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a b s t r a c t 

Objectives: We aimed to review and describe antimicrobial resistance (AMR) prevalence in humans, ani- 

mals, and the environment in Ethiopia. 

Methods: We conducted a structured review of literature on AMR in humans, animals, and the environ- 

ment in Ethiopia from 2016–2020. We reported the pooled prevalence of AMR of bacterial pathogens in 

all 3 sectors. 

Results: We included 43 articles in our review. Only 5 studies evaluated AMR across multiple sectors. The 

most common bacteria in humans were Escherichia coli, Klebsiella pneumoniae , and Staphylococcus aureus . 

High prevalence of resistance to third-generation cephalosporins, fluoroquinolones, and sulfamethoxazole- 

trimethoprim were seen in gram-negative organisms, often with > 50% prevalence of resistance. High- 

est resistance rates were seen in humans, followed by environmental isolates. Salmonella spp. exhibited 

higher rates of resistance than previously reported in the literature. We found methicillin-resistant S. au- 

reus (MRSA) in approximately half of S. aureus from the environment and a third from human isolates. 

Few studies evaluated AMR across all 3 sectors. 

Conclusion: Our review demonstrated high prevalence of AMR among bacteria in humans, animals, 

and the environment in Ethiopia. Integrating a One Health approach into AMR surveillance as part of 

Ethiopia’s national surveillance program will inform future implementation of One Health interventions. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Antimicrobial resistance (AMR) is widely recognized as a global 

roblem, including in sub-Saharan African countries ( Elton et al., 

020 , Gebretekle et al., 2020 ). Increasing rates of AMR render 

any antibiotics ineffective and result in increased morbidity 
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nd mortality due to bacterial infections ( Global Action Plan on 

ntimicrobial Resistance2015a , Report to the Secretary-General 

f the United Nations IACG, 2019 ). Antimicrobial misuse and 

veruse are attributed as drivers of increasing AMR worldwide, 

ompounded by additional challenges in low- and middle-income 

ountries (LMICs). In resource-limited areas, insufficient diagnostic 

nfrastructure and laboratory capacity, inconsistent AMR surveil- 

ance, and inadequately resourced infection prevention and control 

ontribute to empiric antibiotic use on the basis of syndromic 

pproaches rather than microbiological data ( Escher et al., 2021 , 

ebretekle et al., 2020 , Gebretekle et al., 2018 ). This has led to high
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ates of antibiotic consumption in LMICs ( Gebretekle et al., 2020 ), 

hich create high selection pressure for resistant organisms. 

In addition to human consumption, antibiotic use in food ani- 

als and agricultural crops are recognized as likely drivers of AMR 

n low-resource settings ( Rousham et al., 2018 ). Globally, > 70% of 

ll antimicrobials are used in food animals, not only for treat- 

ent of diseases but also for infection prophylaxis and growth pro- 

otion ( Van Boeckel et al., 2019 ). Transmission between humans 

nd animals can occur through consumption of contaminated food 

f animal origin or direct contact with livestock ( Rousham et al., 

018 , White and Hughes, 2019 ). Antibiotic resistance genes are 

ow considered an environmental pollutant, with exposure oc- 

urring through human and animal waste released into the soil 

nd water, which are then used in agriculture ( Manyi-Loh et al., 

018 , Zalewska et al., 2021 ). In LMICs, healthcare waste combined 

ith inadequately disinfected drinking water contribute to water 

ontaminated with drug-resistant bacteria ( Rousham et al., 2018 , 

alukdar et al., 2013 ). This complex interplay of AMR transmission 

etween humans, animals, and ecosystems underscores the need 

or a One Health approach to better understand the mechanism of 

ransmission and mitigate its spread. 

A One Health approach to AMR, which uses an interdisciplinary 

pproach to surveillance and implementation of programs, policies, 

nd research, is increasingly recognized as a vital component to 

ational and global AMR strategies ( One Health Basics, 2018a )). In 

015, the World Health Organization (WHO) launched the Global 

ntimicrobial Resistance Surveillance System (GLASS), a collabora- 

ive effort to standardize AMR surveillance with the aim to inform 

olicies and infection prevention strategies ( Global Action Plan on 

ntimicrobial Resistance, 2015a ). In Ethiopia, the Ethiopian Food, 

edicines, and Healthcare Administration and Control Authority 

eveloped the “Strategy for the Prevention and Containment of 

ntimicrobial Resistance” plan in 2015 ( Strategy for the Preven- 

ion and Containment of Antimicrobial Resistance for Ethiopia, 

015b ). Then in 2017, they launched the Ethiopian Antimicrobial 

esistance Surveillance System, a standardized, laboratory-based 

urveillance system and one of the first national effort s to combat 

MR ( Ethiopia Antimicrobial Resistance Surveillance Annual Re- 

ort, 2020 ). More recently in December 2020, the Strategic Plan 

as revised with particular attention to a One Health platform 

 Ministry of Health MoA, 2020 ). 

