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In natural products research, chemodiverse extracts coming from multiple organisms are
explored for novel bioactive molecules, sometimes over extended periods. Samples are
usually analyzed by liquid chromatography coupled with fragmentationmass spectrometry
to acquire informative mass spectral ensembles. Such data is then exploited to establish
relationships among analytes or samples (e.g., via molecular networking) and annotate
metabolites. However, the comparison of samples profiled in different batches is
challenging with current metabolomics methods since the experimental
variation—changes in chromatographical or mass spectrometric conditions - hinders
the direct comparison of the profiled samples. Here we introduce MEMO—MS2 BasEd
SaMple VectOrization—a method allowing to cluster large amounts of chemodiverse
samples based on their LC-MS/MS profiles in a retention time agnostic manner. This
method is particularly suited for heterogeneous and chemodiverse sample sets. MEMO
demonstrated similar clustering performance as state-of-the-art metrics considering
fragmentation spectra. More importantly, such performance was achieved without the
requirement of a prior feature alignment step and in a significantly shorter computational
time. MEMO thus allows the comparison of vast ensembles of samples, even when
analyzed over long periods of time, and on different chromatographic or mass
spectrometry platforms. This new addition to the computational metabolomics toolbox
should drastically expand the scope of large-scale comparative analysis.
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1 INTRODUCTION

Mass spectrometry (MS) has been the workhorse of the natural products (NP) community. It is
widely used to profile complex extracts, especially using untargeted tandem mass spectrometry
experiments hyphenated with liquid chromatography (LC-MS/MS) (Wolfender et al., 2019).
Following untargeted analysis in data dependent acquisition (DDA), the samples data are
usually processed using different tools such as MZmine, MS-Dial, or XCMS to detect features
[i.e. m/z values and their respective retention time (RT)] and link those to their associated MS/MS
spectrum (Smith et al., 2006; Pluskal et al., 2010; Tsugawa et al., 2015). The resulting feature lists and
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fragmentation spectra are then used to perform multivariate
analysis for comparing different samples and/or Molecular
Networking (MN) along with spectral annotation (Allard
et al., 2016; Wang et al., 2016; Rutz et al., 2019). Despite
recent progress, current sample clustering approaches face
severe limitations, in particular when comparing chemically
diverse samples in large datasets, as is often the case in NP
research.

Typically, metabolomics comparison is carried out on tables
constituted by features intensities across samples. An issue
frequently observed when comparing such large datasets -
often acquired over days, months or even years—is the lack of
reproducibility both on the LC side with retention time shifts and
on the MS detection side with variation in sensitivity and
accuracy of the mass spectrometer (Dunn et al., 2012; Arens
et al., 2015). Strategies have been devised to reduce and balance
these so-called “batch-effects”, but are often not adapted to
heterogeneous NP extracts datasets where the feature overlap
is weak due to the large chemodiversity of the profiled matrices
(Wehrens et al., 2016). Classical multivariate analyses such as
principal component analysis (PCA) or principal coordinates
analysis (PCoA), but also other dimensionality reduction
techniques such as uniform manifold approximation and
projection (UMAP) or tree map (TMAP), are sensitive to
these effects, complicating the clustering of samples (Leek
et al., 2010; McInnes et al., 2018; Probst and Reymond, 2020).
Moreover, while numerous tools are designed to treat data
originating from a single experiment, few techniques allow to
efficiently compare samples analyzed in multiple experiments
(i.e., different instrument, method and/or analysis batches). As
mentioned by Jarmusch and co-authors, such data-mining
techniques at the repository scale level are needed to compare
data originating from different experiments, even in a single
laboratory, and allow optimal data reuse (Jarmusch et al., 2021).

To reflect the chemical diversity of heterogeneous sample
collections, while tackling batch-effects, several methods have
been introduced that consider the relationships among analytes
(notably via their MS/MS spectrum or chemical structure). This
assumption of relatedness among metabolites stands in
opposition with the classical multivariate analyses which
consider each feature as an independent variable. The first of
these methods considering relationships among variables was
developed in 2017 by Sedio et al, and called the chemical
structural and compositional similarity (CSCS). The CSCS
exploits the cosine similarity between MS/MS spectra in
combination with their relative abundance in the samples to
compute a distance matrix (Sedio et al., 2017). The recently
developed Qemistree approach uses predicted molecular
fingerprints from features’ MS/MS spectra thanks to SIRIUS
and CSI:FingerID (Duhrkop et al., 2015; Duhrkop et al., 2019),
to generate a “tree” of metabolite relationships (Tripathi et al.,
2021) that is further used to compute a UniFrac distance among
samples (Lozupone and Knight, 2005). UniFrac was initially
developed to compare microbial communities and was
adapted to metabolomics data by Junker in 2018 with, in this
case, the enzymatic proximity of the metabolites being used for
the tree generation (Junker, 2018). While improving classical

sample classification approaches, these methods are
computationally expensive, particularly when applied on large
datasets, as pairwise comparison of all spectra or fingerprints is
necessary. Moreover, an alignment step yielding a feature table
(giving the occurrence and/or intensity of each feature in each
sample) is typically required to compare samples using these
methods. Such alignments are usually based on retention time
(RT) comparison and thus imply the use of comparable
chromatographic methods to profile the studied samples to
obtain a set of unique features aligned across the studied samples.

