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Abstract

Epidemiological studies investigating the relationship between air temperature

or heat and health, still, by and large, rely on either information from the

nearest weather station or on coarse gridded temperature predictions, thereby

ignoring small-scale intra-urban variations. Recent methodological advances

show promise in achieving high spatiotemporal temperature predictions, thus

improving the characterization of spatial variations in temperature and

decreasing bias in health studies. Here, we applied a two-stage approach using

random forest to (a) impute missing moderate resolution imaging

spectroradiometer (MODIS) land surface temperature at a 1 × 1 km resolution

and (b) to use the gap-filled MODIS data to explain spatiotemporal variation in

the measured ground-based air temperature data at a 100 × 100 m resolution

across Switzerland using a range of predictor variables, including meteorologi-

cal parameters, normalized difference vegetation index, impervious surface

and altitude. Models presented here managed to capture temporal and spatial

variations in air temperature in Switzerland from 2003 to 2018 at a fine spatial

resolution of 100 × 100 m. Stage 1 models achieved an overall R2 of 0.98 and a

root mean squared error (RMSE) of 1.49�C (independent validation), and the

stage 2 model performed well for all years with R2 and RMSE ranging from

0.94 to 0.99 and 1.05 to 1.86�C, respectively. We were also able to capture the

urban heat island effect and some typical weather phenomena caused by

Switzerland's complex topography, like the foehn effect and inversion condi-

tions. The resulting daily temperature surfaces for 2003–2018 will facilitate

ongoing epidemiological research investigating the health effects of heat.
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1 | INTRODUCTION

Heat stress has been identified as an urgent health threat
at the global scale (Lee et al., 2019; Vicedo-Cabrera
et al., 2021). A body of evidence links heat stress to
increased morbidity and mortality especially in the vul-
nerable population including the elderly, people with
chronic diseases, small children, the poor and outdoor
workers (Åström et al., 2011; Ye et al., 2012; Benmarhnia
et al., 2015; Song et al., 2017; Levi et al., 2018).
Populations in cities are potentially more affected by high
ambient temperatures, especially during the night, than
those in the surroundings, because built environments
absorb and store heat, resulting in a so-called urban heat
island (UHI) effect. UHIs can be differentiated into four
types, depending on scale and location: subsurface, sur-
face, canopy layer and boundary layer UHIs (Christen
et al., 2017). In the context of our study, we are looking at
the canopy UHI, which is the most influential one for air
temperature near the ground. In our study, we define the
canopy UHI as the mean daily temperature difference
between city and countryside.

The observed intensity of this phenomenon is usually
in a range of 2–4�C of increased air temperature, in
extreme cases (during the night in large cities) the inten-
sity can reach 5–10�C (Heaviside et al., 2017). The num-
ber of vulnerable people exposed to extreme
temperatures and heatwaves is increasing in every region
of the world (Watts et al., 2021). The reasons for this
increase are climate change and the associated rise in
temperature and frequency of heatwaves as well as age-
ing population and progressing urbanization (Coffel
et al., 2017; Wouters et al., 2017; Ilango et al., 2020).

Epidemiological studies investigating the relationship
between temperature and health outcomes based on his-
toric data have mostly relied on crude measures of expo-
sure. Typically, exposures of populations in cities and
regions were based on measurements of ambient temper-
ature at a single meteorological station (Gasparrini
et al., 2015), thereby ignoring intra-urban variation at a
finer spatial scale (Kloog, 2019). Two studies in
Switzerland, for example, investigated heat-related mor-
tality in eight cities and only used one representative
monitoring station for each city to estimate exposure
(Ragettli et al., 2017; Lee et al., 2021). While this approach
may be suitable for health assessments based on aggre-
gated health data on city or area level (de Schrijver
et al., 2021), exposure misclassification may occur when
individual-level health records with information on home
addresses are available. In addition, for studies investigat-
ing temperature-related health effects of a whole country
including both rural and urban areas, station-based
weather data of sufficient quality may not be available to

capture the spatiotemporal exposure variability. This
especially applies for Switzerland with large topographic
heterogeneity and associated specific meteorological con-
ditions. For example, micro-climates in valleys or pla-
teaus result in unique inversion conditions, and the
occurrence of foehn winds (warm, dry winds on the lee
side of mountains), are especially challenging. Besides
topography also UHI effects can lead to a high spatial var-
iability within cities. For Switzerland, this effect was esti-
mated to increase the maximum night-time temperature
during extreme heatwaves up to 6–7�C compared to rural
sites (Gehrig and Scherrer, 2018). Not accounting for
small scale variability in exposure due to topography and
the built environment may lead to a bias in health effect
estimates (Zeger et al., 2000). Other factors influencing
health effect estimates as a result of heat include socio-
economic position, building characteristics and the avail-
ability of air conditioning (Heaviside et al., 2017).

