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While MALDI-TOF mass spectrometry (MS) is widely considered as the reference
method for the rapid and inexpensive identification of microorganisms in routine
laboratories, less attention has been addressed to its ability for detection of antimicrobial
resistance (AMR). Recently, some studies assessed its potential application together
with machine learning for the detection of AMR in clinical pathogens. The scope of
this study was to investigate MALDI-TOF MS protein mass spectra combined with
a prediction approach as an AMR screening tool for relevant foodborne pathogens,
such as Campylobacter coli and Campylobacter jejuni. A One-Health panel of 224
C. jejuni and 116 C. coli strains was phenotypically tested for seven antimicrobial
resistances, i.e., ciprofloxacin, erythromycin, tetracycline, gentamycin, kanamycin,
streptomycin, and ampicillin, independently, and were submitted, after an on- and
off-plate protein extraction, to MALDI Biotyper analysis, which yielded one average
spectra per isolate and type of extraction. Overall, high performance was observed
for classifiers detecting susceptible as well as ciprofloxacin- and tetracycline-resistant
isolates. A maximum sensitivity and a precision of 92.3 and 81.2%, respectively, were
reached. No significant prediction performance differences were observed between on-
and off-plate types of protein extractions. Finally, three putative AMR biomarkers for
fluoroquinolones, tetracyclines, and aminoglycosides were identified during the current
study. Combination of MALDI-TOF MS and machine learning could be an efficient and
inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may
enable a rapid initiation of a precise, targeted antibiotic treatment.

Keywords: MALDI-TOF MS, antimicrobial resistance screening, AMR, machine learning, Campylobacter,
diagnostics
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INTRODUCTION

Antimicrobial susceptibility testing (AST) is a key technology
in diagnostic microbiology and is essential for a targeted
treatment and to limit the widespread use of broad-spectrum
antibiotics. Over the past decades, many improvements have
helped to accelerate, standardize, and harmonize testing
facilities, e.g., through the implementation of automated
and semi-automated devices combining identification and
AST (e.g., Vitek 2 R©), using optical systems for measuring
changes in bacterial growth and determining antimicrobial
susceptibility, and using rapid diagnostic tests for same-day
AST results (Mitchell and Alby, 2017; Benkova et al., 2020;
Roth et al., 2021). In a concern for harmonization, disk-
diffusion and microdilution antibiograms, recommended
by the European committee on antimicrobial susceptibility
testing (EUCAST, human medicine) or the European
food safety authority (EFSA, veterinary medicine), are still
the reference methods for determination of antimicrobial
resistances (AMR). These tests are based on bacterial growth,
requiring between 16 and 24 h for rapid growing pathogens
and longer for fastidious pathogens (e.g., mycobacteria and
Helicobacter pylori) (Barlam et al., 2016; Arena et al., 2017).
Results are usually qualitative and classed into categories,
i.e., susceptible or resistant, depending on the breakpoint
calibrated by the EUCAST, or expressed as minimum inhibitory
concentration (MIC) (Benkova et al., 2020). While these
conventional methods are effective, they are cumbersome,
time-consuming, and do not enable the rapid choice of an
effective targeted anti-infective treatment. Yet, development
of “fast microbiology” technologies or rapid diagnostic tests,
including Matrix assisted laser desorption/ionization time of
flight mass spectrometry (MALDI-TOF MS), results in the
improvement of the antimicrobial stewardship by decreasing
the “patient–physician” workflow before treatment (Bookstaver
et al., 2017; Mangioni et al., 2019).

MALDI-TOF MS is a soft-ionized mass spectrometry method
developed as an analytical tool to identify and understand
the structure of unknown biomolecules (Gibson and Costello,
2000). In an evolving field, this automatic technique became
the reference method for identifying microorganisms such as
bacteria (Clark et al., 2013; Singhal et al., 2015), mycobacteria
(Rodriguez-Granger et al., 2018; Rotcheewaphan et al., 2019) and
fungi (Florio et al., 2018; Robert et al., 2021). The resolution
power of the system operates at the species level and even
at sub-species level for a number of pathogens in clinical
microbiology (Fall et al., 2015; Feucherolles et al., 2021). It is a
fast and cost-efficient process, with a positive impact on public
health analytical pipelines (Ge et al., 2017; Rodríguez-Sánchez
et al., 2019). Identification of other organisms, like protozoa
(Del Chierico et al., 2016), helminths (Bredtmann et al., 2017;
Feucherolles et al., 2019b; Sy et al., 2021; Wendel et al., 2021),
viruses (Iles et al., 2020; Rybicka et al., 2021), and arthropods
(Tahir et al., 2017; Boucheikhchoukh et al., 2018; Tandina et al.,
2018), is also feasible in a research context. However, only
the routine identification part of the diagnostics workflow is
currently carried out by MALDI-TOF MS.

Over the last 5 years, machine learning (ML), a subset
of artificial intelligence, has gained interest in many areas of
research pertaining to an improved diagnosis of diseases (e.g.,
cancer detection, infectious diseases, etc.) (Caballé et al., 2020;
Goodswen et al., 2021; Nami et al., 2021). This popularity is
greatly explained by the current era, where large daily amounts
of data are being collected digitally, known as big data, which
are requiring new approaches to investigate it. Mass spectra are
routinely generated by MALDI-TOF MS and most of the time not
exploited for additional analysis beyond the sole identification
of microorganisms. Even if several reports highlighted successful
applications of MALDI-TOF MS for detection of bacterial AMR,
by the presence of specific biomarkers (Feucherolles et al., 2019a;
Oviaño and Bou, 2019; Yoon and Jeong, 2021) identified by
classical statistical methods, there is still a mine of information
encrypted in the mass spectra. More recently, a growing number
of reports combining MALDI-TOF mass spectrometry and ML
have shown promising results for clinical big data problems, such
as AMR screening (Weis et al., 2020a,b). The majority of these
studies used pathogens such as Staphylococcus aureus and the β-
lactam antibiotic family (Sogawa et al., 2017; Wang et al., 2018;
Tang et al., 2019). Therefore, there are very few published data
concerning other relevant clinical or foodborne pathogens or
antimicrobials such as the quinolones (e.g., ciprofloxacin) and
macrolides (e.g., erythromycin and azithromycin) (Sabença et al.,
2020; Sousa et al., 2020). However, macrolides and quinolones are
frontline antibiotics used to treat severe infectious gastroenteritis
and categorized by the World Health Organization (WHO) as
critically important in human medicine (WHO, 2019).