Here we introduce MEMO—MS2 BasEd SaMple
VectOrization—a method allowing the efficient comparison of
large and heterogeneous sample ensembles based on their LC-
MS/MS profiles. The first step of the MEMO approach consists in
extracting the fragment ions and neutral losses from each binned
MS/MS spectra of the detected features (m/z @ RT) into so-called
documents. Then, for a given sample, all created documents are
aggregated based on word occurrences to constitute a fingerprint,
hereafter defined as a MEMO-vector. Since words are purely
based on mass spectrometry information, the MEMO vectors
resume the full spectral diversity of a sample in a RT-agnostic
fashion. These MEMO vectors can then be aligned and used for
classical multivariate analysis (PCA, PCoA) and/or other
dimensionality reduction approaches such as UMAP or TMAP
(McInnes et al., 2018; Probst and Reymond 2020), allowing the
efficient calculation and visualization of spectral relationships
within large cohorts of samples. The MEMO strategy exploits the
advantages of LC, namely its separative power (thus simplifying
the chemical complexity of the analyzed sample and allowing
isomerism resolving) while avoiding the caveats of a RT based
alignment since the MEMO vectors only contain mass
spectrometric information. Hereafter, we first detail the
MEMO process and its implementation. We then present the
comparison of the MEMO approach to currently existing state-
of-the-art MS fragmentation-based sample organization
approaches, namely CSCS and Qemistree using a previously
published evaluation dataset (Tripathi et al., 2021). Finally, to
investigate and showcase the scalability of the MEMO approach,
we present the results of its application on a large and
heterogeneous plant extracts dataset (1,600 extracts) which is
currently exploited in our laboratory to search for novel bioactive
molecules.

2 MATERIALS AND METHODS

2.1 Evaluation Dataset
2.1.1 Description of the Evaluation Dataset
For the evaluation of the MEMOmethod, we used a dataset from
the Qemistree method that consists of four « parent » chemo-
diverse samples (one plasma, one tomato and two feces samples),
binary mixtures (in different proportions) and quaternary
mixtures of these four « parent samples ». This resulted in 27
samples that were acquired in triplicates using two different RP-
UHPLC methods simulating a Retention Time (RT) shift and
thus generating a strong artificial batch effect (named C18 and
C18 RT-shift) and two different Mass Spectrometers [Q-Exactive
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Orbitrap (QE) and Maxis II Q-TOF (Q-ToF)]. For more details
on this dataset, see (Tripathi et al., 2021).

2.1.2 LC-MS/MS Analysis and Data-Processing
For details on LC-MS/MS analysis and data processing, see Tripathi
et al., 2021 (Tripathi et al., 2021). Data and methods have been
deposited on the GNPS/MASSive repository under accession
number MSV000083306. The GNPS Feature-Based Molecular
Networking (FBMN) job is available at https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task = 044e981ff0d84246ae5c91ef3db643a8
and the GNPS Qemistree job is available at https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task = 8ca56d6e33bc4106b46ba5e3510c91cb.
The spectra file and the feature table used for classical PCoA,MEMO
and CSCS were the one used for the FBMN job.

2.1.3 MEMO Analysis
Spectra were processed using memo_ms v0.1.3 (https://pypi.org/
project/memo-ms/0.1.3/) and the following parameters for
spectra import were used: min_relative_intensity: 0.01, max_
relative_intensity: 1, min_peaks_required: 10, losses_from: 10,
losses_to: 200, n_decimals: 2. No filtering was applied on the
resulting MEMO matrix. For the comparison between QE and
Q-ToF data, matrices were normalized sample-wise. The distance
matrices were computed using pdist function (‘braycurtis’metric)
from scipy package (1.7.1) and scikit-bio (0.5.6) was used for
PCoA computation on the resulting distance matrix (Virtanen
et al., 2020).

2.1.4 Chemical Structural andCompositional Similarity
Analysis
The CSCS analysis was run using the Qiime 2 (https://github.
com/madeleineernst/q2-cscs) implementation of the chemical
structural and compositional similarity metric initially
developed by (Caporaso et al., 2010; Sedio et al., 2017).
Qiime2 release version 2021.2 was employed. The Qemistree
set feature table was appropriately formatted as Qiime
FeatureTable (Frequency) artifact using the following
(https://github.com/mandelbrot-project/memo_publication_
examples/blob/main/02_qemistree/qemistree_formatter_for_
cscs.py). The parameters to launch the CSCS were as follows:
minimal cosine score between two features to be included (--p-
cosine-threshold): 0.7; perform Total Ion Current
Normalization (TIC) on the feature table (--p-normalization):
yes; parallel processes to run (--p-cpus): 40; weight CSCS by
feature intensity (--p-weighted/--p-no-weighted): yes and no,
respectively, for the weighted and unweighted sets. To run CSCS
with the unweighted option, the following minimally modified
script was used (https://github.com/madeleineernst/q2-cscs/
pull/3).

2.1.5 Qemistree Analysis
To generate the Qemistree distance matrix from the GNPS
Qemistree task https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task = 8ca56d6e33bc4106b46ba5e3510c91cb, the code from the
Evaluation Dataset Analyses notebook (available at https://
github.com/knightlab-analyses/qemistree-analyses/blob/master/
Evaluation-Dataset-Analyses.ipynb) of Tripathi et al., available

on Github, was used with slight adaptations to allow export of the
distance matrix (the modified script is available https://github.
com/mandelbrot-project/memo_publication_examples/blob/
main/02_qemistree/qemistree_dm_generation.py). It is to be
noticed that for the Qemistree workflow, only features with an
m/z < 600 and a Zodiac score >0.98 were used for fingerprinting
and downstream analysis, resulting in 3,776 of 7,032 features
being considered (Ludwig et al., 2020; Tripathi et al., 2021).

2.2 Plant Extract Dataset and Associated
Bioactivities
2.2.1 Description of the Plant Extract Dataset
A plant extract library under investigation for drug discovery
purposes in our lab was profiled by untargeted LC-MS. This
dataset is in fact a random and heterogeneous subset of 1,600
extracts of the Pierre Fabre Research Institute Library (European
Commission, 2020). This collection is constituted by EtOAc
extracts, thereby yielding mostly specialized metabolites of
intermediate polarity. Raw and processed data have been
deposited on the GNPS/MASSive repository accession number
MSV000087728.