Recent developments in statistical modelling tech-
niques aimed at improving spatial and temporal tempera-
ture patterns have taken advantage of satellite based land
surface temperature (LST) data (Kloog, 2019). Kloog
et al. (2014) pioneered this approach in Northeastern
United States, using mixed regression models to predict
daily near-surface air temperature combining satellite
(moderate resolution imaging spectroradiometer
[MODIS]), ground-based weather station data and a
range of spatiotemporal predictors achieving a high preci-
sion. Shi et al. (2016) build on this method to estimate
daily air temperature data for Southeastern United States
using the same high-resolution satellite data demonstrat-
ing reliable prediction models across an area with very
different climatic conditions compared to Northeastern
United States. In France, the same approach was success-
fully applied to predict daily air temperature at a 1 × 1
km resolution (Kloog et al., 2017). Hough et al. (2020)
further developed this method in France using data from
the Aqua, Terra and Landsat satellites. A combination of
mixed effect, random forest and gradient boosting models
were used to downscale 1 × 1 km MODIS LSTs (daily
Tmean, Tmax and Tmin) to a finer spatial resolution of
200 × 200 m and to convert to ambient temperature
using a number of predictor variables including Landsat
normalized difference vegetation index (NDVI) and ele-
vation. A similar methodology was used in Israel to esti-
mate daily Tmean, Tmax and Tmin near surface
temperature at a slightly coarser spatial scale of 1 × 1 km
(Rosenfeld et al., 2017). Although not taking advantage of
LST data, Dirksen et al. (2020) combined linear regres-
sion and multiple adaptive regression splines to down-
scale daily air temperature to a 1 × 1 km resolution in
the Netherlands using a range of meteorological and land
use predictor variables.
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To facilitate future studies in Switzerland investigat-
ing the relationship between temperature and health we
developed models characterizing small scale intra-urban
variation in temperature. Here we present the develop-
ment of a spatiotemporal framework, applying random
forest in estimating daily minimum, maximum and mean
temperature across Switzerland from 2003 to 2018 at a
fine spatial scale of 100 × 100 m, downscaling from exis-
ting 2 × 2 km temperature surfaces (Frei, 2014). This
framework consists of 2 stages; (a) imputation of missing
data in satellite-based daily surface temperature (Ts) at
1 × 1 km; and (b) converting Ts to surface air tempera-
ture (Ta) at 100 × 100 m using a combination of weather
re-analysis data, land use variables and ground monitor-
ing stations, thereby improving on previous methods
reducing from three to two stages. With these models, we
aim to capture both the UHI effect within Swiss cities
and temperature differences due to topography-related
weather phenomena, like the foehn effect and inversion
conditions. Our motivation for the spatiotemporal resolu-
tion of our model output is driven by the resolution of
the health data in future epidemiological studies. The
health data are generally available at a daily resolution
and we generally do not know at what time of the day
the event occurred, justifying the choice for Tmean, Tmin

and Tmax. We typically know the geocoded residential
address location of the participants in the health studies
and therefore can leverage this information by linking it
to the fine scale 100 × 100 m temperature surfaces. The
method presented here can be used as a blueprint for
national or continental models.

2 | DATA AND METHODS

2.1 | Study area

The study area consists of the entire territory of
Switzerland with an area of 41,285 km2. Despite the rela-
tively small size, Switzerland contains a variety of topo-
graphic features. The main features are the Jura
Mountains in the northwest (typical altitude 500–1,600 m
above sea level), the central plateau in the middle (300–
800 m) and the Alps in the south and east (300–2000 m
for inhabited areas). The climatic conditions reflect the
topographic variation with arctic temperatures in the
Alps (e.g. the average of daily mean temperatures in
Davos from 1998 to 2018 was 4.1�C, with a minimum
daily mean of −22.2�C and a maximum daily mean of
20.8�C), mild conditions in the central plateau (e.g. the
average of daily mean temperatures in Kloten from 1998
to 2018 was 10.0�C, with a minimum daily mean of
−13.0�C and a maximum daily mean of 27.7�C) and hot

and humid summers in the Mediterranean influenced
southern side of the Alps (e.g. the average of daily mean
temperatures in Lugano from 1998 to 2018 was 13.1�C,
with a minimum daily mean of −5.3�C and a maximum
daily mean of 28.5�C). In addition, inner alpine valleys
have special climatic conditions, as they are shielded
from precipitation from north and south. Downslope
winds on the lee side of the mountains (foehn) can
strongly influence the temperature and humidity in the
valleys and occasionally stretch far into the central pla-
teau due to adiabatic warming.

Next we describe the data used in our two-stage
modelling framework. In stage 1, elevation, azimuth,
NDVI and day length were used in a random forest
model to explain spatiotemporal variation in surface tem-
perature with the aim to impute missing surface tempera-
ture data. In stage 2 the imputed surface temperature was
combined with meteorological variables, elevation,
NDVI, impervious surface, land cover, radiation and sky-
view in a random forest model to predict the measured
air temperature.

2.2 | Air temperature data

We obtained measured daily near surface air temperature
(Ta) data from the Federal Office of Meteorology and Cli-
matology (MeteoSwiss) for the years 2003–2018. The net-
work consists of measurement stations operated by
MeteoSwiss and partner institutions. The stations cover
all regions of Switzerland and different altitudes and the
coverage of the network, which was expanded substan-
tially between 2003 and 2018 from 294 to 534 stations
(Figure 1). We checked the data on consistency and
removed values which were implausible, affected by log-
ging errors, impossible, or affected by anomalies,
specifically:

• We considered values outside of the known range to
be implausible: temperatures lower than −50�C,
higher than 50�C, %Relative Humidity (RH) below 0 or
above 120.

• We removed sequences of measurements where during
3 days or more in a row (up to 23 days), the same exact
temperature, RH, Tmax and Tmin were recorded at a
single site, likely due to logging errors.