Since the implementation of Ethiopia’s AMR surveillance sys- 

em, substantial achievements have been made, including an ex- 

anded surveillance network, collation of AMR surveillance data, 

nd increased laboratory capacity ( Ethiopia Antimicrobial Resis- 

ance Surveillance Annual Report, 2020 ). However, national AMR 

urveillance in Ethiopia is currently primarily focused on humans, 

nd there remains a knowledge gap of AMR trends across animals 

nd the environment. Despite extensive interaction between the 3 

ectors, few research studies have evaluated AMR through the lens 

f One Health. Here, we provide a detailed, structured review of 

he AMR literature published during 2016-2020 in Ethiopia to de- 

cribe AMR rates across the One Health sectors. 

ethods 

earch Strategy 

A structured literature search was performed using PubMed, 

INAHL, Global Health Database, AgriCOLA, Embase, and MEDLINE 

nline databases. We included all articles on AMR in Ethiopia 

ublished in English from January 2016–October 2020. The lit- 

rature search was conducted from October 6 th –November 30 th , 

020, by 1 author (KW). The search strategy used the follow- 

ng search string: (“antimicrobial resistance” OR “antibiotic re- 

istance” OR “drug resistance” OR “gram-negative” OR “gram- 
121 
ositive”) AND (“Escherichia coli “OR “E. coli ” OR “Salmonella ” OR 

Staphylococcus aureus “OR “Enterobacter cloacae ” OR “Shigella “OR 

Methicillin-resistant Staphylococcus aureus ” OR “Klebsiella pneumo- 

iae “OR “Acinetobacter baumannii ” OR “Streptococcus pneumoniae )”

ND (“foodborne infections” OR “healthcare infections”) AND (“an- 

mal” OR “livestock” OR “cattle” OR “cows” OR “beef” OR “poul- 

ry” OR “chickens” OR “pig” OR “swine”) OR “human” OR “environ- 

ent” OR “One Health”) AND (“Ethiopia”). 

election Criteria 

Articles were reviewed by a single reviewer according to 

RISMA guidelines. Full-text articles on AMR prevalence among 

acteria isolated from humans, animals, and animal products 

cows, pigs, and poultry), or the environment (swabs of surfaces 

nd objects in clinical settings, surfaces in community settings 

ncluding slaughterhouses, and water sources) in Ethiopia were 

creened for inclusion. Publications were reviewed and included 

f they reported AMR prevalence and information about sample 

ollection. Studies evaluating AMR from sources of bacterial col- 

nization (eg, nares swabs and stool samples from asymptomatic 

ndividuals) were excluded. Additionally, we excluded environmen- 

al samples collected from nonanimal food products (eg, juice and 

ruit). After our initial literature review, we identified and added 

 additional environmental studies that were discussed and refer- 

nced in another study. Publications reporting AMR for Mycobac- 

erium tuberculosis or nonbacterial pathogens were excluded from 

his review. 

We assessed AMR in the following clinically relevant pathogenic 

acteria identified by the Global Antimicrobial Resistance Surveil- 

ance System (GLASS organisms, Additional File 1 ): Escherichia 

oli, Klebsiella pneumoniae, Acinetobacter spp., Staphylococcus 

ureus/ Methicillin-resistant Staphylococcus aureus (MRSA), Strepto- 

occus pneumoniae, Salmonella spp., and Shigella spp. Additionally, 

e included Enterobacter spp., Serratia spp., Proteus spp., and Cit- 

obacter spp. because there is concern of growing resistance among 

hese gram-negative organisms but excluded Neisseria gonorrhea , 

hich is limited to humans. 

ata Extraction 

Data extraction was performed by 1 author (KW) and reviewed 

nd confirmed by a second author (AWF). Data extracted included: 

i) article information (first author, year, city/region, and sample 

ource/host), (ii) study design (study approach, sample size, and 

etting), and (iii) results (clinical syndrome/infection, sample site 

humans], sample source [animal and environment], organisms, 

nd rates of resistance). 

tatistical analysis 

Data were extracted by organism and sector (humans, animals, 

nd environment), and descriptive statistics were used for summa- 

izing frequencies and proportions. For calculating the prevalence 

f AMR, we focused on resistance to antimicrobials prioritized by 

LASS ( Additional File 1 ) (2015a). Confidence intervals for propor- 

ions were used to estimate the pooled prevalence of AMR of each 

rganism-antibiotic combination, and this was reported separately 

or humans, animals, and the environment, as well as overall. We 

sed oxacillin or cefoxitin resistance to determine the prevalence 

f methicillin-resistant Staphylococcus aureus (MRSA). In our results 

nd main tables, we report the pooled prevalence of AMR among 

he bacterial pathogens included. Resistance rates reported by in- 

ividual studies are reported in Additional Files 2–4 . 
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Figure 1. Study selection process for literature review of AMR in humans, animals, and the environment in Ethiopia 
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Initial literature search yielded a total of 1534 articles. After ex- 

luding 515 duplicates and 671 articles by screening titles and ab- 

tracts that were not pertinent to AMR, 348 articles were reviewed 

n full. An additional 308 articles were excluded because they did 

ot meet our selection criteria ( Figure 1 ), leaving 40 articles in the

nal data extraction. A total of 3 additional studies were later iden- 

ified after reviewing references from included studies; thus, a total 

f 43 studies were included in this review. 

tudy Characteristics 

Of the 43 full-text articles included for review, all were cross- 

ectional, most of which were retrospective. Studies were con- 

ucted in 17 cities and 6 regions in Ethiopia, representing urban 

nd periurban areas ( Figure 2 ). A total of 19 studies evaluated AMR 

n humans, 14 studies in animals, and 13 studies in environmen- 

al samples. Only 5 studies evaluated AMR across multiple sec- 
122 
ors, all of which were conducted in slaughterhouses or dairy farms 