2.2.2 LC-MS/MS Analysis
Chromatographic separation was performed on aWaters Acquity
UPLC system (Waters corporation, Milford, MA, United States)
interfaced to a Q-Exactive Focus mass spectrometer (Thermo
Scientific, Bremen, Germany), using a heated electrospray
ionization (HESI-II) source. Thermo Scientific Xcalibur 3.1
software was used for instrument control. The LC conditions
were as follows: column, Waters BEH C18 50 × 2.1 mm, 1.7 μm;
mobile phase, (A) water with 0.1% formic acid; (B) acetonitrile
with 0.1% formic acid; flow rate, 600 μl·min−1; injection volume,
6 μl; gradient, linear gradient of 5–100% B over 7 min and
isocratic at 100% B for 1 min. The optimized HESI-II
parameters were as follows: source voltage, 3.5 kV (pos);
sheath gas flow rate (N2), 55 units; auxiliary gas flow rate, 15
units; spare gas flow rate, 3.0; capillary temperature, 350.00°C,
S-Lens RF Level, 45. The mass analyzer was calibrated using a
mixture of caffeine,
methionine–arginine–phenylalanine–alanine–acetate (MRFA),
sodium dodecyl sulfate, sodium taurocholate, and Ultramark
1,621 in an acetonitrile/methanol/water solution containing 1%
formic acid by direct injection. The data-dependent MS/MS
events were performed on the three most intense ions detected
in full scanMS (Top3 experiment). TheMS/MS isolation window
width was 1 Da, and the stepped normalized collision energy
(NCE) was set to 15, 30 and 45 units. In data-dependent MS/MS
experiments, full scans were acquired at a resolution of 35,000
FWHM (at m/z 200) and MS/MS scans at 17,500 FWHM both
with an automatically determined maximum injection time. After
being acquired in a MS/MS scan, precursor ions were placed in a
dynamic exclusion list for 2.0 s.

2.2.3 Data-Processing
TheMS data were converted from. RAW (Thermo) standard data
format to. mzXML format using the MSConvert software, part of
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the ProteoWizard package (Chambers et al., 2012). The converted
files were treated using theMZmine software suite v. 2.53 (Pluskal
et al., 2010). The parameters were adjusted as follows: the
centroid mass detector was used for mass detection with the
noise level set to 1.0E4 for MS level set to 1, and to 0 for MS
level set to 2. The ADAP chromatogram builder was used and
set to a minimum group size of scans of 5, minimum group
intensity threshold of 1.0E4, minimum highest intensity of
5.0E5 and m/z tolerance of 12 ppm. For chromatogram
deconvolution, the algorithm used was the wavelets (ADAP)
(Myers et al., 2017). The intensity window S/N was used as S/N
estimator with a signal to noise ratio set at 10, a minimum
feature height at 5.0E5, a coefficient area threshold at 130, a
peak duration ranges from 0.0 to 0.5 min and the RT wavelet
range from 0.01 to 0.03 min. Isotopes were detected using the
isotopes peaks grouper with a m/z tolerance of 12 ppm, a RT
tolerance of 0.01 min (absolute), the maximum charge set at 2
and the representative isotope used was the most intense. Each
feature list was filtered before alignment to keep only features
with an associated MS2 scan and a RT between 0.5 and 8.0 min
using the feature filtering. At this step, individual feature tables
and spectra were exported using the “export to GNPS”module
to generate a MEMO matrix from unaligned samples. To
generate a MEMO matrix from aligned samples, peak
alignment was performed using the join aligner method (m/
z tolerance at 40 ppm), absolute RT tolerance 0.2 min, weight
for m/z at 2 and weight for RT at 1 and a weighted dot-product
cosine similarity of 0.3. The aligned feature list (119,182
features) was exported using the export to GNPS module.

2.2.4 MEMO Analysis
Spectra were processed using memo_ms package (0.1.3) and the
following parameters for spectra import were used:
min_relative_intensity: 0.01, max_relative_intensity: 1,
min_peaks_required: 10, losses_from: 10, losses_to: 200,
n_decimals: 2. Peaks/losses occurring in blanks samples were
removed. Distance matrices were computed as described above.
TMAP and UMAP were performed using tmap (1.0.0) and
umap-learn (0.5.2) packages respectively after sample-wise
normalization of the MEMO matrices.

2.2.5 Activity Against Trypanosoma cruzi Assay
Activity against T. cruzi. Rat skeletal myoblasts (L-6 cells) were
seeded in 96-well microtiter plates at 2000 cells/well in 100 μl
RPMI 1640 medium with 10% FBS and 2 mM l-glutamine.
After 24 h the medium was removed and replaced by 100 μl per
well containing 5,000 trypomastigote forms of T. cruzi
Tulahuen strain C2C4 containing the β-galactosidase (Lac
Z) gene (Buckner et al., 1996). After 48 h the medium was
removed from the wells and replaced by 100 μl fresh medium.
Samples were dissolved in 5% DMSO at 0.2 mg/ml 5 and 1 ml
of the sample solution respectively were added to the wells. The
test concentrations were 10 mg/ml and 2 mg/ml. After 96 h of
incubation the plates were inspected under an inverted
microscope to assure growth of the controls and sterility.
Then the substrate CPRG/Nonidet (50 μl) was added to all
wells. A color reaction developed within 2–6 h and could be

read photometrically at 540 nm. The data were evaluated in
Excel. For each test concentration, the percent growth
inhibition was calculated in comparison with an untreated
control. Benznidazole at 10 mg/ml was included as positive
control.