• Removed cases where Tmean was higher than Tmax,
Tmean was lower than Tmin, Tmax was lower than Tmin,
or Tmin was higher than Tmax.

• We removed values which were more than 20�C lower
or higher than the ‘expected temperature’ at a particu-
lar site i for a particular day j considering the station
IDi and the Swiss median temperaturej (median

FLÜCKIGER ET AL. 6415
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temperature across all Swiss sites on that day) using a
mixed model with a random intercept for Station
ID. This flagged values which were untypical for the
location (e.g. a mountain station with typical range
−20 to 5�C reporting 32�C) or untypical for the time of
year (e.g. if all Swiss stations are measuring tempera-
tures 10–25�C and one station is measuring −15�C.

• During the cleaning process, we only removed a very
small percentage of data, for example, for Tmean we
removed 0.094% of the data (2,673 values from a total
of 2,846,109 values).

Table S1 shows the distribution (mean, minimum, maxi-
mum, first and 99th percentile) of Tmean, Tmin and Tmax

by calendar year and the mean altitude of the meteoro-
logical stations for each year.

2.3 | Surface temperature data

The MODIS version 6 from the satellites Aqua
(MYD11A1) and Terra (MOD11A1) was used to provide
daily surface temperature data (Ts). MODIS Ts is derived
from the thermal infrared channels 31 (10.78–11.28 μm)
and 32 (11.77–12.27 μm). The MODIS Ts version 6 data are
corrected for atmospheric and emissivity effects and have
made improvements in removing cloud contamination.
The spatial resolution is approximately 1 × 1 km, each sat-
ellite orbiting Switzerland twice per day. 2003 is the first
full year with data from both satellites. This limits our
model to the years from 2003 onwards. Overpass times are
10:30 a.m. and 10:30 p.m. for Terra and 1:30 p.m. and

1:30 a.m. for Aqua (local solar time). This pattern of over-
pass times allows us to capture diurnal differences, which
can be helpful to detect UHI effects. Data from the
corresponding MODIS tile h18v04 was obtained for 2003–
2018 from EarthData (https://ladsweb.modaps.eosdis.nasa.
gov/, accessed 19 November 2019). As proposed by Hough
et al. we used the quality assessment band to exclude
pixels with an LST error >2 K and pixels over snow and
water (NDVI < 0) (Hough et al., 2020). To assess the qual-
ity of MODIS data, we compared measured temperature at
Payerne weather station (daily mean) with the four
MODIS variables for the year 2017. We found high correla-
tions (�0.9) of MODIS surface temperature data with gro-
und based measurements.

2.4 | Normalized difference vegetation
index

Vegetation or greenness affects temperature specifically
through shade, evapotranspiration and the effect of
reduced natural ventilation. Greenness can also imply less
built up areas and therefore a higher skyview factor that
helps the emission of longwave radiation. We did not dis-
tinguish between high and low vegetation. To account for
the spatial and temporal variation of vegetation the NDVI
was obtained as a proxy for greenness. The NDVI is mea-
sured daily by the MODIS instrument on board of the
Terra satellite at a 1 × 1 km resolution. Monthly NDVI
values, used in stage 1, were obtained from the MOD13A3
product (https://lpdaac.usgs.gov/products/mod13a3v006/,
accessed 19 November 2019) for the years 2003–2018.

FIGURE 1 Location of all 534 weather stations (dots) from the MeteoSwiss network on a digital elevation map of Switzerland (a) and

the number of available meteorological stations for each year from 2000 to 2018 in Switzerland (b) [Colour figure can be viewed at

wileyonlinelibrary.com]
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2.5 | Elevation plus elevation-derived
variables

Two products from the digital elevation model (DHM25)
from Swisstopo were obtained. The 200 × 200 m DHM25
product was aggregated to 1 × 1 km to match the
MODIS resolution for the first stage. For the second
stage, the 25 × 25 m DHM25 product was aggregated to
match the 100 × 100 m resolution of the final tempera-
ture rasters. Air pressure is usually lower at higher alti-
tudes; therefore, elevation can be a good predictor to
model temperature. Slope and aspect were calculated for
stage 2 at a 100 × 100 m resolution using the SLOPE
and ASPECT tools available in ArcGIS 10.6. Slope iden-
tifies the steepest slope (in degrees) between the cell and
its neighbouring cells. Aspect depicts the downslope
direction of the steepest slope (in degrees from 0 to
359.9). Slope and aspect have a major effect on solar
radiation with steep south-facing slopes receiving more
radiation than north-facing slopes. Therefore aspect,
slope and elevation were considered as important predic-
tor variables. The skyview factor, (stage 2) a measure of
the visible sky based on the digital terrain model, was
calculated using the SAGA tool Sky View Factor in
QGIS 3.4.4. The skyview factor can affect the emission of
longwave radiation and can be of importance in the for-
mation of UHIs.

2.6 | Solar radiation, day length, azimuth

Diffuse and direct solar radiation and day length were
estimated for each grid cell using the ‘solrad’ package in
R (Seyednasrollah et al., 2013). The package uses day of
the year, coordinates, slope, aspect and elevation to esti-
mate the potential diffuse and direct solar radiation in
Watt per square metre as well as the day length in hours
and the solar azimuth angle in degrees. Solar radiation is
directly related to temperature and therefore potentially
an important predictor. Day length and solar azimuth
angle were chosen as seasonal indicators.

