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A B S T R A C T

In this work, we present a simple and flexible model for Plasmodium vivax dynamics which can be easily
combined with routinely collected data on local and imported case counts to quantify transmission intensity
and simulate control strategies. This model extends the model from White et al. (2016) by including case
management interventions targeting liver-stage or blood-stage parasites, as well as imported infections. The
endemic steady state of the model is used to derive a relationship between the observed incidence and the
transmission rate in order to calculate reproduction numbers and simulate intervention scenarios. To illustrate
its potential applications, the model is used to calculate local reproduction numbers in Panama and identify
areas of sustained malaria transmission that should be targeted by control interventions.
1. Introduction

Long considered as a benign malaria parasite, Plasmodium vivax is
now increasingly recognized as an important public health issue, due
to its potential severe clinical outcomes, its large health and socio-
economic burden and the challenges associated with its elimination and
control [1–3]. In 2017, Battle et al. [4] estimated about 14 million
cases worldwide, and more than 3 billion people living within the
limits of the parasite transmission across the globe. A distinguishing
characteristic of P. vivax is its capacity to remain dormant and un-
detected in the liver of the infected host for long periods of time.
The parasite reservoir in the liver stage is still difficult to measure
and quantify (even though there are recent advances [5]), but its
reactivation, i.e. relapse infections, are believed to constitute a large
fraction of reported incident infections [6]. This mechanism, along with
other specific characteristics such as the lower density infections that
are harder to detect, increases parasite robustness in a wide range of en-
vironments [2,7] and thus complicates elimination efforts. As a result,
while P. falciparum elimination is well advanced in Central America
and the Greater Mekong Subregion, P. vivax incidence reductions have
been slower. As such, drugs to clear liver stage in addition to blood
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stage parasites are required to avoid reinfections and potentially reduce
transmission, though the drugs currently existing to clear liver-stage
parasites, 8-aminoquinolines such as primaquine (PQ) and tafenoquine
(TQ), are difficult to implement [2].

In this context, mathematical modelling can prove useful to help
disentangle the effects of these P. vivax specificities and explore the
potential effectiveness of different control interventions [2]. Several
population-level mechanistic P. vivax models were introduced over the
last decades to explicitly include the relapse mechanism [7–14] and
they have been used to explore the effect of interventions such as
treatment, bednet distributions or mass drug administration [6,10–15].
Among the models that include treatment, some focus exclusively on
liver stage treatment [12] while in others the blood stage treatment
is also added, either as a reduced clearance rate assumed for all
individuals [13] or as a specific disease state [14]. Some P. vivax
models also simulate the effect of the importation of infections from one
area to another, by explicitly representing the movement of individuals
between regions or countries [14,16].
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Furthermore, mathematical models are useful tools to support the
trategic planning of country, district or local malaria control mea-
ures [17]. In particular, mathematical models can be used to simulate
he effect of differing intervention scenarios, such as changes in case
anagement or vector control practices, and hence explore where

nd under what conditions these interventions would be most impact-
ul [15,18]. For these applications, it is necessary to first calibrate the
odel to the transmission intensity level of each considered setting,

nd this step can prove challenging for complex models. In addition,
mported cases should be taken into account during this calibration step
n order to distinguish the areas with sustained transmission from those
here transmission is ‘‘importation-driven’’ [19] i.e. vulnerable areas
here the disease would disappear in the absence of importation.

While many models for P. vivax already exist, they are not readily
perationalized for being used routinely at country level, either because
hey do not include all these features, or because their calibration is
ot straightforward to implement. Therefore, in this work, we present a
imple and flexible P. vivax model that makes use of routinely collected
ocal scale case count, intervention and importation data to quantify
ransmission intensity and simulate control strategies. This model is
erived from White et al. [7] and extended to include case management
nterventions and imported infections. It has the potential to include
ector control as well in future applications. The endemic steady state
f the model is used to derive a relationship between the observed
ncidence and the transmission rate, and thus to calculate reproduction
umbers and simulate intervention scenarios based on routine data at
ocal scales.

The remaining sections are structured as follows: In Section 2, the P.
vivax transmission model is presented and the associated reproduction
numbers are derived. The methodology to calculate the transmission
rate from incidence and importation data is presented in Section 3. A
sensitivity analysis to evaluate the effect of the parameters on model
outcomes (reproduction numbers and proportion of relapses) in pre-
sented in Section 4. To evaluate the model’s coherency with previous
published literature, in Section 5, the effect sizes for an intervention
change predicted by the model are compared to the ones from [15].
Section 6 presents an application of the model: the local level transmis-
sion potential of P. vivax in 2018 in Panama is assessed using malaria
case reports. Finally, Section 7 discusses the results and concludes.