2.2.6 Cytotoxicity Assay: L-6 Cells
Assays were performed in 96-well microtiter plates, each well
containing 100 μl of RPMI 1640 medium supplemented with
1% L-glutamine (200 mM) and 10% fetal bovine serum, and
4000 L-6 cells (a primary cell line derived from rat skeletal
myoblasts) (Page et al., 1993; Ahmed et al., 1994). Samples
were dissolved in 5% DMSO at 0.2 mg/ml 5 and 1 ml of the
sample solution respectively were added to the wells. The test
concentrations were 10 mg/ml and 2 mg/ml. After 70 h of
incubation the plates were inspected under an inverted
microscope to assure growth of the controls and sterile
conditions. 10 μl of Alamar Blue was then added to each
well and the plates incubated for another 2 h. Then the
plates were read with a Spectramax Gemini XS microplate
fluorometer (Molecular Devices Corporation, San Jose, CA,
United States) using an excitation wavelength of 536 nm and
an emission wavelength of 588 nm. The data were evaluated in
Excel. For each test concentration, the percent growth
inhibition was calculated in comparison with an untreated
control. Podophyllotoxin (Sigma P4405) at 0.1 mg/ml was
included as positive control.

2.3 Additional Plant Extract Samples
2.3.1 Description of the Waltheria indica Extracts
These three samples correspond to the source of the
waltherione derivatives, previously described in the
following article for the roots (Cretton et al., 2014) and
aerial parts (Cretton et al., 2016), respectively. Consult these
references for further details on the extract preparation and
chemical content of Waltheria indica. Raw and processed data
have been deposited on the GNPS/MASSive repository
accession number MSV000088521.

2.3.2 LC-MS/MS Analysis
Waltheria indica samples correspond to additional extracts
absent from the previously described 1,600 plants extract
collection. For Waltheria indica aerial parts 2014, the initial
analysis conditions are described below.

Chromatographic separation was performed on a Thermo
Dionex Ultimate 3000 UHPLC system interfaced to a
Q-Exactive Plus mass spectrometer (Thermo Scientific,
Bremen, Germany), using a heated electrospray ionization
(HESI-II) source. The LC conditions were as follows:
column, Waters BEH C18 150 × 2.1 mm i. d., 1.7 μm;
mobile phase, (A) water with 0.1% formic acid and (B)
acetonitrile with 0.1% formic acid; flow rate, 460 μl/min;
injection volume, 3 μl; gradient, linear gradient of 25–100%
B over 30 min followed by an isocratic step of 100% B for
10 min. In positive ion mode, diisooctyl phthalate C24H38O4
(M + H)+ ion (m/z 391.28429) was used as internal lock mass.
The optimized HESI-II parameters were as follows: source
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voltage, 4.0 kV (pos); sheath gas flow rate (N2), 50 units;
auxiliary gas flow rate, 12 units; spare gas flow rate, 2.5;
capillary temperature, 266.25°C (pos), S-Lens RF Level, 50.
The mass analyzer was calibrated using a mixture of caffeine,
methionine-arginine-phenylalanine-alanine-acetate (MRFA),
sodium dodecyl sulfate, sodium taurocholate, and
Ultramark 1,621 in an acetonitrile/methanol/water solution
containing 1% acid by direct injection. The data-dependent
MS/MS events were performed on the 5 most intense ions
detected in full scan MS (Top5 experiment). The MS/MS
isolation window width was 1 m/z, and the stepped
normalized collision energy (NCE) was set to 20–35−50
units. In data-dependent MS/MS experiments, full scans
were acquired at a resolution of 35,000 fwhm (at m/z 200)
and MS/MS scans at 17,500 fwhm both with a maximum

injection time of 50 ms. After being acquired in MS/MS
scan, parent ions were placed in a dynamic exclusion list
for 3.0 s.

Waltheria indica roots and aerial parts were reprofiled in 2018
using the same analytical platform and identical LC and MS
methods as used for the plant extract dataset (see corresponding
Methods section).

2.3.3 Data-Processing
Data were processed using MZmine v. 2.53 as the plant extract
dataset (see above), with slightly adapted parameters. For
chromatogram deconvolution, the intensity window S/N was
used as S/N estimator with a signal to noise ratio set at 10, a
minimum feature height at 1.0E6, a coefficient area threshold at

FIGURE 1 |Workflow to generate a MEMOmatrix from usual outputs of feature detection pipelines from unaligned samples (MEMO from Unaligned samples, A1)
or from previously aligned samples (MEMO from Aligned samples, A2). For both methods, features’ MS/MS spectra are first binned and neutral losses relative to the
precursor losses are calculated to build so-called documents using the spec2vec package (Spectrum to Document step). In (A1), occurrence of each word (peak or loss)
in each spectra file (i.e., sample) is counted. Words are then extracted from their Document context and aggregated to build a MEMO vector for each sample (B). In
(A2), the building of the MEMO vector (B) is done using the Aligned Feature Table to determine whether a feature is detected or not in each sample. Likewise, each word
is counted within the originating sample and extracted from its Document (or spectral) context. MEMO vectors are then aligned onwords in a so-calledMEMOmatrix (C).
These MEMO matrices can then be (optionally) aggregated. Figure created using biorender.com.
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60, a peak duration ranges from 0.0 to 0.5 min and the RT wavelet
range from 0.01 to 0.03 min.