2.7 | Meteorological data

Daily meteorological data were extracted from the ERA-
interim (global atmospheric reanalysis) data set from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) (Dee et al., 2011). The data set has an approxi-
mate resolution of 80 × 80 km (T255 spectral) from
which we obtained the provided downscaled resolution
of 10 × 10 km. Parameters used were daily boundary
layer height, 2 m temperature, 10 m U wind component,

10 m V wind component, total cloud cover and total pre-
cipitation modelled for 3 p.m. (UTC) in the afternoon.

2.8 | Land use

Different land uses can have a significant effect on the
local climate. Compared to natural surfaces built-up
areas have a lower permeability, a lower albedo, a higher
heat capacity and decreased turbulent heat transport.
The reduced vegetation results in a reduced evaporative
cooling. However, a number of factors increase the turbu-
lence over built-up areas. The warmer surface in a city
can increase the instability of the atmosphere and there-
fore enhance buoyancy, especially during heatwaves with
low wind speeds. Also, the roughness of a city surface is
relatively large, which promotes the development of
atmospheric turbulence, which explains why the atmo-
spheric boundary layer over a city is usually deeper than
over the nearby countryside. Buildings can cause a reduc-
tion of wind speed and are a source of anthropogenic
heat. The canyon structure of streets results in a reduced
albedo compared to the countryside and a reduced sky-
view factor resulting in a reduced longwave radiation.
These effects are major factors in the creation of UHIs
(Christen et al., 2017).

To control for this effect road and building density are
included into the model as predictors. From the
SwissTLM3D dataset from Swisstopo the road density was
calculated for each 100 m grid cell. To account for the
wider surroundings, a focal mean function with a circular
moving window of 500 m was applied. The same approach
was used for the building density. Both were combined by
summing the values to a combined index variable to
account for sealed surfaces. Land use data were extracted
from the Corine Land Cover dataset (2012). The different
land use categories were recoded into five main categories
(artificial, open space, forest, agriculture/wetlands and gla-
ciers) (see Table S2).

The predictor variables are summarized in Table S3
(stage 1) and Table S4 (stage 2).

2.9 | Statistical methods

A two-stage modelling approach was used to estimate
daily near surface temperature (Tmean, Tmin, Tmax) at a
fine spatial resolution. We chose random forest from the
R ‘ranger’ package (Wright and Ziegler, 2017) as our
method in both the stages as previous studies have shown
random forest to be a good and reliable method for spa-
tiotemporal temperature modelling (Noi et al., 2017; Li
and Zha, 2018; Zhou et al., 2020). In the first stage, the

FLÜCKIGER ET AL. 6417
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imputation of missing satellite data, we impute missing
values in four Ts variables (MODIS Aqua and Terra, both
for day and night at 1 × 1 km) with the equation:

TSMODISij
�RF

Day_lengthjy,
Elevationi,

Day_of_yearj,
Azimuthjxy

NDVIim

� �
,

ð1Þ

where TSMODISij
is the MODIS surface temperature at grid

cell i on day j; Day_lengthjy is length of day in hours for
day i by latitude y; Day_of_yearj is day of year for day j;
NDVIim is the Landsat NDVI of cell i for calendar month
m; Elevationi is the elevation in cell i; and Azimuthjxy is
the azimuth solar angle for day j by longitude x and lati-
tude y. For each year, four models were built to impute
missing data in existing MODIS Aqua (1:30 a.m. and
1:30 p.m.) and Terra (10:30 a.m. and 10:30 p.m.) surfaces
(mtry parameter and minimal node size were both set to
4 after hyperparameter tuning using the R package
‘caret’ [Kuhn, 2008], the number of trees was set to 300).

The validation process is illustrated in Figure 2. In
stage 1, a randomly selected 20% of the grid cells with Ts

measurements was set aside as a truly independent vali-
dation dataset to test the performance of the models by
year. The remaining 80% of data were randomly split into
five equally sized subsets and a five-fold cross-validation
resampling was performed where five models were itera-
tively developed on four training subsets and validated
on one validation subset. Out of the five models, the best
performing model was then used to predict the indepen-
dent validation set calculating the ‘out-of-sample’ R2 and
root mean squared error (RMSE). This best model was
then used to impute Ts in the grid cells with missing data.
The resulting 1 × 1 km daily ‘gap filled’ estimates of the
four Ts variables (different satellites and overpasses) were
then averaged to form one surface temperature variable
and linked to measured ground level temperature mea-
surements (Ta).