2. A compartmental model for P. vivax dynamics accounting for
case management and importation

2.1. Model description

P. vivax dynamics are represented within a deterministic compart-
mental model derived from White et al. [7] (tropical model version).
The original model was simplified by removing the equations represent-
ing the vector dynamics, thus this model approximates the transmission
process with inter-human transmission similar to classical SIS models.
The model is described by a system of ordinary differential equations
schematically presented in Fig. 1, where IL is the proportion of in-
fectious individuals with liver and blood stage parasites, I0 is the
proportion of infectious individuals with only blood stage parasites,
SL the proportion of susceptibles with liver stage parasites and S0 the
proportion of fully susceptible individuals, such that IL+I0+SL+S0 = 1.

is the transmission rate, r is the blood-stage clearance rate, 
L is the
iver-stage clearance rate and f is the relapse frequency (all parameters
nd state variables are presented in Table 1).

The model from White et al. [7] is extended in two ways. Firstly,
mportation is included as a rate �, such that individuals can become
nfectious from a source other than the pool of infectious individuals in
he study population, most likely because they are infected in another
rea although the explicit movement of people is not modelled.

Secondly, case management is included as a proportion of infections
hat would be cured before entering the infected compartments, and
2

Fig. 1. Schematic representation of the model, derived from White et al. [7]. The state
variables S0, SL, I0 and IL are defined in the text and in Table 1. Red indicates infec-
ious individuals with blood-stage infection, yellow indicates non-infectious individuals
ith latent liver-stage parasites and blue indicates susceptible malaria-free individuals.

herefore these infections would not contribute to parasite transmis-
ion. The treatment success probability accounts for the blood and
iver stages and is therefore described by two parameters. The effective
reatment rate � represents the proportion of infections that would
eceive timely treatment and cure their blood stage parasites. The prob-
bility of radical cure � represents the proportion of treated individuals
hose liver-stage parasites would be cleared. Therefore, among the
ew infections, a proportion �� would be cured from both their blood
nd liver stage parasites, a proportion �(1 − �) would be cured from
heir blood stage infection only, and a proportion 1 − � would not be
ffectively treated. Additionally, it is assumed that individuals with a
lood stage-only infection that are re-infected (and therefore develop
n additional liver stage infection) do not seek care for the additional
nfection and therefore are not treated. The model is described by the
ollowing set of ordinary differential equations:
dIL
dt

= (1 − �)(�(IL + I0) + �)(S0 + SL)

+ (�(IL + I0) + �)I0 + (1 − �)fSL − 
LIL − rIL (1)
dI0
dt

= −(�(IL + I0) + �)I0 + 
LIL − rI0 (2)
dSL
dt

= −(1 − �(1 − �))(�(IL + I0) + � + f )SL

+ �(1 − �)(�(I0 + IL) + �)S0 − 
LSL + rIL (3)
dS0
dt

= −(1 − ��)(�(IL + I0) + �)S0 + (�(I0 + IL) + �)��SL

+ ��fSL + 
LSL + rI0 (4)

Two special cases can be highlighted. When � = 0, the model ignores
importation and reflects exclusively local transmission dynamics. The
case where � = 0 represents the transmission dynamics in the absence
of treatment.

The model can easily be extended to include vector control as
indicated in the concluding Section 7.

2.2. Reproduction numbers calculation

We define the reproduction numbers in the absence of importation
(� = 0) to reflect the intrinsic transmission potential of a given setting.
The basic reproduction number (R0) is defined in the absence of control
interventions (� = 0) and the reproduction number under control (Rc)
is defined in the presence of control interventions, i.e. the presence of

treatment in the context of this model. The reproduction number in
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Table 1
Description of state variables and model parameters.
Notation Description Unit Definition range

State variables
IL Infectious individuals with liver and blood stage parasites dimensionless [0,1]
I0 Infectious individuals with blood stage parasites only dimensionless [0,1]
SL Susceptibles individuals with liver stage parasites dimensionless [0,1]
S0 Fully susceptible individuals dimensionless [0,1]

Parameters
� Transmission rate time−1 g 0
r Blood stage clearance rate r time−1 g 0

L Liver stage clearance rate time−1 g 0
f Relapse frequency time−1 g 0
� Importation rate time−1 g 0
� Proportion of effective care dimensionless [0,1]
� Proportion of radical cure dimensionless [0,1]
� Observation rate dimensionless [0,1]
I

0

0

S

presence of control interventions is calculated using the next generation
matrix method [20] with:

F =

‘

r

r

r

r

p

(1 − �)�(IL + I0)S0
0

�(1 − �)�(IL + I0)S0
0

a

s

s

s

s

q

=

‘

r

r

r

r

p

−(1 − �)�(IL + I0)SL − �(IL + I0)I0 − (1 − �)fSL + 
LIL + rIL
�(IL + I0)I0 − 
LIL + rI0

(1 − �(1 − �))�(IL + I0)SL + (1 − �(1 − �))fSL + 
LSL − rIL
(1 − ��)�(IL + I0)S0 − ���(I0 + IL)SL − ��fSL − 
LSL − rI0
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The Jacobians in the disease-free equilibrium are:

F (0; 0; 0; 1) =

‘

r

r

r

r

p

�(1 − �) �(1 − �) 0 0
0 0 0 0

��(1 − �) ��(1 − �) 0 0
0 0 0 0

a

s

s

s

s

q

DV(0; 0; 0; 1) =

‘

r

r

r

r

p


L + r 0 −(1 − �)f 0
−
L r 0 0
−r 0 (1 − �(1 − �))f + 
L 0

(1 − ��)� (1 − ��)� − r −��f − 
L 0

a
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s

s
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q

And keeping only infected states we obtain:

=
‘

r

r

p

�(1 − �) �(1 − �) 0
0 0 0

��(1 − �) ��(1 − �) 0

a

s

s

q

=
‘

r

r

p


L + r 0 −(1 − �)f
−
L r 0
−r 0 (1 − �(1 − �))f + 
L

a

s

s

q

The largest eigenvalue of FV −1 is RC . Using SymPy for symbolic
alculation [21], we obtain:

C =
�(1 − �)(
L + r)(f + 
L)

r
�


L(f + 
L + r) + �f (�(r + 
L) − 
L)
� (5)

Thus, the basic reproduction number is (setting � = 0):

R0 =
�(
L + f )(
L + r)
r
L(f + 
L + r)

= �
r
+

�f

L(f + 
L + r)

(6)

3. Calculation of the model transmission rate using data on inci-
dence

This section indicates how to compute the transmission parameter
� from the observed incidence, using the equilibrium solution of the
ODE model. The calculation accounts for the presence of both imported
cases and ongoing control interventions and the � estimate can then be
plugged into (5) and (6) to calculate setting specific Rc and R0. With
this methodology, the reproduction numbers reflect the transmission
potential of a given setting in the absence of importation if interven-
tions are kept at their current level (Rc) or if interventions are removed
(R ).
0

3

3.1. Calculation of the transmission rate

We define I ∶= IL + I0 the proportion of blood-stage infections. Let
∗
L, I∗0 , S∗

L, S∗
0 and I∗ be the equilibrium proportions.

At the equilibrium, we have the equations

=
dIL
dt

= (1 − �)(�I∗ + �)(1 − I∗) + (�I∗ + �)I∗0

+ (1 − �)fS∗
L − 
LI∗L − rI∗L (7)

0 =
dI0
dt

= −(�I∗ + �)I∗0 + 
LI∗L − rI∗0 (8)

0 =
dSL
dt

= −(1 − �(1 − �))(�I∗ + � + f )S∗
L + �(1 − �)(�I∗ + �)S∗

0

− 
LS
∗
L + rI∗L (9)

=
dS0
dt

= −(1 − ��)(�I∗ + �)S∗
0 + (�I∗ + �)��S∗

L + ��fS∗
L

+ 
LS
∗
L + rI∗0 (10)

By adding Eqs. (7) and (8) we obtain the additional equation:

0 = dI
dt

= (1 − �)(�I∗ + �)(1 − I∗) + (1 − �)fS∗
L − rI∗ (11)

We define the observed incidence h ∶= �[(�I∗ + �)(1 − I∗) + fS∗
L] as

the rate of observed newly arising blood-stage infections before treat-
ment, where � is an observation rate. From the equilibrium equation for
I , we obtain h = r�I∗

1−� , and therefore I∗ can be derived from observed
quantities and model parameters as:

I∗ =
h(1 − �)
�r

(12)

As r > 0 is necessary for the denominator to not be zero and because
this condition is verified in all biologically plausible cases, we will
continue with this assumption throughout the rest of the paper. If on
the other hand h = 0 or � = 1, we have I∗ = 0. Being in the disease-
free equilibrium makes it impossible to derive �. Because of this, we
will also make the two further assumptions that h > 0 and � < 1.