 Abdi et al., 2017 , Abunna, 2017 , Beyene et al., 2017 , Garedew et al.,

016 , Takele et al., 2018 ). 

ntimicrobial resistance rates in humans 

A total of 19 studies evaluated bacterial AMR in humans. Most 

tudies were conducted in urban cities, predominantly in Addis 

baba, Jimma, and Hawassa ( Figure 2 ) and described AMR of 

acteria in a single, specific infectious syndrome, such as surgi- 

al site infections, urinary tract infections, otitis media, or diar- 

hea ( Additional File 2 ) ( Argaw-Denboba et al., 2016 , Bitew Kifilie

t al., 2018 , Deyno et al., 2017b , Gorems et al., 2018 , Hailu, 2018 ,

amboro et al., 2016 , Mamuye, 2016 , Nigussie and Amsalu, 2017 , 

himekaw et al., 2020 , Tadesse et al., 2018 , Terfassa and Jida, 2018 ,

eshome et al., 2019 , Tsige et al., 2020 ). Only 1 study evaluated

MR specifically in bloodstream infections ( Arega et al., 2018 ). The 

ost frequently sampled sites for culture were urine (n = 1664, 

9%), ear swabs (n = 1521, 25%), wounds (n = 1420, 25%), and stool 
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Figure 2. Geographical locations of AMR studies conducted in Ethiopia between January 2016 and October 2020 
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n = 752, 13%). Only 305 (5%) of all samples obtained were blood 

ultures. 

Most bacteria isolated were gram-negative organisms (80%), 

ost frequently E. coli (n = 676), Klebsiella spp. (n = 347), Pro- 

eus spp. (n = 422), and Salmonella spp. (n = 97). Susceptibility 

gainst broad-spectrum gram-negative antimicrobial agents such 

s cefepime, piperacillin/tazobactam, and meropenem were infre- 

uently tested for susceptibility, and only 20% of human samples 

ere tested for carbapenems. However, among the bacteria that 

ere tested, 20% (117/582) were carbapenem-resistant. When car- 

apenem susceptibility was assessed, resistance was observed in 

erratia spp. (n = 3, 60%), Enterobacter spp. (n = 20, 53%), Pro- 

eus spp. (n = 3, 43%), Citrobacter spp. (n = 19, 38%), Klebsiella spp.

n = 30, 18%), and E. coli (n = 19, 13%). 

E. coli had high pooled prevalence of resistance to ciprofloxacin 

77%; 95% CI: 74%–80%), sulfamethoxazole/trimethoprim 

SMX/TMP) (54%; 95% CI: 50%–58%), ceftriaxone (46%; 95% CI: 

2%–50%), and ceftazidime (29%; 95% CI: 26%–33%) ( Table 1 ). 

ompared with E. coli, Klebsiella spp. had higher rates of resistance 

o SMX/TMP (74%; 95% CI: 69%–79%), ceftriaxone (66%; 95% CI: 

1%–71%), and ceftazidime (52%; 95% CI: 47%–58%) but lower rates 

f resistance to ciprofloxacin (35%; 95% CI 30%–40%). 

Most Salmonella species (97%) were obtained from stool speci- 

ens, and only 2 were found in blood cultures. Data on serovars 

ere not available in most studies. Pooled estimates of Salmonella 

pp. resistance to ciprofloxacin were 25% (95% CI 16%–34%) and 

eftriaxone 17% (95% CI 10%–25%). 

Typical hospital-acquired gram-negative organisms, such as Cit- 

obacter spp., Enterobacter spp., and Proteus spp., also demonstrated 

igh rates of AMR, especially to SMX/TMP, ceftriaxone, and amino- 

lycosides ( Table 1 ). 

A total of 15 human studies identified Staphylococcus aureus 

ith a total of 1062 isolates, and we determined the pooled preva- 

ence of MRSA to be 34% (95% CI 31%–36%) ( Table 2 ). The pooled

a

123 
revalence of S. aureus resistance to SMX/TMP was 49% (95% CI 

6%–52%) and ceftriaxone 28% (95% CI 25%–30%). Overall, few 

tudies tested S. aureus against vancomycin, daptomycin, linezolid, 

oxycycline, or clindamycin. 

nimicrobial resistance rates in animals 

A total of 14 studies evaluated AMR in animals or food of an- 

mal origin, including chickens (n = 5), cattle (n = 8), or both 

n = 1). We did not find any studies in Ethiopia assessing AMR 

n pigs. Most studies evaluated bacteria isolated from food of an- 

mal origin, such as milk, raw or cooked meat, and eggs. Animal 

tudies were conducted in 15 urban or periurban cities rather than 

ural or pastoral regions. From a One Health perspective, 4 studies 

ested for AMR in pathogens isolated from all 3 sectors ( Abdi et al.,

017 , Abunna, 2017 , Beyene et al., 2017 , Garedew et al., 2016 ), and

 study evaluated AMR in Salmonella isolated from both cattle and 

uman fecal samples ( Takele et al., 2018 ). 