Campylobacteriosis, mainly caused by C. jejuni and C. coli,
is the main global cause of bacterial gastroenteritis in humans
(Chlebicz and Śliżewska, 2018). Likewise, 10.9 and 0.6% of
C. coli and C. jejuni, respectively, isolated from humans were
multi-resistant to ciprofloxacin, erythromycin, tetracycline, and
gentamycin in 2019 (EFSA and ECDC, 2021). In food-producing
animals, 26.9% of C. coli isolated from calves were resistant to
at least three of the previously cited antimicrobials. MALDI-
TOF MS already has been applied for proteo-typing of C. coli,
C. fetus, and more recently for C. concisus genomospecies
(Emele et al., 2019a,b; On et al., 2021). Also, its ability to
distinguish β-lactam-resistant strains from sensitive ones by pre-
processing mass spectra before analysis was reported (Penny
et al., 2016). However, there are no published reports concerning
the direct application of the mass spectrometry and ML for direct
prediction of AMR in Campylobacter spp.

Therefore, the aim of this study is to show that MALDI-TOF
MS combined with an ML approach could be a useful tool for a
fast and precise AMR screening of relevant foodborne pathogens,
such as C. coli and C. jejuni. While campylobacteriosis is mainly
self-limiting and do not require specific antibiotherapy, such a
combination strategy may aid to swiftly prescribe a definitive
antimicrobial therapy and therefore limit an empirical broad-
spectrum strategy for other pathogens. ML prediction based
on protein mass spectra will be investigated at the species-
specific and antibiotic resistance level. The impact of different
protein extraction methods, i.e., on- and off-plate extraction, on
resistance predictions will also be considered.
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MATERIALS AND METHODS

Campylobacter Collection
Strains
A One-Health collection of 224 C. jejuni and 116 C. coli isolates,
obtained from humans (n = 226), in environmental samples, i.e.,
surface water (n = 33), and animals including wild life: raccoons
(n = 8), wild birds (n = 17), and cattle, i.e., bovine (n = 20), pig
(n = 1), and poultry (n = 35), were used in the current study.

Antimicrobial resistances patterns were established by disk
diffusion antibiograms for fluroquinolones [ciprofloxacin (Cip,
5 µg)], macrolides [erythromycin (Ery, 15 µg)], tetracyclines
[tetracycline (Tet, 30 µg)], aminoglycosides [gentamycin (Gent,
10 µg), kanamycin (Kana, 30 µg), Streptomycin (Strep, 10 µg)],
and β-lactams [ampicillin (Amp, 10 µg)] following the French
Microbiology Society (SFM) and EUCAST recommendations
(Recommendations 2020 v1.1 April) resulting in patterns
addressed in Table 1. For antibiotics not described for
Campylobacter spp., i.e., kanamycin and streptomycin, EUCAST
recommendation for the Enterobacterales group was applied. The
latter was added to the study based on ResFinder analysis by
using Whole Genome Sequencing (WGS) data (Bortolaia et al.,
2020). The Lys43Arg mutation in the rspL gene as well as ant(6)
and aadE genes and conferring the streptomycin resistance were
detected (Olkkola et al., 2010; Fabre et al., 2018). Likewise,
the aph(3) gene conferring among other kanamycin resistance
was detected (Fabre et al., 2018). The phenotypic details of the
collection are described in Supplementary File 1.

Growth Conditions
All strains were inoculated on chocolate agar plates (Thermo
Scientific, Waltham, MA, United States) with -80◦C stock
suspension stored in FBP medium complemented with
Campylobacter growth supplement (Thermo Fisher Scientific),
and incubated for 48 ± 2 h at 42◦C under micro aerobic
conditions using CampyGen 2.5 L gas packs (Thermo
Fisher Scientific).

Matrix Assisted Laser
Desorption/Ionization Time of Flight
Mass Spectrometry Analysis
Sample Preparation
For every biological assay, an off- and on-plate extraction and a
direct deposit were performed. For the off-plate or also known
as ethanol/formic acid protein extraction (EtOH/ACN), bacteria
were suspended in 300 µl milliQ water and 900 µl absolute
ethanol (Merck, Darmstadt, Germany). The mix was centrifuged
for a further 2 min and the residual ethanol was discarded. A total
of 25 µl for both 70% (v/v) formic acid (Merck, Darmstadt,
Germany) and acetonitrile (Merck) were mixed up to the dry
pellet. A final centrifugation was performed, and then 1 µl of
supernatant was spotted onto a one-use MALDI Biotarget (96
targets; Bruker Daltonics GmbH, Bremen, Germany). For the
formic acid on-plate extraction (FA), a smear of a bacteria colony
is directly carried out on the biotarget and then overlayed with a
1 µl 70% formic acid. For the direct deposit, a bacteria colony is

directly streaked on the biotarget. For all deposits and extractions,
as soon as the sample was dried, the spot was overlaid with 1 µl
of portioned HCCA matrix solution (Bruker Daltonics GmbH)
prepared with standardized acetonitrile 50%, water 47.5%, and
trifluoroacetic acid 2.5% solution (Sigma-Aldrich, Saint Louis,
MO, United States). Bruker bacterial test standard (BTS) was
used for an external calibration of the apparatus.

For each method of extraction, three independent cultures
(biological replicates) on three different days (reproducibility)
were performed. Each biological replicate was spotted thrice
(technical replicates) on the same day (repeatability), resulting in
nine spectra per isolate.

Data Acquisition
MALDI-TOF MS analysis was performed using a Biotyper
Microflex LT/SH (Bruker Daltonics GmbH) by using the
AutoXecute acquisition method (MBT_AutoX) in FlexControl
software v3.4., with a 2–20 kDa mass-to-charge ratio (m/z) range
in a positive linear mode. Before measurement, the system was
calibrated using the automatic calibration feature with the BTS.
For each sample spot, an automatic acquisition with 240 laser
shots was performed.