In stage 2, we then applied another random
forest model where we explained the spatiotemporal vari-
ation in the measured data at the ground monitoring sta-
tions at a 100 × 100 m resolution using the following
equation:

where Taij is the temperature at 2 m height at grid cell
i on day j; Ts_modisij is the gapfilled mean of MODIS

FIGURE 2 Cross-validation

strategy for the models in stages

1 and 2. For both models, 20% of the

data was kept aside for a final

evaluation. The models were trained

with 80% of the data, using hold-out

validation

Taij¼ fRF
Ts_modisij,Ts_modis_lag_leadij,Ta_eraij,Diff_radiationjxy,Dir_radiationjxy,
Elevationi,NDVIia,Day_of_yearj,Latitudei, Impervious_surfacei,Skyviewi,
Boundary_layer_eraij,Wind_v10_eraij,Wind_u10_eraij,Cloud_cover_eraij,

Precipitation_eraij,Landcover_clci

0
BB@

1
CCA, ð2Þ
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surface temperature of Aqua and Terra day and night at
grid cell i on day j; Ts_modis_lag_leadij is the average of
lag and lead value of Ts_modis at grid cell i on day j;
Ta_eraij is the temperature at 2 m height from the ERA-
Interim reanalysis data at grid cell i on day j; Dif-
f_radiationjxy is the diffuse radiation on day j by longitude
x and latitude y; Dir_radiationjxy is the potential direct
radiation on day j by longitude x and latitude y;
Elevationi is the elevation in cell i; NDVIia is the Landsat
NDVI of cell i for the year a; Day_of_yearj is day of year
for day j; Latitude is the latitude at y; Impervious_surface
is the area covered by buildings or roads at grid cell i;
Skyview is the calculated skyview factor at grid cell i;
Boundary_layer_eraij is the boundary layer height at grid
cell i on day j; Wind_v10_eraij is the 10-m V wind compo-
nent at grid cell i on day j; Wind_u10_eraij is the 10-m U
wind component at grid cell i on day j; Cloud_cover_eraij
is the total cloud cover at grid cell i on day j; Pre-
cipitation_eraij is the total precipitation at grid cell i on

day j; Landcover_clci is the Corine Land Cover class for
grid cell i. Land use was handled as an unordered factor
covariate.

Models for each year predicting daily Ta were sepa-
rately developed for Tmean, Tmin and Tmax. Like in the
first stage, the initial ground monitoring data were split
randomly into a training data set (80%) and an indepen-
dent validation set (20%). Different from stage 1, the
training set was split into 10 folds, stratified by area, so
that each area contained approximately 10% of measure-
ment stations. The second stage cross-validation was con-
ducted by leaving out each time a full area (Figure 2). As
every year has a different number of measurement sta-
tions available, the area boundaries used to split the data
into 10 equal groups changed slightly year by year. The
random forest mtry parameter (the number of predictors
randomly sampled as candidates at each split) was set to
6 and minimal node size was set to 4 after hyper-
parameter tuning using the R package ‘caret’. The

FIGURE 3 Model performance (RMSE on the hold-out dataset) of stage 1 averaged over the whole area by month, year, satellite and

overpass time [Colour figure can be viewed at wileyonlinelibrary.com]
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number of trees was set to 400 after manual model
parameter optimization. The best model was applied to
predict Ta for the independent validation set and R2 and
RMSE. The best model was also used to predict daily Ta

(Tmean, Tmin and Tmax) across Switzerland at a 100 × 100
m resolution.

We compared our temperature predictions with fore-
casts from an existing temperature model from Met-
eoSwiss. The Federal Office of Meteorology and
Climatology, MeteoSwiss produces the daily mean tem-
perature (TabsD) at an approximate 2 × 2 km resolution
across Switzerland for 2003–2018 as part of their Met-
eoSwiss Grid-Data Products (https://www.meteoschweiz.
admin.ch/home/klima/schweizer-klima-im-detail/
raeumliche-klimaanalysen.html, accessed 22 June 2021).
The model uses a deterministic method to spatially inter-
polate daily temperature station data. The underlying sta-
tistical analysis of this product integrates information
from weather stations, radar and satellite. Firstly, vertical
temperature dependencies were calculated using station
data constructing a smooth surface across Switzerland
and secondly, residuals between the station measure-
ments and the vertical profiles were interpolated with
non-Euclidean distances, instead taking into account the
complex topography (Frei, 2014). We aggregated our
100 × 100 m grid cells to match the 2 × 2 km grid resolu-
tion of the MeteoSwiss product and calculated for both
products monthly means.

In addition, we assessed the ability of the model to
capture the UHI effect and temperature differences due
to topography-related weather phenomena typical for
Switzerland, like the foehn effect and inversion
conditions.

3 | RESULTS

3.1 | Stage 1

Figure S1 shows the percentage of missing satellite Ts

data, mainly caused by cloud cover, by year for the differ-
ent satellites and overpasses. All years have between
50 and 70% of missing data for each overpass. Aqua day
generally has most missing Ts data (up to 68% in 2010),
followed by Terra day, Terra night and Aqua night.
Within-year variation (not shown) is substantial with
missing data varying from 32.8% (Aqua night April 2007)
to 83.4% (Aqua day May 2006). Figure S2 shows a map of
the overall data availability for Terra and Aqua over
Switzerland, clearly showing the impact of elevation with
a higher percentage of missing MODIS data at lower alti-
tudes. The percentage of missing MODIS data for 2003–
2018 was calculated by summing up available data for all
satellites and overpasses for each grid cell divided by the
total amount of potential data points at the specific
grid cell.