2.3.4 MEMO Analysis
MEMO analysis was performed with the same parameters as the
for the plant extract dataset analysis.

3 RESULTS AND DISCUSSION

3.1 Generation of MEMO Vectors and
Matrices
Two approaches can be followed to generate aMEMOmatrix and
are described in Figure 1. On one side (Figure 1A1), it is possible
to start directly from unaligned samples to construct a sample’s
MEMO vector (Figure 1B). In this case, the only required input is
a. mgf file for each sample (Mascot Generic Format, a text format
commonly used to report fragmentation mass spectrometry data)
containing all the sample’s features MS/MS spectra. If these. mgf
can be directly obtained from the raw data input, it is however
recommended to proceed to a preliminary feature detection step
using softwares such as MZmine for example (Pluskal et al.,
2010). First, MS2 spectra are filtered and binned using matchms
and spec2vec packages: peaks and losses to the precursor of the
spectrum are converted into words (i.e. peak@mz and loss@mz)
and grouped into so-called documents (Huber et al., 2020; Huber
et al., 2021). Documents are then aggregated by summing peaks
and losses occurrences across spectra of a given sample to obtain
theMEMO vector (Figure 1B). Samples’MEMOvectors can then
be aligned to obtain a MEMO matrix (Figure 1C). This way of
building a MEMO matrix without prior RT based features
alignment across samples is defined hereafter as “MEMO from
unaligned samples” approach (Figure 1A1).

On the other side (Figure 1A2), it is also possible to start
the process from an aligned feature intensity table (.csv file)
and corresponding MS/MS spectra file (.mgf file). These files
can be generated by software suites such as MZmine, XCMS
or MS-Dial and are typically used in metabolomics
workflows such as the Feature-Based Molecular
Networking analysis (FBMN) (Smith et al., 2006; Pluskal
et al., 2010; Tsugawa et al., 2015; Nothias et al., 2020). In this
case, the occurrence of each peak and loss within a given
sample is counted using the feature intensity table to
determine whether a feature is detected or not into the
sample (Figure 1A2). Note here that it is not the intensity
table of the MS1 feature (peak intensity or area) that is
considered but rather a simple presence/absence matrix.
This “MEMO from aligned samples” workflow can
conveniently complement pre-existing metabolomics data
treatment pipelines (Figure 1A2).

The main advantage of using unaligned files to construct a
MEMO matrix is that the time-consuming feature alignment
step, which is prone to batch effects, can be completely bypassed.
This approach is thus well suited to the analysis of large data sets
and is, to the best of our knowledge, the only way to compare
samples acquired with different LC methods. Multiple MEMO

vectors and/or MEMO matrices can be merged, facilitating the
subsequent addition of supplementary samples’ MEMO vectors.
This is a convenient characteristic of the MEMO analytical
workflow, which allows iterative analysis of evolving datasets
(see Section 3.3, Application of MEMO on a large plant extracts
dataset: batch effect correction and drug-discovery application).

3.2 Evaluation of the MEMO Method
3.2.1 Comparison to State-of-The-Art MS/MS-Based
Clustering Methods
To benchmark the MEMO approach, we compared it to the
two previously established MS/MS based sample clustering
methods: CSCS and Qemistree (Sedio et al., 2017; Tripathi
et al., 2021). CSCS combines the cosine pairwise similarity
between spectra with the feature table to compute a distance
matrix among samples while Qemistree relies on predicted
molecular fingerprints (via SIRIUS/CSI:FingerID) to generate
a tree used for UniFrac distance computation among samples
(Duhrkop et al., 2015; Duhrkop et al., 2019). To perform the
comparison of the different methods, we used an experimental
dataset previously built for the benchmarking of the Qemistree
tool. This dataset is constituted by 27 samples, which were
acquired in triplicates using two different LC methods (named
C18 and C18 RT-shift) thus simulating a RT shift and a strong
artificial batch effect. It was also acquired on two different
mass spectrometers [Q-exactive Orbitrap (QE) and Maxis II
q-TOF (q-ToF)]. The composition of the samples was the
following: four chemodiverse “parent samples” (one plasma,
one tomato and two feces samples), binary mixtures (in
different proportions) and quaternary mixtures of these
four “parent samples”. For more details, see (Tripathi et al.,
2021). Hereafter, we refer to this dataset as the “evaluation
dataset”.

The objective of this comparison was to evaluate each
clustering method’s ability to mitigate retention time shift
effect. For this, we applied six different techniques—MEMO
from unaligned and aligned samples, Qemistree weighted/
unweighted and CSCS weighted/unweighted - to the samples
analyzed with the two different LC-methods on the Q-Exactive
MS. We also added the results of an MS/MS agnostic clustering
method (Feature Table Bray-Curtis) solely based on the MS1
feature table intensity to serve a baseline. The overall objective of
these clustering methods is to capture a maximum of the
compositional (dis) similarity across extracts despite the strong
experimental batch-effect induced by the artificial RT-shift.
Results are presented in Figure 2.

The observation of these results first indicates the importance
of using fragmentation spectra to decrease the RT shift effect.
Indeed, methods considering mass fragmentation information,
except for Qemistree unweighted, all appear to mitigate the
artificial batch effect (Figure 2A).

Secondly, it is to be noticed that, overall, similar clustering
patterns are observed between MEMO from unaligned samples,
Qemistree weighted and CSCS weighted, on one side, andMEMO
from aligned samples and CSCS unweighted on the other side. For
MEMO from unaligned, Qemistree weighted and CSCS weighted,
mixtures of the same parent samples but of different proportions
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can be distinguished, and the best performing method is
Qemistree (Supplementary Figures S1, S2). Interestingly,
MEMO from aligned samples is closer to CSCS unweighted
than to MEMO from unaligned samples. This could be
explained by the fact that a gap-filling was applied after
alignment, causing a decrease of the impact of the proportions
of the parent samples in the mixtures when compared toMEMO
from unaligned samples.