In total 5237 samples were collected from animals or animal 

roducts, and 700 samples (13%) tested positive for pathogenic 

acteria. Fewer types of bacteria were isolated and tested for AMR, 

ocusing primarily on E. coli/E. coli O157:H7 (n = 297, 42%) and 

almonella species (n = 274, 39%). Staphylococcus aureus was iso- 

ated in 129 (18%) samples. Prevalence of carbapenem-resistant En- 

erobacterales could not be calculated owing to lack of carbapenem 

usceptibility testing performed in animal samples. 

E. coli was the most common organism isolated from animals 

nd food of animal origin. High rates of resistance to SMX/TMP 

ere observed; however, lower resistance rates to fluoroquinolones 

nd third-generation cephalosporins were seen compared with E. 

oli isolated from human clinical samples. The pooled prevalence 

f resistance to SMX/TMP was 18% (95% CI 13%–22%), ceftazidime 

0% (95% CI 7%–14%), ciprofloxacin 1.4% (95% CI 0%–3%), and ceftri- 

xone 2% (95% CI 0%–4%) ( Table 1 ). 
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Table 1 

Pooled prevalence of AMR among Enterobacterales from humans, animals, and the environment. 

Organism Sector Total Number 

Positive Cultures 

Ceftriaxone 

(%, 95% CI) 

Ceftazidime 

(%, 95% CI) 

Cefepime (%, 

95% CI) 

Meropenem 

(%, 95% CI) 

Ciprofloxacin 

(%, 95% CI) 

SMX/TMP (%, 

95% CI) 

Gentamicin 

(%, 95% CI) 

E. coli Humans 676 46 (42-50) 29 (26-33) 1 (0-1) 6 (4-8) 77 (74-80) 54 (50-58) 36 (32-39) 

Animals 297 2 (0.4-4) 10 (7-14) N/A N/A 1 (0-3) 18 (13-22) 3 (1-5) 

Environment 254 13 (9-17) 9 (5-12) 31 (25-36) 18 (13-22) 35 (29-41) 38 (32-44) 26 (21-31) 

Total 1227 28 (26-31) 20 (18-23) 7 (5-8) 7 (6-9) 50 (47-53) 42 (39-45) 26 (23-28) 

K. pneumoniae Humans 97 43 (37-49) 44 (38-50) 0 5 (2-8) 38 (32-45) 55 (49-62) 36 (30-42) 

Animals 0 N/A N/A N/A N/A N/A N/A N/A 

Environment 45 41 (27-55) 19 (7-30) 24 (11-36) 9 (1-17) 16 (6-27) 26 (13-39) 12 (3-21) 

Total 142 42 (34-50) 36 (28-44) 7 (3-12) 6 (2-10) 31 (24-39) 46 (38-54) 28 (21-36) 

Klebsiella spp. 

(not K. pneumoniae) 

Humans 250 76 (71-81) 57 (51-63) 14 (9-18) 14 (9-18) 34 (28-40) 83 (78-87) 64 (58-70) 

Animals 0 N/A N/A N/A N/A N/A N/A N/A 

Environment 49 26 (14-39) 6 (-0.1-13) 6 (-0.1-13) 2 (-2-6) 14 (4-24) 37 (24-51) 29 (16-42) 

Total 299 67 (61-72) 48 (42-53) 7 (4-10) 12 (8-15) 30 (25-36) 74 (69-79) 57 (52-63) 

Proteus spp. Humans 422 82 (79-86) 3 (1-5) 4 (2-5) 1 (0-1) 11 (8-14) 83 (79-86) 21 (17-25) 

Animals 0 N/A N/A N/A N/A N/A N/A N/A 

Environment 22 N/A N/A N/A N/A N/A N/A N/A 

Total 444 82 (79-86) 3 (1-5) 4 (2-5) 1 (0-1) 11 (8-14) 83 (79-86) 21 (17-25) 

Salmonella spp. Humans 103 16 (9-23) 9 (3-14) N/A N/A 24 (15-32) 27 (19-36) 8 (3-14) 

Animals 268 12 (8-16) N/A N/A N/A 8 (5-11) 46 (40-52) 8 (4-11) 

Environment 15 N/A N/A N/A N/A N/A N/A N/A 

Total 386 9 (6-11) 2 (1-4) N/A N/A 10 (7-13) 32 (28-37) 6 (4-9) 

Citrobacter spp. Humans 158 44 (36-52) 19 (13-25) 5 (2-9) 12 (7-17) 16 (10-22) 58 (50-66) 26 (19-33) 

Animals 0 N/A N/A N/A N/A N/A N/A N/A 

Environment 37 19 (6-32) 5 (-2-13) 11 (1-21) 0 27 (13-41) 30 (15-44) 14 (2-25) 

Total 195 39 (32-47) 16 (10-22) 6 (2-10) 10 (5-14) 18 (12-24) 53 (45-60) 23 (17-30) 

Enterobacter spp. Humans 113 57 (48-66) 24 (16-32) 3 (0-6) 18 (11-25) 15 (9-22) 52 (42-61) 34 (25-42) 

Animals 0 N/A N/A N/A N/A N/A N/A N/A 

Environment 13 N/A N/A N/A N/A N/A N/A 

Total 126 53 (45-62) 22 (14-29) 2 (0-5) 16 (10-22) 17 (10-23) 50 (41-58) 31 (23-39) 

Shigella spp. Humans 55 20 (9-31) 22 (11-33) N/A N/A 29 (17-41) 37 (25-50) 9 (1-16) 