Mass Spectra Analysis
All protein spectra were identified by using the BDAL Bruker
database (n = 8,468 MSPs), containing at least 3,000 different
bacterial and fungi species, through the MBT Compass Explorer
interface (v.4.1). The software attributed a log score value
between 0 and 3.00. A score between 0 and 1.69 was considered
as a not reliable identification. A score between 1.70 and 1.99
was considered as probable genus identification and scores from
2.00 to 2.29 as reliable genus identification and a probable species
identification. Finally, a score between 2.30 and 3.00 was deemed
as highly probable species identification.

Then, spectra were uploaded on FlexAnalysis v3.0 (Bruker
Daltonics GmbH) and an internal calibration was carried out on
the 4,365 m/z peak, identified as a 50 S ribosomal protein L36
by Zautner et al. (2016) in Campylobacter, which is shared by all
samples and the BTS. Mass spectra were converted into mzML
files and imported into BioNumerics v7.6 software platform
(BioMérieux, Craponne, France). Spectra were pre-processed
using the workflow described by Penny and collaborators [binned
baseline (size = 77), Kaiser Window (size = 33), Moving bar
(width = 129)], with a sound-to-noise ratio threshold of 10
(Penny et al., 2016). The peak detection parameters were the
following: Continuous wavelet transformation (CWT) ridges,
double peaks, and a relative intensity of 2%. Biological replicate
spectra were summarized to create an average spectrum, or Main
Spectra Profile (MSP), per isolate and extraction. Finally, a peak
matching was performed on MSPs, resulting in 91 peaks.

Machine Learning Analysis
Pre-processing
Tables including intensity values of the peak matching MSPs
for the three types of extraction were exported into csv
files (Supplementary File 2) for ML analysis using Python
programming language (v3.7.6) and Scikit-learn package
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TABLE 1 |

(A) Antimicrobial susceptibility patterns of Campylobacter isolates used in the present study.

Resistant isolates

Antibiotic classes Antibiotics C. jejuni (n = 224) C. coli (n = 116)

Susceptible (S)* 70 (31.2%) 25 (21.6%)

Fluroquinolones Ciprofloxacin (Cip) 123 (54.9%) 60 (51.7%)

Macrolides Erythromycin (Ery) 2 (0.9%) 31 (26.7%)

Tetracyclines Tetracycline (Tet) 90 (40.2%) 70 (60.3%)

Aminoglycosides Gentamycin (Gent) 1 (0.4%) 11 (9.5%)

Kanamycin (Kana) 18 (8.0%) 18 (15.5%)

Streptomycin (Strep) 11 (4.9%) 35 (30.2%)

Beta-Lactams Ampicillin (Amp) 90 (40.2%) 58 (50.0%)

(B) Diversity of antimicrobial resistance pattern in the collection.

*Susceptible to all tested antimicrobials.

(v0.22.1) in Jupyter NoteBook (v6.0.3). Then, MSPs were
grouped by their AMR profiles and eight distinct files have
been created according their AMR classes and susceptibility,
i.e., S, CipR, TetR, AmpR, EryR, GentR, StrepR, and KanaR
(Figure 1). Category names (e.g., S and R) were binarized, where
0 and 1 represented MSPs susceptible and resistant to the AMR
class studied, respectively. All peaks, here called features, were
transformed using a Min-Max scaler which transformed values
into the (0,1) range. Such a step is necessary to bring different
variables at the same level, as variables that are measured at
different scales may not contribute equally to the model fitting.

Feature’s Selection
Dataset with many features, which could be redundant or
irrelevant, may lead to an overcomplicated algorithm with low
prediction accuracy and long training time. Feature selection is
the process of choosing relevant features, to use in a classification
model construction, either to improve accuracy scores or to boost
performance. For this purpose, a meta-transformer based on a
Random Forest estimator, implemented into scikit-learn library,
was used to discard irrelevant features.

Model Selection
MSPs were randomly split into 70% training and 30% test
datasets, with a stratification based on their binarized AMR
profiles. The training dataset is implemented to build up a

prediction model, while the test dataset is used as an external
validation step of the trained model. For each studied AMR
classes, Random Forests (RF), Logistic Regression (LR), and
Naïve Bayes (NB) models were built, as they are common
algorithms used in microbiology (Goodswen et al., 2021). RF
is currently among the most used ML methods due to its
robustness. It is essentially a collection of independent decision
trees, where each tree could be different from the others, as
the algorithm will make completely different random choices to
make sure trees are distinct. Such algorithms make aggregated
predictions using a group of decision trees. LR is a linear
classifier, which predicts the probabilities of success and failure
event. It is easy to implement and interpret and efficient to
train. NB classifier assumes that the presence of a particular
feature is not related to the presence of another feature. It
is easy to interpret and is often applied for many medical
applications. The area under the precision recall curve (AUPRC)
was investigated to determine the most performant model
(data not shown).

Tuning
Upon selection of the best performing model, it was optimized
by looking for the best combination of hyper-parameters
according to the F1-score, described in the metrics section.
Hyper-parameters for each selected model were tuned by using
an instance which generates candidates from a grid of given
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FIGURE 1 | Schematic overview of the machine learning workflow.

parameter values, a grid search, with a 10-fold cross validation,
with a scoring method looking for the more optimized F1-score.
K-fold cross validation is a resampling method, which estimates
the performance of the ML model.

The 0.5 default probability score threshold may not represent
an optimal interpretation and can result in poor performance.
Therefore, a threshold adjustment was investigated to bring a

higher predictive performance (Weis et al., 2020a). A threshold
selection, for each classifier, based on their precision recall
curve (PRC) was applied, according to the best F1-score. In
the case of imbalance classes, like the current dataset, PRC can
suggest an optimal threshold (Saito and Rehmsmeier, 2015). In
this study, detection of resistant isolates (true positives) is the
key point of the study. PRC is based on true positive values,
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i.e., true positive and positive predictive values, among positive
prediction. Hence, PRC relies on positive classes regardless of
true negative value, making it a tool of choice for the study
threshold selection. In the end, values less than the custom
threshold are assigned to class 0, or susceptible, while value
greater than or equal to the custom threshold are assigned to class
1, or resistant.