To confirm the previous visual interpretations, a statistical
analysis was performed using the permutational analysis of
variance (PERMANOVA) test (Anderson, 2017) (See Table 1).
Overall, larger pseudo-F values indicate more pronounced group

separation. The optimal clustering approach in our example case
should thus ideally have the smallest pseudo-F value when
considering a grouping via the experiment factor (the RT
induced batch effect) and the larger pseudo-F value when
considering the composition factor. First, the observed pseudo-
F value when considering the experiment parameter (C18 vs. C18
RT-shift) is clearly smaller for MS2 based methods (pseudo-F <=
81.64) compared to the classical intensity-based dissimilarity
analysis (pseudo-F = 113.55). This confirms, as expected, a
much stronger influence of this experiment parameter when
features are considered as independent variables without MS/
MS inclusion. The opposite effect is observed whenmeasuring the

FIGURE 2 | PCoA comparison of a classical and MS/MS agnostic approach (Feature Table Bray Curtis) and three MSMS informed clustering approaches (the
MEMO from unaligned/aligned (Bray-Curtis distance), Qemistree weighted/unweighted (UniFrac distance) and weighted/unweighted CSCS) on the evaluation dataset
acquired using 2 different LC methods (C18 and C18 RT-shift) on the Q-Exactive mass spectrometer. Samples are colored according to the used experimental LC
method (A) or their composition (B). For statistical analysis, see Table 1. The samples corresponding to the same mixture and replicate in each dataset (C18 and
C18 RT-shift) are linked (gray line). Parent samples are bigger and have a black border line. Interactive visualizations are available at https://mandelbrot-project.github.io/
memo_publication_examples/.
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pseudo-F value on the composition parameter: values are higher
in MS2 based methods (>=11.10) than in the feature table Bray-
Curtis analysis (4.72), confirming the visualization of the first two
Principal Coordinates in Figure 1. The difference between
MEMO from unaligned and aligned samples is important,
highlighting the important influence of the alignment and
gap-filling steps. While MEMO from unaligned samples
appears to be the most efficient at mitigating batch effect, its
ability to discriminate samples according to their content is lower
than MEMO from aligned samples, at least statistically. It is
however to be noticed that since binary mixtures are
constituted of different proportions of the parent samples,
mixtures groups are heterogeneous, and this impacts the
results of the PERMANOVA test.

A strong advantage of theMEMO approach is that it is fast and
computationally cheap compared to the two other metrics
(Table 2). A strict comparison of the computation time of
these three conceptually different and diversely implemented
methods is complicated. However, a comparison of the
methods from the users’ practical point of view is doable and
of interest. On large datasets, such as the plant extract dataset
(1920 samples and 906,509 MS/MS spectra), a MEMOmatrix can
be computed rapidly (less than 10 min) on a simple laptop (see
specifications in Table 2 caption). In comparison, CSCS required
much more computational time (295 min) despite being

parallelized on a more powerful machine (see specifications in
Table 2 caption). Computational requirements for the Qemistree
approach are high and its application on such a dataset is
complicated. The efficiency of the MEMO approach offers
exciting perspectives for repository-scale analyses of large
spectral ensembles.

3.2.2 Organizational Capability for Unaligned Samples
Analyzed on Two Different Mass Spectrometers
To evaluate MEMO’s ability to cluster similar samples affected by
an alternative batch effect, explained this time by different MS
platforms, we applied it to the evaluation dataset samples
analyzed on a Q-Exactive Orbitrap (QE) and a Quadrupole-
Time of Flight (Q-ToF) MS. A MEMO matrix was generated
from aligned samples for each platform, and the two resulting
matrices were then aligned. The counts in the finalMEMOmatrix
were normalized sample-wise to mitigate effects of peaks/loss
occurrence difference between MS. The PCoA performed on the
final matrix is presented in Figure 3.

When looking at the first two PCs, the strongest factor
driving the clustering is, as expected, related to the MS
platform. This is confirmed by the PERMANOVA results
with a pseudo-F value of 213.35 (p-value = 0.001) for the
experiment factor (Figure 3A). However, a good clustering
according to samples’ composition can be observed on PC2

TABLE 1 | PERMANOVA results for the different evaluated metrics on two categorical attributes; the experiment (2 groups: C18, C18-RTshift) and the composition (11
groups: Fecal-1, Fecal-2, Tomato, Plasma, Fecal-1 + Fecal-1, Fecal-1 + Tomato, Fecal-1 + Plasma, Fecal-2 + Tomato, Fecal-2 + Plasma, Tomato + Plasma, Fecal-1 +
Fecal-2 + Tomato + Plasma). The optimal clustering approach should ideally have the smallest pseudo-F value when considering a grouping via the experiment factor (the RT
induced batch effect) and the larger pseudo-F value when considering the composition factor.

Group: Experiment Group: Composition

Metric Pseudo-F p-value Pseudo-F p-value

Feature Table (Bray-Curtis) 113.55 0.001 4.72 0.001
MEMO from unaligned samples (Bray-Curtis) 2.23 0.017 15.51 0.001
MEMO from aligned samples (Bray-Curtis) 25.39 0.001 62.79 0.001
Qemistree weighted UniFrac 18.22 0.001 49.54 0.001
Qemistree unweighted UniFrac 81.64 0.001 11.10 0.001
CSCS weighted 17.94 0.001 52.53 0.001
CSCS unweighted 28.27 0.001 62.10 0.001

TABLE 2 |Computational time required to obtain the distance matrix used for PCoA analysis for each of the compared metric. The feature detection step (using MZmine 2) is
not considered since it is the same for all three methods. The time for uploading, downloading and unzipping the data when needed is not taken into account. All 7,032
features were considered for MEMO and CSCS analyses. *Windows 10 64 bits, Intel Core i7-8750H, 2.20 GHz, 6 cores, 16 Gb of RAM - no parallelization. ** Ubuntu 20.04
LTS 64 bits, AMD Ryzen Threadripper 3,970X (3.70 GHz/128 MB), 32 cores, 256 Gb of RAM - parallelized on 40 threads.