TABLE 2 Performance indicators (R2, RMSE, slope and intercept) of the stage 2 models for Tmean, Tmin and Tmax by year

Year

Tmin Tmean Tmax

R2
RMSE
(�C) Slope

Intercept
(�C) R2

RMSE
(�C) Slope

Intercept
(�C) R2

RMSE
(�C) Slope

Intercept
(�C)

2003 0.97 1.58 1.02 0.03 0.98 1.22 1.01 −0.02 0.97 1.70 1.01 −0.13

2004 0.95 1.86 1.01 −0.04 0.98 1.26 1.01 −0.05 0.96 1.79 1.01 −0.08

2005 0.97 1.52 1.01 0.02 0.98 1.29 1.01 0.01 0.97 1.78 1.01 −0.04

2006 0.95 1.77 1.01 −0.01 0.98 1.32 1.01 −0.03 0.96 1.80 1.01 −0.09

2007 0.96 1.55 1.02 0.02 0.97 1.25 1.01 −0.03 0.96 1.64 1.01 −0.05

2008 0.95 1.80 1.02 −0.03 0.97 1.34 1.01 −0.01 0.97 1.55 1.01 −0.09

2009 0.97 1.49 1.01 0.05 0.98 1.22 1.01 −0.01 0.97 1.70 1.01 −0.08

2010 0.97 1.61 1.01 0.02 0.99 1.16 1.01 −0.01 0.97 1.68 1.01 −0.04

2011 0.95 1.66 1.02 −0.02 0.98 1.17 1.01 −0.04 0.96 1.74 1.01 −0.06

2012 0.97 1.51 1.01 0.01 0.98 1.24 1.01 −0.06 0.97 1.73 1.01 −0.07

2013 0.96 1.67 1.01 −0.02 0.99 1.05 1.01 −0.02 0.97 1.63 1.01 −0.08

2014 0.96 1.48 1.02 −0.02 0.98 1.12 1.01 −0.05 0.97 1.60 1.02 −0.11

2015 0.96 1.55 1.02 −0.02 0.98 1.14 1.01 −0.05 0.97 1.63 1.01 −0.10

2016 0.96 1.51 1.02 −0.04 0.98 1.15 1.01 −0.06 0.97 1.59 1.01 −0.14

2017 0.97 1.60 1.02 −0.04 0.98 1.17 1.01 −0.05 0.97 1.64 1.01 −0.10

2018 0.97 1.50 1.01 −0.03 0.98 1.29 1.01 −0.06 0.97 1.77 1.01 −0.11
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The stage 1 random forest models explained large parts
of the spatiotemporal variation in the Ts data (Table 1).
The annual stage 1 models achieved an overall R2 of 0.98
and an RMSE of 1.49�C (hold-out validation). The slope
was close to 1 (from 1.00 to 1.01) and the intercept was
closer to 0 for the Aqua and Terra day (from −1.09 to
−0.17) than the Aqua and Terra night (from −2.76 to
−0.95). Within-year variability of predictive power was
substantial as illustrated in Figure 3 showing RMSE for
each satellite, daytime, year and month for the hold-out
data (R2 showed in Figure S3). Day models generally per-
formed better from October to March (Figure S3) opposed
to April to June, which is matched with higher RMSEs
observed for those months (Figure 3). Differences between
satellites were most apparent in the night with Terra
models generally outperforming Aqua models.

Figure S4 shows the overall variable importance plot
for all the year models (stage 1) as box plots. The variable
importance was calculated with the mean decrease in
impurity, which gives an indication of how much a

feature contributes relatively to the outcome estimation.
The ‘length of day’ variable is the strongest variable in
almost all models followed by ‘day of the year’. NDVI
and elevation are similar with azimuth only having a
small influence in the random forest models.

Figure S5 illustrates the results of ‘gapfilling’ showing
Ts data before and after stage 1 for the Aqua daytime over-
pass on 16 February 2015. Large parts of north-west and
south-east Switzerland were covered by clouds around
10 a.m. on 16 February 2015 (first map). The stage 1 model
imputes the missing clear-sky Ts data, resulting in a com-
plete ‘gapfilled’ Aqua day (second map).

3.2 | Stage 2

The performance (R2 and RMSE) of the stage 2 models
on the hold-out validation set predicting daily Tmin, Tmean

and Tmax by year is shown in Table 2. Slope and intercept
were calculated with a linear regression between

FIGURE 4 Mean RMSE by month, year, Tmean, Tmax and Tmin of the stage 2 model on the hold-out dataset [Colour figure can be viewed

at wileyonlinelibrary.com]
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measured and predicted data on all datasets (training
data and hold-out validation). The stage 2 model per-
formed well for all years with R2 and RSME ranging from
0.94 to 0.99 and 1.05 to 1.86�C, respectively. The within-
year variability of the models is shown in Figure 4 with
monthly RMSE scores for Tmin, Tmean and Tmax (and R2

in Figure S6). As before in the stage 1 models the best
performing months for Tmean and to a lesser extent for
Tmin and Tmax are April to September also reflected in
similar patterns for RMSE. Stage 2 models showed the
best performance when using all satellites data averaged
(daily mean of aqua day, aqua night, terra day and terra
night) as one single predictor.

The variable importance for the Tmean, Tmin and Tmax

models is shown in Figure S7 as box plots over the 2003–
2018 period. LST from MODIS (Ts_modis and
Ts_modis_Iag_lead) consistently explained most of the
spatiotemporal variation in daily air temperature,
followed by ERA-interim temperature (Ta_era), diffuse
radiation (diff_radiation) and elevation as the most influ-
ential predictor variables. This confirms the crucial con-
tribution of satellite-derived data in our temperature
models.Figure 5 shows as an example a map of the

predicted minimum, mean and maximum temperature
on 15 July 2015 at a 100 × 100 m resolution.