Performance and Metrics
As a next step, performance of the selected classifier needed
to be assessed on data not yet seen by the model. For this,
an external validation has been carried out by using the test
dataset. Classification of spectra was summarized in a confusion
matrix. From it, several performance metrics, such as the
specificity, the recall, the precision or the positive predictive
value (PPV), the negative predictive value (NPV), and area
under the receiver operating characteristic curve (AUROC) and
PRC were calculated. The PPV tells us how much we can
trust the model when a resistant result is predicted, and in
the other way, the NPV tells us how much we can trust the
model when a sensitive result is predicted. The recall, also
called sensitivity, measures how the model can find all positive
units. The specificity refers to the model’s ability to give a
negative result when an isolate is susceptible. The ROC curve
is a graphical way to represent the performance of the classifier
for all threshold classifications, with the false-positive rate and
true-positive rate as axis. Therefore, the AUROC can be used
to measure the model’s discriminative ability. Usually, an AUC
of 0.5 is assimilated to a non-discriminative model, while 0.7–
0.8 is considered acceptable, 0.8–0.9 is excellent, and more than
0.9 is considered outstanding (Hosmer et al., 2013). Along the
same line, the PRC is a graphical visualization that combines
the precision and the recall. The higher curve on the y-axis,
the better the performance. Therefore, the AUPRC returns a
value between 0 and 1, where 0 is the worst and 1 is the best.
Finally, the F1-score is calculated from the precision and the
recall. It conveys balance between the precision (PPV) and the
recall (sensitivity).

Detailed information on ML analysis is shown in
Supplementary File 3.

Biomarker Identification
Features of importance, based on RF algorithm trained on
the whole dataset, were investigated to potentially identify
already known antimicrobial resistance mechanisms or new
antimicrobial targets. It rates how important each feature is
for the decision tree. A score based on between 0 and 1
for each feature is calculated, where 0 means “Not used”
and 1 highlighted a “perfect biomarker.” Score for features of
importance is computed as the mean and standard deviation
of accumulation of the impurity decrease within each tree.
Therefore, it describes the relevancy of a peak and, hence,
can help to understand the biological problem. The five first
features with the higher importance were checked in on Uniprot1

according their mass in Da. Average theoretical masses were

1https://www.uniprot.org/

calculated using the online Expasy portal tool2 based on Uniprot
amino acid sequence.

Statistical Analysis
Effects of extraction methods on AMR predictions were analyzed
based on analysis of variance (ANOVA) of the sum of AUPRCs
of the different antimicrobial classifiers. ANOVA assumptions
were verified with a Shapiro-Wilks and Levene tests. Shapiro-
Wilks test determines if your data are normally distributed. The
Leven test evaluates the equality of the variance. Differences were
considered significant at p < 0.05.

RESULTS

Spectra Quality and Reproducibility
A total of 9,180 mass spectra were generated. An average
identification log score of 2.0 was obtained for all spectra.
Outlines, flatlines, and spectra not identified at the
Campylobacter genus level were discarded for the analysis,
resulting into 9,173 spectra. The latter was transformed into
1,020 MSPs, including 672 and 348 MSPs for C. jejuni and
C. coli, respectively. Three different types of extractions, i.e.,
off-plate ethanol/acetonitrile extraction, direct deposit, and
on-plate acid formic extraction, were carried out for both
species. Hence, reproducibility was tested for the three biological
replicates. Average similarities in percentage between the type
of extraction and species are provided in Figure 2. For both
species, no significant differences were observed between off-
and on-plate extractions. Average similarity of means ranged
from 77.1 to 92.7% between biological replicates for C. jejuni and
C. coli, respectively.

Antimicrobial-Specific Screening
As a first step, different ML models, i.e., RF, LR, and NB,
were trained for specific antimicrobials from different classes,
regardless of the species identification to evaluate the potential of
fast AM-screening without knowing the microbial identification.
For this purpose, 1,020 MSPs, combining the three types of
extractions and the two species, were split into a training and a
validation set. The training set served to build the model, and
the test set, to evaluate the performance of the model. Seven
classifiers were built with RF and one with an LR algorithm.
ROC and PR curves were computed to investigate the model’s
performance for each antibiotic (Figure 3), as well as other
evaluation metrics such as sensitivity, specificity, PPV, and NPV
summarized in Table 2.

Among the eight antimicrobials tested, three models
performed better than the other considering both AUROC and
AUPR curves. The best-performing model was the classifier
allowing the distinction between resistant and completely
susceptible isolates, with an area of 0.80 and 0.89 under
the ROC and PR curves, respectively. The ciprofloxacin
and tetracycline classifiers were the two other performant
models according to their AUROC and the AUPR curves,

2http://web.expasy.org/compute_pi/
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FIGURE 2 | Biological reproducibility of MALDI-TOF mass spectra based on their protein extraction type and species level. Boxplots show the isolates average
similarities in percentage. Green triangle represented the mean. Direct, direct deposit; FA, formic acid extraction; EtOH, ethanol/acetonitrile extraction.

FIGURE 3 | (A) Receiver operating characteristic (ROC) curve and (B) recall–precision (PR) curves, and their related area under the curve, of specific antimicrobials
based on combined C. jejuni and C. coli MALDI-TOF main protein spectra profiles (MSPs) of the test set (30%, n = 306). RF, Random Forest algorithm; LR, Logistic
Regression algorithm; AUROC, Area Under the ROC Curve; AUPRC, Area Under the Precision Recall Curve.

an area of 0.87, 0.83, and 0.88, 0.80 under the AUROC
and AUPRC, respectively (Figure 3). While the specificity
was low for the three models, with a maximum of 63.8%,
a sensitivity ranging from 87.5 and 92.3% was obtained
(Table 2). Additionally, 74.6 and 85.7% of predicted values of
the ciprofloxacin classifier could be reliable for resistant and
susceptible values, respectively.

Remaining models had an AUROC of up to 0.92. However,
considering the precision and the recall, they performed poorly.
Indeed, the AUPR curve was between 0.34 and 0.69. Sensitivity

and specificity may be high, but PPVs were low, e.g., 80.0, 88.4,
and 42.8%, respectively, for the erythromycin model.