Dataset Metric GNPS FBMN
(min)

GNPS qemistree
(min)

Local Computation
(min)

Total (min)

Evaluation dataset (198 samples) MEMO from unaligned samples NA NA 1.1* 1.1
MEMO from aligned samples NA NA 0.5* 0.5
CSCS weighted 49 NA 13.3** 62.3
CSCS unweighted 49 NA 13.3** 62.3
Qemistree weighted 49 796 <0.1* 845.0
Qemistree unweighted 49 796 <0.1* 845.0

Plant extracts dataset (1,920 samples) MEMO from unaligned samples NA NA 9.9* 9.9
CSCS weighted 45 NA 250.4** 295.4
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and PC3 (pseudo-F = 5.19, p-value = 0.001 for the composition
factor) (Figure 3B). The possibility to organize such
datasets—even if imperfectly—is of interest since, to the best
of our knowledge, methods to compare samples acquired on 2
different MS technologies has not been reported to date. The
strong batch effect observed is certainly caused by the difference
in fragmentation technique between the two instruments
(higher-energy C-trap dissociation in QE vs. collision-
induced dissociation in Q-ToF). However, in the era of open
data, methods that allow such comparison are of high value to
extract knowledge from MS metabolomics studies available on
public repositories such as MASSive (Wang et al., 2016) or
Metabolights (Haug et al., 2020). Such comparison is possible
using the ReDU framework (Jarmusch et al., 2020) but exploits
the presence of annotated compounds within each sample.
MEMO, being annotation-independent, is thus a
complementary holistic view of the data considered.

3.3 Application of the MEMO Method to a
Large Plant Extract Dataset: Batch Effect
Correction and Implementation in Drug
Discovery
To confirm MEMO’s scalability, we applied it to a large plant
extract dataset (1,600 extracts from 767 botanical species and
different plant parts) analyzed in our lab over a year span in 19
batches. The resulting dataset is public and can be accessed
through the GNPS/MASSive repository MSV000087728. First,
as depicted on Supplementary Figure S3, we could observe that

this dataset suffers from a strong batch effect related to the date of
analysis. This batch effect is clearly visible on the Feature Table
based PCoA with on one side samples analyzed before 2017–10-
03, and on the other side samples analyzed after 2017–10-26. This
batch effect is due to both a RT shift and a MS sensitivity change,
as it can be observed on 2 representative quality control (QC)
samples (Supplementary Figure S4). When performing the
PCoA on MEMO from aligned and unaligned matrices, the
influence of this batch effect is, in both cases, clearly
mitigated. It is noteworthy that an injection date effect is still
visible on the UMAP and TMAP visualizations, highlighting the
difficulty to eliminate batch related variation (Supplementary
Figure S3). Since the MEMO from unaligned sample workflow is
faster to compute than MEMO from aligned sample (by
bypassing the feature alignment step), it will be used for the
rest of the work.

MEMO also enabled a good clustering of the samples
according to their metabolic profile. Indeed, in the frame of a
drug discovery project, we evaluated the activity of these 1,600
plant extracts against Trypanosoma cruzi (T. cruzi). In this
screening, eight extracts displayed an interesting activity
against T. cruzi (>80% of parasite growth inhibition) coupled
to a moderate cytotoxicity (<50%). Among these eight bioactive
extracts, six are clustered together (C1) and two appeared as
singletons (S1 and S2) in the UMAP and TMAP visualization
(Figure 4A and Supplementary Figure S5). Getting similar
clustering using two different algorithms strengthens the
hypothesis that observed clusters have, in addition to a
biological relevance, a chemical relevance and are not

FIGURE 3 | PCoA (Bray-Curtis) on the MEMO matrix analysis of the Qemistree samples analyzed on a Q-ToF and a Q-Exactive orbitrap MS. The samples
corresponding to the same mixture and replicate in each dataset are linked (gray line) and parent samples are bigger and have a black border line. Samples are colored
according to the used experiment (A) or their composition (B). PERMANOVA: Experiment: pseudo-F = 215.65, p-value = 0.001; Composition: pseudo F = 5.17, p-value
= 0.001. Interactive visualizations are available at https://mandelbrot-project.github.io/memo_publication_examples/
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visualization artifacts. This hypothesis is strengthened for C1 by
the fact that among the eight extracts, six belong to the
Leguminosae botanical family (three different species) and that
a rapid dereplication allowed identification of structurally similar
compounds in all of them. The isolation of the active compounds
of the six active samples (C1) is the object of an ongoing work and
will be described in a future article.

