNTR 3690 X

VNTR 4052 X X

VNTR 4156 X

https://doi.org/10.1371/journal.pone.0264472.t001
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For increased discrimination, we additionally typed samples that were clustered based on

the initial typing with the remaining loci from the 24-loci panel and re-evaluated the pre-

defined customized set. The initial customized panel revealed 35.7% of clustered cases, which

was subsequently reduced to 19.4% after applying an additional 14 loci. Re-evaluation of the

HGDI indexes, along with assessment of the ability of each locus to identify the majority of the

discrete samples during the step-by step addition to the customized 10-loci set, allowed us to

arrange the remaining 14 loci into the stepwise typing approach. While the 10-loci customized

set might be sufficient as a standalone panel for particular epidemiological studies, it can be

also considered as a primary typing set—step 1, for the hierarchical application of additional

MIRU-VNTR loci. However, if a higher discriminatory power is required, our customized

stepwise approach showed the capacity to reduce the number of samples to be typed by 41.7%

and 8.6% using customized/step 1 and step two typing, respectively, leading to a reduced work-

load, processing time and cost.

We did observe the influence of the particular study population on the discriminatory

power of specific loci, for example for locus VNTR424 and VNTR3171. Therefore, evaluation

of the discriminatory power by HGDI needs to consider the homogeneity of the population to

be typed.

Our customized stepwise approach advances classical 24 MIRU-VNTR panel by reduced

workload, processing time and direct costs (technician per-hour labor cost, consumables and

reagents) by 42.6%. Given that our findings are based on local pricing of the consumables and

laboratory technician average salary, the result should thus be treated with caution as they will

vary based on the specific context with regards to costs of technician salaries and consumables.

Variation in cost reduction (absolute number) is attributable to local pricing. In Georgia, a

middle income country, the consumable prices are much higher compared to Europe and

United states due to procurement and shipping complexities, whereas estimated labor costs

are lower. Therefore, the direct cost savings discussed in the paper are specific for the Georgian

setting but this approach is likely to result in cost savings in other settings as well.

Based on our findings, we propose “The Georgian customized 10 MIRU-VNTR loci set”, to

be used for molecular epidemiological studies in the country of Georgia as a primary typing

tool for identifying major clusters or defining relapse/reinfection. Moreover, the additional 14

loci could be used for further discrimination in clusters defined based on the initial typing.

Such a stepwise approach using two typing sets will reduce time, cost and workload, while

maintaining high discriminatory power and reproducibility in the most practical way.

Our study has several limitations. Firstly, our sample size was moderate. However, the

study covered all the available samples from the penitentiary system and the combination with

previous dataset from the general population had increased the variation within the sample

set. Secondly, even though MIRU-VNTR typing can produce sufficient data for specific ques-

tions, if higher resolution is needed, this method can be limiting, especially in settings with a

large proportion of lineage2/Beijing strains [7]. Ideally, whole genome sequencing (WGS)

would be the method of choice, however it requires the high-level facility with sequencing

instruments which currently are not available in Georgia. Even more importantly, the bioin-

formatics expertise is not widely available in Georgia, which increases complexity of using the

WGS methodology. Tentatively, compared to WGS pricing in Europe and United States, the

cost of the sequencing in Georgia would be much higher than MIRU-VNTR. Our study results

combined with previous data showed that usage of the combination of a customized set of

MIRU-VNTR loci and a stepwise approach gives useful information in the most feasible and

cost-effective way.

Although conventional MIRU-VNTR is still a widely used tool, this method may still over-

estimate Mtb recent transmission events as confirmed by several studies [22–24]. The next
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decade is likely to witness transition to sequencing technologies due to considerable decrease

in sequencing cost [25]. Additionally, decline of the TB burden within the country would give

a significant advantage to these technologies to be used for not only epidemiological investiga-

tions, but for diagnosis and drug resistance determination as well. However, until this transi-

tion occurs in developing countries, MIRU-VNTR typing based on a customized stepwise

approach could be valuable addition to the surveillance tools used in Georgia to enhance the

control and prevention of TB.
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