Species-Specific Screening
In a second phase, C. coli and C. jejuni MSPs were investigated
separately to look over potential differences between tested
antimicrobials. Previously, ROC and PR curves and their
respective area under the curve have been computed, based
on 202 and 105 MSPs, for the C. jejuni and C. coli test sets,
respectively (Figure 4). As well, performance metrics were

Frontiers in Microbiology | www.frontiersin.org 7 February 2022 | Volume 12 | Article 804484

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-804484 February 14, 2022 Time: 15:55 # 8

Feucherolles et al. MALDI-TOF MS for AMR Screening

TABLE 2 | Performance of retained machine learning classifier using combined C. jejuni and C. coli MALDI-TOF main protein spectra profiles (MSPs) of the test set
(30%, n = 306 MSPs), grouped by the resistance profile.

Species Antibiotics Sensitivity (%) Specificity (%) PPV (%) NPV (%)

C. jejuni and C. coli (n = 306 MSPs) Susceptible* (n = 86) 92.3 45.3 81.2 69.6

Ciprofloxacin (n = 165) 90.9 63.8 74.6 85.7

Erythromycin (n = 30) 80.0 88.4 42.8 97.6

Tetracycline (n = 144) 87.5 62.3 67.4 84.9

Ampicillin (n = 133) 90.2 47.4 56.9 86.3

Kanamycin (n = 32) 43.8 91.6 37.8 93.3

Streptomycin (n = 41) 78.0 87.2 48.5 96.3

Gentamycin (n = 11) 72.7 93.6 29.6 98.9

Threshold applied for metrics calculation is based on the best F1-scores. PPV, positive predictive value; NPV, negative predictive value. *Susceptible to all tested
antimicrobials.

FIGURE 4 | Receiver operating characteristic (ROC) curve and recall–precision (PR) curves, and their related area under the curve, of specific antimicrobials based
on 202 C. jejuni (A) and 105 C. coli (B) MALDI-TOF main protein spectra profiles (MSPs) of the test set (30%). RF, Random Forest algorithm; LR, Logistic regression
algorithm; AUROC, Area under the ROC curve; AUPRC, Area under the precision–recall curve.

calculated (Table 3). Due to few gentamycin- and erythromycin-
resistant isolates for C. jejuni in the initial collection (one and
two, respectively), no model was built for these two antibiotics.
RF and LR were once again fitting the best data. All six C. jejuni
models were based on RF algorithms. Four models were built
using LR and the remaining four were built using RF algorithms
for C. coli.

As described in the specific antimicrobial section, the
susceptible, ciprofloxacin, and tetracycline classifiers were the
three best-performing models in both species, with an AUROC

and AURP curve ranging from 0.80 to 0.89 and from 0.72
to 0.96, respectively (Figure 4). The susceptible classifier was
the more performant model in both C. jejuni and C. coli.
Tetracycline classifier was the second more effective model
for C. coli, with an AUROC of 0.87 and AUPRC of 0.90,
while it was the ciprofloxacin classifier for C. jejuni, with
an AUROC of 0.80 and AUPRC of 0.82. Overall, sensitivity
values up to 98.8% were obtained for these models. High
PPVs and NPVs were obtained for susceptible classifiers. C. coli
tetracycline classifier also performed well with a 79.2 and 92.9%
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TABLE 3 | Performance of retained machine learning classifier using C. jejuni (n = 202 MSPs) and C. coli (n = 105 MSPs) MALDI-TOF main protein spectra profiles
(MSPs) of the test set (30%), grouped by the resistance profile.

Species Antibiotics Sensitivity (%) Specificity (%) PPV (%) NPV (%)

C. jejuni (n = 202 MSPs) Susceptible* (n = 63) 92.8 55.6 82.2 77.8

Ciprofloxacin (n = 111) 96.4 41.8 66.9 90.5

Erythromycin (n = 2) NA NA NA NA

Tetracycline (n = 81) 92.6 47.1 53.9 90.5

Ampicillin (n = 81) 77.7 70.3 63.6 82.5

Kanamycin (n = 16) 62.5 97.9 71.4 96.8

Streptomycin (n = 10) 70.0 100.0 100.0 98.5

Gentamycin (n = 1) NA NA NA NA

C. coli (n = 105 MSPs) Susceptible* (n = 23) 98.8 60.9 90.0 93.3

Ciprofloxacin (n = 54) 98.2 45.1 65.4 95.8

Erythromycin (n = 28) 71.4 70.1 46.5 87.1

Tetracycline (n = 63) 96.8 61.9 79.2 92.9

Ampicillin (n = 52) 86.5 64.1 70.3 82.9

Kanamycin (n = 16) 62.5 86.5 45.5 92.7

Streptomycin (n = 32) 84.3 75.3 60.0 91.7

Gentamycin (n = 10) 70.0 93.7 53.8 96.7

Threshold applied for metrics calculation is based on the best F1-scores. PPV, positive predictive value; NPV, negative predictive value. *Susceptible to all tested
antimicrobials. NA, Not applicable due to few isolates in the category.

for PPV and NPV, respectively. Surprisingly, the ciprofloxacin
classifier was less efficient in both species. Indeed, a lower
PPV was obtained, i.e., 10% differences, in comparison with
previous results where the microbial identification was not
taken into consideration. For erythromycin, kanamycin, and
gentamycin classifiers, observations described in the previous
section could be assessed.

Differences were observed for the ampicillin and streptomycin
classifier for C. coli and C. jejuni. C. jejuni streptomycin’s
classifier performed more efficiently than the one of C. coli.
PPVs and NPVs of 100 and 98.5%, against 60.0 and 91.7%, were
calculated, respectively. C. coli ampicillin’s classifier was more
performant than that of C. jejuni, while similar AUROC and
AUPR curves were found. Indeed, PPVs and NPVs of 70.3 and
82.9% against 63.6 and 82.5% were calculated for C. coli and
C. jejuni, respectively (Table 3).

Protein Extraction Impact on Resistance
Predictions
Thirdly, methods of extraction, i.e., direct deposit, FA on-
plate, and EtOH/ACN off-plate extraction, were investigated to
check potential variation for specific antimicrobials. Thereby,
MSPs acquired for each extraction for both C. jejuni (n = 224
MSPs) and C. coli (n = 116 MSPs) were used to build a
specific ML model per antimicrobial. Models are compared in
Figure 5. The ANOVA resulted in 0.976 and 0.936 (p > 0.05)
values for C. jejuni and C. coli, respectively. Therefore, the
null hypothesis, i.e., there is no difference between extraction
methods, is retained.