Among the two active samples not clustered in C1, Melochia
umbellata (Houtt.) Stapf (Malvaceae) green stems extract (S2,
Figure 4) displayed an interesting anti-trypanosomatid activity
(90% growth inhibition at 10 μg/ml). Interestingly, colleagues
from the University of Geneva previously discovered potent
trypanocidal waltherione derivatives from another Malvaceae,
Waltheria indica L. (Cretton et al., 2014; Cretton et al., 2015;
Cretton et al., 2020). To evaluate whether the activity of these two

plants of the same botanical family could be explained by
structurally similar compounds, we added the MEMO vectors
of three additionalWaltheria indica extracts LC-MS/MS profiles,
to the global MEMO matrix of the 1,600 plant extract dataset.
These three Waltheria indica extracts profiles were
heterogeneous: a first Waltheria indica aerial parts extract was
profiled in 2014 and two Waltheria indica roots and aerial parts
were reprofiled in 2018. Since MEMO vector-based organization
can be performed without the requirement for a prior alignment
step, the addition of samples to a pre-existing dataset is
straightforward. In this case, this was done in minutes after
the processing of the individual Waltheria indica metabolite
profiles using MZmine 2. Moreover, if the two 2018 samples
were analyzed on the same platform with the same methods (LC
and MS/MS) as the ones used for the profiling of the plant extract

FIGURE 4 | Analysis of a large plant extract dataset (n = 1,600 samples) using MEMO. In (A), the anti-Trypanosoma cruzi activity of the extracts is mapped on three
different visualizations of the unaligned MEMOmatrix (PCoA and TMAP). An extract was classified as active if inhibition growth inhibition of T. cruziwas above 80% of the
control and cytotoxicity against L6 cells was below 50%of the control. This comparison highlights the necessity of complementary dimensionality reduction techniques in
order to gain chemical insights about the sample. Indeed, using UMAP and TMAP, one cluster (C1) of six active samples and 2 singletons samples (S2 and S3) can
be observed on both the UMAP and the TMAP but not on the PCoA. C1 and S3 will be investigated in future works while S2, corresponding toMelochia umbellata green
stems extract, has been investigated and detailed in the current work. In (B), TMAP visualization of the 1,600 plant extracts dataset with the addition of 3 extracts rich in
waltherione derivatives from Waltheria indica (Malvaceae) (roots 2018, aerial parts 2018 and aerial parts 2014, n = 1,603) shows a good clustering with S2. In (C), an
example of a common potent trypanocidal compound (IC50 = 0.02 µM), waltherione G, isolated from Waltheria indica and identified in all 4 extracts is shown with the
corresponding MS/MS spectra from each sample. Identification of waltherione G in Melochia umbellata (level 1 identification of the Metabolomics Standards Initiative
(Sumner et al., 2007)) was confirmed by retention time comparison with a standard (Cretton et al., 2014). Mirror view of the 2 spectra (waltherione G isolated standard
and waltherione G detected inMelochia umbellata) is available on the Metabolomics Spectrum Resolver Web Service (https://tinyurl.com/3vpdr7h4) (Bittremieux et al.,
2020). Interactive visualizations are available at https://mandelbrot-project.github.io/memo_publication_examples/.
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dataset, the 2014 sample was acquired using a different LC-
gradient (40 min run on a 2.1 × 150 mm column versus 8 min run
on 2.1 × 50 mm column) and a different MS (QE-Plus vs QE-
Focus orbitrap). Despite these differences, both UMAP and
TMAP visualizations present a clear clustering of the three
additional Waltheria indica samples with the trypanocidal
Melochia umbellata green stems extract of the global plant
extract dataset (Figure 4B and Supplementary Figure S6). In
depth exploration of the Melochia umbellata green stems extract
MS/MS spectra led to the identification of waltherione G, a potent
anti-Trypanosoma cruzi compound previously isolated from
Waltheria indica and present in the three injected extract
(Figure 4C). This identification was possible by comparing MS/
MS spectra and retention time to an isolated standard of waltherione
G (GNPS Library ID CCMSLIB00006718062 available at https://
tinyurl.com/2p8hwdks). Even though waltherione G has not been
isolated from Melochia umbellata until now, several related
quinoline analogues have been previously reported in the genus
[seeWikidata query https://w.wiki/4wdN (Rutz et al., 2021)], further
supporting this observation.

This last example illustrates how the MEMO approach can be
efficiently employed to compare samples acquired in different
batches, but also on different analytical platforms through quick
alignment of additional MEMO vectors to a pre-established
MEMO matrix. The rapid identification of the compounds
likely responsible for the activity against T. cruzi of the
Melochia umbellata green stems extract exemplifies how this
strategy can be used for the efficient study of large natural
extract collection in the frame of drug discovery projects. In
further developments, techniques relying on motifs in mass
spectra, such as MS2LDA, could be adapted and used to
retrieve common patterns in clustered samples (van der Hooft
et al., 2016). Such an implementation could facilitate the extraction
of features of interest among samples. Furthermore, the MEMO
vector structure allows the conversion of complex and
multidimensional datasets of untargeted mass spectrometry
acquired on large and chemodiverse collections of extracts to a
fingerprint format perfectly amenable for future machine-learning
based investigations - for example to explore the links between
bioactivities of extracts and corresponding MEMO vectors.

4 CONCLUSION

Methods exploiting fragmentation spectra to cluster samples
from LC-MS/MS experiments lower batch effect and enable a
better clustering than classical approaches based on aligned
feature tables. However, due to technical constraints, existing
strategies do not scale up easily. Here, we describe a new MS2
BasEd SaMple VectOrization (MEMO) approach, which captures
the spectral diversity of complex samples in a retention time-
agnostic fashion and thus allows a fast and efficient comparison of
large amounts of samples without the need of a preliminary
feature alignment step. The MEMO method was comparable to
current state-of-the-art techniques in terms of sample clustering
but with far less computational requirements. As an application
example, MEMO was run on a large and chemodiverse plant

extract dataset profiled over the span of a year. In less than 10 min
and a classical laptop, MEMO was able to organize over 1,600
extracts while mitigating a strong batch effect. The exploitation of
the MEMO matrix allowed to rapidly identify a structural family
of bioactive compounds via the posterior aggregation to the
dataset of well-studied plant extracts profiled on different
chromatographic and mass spectrometric platforms. MEMO
significantly advances the field of large-scale sample
comparison and should facilitate knowledge extraction from
the ever-increasing corpus of data generated by the
metabolomics community nowadays.
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