Animals 10 N/A N/A N/A N/A N/A N/A N/A 

Environment 15 N/A N/A N/A N/A N/A N/A N/A 

Total 80 23 (14-33) 15 (7-23) N/A N/A 20 (11-29) 26 (16-35) 6 (1-11) 

The pooled prevalence of AMR and 95% confidence intervals were calculated for each organism and antibiotic by sector and as an aggregated total. Pooled prevalence of 

AMR was only calculated when the total number of positive cultures from a sector was ≥50. When susceptibility testing was not performed or when the sample size 

was too small to calculate pooled prevalence, “N/A” was used to designate non-applicability. Acinetobacter spp. (n = 39), Serratia spp. (n = 15), and Streptococcus pneumoniae 

(n = 38) were excluded from the table, as their aggregated totals were < 50. For full details of each study in our review, please see Additional Files 2–4 . 

Table 2 

Pooled prevalence of AMR among Staphylococcus aureus isolates from humans, animals, and the environment. 

Staphylococcus aureus Total Number 

Positive Cultures 

Pooled Cefoxitin 

Resistance (n, %) 

95% Confidence 

Intervals 

Humans 1062 357, 34% 31-36% 

Animals 120 Not tested N/A 

Environmental 

Community settings 

Hospital settings 

240 

61 

179 

128, 53% 

21, 34% 

107, 60% 

47-60% 

22-46% 

53-67% 

Total 1422 485, 37% ∗ 35-40% 

The pooled prevalence of MRSA and 95% confidence intervals were calculated for S. aureus isolates from humans, 

animals, and the environment. Cefoxitin or oxacillin resistance were used as surrogates to determine prevalence 

of MRSA. Environmental samples were further stratified by samples obtained from the community (e.g., slaugh- 

terhouses and dairy farms) versus from hospital settings. We could not determine MRSA rates in animal sectors 

as these studies did not report susceptibility testing for MRSA. For this reason, only human and environmental 

samples were used to calculate the total pooled prevalence of MRSA. 

2
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Salmonella species were identified in 8 studies with a total of 

74 isolates. Pooled prevalence of resistance against SMX/TMP was 

4% (95% CI 28%–39%) with lower rates of resistance observed 

or ceftriaxone 6% (95% CI 3%–9%) and ciprofloxacin 5% (95% CI 

%–8%). However, we noted that susceptibilities against ceftriax- 

ne were only tested in 3 studies despite being a common alter- 

ative to fluoroquinolones for the treatment of severe Salmonella 

isease. 
124 
Staphylococcus aureus (n = 129) was identified in 2 studies and 

ll samples were collected from milk of dairy cattle. One of these 

tudies found that 62% of S. aureus isolates were resistant to ce- 

oxitin ( Sileshi and Munees, 2016 ). However, susceptibility testing 

gainst oxacillin or cefoxitin was not consistently performed; thus, 

ooled estimates of the prevalence of MRSA could not be calcu- 

ated in animals. The study characteristics and AMR rates for indi- 

idual studies are shown in Additional File 3 . 
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ntimicrobial resistance rates in the environment 

Thirteen studies evaluated AMR in environmental samples. We 

ncluded water sources, surfaces of clinical settings, and surfaces 

f community settings and excluded swabs of human hands or 

onanimal food products ( Additional File 4 ). Five studies used a 

ne Health approach by assessing AMR among bacteria from both 

nimal and environmental sources ( Abdi et al., 2017 , Abunna, 2017 , 

eyene et al., 2017 , Garedew et al., 2016 , Takele et al., 2018 ). Four

tudies included swabs of human hands in abattoir settings, which 

ffered a unique One Health perspective of AMR across the human- 

nimal-ecosystem interface. 

A total of 1657 samples were collected, of which 906 (55%) 

ositive cultures yielded 1713 bacterial isolates. The most com- 

on pathogens isolated were E. coli (n = 254), followed by S. 

ureus (n = 240) and Klebsiella spp. (n = 94) ( Additional file 4 ).

usceptibility to carbapenems was tested in fewer than half (44%) 

f all gram-negative isolates; of these, carbapenem resistance was 

dentified in 38% of gram-negative bacterial isolates. Carbapenem 

esistance was observed in Acinetobacter spp. (n = 29, 74%), Kleb- 

iella spp. (n = 5, 50%), E. coli (n = 45, 28%), and Serratia spp.

n = 1, 25%). 

Nearly all 184 samples from water sources had positive cultures, 

ll of which grew gram-negative organisms. A total of 255 bacte- 

ial isolates were identified, and 75% were E. coli . Water samples 

ere collected from hospital wastewater systems, as well as from 

battoirs and downstream rivers in Addis Ababa ( Belachew et al., 

018 , Takele et al., 2018 , Tesfaye et al., 2019 , Teshome et al., 2020 ).

f 478 samples from surfaces in the community, 300 were swabs 

rom handles of city buses, where most positive cultures (54/66) 

rew S. aureus . The remaining samples were obtained from sur- 

aces from abattoirs or dairy farms, and Shigella (n = 15), S. au- 

eus (n = 7), and Salmonella (n = 3) were isolated. From hospi- 

al settings, the most common organisms isolated were S. aureus 

n = 179), Klebsiell a spp. (n = 60), and E. coli (n = 54), followed

y other nosocomial gram-negative organisms such as Acinetobac- 

er spp, Citrobacter spp, and Serratia spp ( Table 2 ). 