Nevertheless, in the case of the C. coli gentamycin’s classifier,
while the performance is low for the EtOH/ACN extraction
(AUPRC = 0.23), the classifier for the direct deposit is more
efficient (AUPRC = 0.92). Features of extractions for both

classifiers were investigated. For the EtOH/ACN classifier,
2,356.29 Da was the more important feature. For the direct
deposit classifier, 10,323.79 Da was the more important feature.
While these features in a model were particularly important, they
were the less important features in the other model. The 10,323.79
Da peak was detected in both extractions, while softly shifting
for the EtOH/ACN, i.e., 10,333.67 Da. The 2,356.29 peak was not
detected in the direct deposit (Figure 6).

Biomarkers: Antimicrobial Resistance
Mechanisms
RF classifiers performing the best, i.e., susceptible, ciprofloxacin,
and tetracycline, while microbial species is not known, were used
to retrieve features of importance. Then, the Uniprot database
was investigated to potentially identify each feature according
their mass in Dalton, regardless post-translational modifications.
Table 4 summarizes the top five features for each classifier.
When several proteins had the same mass, proteins with the
most probable function linked to AMR were retained. No protein
for C. jejuni or C. coli was identified at 6,436.22 Da. The DNA
methyltransferase at 6,436 Da was in Helicobacter pylori, a closely
related genus of Campylobacter.

DISCUSSION

Several reports described MALDI-TOF MS as a more time-
and cost-effective alternative approach to current classic AST
methods (Hrabák et al., 2013; Oviaño and Bou, 2019). Being
combined with ML, such an approach may be even more relevant
for AST in routine diagnostics (Weis et al., 2020b). However, to
our knowledge, no study implying relevant foodborne pathogens
for AMR screening has been published yet. Therefore, the scope
of this study was to consider whether a mass spectrometry
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FIGURE 5 | Comparison of precision-recall curves for the three-extraction tested on (A) C. jejuni (n = 68 MSPs) and (B) C. coli (n = 35 MSPs) of the test set (30%).
EtOH/ACN: complete ethanol/acetonitrile-based proteins extraction. RF, Random Forest algorithm; LR, Logistic Regression algorithm; NB, Nave Bayes algorithm.

FIGURE 6 | Pseudogel view representation of mass spectra from C. coli from the direct deposit (direct, n = 8) and the ethanol/acetonitrile off-plate extraction
(EtOH/ACN, n = 8). The x-axis represents the mass-to-charge (m/z) ratio in Da. Strips intensities is function of the peak intensity. The red dashed lines represent the
observed peaks, i.e., 2,356.29 and 10,323.79 Da.

technique combined with an ML approach could be utilized for
a combined rapid species identification and AMR screening for
foodborne pathogens.

The main result of this study was to observe whether
mass spectra with 91 protein peaks selected by automatic
peak-matching could predict with a high average sensitivity

and precision the strains’ susceptibility and resistance to
ciprofloxacin and tetracycline, independent of the microbial
species identification. Therefore, these models were missing
very few resistant isolates. Similarly, Weis and colleagues,
computed an AUROC for 42 different antibiotics on a large
“real-world” clinical dataset by combining multiple species
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TABLE 4 | Top five ranking of Random Forest features of importance.

Classifier Rank Features (Da) Average theoretical mass (Da) Protein UniProt ID

Susceptible 1 8460.76 8460.07 Transcriptional regulator A0A1T1ZLP8

2 3257.41 3256.98 GNAT family N-acetyltransferase A0A6N3Q833

3 5867.81 5867.86 ATP-binding protein A0A2A5MAC7

4 2766.98 2767.13 Poly(A) polymerase A0A5T1K937

5 4365.25 4364.39 50 S ribosomal protein L36 A0A1E7P1M9

Ciprofloxacin 1 6436.22 6435.55 DNA methyltransferase* A0A438RVN3*

2 2766.98 2767.13 Poly(A) polymerase A0A5T1K937

3 2241.84 2241.67 Type II toxin-antitoxin system HicB family antitoxin A0A691V648

4 3257.41 3256.98 GNAT family N-acetyltransferase A0A6N3Q833

5 7083.30 7083.03 MmgE/PrpD family protein A0A4Y8C2R1

Tetracycline 1 4365.25 4364.39 50 S ribosomal protein L36 A0A1E7P1M9

2 2766.98 2767.13 Poly(A) polymerase A0A5T1K937

3 7083.30 7083.03 MmgE/PrpD family protein A0A4Y8C2R1

4 6436.22 6435.55 DNA methyltransferase* A0A438RVN3*

5 2713.95 2713.06 Superoxide dismutase A0A431FY74

Da, Dalton. *Identified in the closely related genus Helicobacter pylori (former Campylobacter pylori).

(Weis et al., 2020a). They pointed out that they reached
AUROC values above 0.90 for 23 of the tested antibiotics.
Such results support the idea that mass spectra could provide
far more than simple species information. Nevertheless, in
the literature, most of the publications focused on specific
species such as S. aureus, Escherichia coli, and Klebsiella
pneumoniae. Additionally, they mainly analyzed one type of
antimicrobial classes, e.g., glycopeptides such as vancomycin
(Mather et al., 2016; Asakura et al., 2018; Wang et al., 2018;
Candela et al., 2021). For example, Asakura et al. (2018)
obtained a sensitivity of 99.0% and a specificity of 88.0%
while comparing vancomycin-susceptible and heterogeneous
vancomycin intermediately resistant S. aureus.Wang et al. (2018)
obtained similar results with a 77.0 and 81.4% sensitivity
and specificity, respectively, for the same comparison. When
comparing C. jejuni and C. coli separately and for different
antimicrobials, we found that susceptible, ciprofloxacin, and
tetracycline classifiers were the three best-performing models
in both species, while the others performed less accurately.
Similarly to other studies, a sensitivity ranging from 92.6 to
98.8% was obtained for both species and the three performant
classifiers. Weis et al. (2020a) also looked at species-specific
antimicrobial resistance prediction for S. aureus, E. coli, and
K. pneumoniae. They reported an AUROC ranging from 0.77 to
0.81, and an AUPRC ranging from 0.52 to 0.70 for ciprofloxacin
predictions. In the current study, similar AUROC values were
found but a higher AUPRC was observed with 0.82 and 0.81
for C. jejuni and C. coli, respectively, meaning that the current
model may accurately predict ciprofloxacin-resistant isolates.
Considered as a critically important antimicrobial, ciprofloxacin
is widely used for the treatment of broad human bacterial
infections, including enteric ones (WHO, 2019). Therefore,
early screening of its resistance may play an essential role
for the administration of the definitive antimicrobial therapy.
Nevertheless, the comparison between the different studies is
intricate to perform due to the number of isolates, the genus