A complete overview over all annual models is given
in Figure S8. It shows the annual temperature difference
of Tmean with the overall mean from 2003 to 2018. A
warming trend is observed with the last 5 years on aver-
age warmer than the 2003–2018 average.

3.3 | Comparison with MeteoSwiss
model

Monthly aggregated predictions from both models across
Switzerland for 2003–2018 were identical, strengthening
the robustness of the predictions of both models
(Figure S9). We conducted a more detailed comparison,
plotting the mean, first and 99th percentile of daily mean
temperature for 2017 from both models (Figure S10), which
showed a very good temporal agreement with a correlation
coefficient of R = 0.997. The complex topography in
Switzerland, with narrow valleys and steep mountain
slopes in the Alps, can lead to significant temperature
changes over short distances. When using coarse

FIGURE 5 Tamin, Tamean and Tamax predictions for 15 July 2015 [Colour figure can be viewed at wileyonlinelibrary.com]

FLÜCKIGER ET AL. 6423

 10970088, 2022, 12, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7597 by U
niversity O

f B
asel, W

iley O
nline L

ibrary on [24/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


temperature grids, edge effects can potentially lead to sig-
nificant exposure misclassification. To illustrate this, two
maps in Figure S11 show an alpine valley (with the city of
Bellinzona in the centre) with on the left the daily mean
temperature at a 2 × 2 km resolution predicted by Met-
eoSwiss and on the right predictions at the 100 × 100 m
resolution from our model. In absolute terms, the tempera-
ture range of two model predictions are similar (from 7 to
37�C), but the high temperatures in our model are
restricted to the valley, and do not appear at higher alti-
tudes, something unavoidable with the coarser 2 × 2 km
resolution. We also compared our estimates with the Met-
eoSwiss model and a downscaled version of the MeteoSwiss
model at a 100 × 100 m resolution (using bilinear interpo-
lation) during a heatwave in Zurich (Figure S12). It shows
a profile of predicted daily mean temperature along a tran-
sect through Zurich and surrounding area on a day during
a heatwave on 5 July 2015. Our model (Swiss TPH) predicts
more localized differences than both the coarser and down-
scaled MeteoSwiss model. By modelling at a finer spatial
resolution we therefore managed to minimize potential
exposure misclassification, especially in these types of areas
with complex terrain.

4 | DISCUSSION

This paper describes the development of daily air temper-
ature (daily mean, min and max) at a fine spatial resolu-
tion of 100 × 100 m across Switzerland leveraging
satellite, atmospheric reanalyses data and other spatio-
temporal predictor variables in a machine learning
framework. Our modelling framework is a two-stage
approach. Firstly, we imputed missing values caused by
cloud-cover in satellite-derived surface temperature with
length of day the strongest predictor variable, followed by
day of the year, NDVI and elevation. Secondly, we devel-
oped random forest models predicting fine-resolution air
temperature based on various spatiotemporal predictors,
including surface temperature from ground monitoring,
temperature predictions from ECMWF reanalysis and
potential solar radiation as the most important predictors.
The improved spatial resolution represents a substantial
improvement upon exposure assessment methods com-
monly used in epidemiological studies, which typically
use central monitors or coarser resolution exposure maps.

4.1 | Comparison with other modelling
studies

We are the first study estimating Swiss nationwide daily
ambient temperature at a 100 × 100 m resolution with

excellent results (mean 2003–2018: R2 = 0.98,
RMSE = 1.21�C). Our findings are similar to recent stud-
ies carried out in Europe. Hough et al. (2020) modelled
daily ambient temperature (mean, max and min) across
France from 2000 to 2016 at a 1 × 1 km resolution across
France and at a 200 × 200 m resolution in urban areas
with R2 ranging from 0.92 to 0.97 (RMSE 1.3–1.9�C). The
findings in this paper also are comparable with other
studies modelling at a coarser resolution of 1 × 1 km con-
ducted in France (Kloog et al., 2017) (R2 = 0.95–0.96,
RMSE = 2.16�C) and Israel (Rosenfeld et al., 2017) (Aqua
R2 = 0.99, RMSE 0.70�C, Terra R2 = 0.99, RMSE 0.67�C).
A study in the Netherlands (Dirksen et al., 2020), also
modelling at the coarser 1 × 1 km, reported RMSE's
below 1�C, which could be explained by the mostly flat
terrain, and therefore, less contrast in temperature, com-
pared countries with complex terrain like Switzerland.