Among 254 positive cultures with E. coli, pooled prevalence 

f resistance was highest for SMX/TMP (38%; 95% CI: 32%–44%), 

iprofloxacin (35%; 95% CI: 29%–41%), and cefepime (31%; 95% CI 

5%–36%). For Klebsiella spp. (n = 94), the pooled prevalence of re- 

istance for ceftriaxone was 33% (95% CI 24%–43%) and SMX/TMP 

as 32% (95% CI 22%–41%). 

In total, S. aureus was isolated from 240 positive cultures, 

nd the pooled prevalence of MRSA was 53% (95% CI 47%–60%) 

 Table 2 ). When stratified by community versus hospital settings, 

RSA prevalence was 34% among S. aureus isolated from the com- 

unity versus 60% from hospital surfaces. 

Salmonella was only identified in 15 bacterial isolates from wa- 

er sources and a dairy farm. Susceptibility testing to antibiotics 

ere inconsistent and low in frequency; however, when tested, 

here was no resistance reported to ciprofloxacin or ceftriaxone 

rom these environmental samples. 

iscussion 

Our review of the AMR literature in Ethiopia revealed high 

revalence of resistance to common and clinically important an- 

imicrobials among GLASS priority pathogens ( Global Action Plan 

n Antimicrobial Resistance, 2015a ). Our broad overview included 

tudies from diverse regions across Ethiopia and included a wide 

ange of samples obtained from humans, animals, and the envi- 

onment. We identified a notable gap in the AMR literature of 

tudies with an integrated, One Health approach to surveillance in 

thiopia, with only 5 studies describing AMR across all 3 sectors 
125 
 Abdi et al., 2017 , Abunna, 2017 , Beyene et al., 2017 , Garedew et al.,

016 , Takele et al., 2018 ). Previous studies in Ethiopia have focused 

n only a single pathogen, a particular clinical syndrome, or only 1 

r 2 One Health sectors. More recently, a systematic review and 

eta-analysis of AMR was published in Ethiopia through a One 

ealth lens ( Gemeda et al., 2021 ). However, authors focused on 

acteria in the animal-source food chain; thus, only food handlers 

ere included for human samples. Our literature review is unique 

n that it included studies of human clinical samples along with 

nimal and environmental studies in Ethiopia. 

Nearly all animal studies were conducted in urban and periur- 

an areas ( Figure 2 ) and included animal husbandry systems, com- 

osed mostly of dairy cattle and poultry. The absence of studies 

n pigs is possibly because pork consumption is less common in 

thiopia. Although intensive dairy cattle constitute only a small 

ortion of the nation’s cattle, this sector is important because it 

epresents a population with better access to pharmacies and vet- 

rinary care, which may lead to greater exposure and risk to AMR. 

For this review, we focused on priority antimicrobials identi- 

ed by GLASS according to its Access, Watch, Research (AWaRe) 

lassification system ( Additional File 1 ) ( Sharland et al., 2018 ). An-

imicrobials classified as “Access” are those used to treat common, 

usceptible bacteria and are expected to have low rates of resis- 

ance. Those in the “Watch” group have higher rates of resistance 

nd are recommended to be prioritized in surveillance and stew- 

rdship programs. Finally, the “Reserve” group of antimicrobials are 

hose that should be reserved to treat multidrug-resistant organ- 

sms. We found high resistance rates among 5 antibiotics in the 

WaRe “Access” group and 8 in the “Watch” group, emphasizing 

he importance of not only AMR surveillance programs but also of 

mplementation of antibiotic stewardship programs. 

Antimicrobial susceptibility testing appeared to be inconsistent 

nd disproportionately low in animal and environmental isolates 

ompared with humans. In many animal and environmental iso- 

ates, pooled prevalence of resistance could not be calculated due 

o lack of susceptibility data, highlighting a gap in AMR data in 

he animal and environmental sectors. We observed that in many 

ases, clinically irrelevant antibiotics were tested for susceptibility, 

hereas other clinically important antibiotics were not. In addi- 

ion to increased laboratory capacity and support for susceptibility 

esting, AMR surveillance would benefit from standardized proce- 

ures or panels for susceptibility testing for different categories of 

athogens. 

Susceptibility testing against carbapenems was exceedingly low 

cross all sectors, which is problematic given the growing con- 

erns of carbapenemase-producing bacteria in sub-Saharan Africa 

 Manenzhe et al., 2015 ). True rates of carbapenem resistance in 

his region are difficult to ascertain owing to lack of carabapenem 

usceptibility testing. However, in isolates where testing was per- 

ormed, the pooled prevalence of carbapenem resistance was as 

igh as 20%. Increased and consistent susceptibility testing to car- 

apenems should be performed to identify prevalence and trends 

f carbapenem-resistant Enterobacterales. 

Regarding distribution and types of culture samples, we found 

ow numbers of blood cultures, with only 5% of all cultures con- 

isting of blood. Cultures of sterile sites can offer important micro- 

iological information because these typically represent true infec- 

ions; whereas, cultures obtained from wounds and urine can rep- 

esent colonization or contamination and are difficult to interpret 

n the absence of clinical data. 