analyzed, the type of extraction, as well as the type of algorithm
used. In the current study, classifiers performing poorly, i.e.,
kanamycin, streptomycin, gentamycin, and erythromycin, were
subject to a highly imbalanced dataset, with an average of 10/90
resistant/susceptible ratio, instead of a close 50/50 ratio one (e.g.,
36 gentamycin-resistant MSPs for 984 gentamycin-susceptible
MSPs). Precision disparities were observed for the ciprofloxacin,
ampicillin, and streptomycin classifiers of both species, in
comparison to classifiers not considering the species level.
While such differences could be attributed to the unbalanced
number of resistant isolates for ampicillin and streptomycin,
the ciprofloxacin classifier was in contrast well balanced. The
ciprofloxacin classifier may be less effective for predictions, while
looking specifically at the species level. In the end, prediction
based on protein mass spectra grouped by AMR, regardless of
bacterial species, may be the best option for an efficient and
swift AMR-screening. Such observations might also be explained
by average similarity differences obtained between C. jejuni and
C. coli. Cuénod and Egli (2021), Cuénod et al. (2021) reported
that the preparation protocol used, the duration of incubation,
maintenance of the device, for example, could potentially impact
the quality of the spectra. Inevitably it may have influenced
the final prediction for both species. Hypothetically, such
observations may also show that AMR screening by MALDI-
TOF MS is going beyond the bacterial genus or species and
might be directly linked to the resistance mechanism and
protein/metabolite expression itself. To our knowledge, this is
the first study establishing that ML and MALDI-TOF MS could
be applied for AMR screening of foodborne pathogens, such as
Campylobacter spp.

Nevertheless, in the current study, the specificity was
not as high as the specificity described by the previously
mentioned studies. While creating the ML pipeline, sensitivity
was chosen as the most important parameter to adjust the
threshold score during the tuning part. Hence, the optimal
threshold was selected based on the F1-score, meaning the
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best compromise between higher sensitivity and precision,
specific to each classifier. Classifiers guiding antibiotic therapy
decision must have high sensitivity (Weis et al., 2020a).
On the one hand, assuming an isolate is susceptible, while
it is resistant, may lead to an ineffective treatment and
eventually have an important impact on patient management.
On the other hand, assuming an isolate is resistant, while
it is susceptible, may still lead to an effective treatment.
However, while seeking and picking to have high sensitivity,
it will inevitably decrease the specificity, by decreasing it. In
the previously cited reports, threshold adjustments were not
mentioned. Therefore, threshold adjustment may be a key step
while elaborating ML pipeline for routine laboratories based on
MALDI-TOF mass spectra.

The impact of protein extraction methods was also evaluated.
Indeed, the EtOH/ACN extraction is the most popular extraction
protocol when it comes to research investigations. However,
the direct deposit and the on-plate FA extractions are the
most straightforward methods used in routine laboratories. No
significant differences were observed between the direct deposit,
the FA on-plate, and the EtOH/ACN extraction. Therefore,
in order to rapidly obtain straightforward AMR assessment
information, the application of the direct deposit method could
be applied for species identification as well as AMR screening
in Campylobacter. Interestingly, C. coli gentamycin classifier
performance was different between EtOH/ACN extraction
and the direct deposit. Indeed, with a simple biological
smear on the MALDI-TOF target, gentamycin’s prediction
was more precise. Surprisingly, the absence of the 2,356.29
Da peak resulted in a higher AUPRC for the direct deposit
classifier. In the literature, the loss of a specific peak
between different types have already been described (Josten
et al., 2014). However, in their case, the loss of a protein
happened during the ethanol washing step of the EtOH/ACN
extraction. Thus, the peptide was only present during a direct
deposit measurement. However, to confirm our observation,
additional gentamycin-resistant isolates should be analyzed
as currently too few gentamycin isolates are present in the
current dataset.

Along the same line, putative biomarkers have been identified
for each class of studied antibiotics by looking into RF
algorithm features of importance. Majority of these proteins,
such as transcriptional regulator, ATP-binding, GCN5-related
N-acetyltransferase, DNA-methyltransferase, toxin-antitoxin
system, PrpD, and superoxide dismutase proteins had a direct
or indirect link with already known antibiotic resistance,
tolerance, or spread mechanisms in different genera of bacteria
(e.g., Salmonella, Enterococcus, Escherichia, Mycobacterium,
and Pseudomonas) (Draker and Wright, 2004; Yugendran and
Harish, 2016; Hicks et al., 2018; Kang et al., 2018; Martins
et al., 2018; Su et al., 2018; Shaheen et al., 2020). Nevertheless,
Campylobacter’s AMR mechanisms are either chromosomal
mutations, such as the single mutation C257T in the gyrA gene
or the A207G mutation in the 23 S rRNA gene for ciprofloxacin
and erythromycin, respectively, or acquired genes, such as
tet(O), blaOXA-61 and aph(3’)-III for tetracycline, ampicillin,
and gentamycin resistances, respectively (Payot et al., 2006;