4.2 | Urban heat island effect

One aim of this study was to capture the UHI effect with
our model. Without independent air temperature mea-
surement data, we were not able to conduct a quantita-
tive assessment of characterizing the UHI effect. A
qualitative assessment is presented in Figure S12 which
shows a profile of predicted daily mean Temperature
along a transect through Zurich and surrounding area on
a day during a heatwave on 5 July 2015. The profile
graph shows the elevated temperatures modelled in the
city of Zurich compared to temperatures in the surround-
ing area. Additionally, it shows variability within the city
of Zurich. By predicting temperature levels at a fine reso-
lution of 100 × 100 m, we are getting closer at capturing
the UHI effect in Swiss cities, compared to using a central
weather station, the coarser gridded (2 × 2 km) Met-
eoSwiss product or indeed a 100 × 100 m downscaled ver-
sion of the MeteoSwiss product. However, further
improvements capturing the UHI effect can be achieved
by addressing some data limitations in the current study.
In 2018, only 15 stations out of 576 were located in inner
cities. Weather stations from routine monitoring net-
works are typically positioned to avoid local influences
and are thus located in suburban areas, in rural locations,
or, in Switzerland, also at mountain tops. For epidemio-
logical studies investigating the relationship between
heat and health, temperature exposure surfaces are
needed which better capture temperature gradients in
areas where people live and work, which are typically
not at airports, rural areas, or, at least in Switzerland, at
mountain tops. To better capture the UHI effect, weather
station networks need to expand into urban areas.
Another venue to explore is to develop fusion models
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combining routine weather station data with weather
data collected using cheap sensors in citizen's science ini-
tiatives or to use non-official weather data from for exam-
ple weather underground (Muller et al., 2015; Chapman
et al., 2017). Another improvement could be made by
including some of the variables that potentially explain
microclimatic differences like wind speed and direction
at lower heights, and shadows cast by buildings and
street canyons. This was recently illustrated by
Koopmans et al. (2020) who build a fine-scale heatmap
for Wageningen in the Netherlands by including amongst
other variables building configuration, wind speed and
tree register data.

4.3 | Weather phenomena

We were able to model temperature differences during
specific meteorological phenomena for Switzerland. The
‘foehn’ wind in Switzerland occurs when there is a dif-
ference in pressure between the south- and the north-
side of the Alps. There are two foehns, a south foehn,
the most frequent one, occurring when pressure on the
north-side is lower than on the south-side, and a north
foehn, when the opposite occurs. The effect of the foehn
wind is, apart from high wind speeds, an increase in
temperature in the Alpine valleys. On 23 November
2003, a south foehn occurred and Figure S13 shows tem-
peratures of around 15�C in the Alpine valleys, more
than expected on a ‘normal’ day in November compared
with temperatures in the Espace Mittelland (i.e. Swiss
plateau).

Another meteorological phenomenon in Switzerland
is inversion. Inversions occur mainly in winter or
autumn for example with fog or low stratus clouds,
resulting in higher temperatures above the inversion
layer compared to below. The 22nd of December 2007
illustrates an inversion in Switzerland with low temper-
atures at ground level, rising with altitude and then
dropping again (Figure S14). Because our model only
predicts temperature at surface level, we mimicked the
balloon measurements by a transect line starting at the
same location into the Alps. The temperature on this
line was then aggregated by height. The result is also a
temperature gradient by height, comparable with the
balloon measurements. As we can see in Figure S14,
both show a similar trend, lower temperature at
ground level, higher temperatures in average altitudes
and then again cold temperatures in high altitudes.
The balloon measurements were started at noon, this
likely explains the higher temperatures than shown on
the aggregated transect (representing daily mean
temperatures).

4.4 | Predictor variables

The absence of satellite data during cloudy conditions is
a limitation in developing temperature models based on
satellite derived temperature estimates (Kloog, 2019).
Switzerland has prolonged periods of cloud cover, espe-
cially in the Espace Mittelland, leading to a high percent-
age of missing data for satellite-observed surface
temperature. Both the Aqua and Terra satellite data have
between 50 and 70% missing data for each overpass. This
potentially can lead to less precise temperature estimates
in areas and/or during periods affected. However, with
our imputation step (stage 1) we were able to build ran-
dom forest models allowing prediction of air temperature
on days without satellite-observed surface temperature
data. Due to the higher cloud cover during the cold sea-
sons, more surface temperature data had to be imputed
during these months. This resulted in the models of the
summer months (May–September, 2003–2018) showing a
better performance (RMSE of Tmean = 1.10�C) than the
models of the winter months (October–April 2003–2018,
RMSE of Tmean = 1.28�C). This difference is however not
extremely large, and we consider the great value of hav-
ing a high-resolution temperature model for Switzerland
which covers the entire year, also in light of possible
future applications. Another limitation is that we used
meteorological predictor variables in our models from
the slightly older ERA-interim product compared to the
now available ERA5 product. ERA5 has an improved spa-
tial and temporal resolution and representation of geo-
physical processes and, therefore, meteorological
variables (e.g. wind speed, wind direction, precipitation
etc.) will be more accurate in future studies using ERA5
(Hersbach et al., 2020).

5 | CONCLUSION

This study presents a novel simplified modelling frame-
work, to predict daily ambient temperature for a 16-year
time series in Switzerland. By reducing the spatial resolu-
tion to 100 × 100 m compared to the coarser 2 × 2 km of
existing models we were able to capture the UHI effect
and some typical weather phenomena caused by
Switzerland's complex topography, like the foehn effect
and inversion conditions. The temperature models pres-
ented here were able to accurately capture temporal and
spatial variations in air temperature in Switzerland using
random forest from 2003 to 2018, with stage 1 models
achieving an overall R2 of 0.98 and an RMSE of 1.49�C
(hold-out validation), and the stage 2 model performing
well for all years with R2 and RMSE ranging from 0.94 to
0.99 and 1.05 to 1.86�C, respectively. Independent hold-
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out validation further showed a high performance of the
model. The resulting daily temperature surfaces for
2003–2018 will facilitate ongoing epidemiological
research investigating the health effects of heat.
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