We found higher rates of MRSA among S. aureus isolates in the 

nvironment compared with humans (53% vs 34%). However, when 

nvironmental samples were stratified by hospital and community 

ettings, we discovered higher rates of MRSA from hospital set- 

ings (60% vs 34%), mostly from hospital surfaces and equipment, 

uggesting a need for improved and thorough cleaning practices 
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o reduce surface contamination with AMR organisms in health- 

are settings. In a One Health study by Beyene, T et al, S. aureus 

as isolated from dairy milk, beef, human hand swabs, and equip- 

ent at dairy farms and abattoirs, demonstrating possible trans- 

ission of organisms between humans, animals, and the environ- 

ent ( Beyene et al., 2017 ). Both settings suggest that AMR trans- 

ission between One Health sectors may occur owing to inade- 

uate hygiene during points of contact, such as touching hospital 

urfaces or during milking or slaughtering of animals. Our review 

ound MRSA rates to be comparable with the pooled prevalence of 

ethicillin resistance (47%) noted in a meta-analysis of S. aureus 

esistance in Ethiopia ( Deyno et al., 2017a ). High MRSA rates are 

oncerning as infections caused by MRSA have limited treatment 

ptions and have been shown to have worse clinical outcomes, in- 

luding longer hospitalizations and higher mortality ( Bassetti et al., 

012 , Cosgrove et al., 2005 ). To mitigate the spread of MRSA be-

ween the 3 sectors, we recommend improved cleaning protocols 

f hospital surfaces and increased education about hand hygiene in 

airy farms and slaughterhouses. 

Although the studies with a true One Health approach were 

ew, they showed the interconnection of the 3 domains, primar- 

ly in abattoirs, dairy farms, and butcher shops. In these stud- 

es, samples were taken from human hands, animals or animal 

roducts, and environmental surfaces and showed similar organ- 

sms or resistance ( Abdi et al., 2017 , Abunna, 2017 , Beyene et al.,

017 , Garedew et al., 2016 , Takele et al., 2018 ). This suggests the

otential circulation of AMR isolates among the human-animal- 

nvironment domains, which may have serious impact on hu- 

an and animal health. Risk factors for AMR organisms in an- 

mals varies depending on the type of production system, but 

rophylactic antibiotics in animal feed and water may contribute 

o the development of AMR, which could be transmitted to hu- 

ans through consumption of animal products containing antibi- 

tic residue. However, little research has been done in Ethiopia to 

ssess the impact of prophylactic antibiotics on the development of 

MR in farm settings. Additionally, studies that prospectively col- 

ect samples from multiple sectors simultaneously are needed to 

nform future areas for intervention to reduce AMR transmission. 

Studies that identified drug-resistant organisms in hospital 

astewater systems suggest that healthcare-acquired resistance 

ould be transmitted into the community and environment 

hrough wastewater ( Belachew et al., 2018 , Tesfaye et al., 2019 , 

eshome et al., 2020 ). Environmental exposure to antimicro- 

ials has adverse effects on environmental and human health, 

nd a recent global study of pharmaceutical pollution in rivers 

cross 104 countries revealed high concentrations in sub-Saharan 

frica, South Asia, and South America ( Wilkinson et al., 2022 ). 

ivers with highest rates of pharmaceutical contamination were 

n LMICs where wastewater management infrastructure is poor 

 Wilkinson et al., 2022 ). In fact, Addis Ababa, Ethiopia had the third

ighest concentration of pharmaceutical pollution in rivers in the 

orld ( Wilkinson et al., 2022 ). Future studies should sample not 

nly wastewater systems within the hospital but also in the com- 

unity near or around the hospital and from rivers downstream 

rom the hospital, which would substantiate the One Health con- 

ept of AMR transmission between humans in the healthcare set- 

ing, agricultural crops, and livestock through contaminated water. 

E. coli and Klebsiella spp . were the most common gram-negative 

rganisms isolated, and both exhibited high rates of AMR to third- 

eneration cephalosporins, fluoroquinolones, and SMX/TMP. A re- 

ent One Health review of AMR in Cameroon found similarly high 

ates of AMR in Enterobacterales isolated from hospital settings 

 Mouiche et al., 2019 ). There has been growing attention to drug- 

esistant gram-negative organisms, including those with extended- 

pectrum beta-lactamases ( Abayneh and Worku, 2020 ), which 

ender many commonly used antibiotics ineffective. For example, 
126 
revious evidence showed that using piperacillin-tazobactam to 

reat patients with E. coli or K. pneumoniae bacteremia with cef- 

riaxone resistance had poorer outcomes than those treated with 

arbapenems ( Harris et al., 2018 ). In LMICs, where broad-spectrum 

ntibiotics such as carbapenems may be unavailable, options to 

ffectively treat resistant gram-negative infections may be limited. 

Multidrug-resistant Salmonella is an increasing global concern 

nd has been reported in sub-Saharan Africa, including Ethiopia. 

n our review, Salmonella spp. were primarily isolated from fe- 

al specimens, and only 2 of 305 blood cultures grew Salmonella . 

n the most recent Typhoid Fever Surveillance in Africa Program, 

lood cultures from 847 febrile patients from Butajira, Ethiopia 

ver 2 years revealed only 3 cases of invasive Salmonella dis- 

ase, all S. typhi with no resistance to cephalosporins, fluoro- 

uinolones, or SMX-TMP ( Marks et al., 2017 ). In contrast, our re- 

iew showed higher pooled prevalence of resistance to antibiotics 

ommonly used to treat Salmonella disease in humans, including 

iprofloxacin, ceftriaxone, and SMX-TMP. Lower rates of resistance 

o ceftriaxone and fluoroquinolones were seen in animals; how- 

ver, resistance to SMX-TMP remained high at > 30% ( Figure 3 c). 

his suggests that there may be variance in AMR prevalence in 

almonella spp. reported in the literature and to be suspicious of 

ingle reports of pansusceptibility of Salmonella with small sample 

izes per study and a wide range of resistance rates reported in 

thiopia. 