Iovine, 2013). Overall, these mechanisms are working in synergy
with the cmeABC efflux pump or porines, such the Major-
Out-Membrane Porines (MOMP) (Lin et al., 2002). Over the
biomarkers identified as relevant by RF susceptible classifier,
the GCN5-related N-acetyltransferase and the 50 S ribosomal
protein L36 may be linked to already known aminoglycosides
or tetracyclines resistance mechanisms of Campylobacter,
respectively. On one hand, aminoglycoside-modifying enzymes,
such as acetyltransferase [e.g., aac(6′)-Ie–aph(2′′)-If2] were
already detected in gentamycin-resistant Campylobacter
isolates (Zhao et al., 2016). On the other hand, the Tet(O)
ribosomal protection protein is known to bind on both 30S
and 50S subunits, conferring tetracycline resistance (Li et al.,
2013). Interestingly, the L36 proteins were the first feature
of importance highlighted for the tetracycline classifier.
Identification of specific proteins directly implied to AMR
mechanisms, while using MALDI-TOF MS within the 2–20 kDa
range, could be problematic (Welker and Van Belkum, 2019).
Indeed, proteins responsible for resistances are large proteins
(e.g., GyrA = 96,974 Da). Therefore, in case an indicative
biomarker is identified, it may not be a necessary protein
conferring the resistance itself, but it may be a protein or
peptide co-coded on the plasmid of the protein responsible
of the resistance (Lau et al., 2014). Therefore, the 4,365.25
m/z peak may be a biosignature linked to the presence of
the tet(O) gene. In the literature, two protein biomarkers,
i.e., 3,665.79 m/z and 6,036.59 m/z, have been reported to be
a potential biomarker of the tetracycline resistance in other
bacterial genera (Sabença et al., 2020; Sousa et al., 2020).
However, these biomarkers were not observed here. Along
the same line, the 6,436.22 Da protein was considered as
the most important feature for the ciprofloxacin’s classifier.
The protein was identified as a DNA methylase in H. pylori,
formerly related to the Campylobacter genus. Yugendran and
Harish put in light the hypothesis that ciprofloxacin-resistance
in E. coli may be induced by DNA methylation, leading to
the possible involvement of some mechanism other than the
quinolone-resistance determining region (QRDR) capable of
inducing fluoroquinolone resistance (Yugendran and Harish,
2016). While the single point mutation in gyrA represents the
major fluoroquinolones resistance mechanism in Campylobacter,
such venue may be worth exploring in the future. Other
potential ciprofloxacin biomarkers, neighboring 6,300 Da,
were put recently in light for other E. coli (Sousa et al., 2020)
and Enterococcus (Sabença et al., 2020; Sousa et al., 2020).
Nevertheless, interpretation on the biological role of features
may be cautiously interpreted, and a peptide sequencing by
tandem mass spectrometry should be performed to assess the
real biological function of these biomarkers.

Little is known on the impact of such approaches as described
here on the health management potential cost savings in
clinical practice. Weis and colleagues affirmed in their study
that the application of such workflow provided a treatment
guidance 12–72 h earlier than classical approaches and to have
a significant impact on the physician–patient workflow (Weis
et al., 2020a). It is worth mentioning that the ML is intended
for supporting the decision making process. Therefore, it is a
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support giving guidance on possible resistance outcomes that
lead early antibiotherapy in a specific direction. ML may be
used as an AMR screening tool, displaying an alert message
on the MALDI-TOF MS microbial identification report, when
the isolate is classified as a positive category value. It is
already the case for several Bruker subtyping modules (e.g.,
MRSA, cfiA positive or blaKPC modules). Therefore, instead of
giving an empirical treatment until the AMR confirmation by
reference AST, the patient’s antibiotherapy may be defined faster
(e.g., 24 h earlier).

Phenotypic antibiogram should still follow up to establish
the AMR profile and, in case, reorient the antibiotherapy.
Additionally, 2025 AMR monitoring of food-producing isolates,
such as ESBL/AmpC/carbapenemase-producing E. coli, will be
done by WGS (Aerts et al., 2019). Therefore, a combination
of MALDI-TOF MS, ML, and WGS could be an interesting
monitoring tool with a relevant impact on the control of
the emergence of AMR in the European Union. As well,
the application of MALDI-TOF MS in microbiology for lipid
investigation has conceptualized several breakthroughs for AMR
screening (Bruker, 2019; Furniss et al., 2019; Dortet et al., 2020).
In case of the ability of such method to distinct microbial lipids
directly from body fluids such as serum, blood, and urine, there
will be no need of a culture step (Solntceva et al., 2021). So
far, only the last-line treatment for multidrug-resistant Gram-
negative bacteria, i.e., polymyxin, has been investigated without a
ML approach. Lipidomics combined to artificial intelligence may
be a new venue to explore AMR problem cases that proteomics
could not solve. However, there is still a stony way before the
long-term implementation of ML in routine laboratories for
AMR screening. Nevertheless, a single protein mass spectra may
be used in the future as an utmost “One-fits all” diagnostics tool
for: species identification, AMR screening, and genetic diversity
(Feucherolles et al., 2021).

Several limitations of our study are offered for consideration.
First, the employed dataset might be considered as relatively
small to train an ML algorithm properly. Indeed, lack of
data could lead a model to overfit or underfit the data.
Several models (e.g., gentamycin or kanamycin) were trained
on heavy unbalanced classes, which is not recommended
to build a robust and reliable tool for AMR predictions.
Therefore, extra isolates resistant to these antimicrobials should
be added to the current dataset. Additionally, only three ML
algorithms, i.e., RF, LR, and NB, were tested. The support vector
machine algorithm was not included in the study, while it is
also a widely used algorithm for AMR predictions. Another
limitation of the study is the use of disk-diffusion antibiograms,
which—while being a valid and highly reproducible method
to characterize an isolate as resistant or susceptible—do not
allow quantifying the minimal inhibitory concentration (MIC)
of a given antibiotic. Additionally, it would have been possible
to test for further antibiotics, e.g., carbapenems. The final
limitation of this study could be the fact that the RF model,
used for putative biomarkers identification, was trained on the
whole dataset. Indeed, under these settings, there is no proof
that these biomarkers could work in a given analysis. For
such investigations, the model should have been trained on a

split dataset, including a training and test set, with a 70/30%
ratio, respectively.

CONCLUSION

On the one hand, MALDI-TOF MS in combination with
supervised ML may be a powerful tool for the fast screening of
foodborne pathogens such as C. coli and C. jejuni, which might be
susceptible, ciprofloxacin, or tetracycline resistant. On the other
hand, other antimicrobials tested, i.e., ampicillin, gentamycin,
kanamycin, streptomycin, and erythromycin, did not provide
good results to reach a conclusion for its application under
clinical settings, due to unbalance datasets. Nonetheless, this
work could serve as a proof-of-concept, and future research
should include other important foodborne pathogens such as
Salmonella spp. Our approach has the potential to obtain the
following information from one single protein spectrum analysis:
species identification, antimicrobial susceptibility patterns, and
genetic diversity.
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