Our review has several limitations. A known limitation of One 

ealth AMR research is the lack of studies evaluating all 3 sectors 

imultaneously. Without integrated AMR data across all 3 sectors, 

t is difficult to assess the true prevalence of AMR, the direction- 

lity of transmission, and how to effectively combat resistance at 

he human-animal-environment interface ( Rousham et al., 2018 ). 

rospective studies sampling human, animal, and environments si- 

ultaneously are needed; however, this is resource-intensive and 

ogistically challenging, especially in resource-limited settings. 

Another limitation is that our initial search did not include 

mall ruminants such as sheep and goats. However, when re- 

xamining the literature for AMR studies in Ethiopia in sheep and 

oats, only a few studies were carried out during our search period 

 Abreham et al., 2019 , Messele et al., 2017 ). 

Finally, all human samples were obtained from hospitalized pa- 

ients in clinical settings, which may create bias toward including 

atients with nosocomial infections. In these settings, cultures may 

nly be obtained after prolonged hospital courses when patients 

ave not improved on empiric antibiotics, thus selecting out for 

atients with higher rates of drug-resistant organisms. However, 

his approach is difficult to avoid, as gathering AMR data in hu- 

ans usually occurs in clinical settings, and we aimed to avoid 

ollecting data from asymptomatic individuals with bacterial col- 

nization. 

On the basis of our review, there are several opportunities 

or future AMR research with a One Health approach. First, we 

eed to identify barriers to routine cultures and antibiotic sus- 

eptibility testing in not only human clinical settings but also in 

eterinary medicine and agricultural sectors. Susceptibility test- 

ng with appropriate antibiotics should be standardized with pro- 

ocols and discussed with clinicians to test for the most clini- 

ally relevant antibiotics. Second, additional studies from animals 

nd the environment (particularly agriculture, aquaculture, live an- 

mal markets, and small ruminants) are needed. These were under- 

epresented in our review and would offer greater generalizabil- 

ty of the AMR data. Third, prospective studies with a One Health 

pproach—integrating collection of AMR data from all 3 sectors 

imultaneously—would provide important surveillance information 

nd help us to better understand AMR transmission across sectors. 

Fourth, it is imperative that we gain additional knowledge 

bout antibiotic-prescribing practices among physicians and veteri- 
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Figure 3. Pooled prevalence of AMR for select gram-negative pathogens from studies of human, animal, and environmental samples. Escherichia coli (A), Klebsiella spp. (B), 

and Salmonella spp. (C) are included in the graphs. Klebsiella spp. were not isolated from animal studies. Salmonella spp. were isolated from all 3 sectors; however, the sample 

size in environmental samples (n = 15) was too small to calculate pooled prevalence of resistance. 

127 
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arians, as well as usage among livestock owners. Despite the lim- 

ted AMR data in Ethiopia, the existing data show increasing AMR 

revalence to commonly used empiric antibiotics. The WHO has 

ublished a methodology for conducting point prevalence surveys 

n antibiotic use in hospitals ( WHO methodology for point preva- 

ence survey on antibiotic use in hospitals, 2018b ); however, addi- 

ional information on antibiotic consumption in the animals would 

nform policies on antimicrobial stewardship across all sectors. 

Ethiopia has already established a national surveillance program 

ith increased support and funding for laboratory capacity, and 

he revised Antimicrobial Resistance Prevention and Containment 

trategic Plan prioritizes a One Health approach. Our review is 

ligned with its second strategic objective, which is to strengthen 

he knowledge and evidence on antimicrobial use and resistance 

hrough surveillance ( Ministry of Health MoA, 2020 ). We found 

igh pooled prevalence of AMR in bacteria from humans, animals, 

nd environmental samples in Ethiopia, but we identified gaps in 

MR data from animal and environmental sectors. There is a no- 

iceable lack of studies that use a One Health approach to col- 

ecting and reporting AMR data across all 3 sectors. Next steps to 

ptimizing a One Health approach would be to develop standard- 

zed protocols for antimicrobial susceptibility testing in not only 

umans but also animals and environmental samples. This will 

upport future AMR surveillance by making routine cultures and 

usceptibility testing more efficient and clinically relevant. Future 

MR interventions and policies should prioritize representation 

rom all stakeholders, including the environmental sector, which 

as historically been under-represented ( Essack, 2018 , Khan et al., 

018 ). As Ethiopia carries out its “Strategy for the Prevention and 

ontainment of Antimicrobial Resistance,” a collaborative effort 

mong all 3 sectors will be crucial to a One Health approach to 

MR surveillance. Integrating AMR surveillance from humans, ani- 

als, and the environment is key to understanding mechanisms of 

ransmission and will inform future implementation of One Health 

nterventions to combat AMR across all 3 sectors. 
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