The proportion of imported cases p is defined such that ph ∶= ��(1−
I∗) represents the imported cases and (1 − p)h = �[�I∗(1 − I∗) + fS∗

L]
the locally acquired cases. Therefore, � can be derived from observed
quantities and model parameters as:

� =
ph

�(1 − I∗)
=

phr
r� − h(1 − �)

(13)

We then rely on the equilibrium relationships to calculate � based
on observed incidence h and the other model parameters. Solving (9)
for S∗

L by remembering that S∗
0 = 1 − I∗ − S∗

L gives:

∗
L =

rI∗L + �(1 − �)(�I∗ + �)(1 − I∗)
�I∗ + � + 
L + (1 − �(1 − �))f

(14)

(if the denominator is 0 we necessarily have either �I∗ = � = f = 0,
which in turn yields h = 0, or � = 1, both of which we assumed not to
be the case).
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Likewise, we can solve Eq. (8) for I∗L by remembering that I∗0 =
I∗ − I∗L:

I∗L = I∗[�I∗ + � + r]
�I∗ + � + 
L + r (15)

(the denominator is not zero as we assumed r > 0).
Plugging (15) into (14) yields:

∗
L =

�(1 − �)(�I∗ + �)(1 − I∗)(�I∗ + � + 
L + r) + rI∗(�I∗ + � + r)
�

�I∗ + � + 
L + (1 − �(1 − �))f
��

�I∗ + � + 
L + r
�

Now, plugging this into (11), multiplying by the denominator and
dividing by (1 − �) we obtain:

0 =
�

�I∗ + � + 
L + (1 − �(1 − �))f
��

�I∗ + � + 
L + r
�

×
�

(�I∗ + �)(1 − I∗) − r
1 − �

I∗
�

+ f�(1 − �)(�I∗ + �)(1 − I∗)(�I∗ + � + 
L + r) + frI∗(�I∗ + � + r)

(16)

earranging the terms by powers of �, we get the equation:

= �3I∗3(1 − I∗)

+ �2
�

I∗2(1 − I∗)(3� + 2
L + r + f ) − I∗3 r
1 − �

�

+ �
4

I∗(1 − I∗)[(� + 
L + f )(� + 
L + r) + �(2� + 2
L + r + f )]

− I∗2 r
1 − �

(2� + 2
L + r + ��f )
5

+ (� + 
L + r)
�

�(1 − I∗)(� + 
L + f ) − rI∗

1 − �
(� + 
L + (1 − �(1 − �))f )

�

+ fr(� + r)I∗ (17)

As long as the assumptions r > 0, h > 0 and � < 1 are met, multi-
lication by the denominator of S∗

L is an equivalent transformation, so
ny non-negative root of this polynomial is a solution of the system of
quilibrium equations.

Even though there is an explicit formula for the roots of a polyno-
ial of degree 3, the complexity of the coefficients makes it intractable.
evertheless, we can analyse it for a qualitative result:

heorem 1. If h > 0, r > 0 and � < 1, the function

(�) =�3I∗3(1 − I∗)

+ �2
�

I∗2(1 − I∗)(3� + 2
L + r + f ) − I∗3 r
1 − �

�

+ �
4

I∗(1 − I∗)[(� + 
L + f )(� + 
L + r) + �(2� + 2
L + r + f )]

− I∗2 r
1 − �

(2� + 2
L + r + ��f )
5

+ (� + 
L + r)
�

�(1 − I∗)(� + 
L + f ) − rI∗

1 − �
(� + 
L + (1 − �(1 − �))f )

�

+ fr(� + r)I∗

has at most one positive real root.
It has two non-negative real roots (i.e. one of them is 0) only if �� =


L = � = 0 (corresponding to an equilibrium of relapses and recoveries
without liver-stage clearance).

The proof is given in A. This result makes it possible to calculate nu-
merically the unique non-negative solution for given parameter values
(except if �� = 
L = � = 0).

3.2. Validity conditions

Theorem 1 guarantees that there cannot be more than one positive
root, however some cases arise where there is no positive solution for
�. To illustrate these situations, we can note from the definition of h
that:
h = �I∗(1 − I∗) + �(1 − I∗) + fS∗

� L

4

h
�
= �I∗(1 − I∗) + ph

�
+ fS∗

L

�I∗(1 − I∗) = h
�
− ph

�
− fS∗

L

In realistic situations which are compatible with the endemic equi-
librium, we have 0 < I∗ < 1, so we can deduce that if � > 0, then

h
�
> ph

�
+ fS∗

L (18)

Because local vector-borne transmission cannot be negative (no
iological meaning), the total of new infections due to relapses (fS∗

L)
and importation (p h� ) should not exceed the total number of new
infections ( h� ). As S∗

L depends on �, Eq. (18) does not provide a criterion
for the existence of a positive solution. The criterion on the parameters
�, �, 
L, �, r and f as well as I∗ is presented in Theorem 2.

Theorem 2. If h > 0, r > 0 and � < 1, the function

(�) = �3I∗3(1 − I∗)

+ �2
�

I∗2(1 − I∗)(3� + 2
L + r + f ) − I∗3 r
1 − �

�

+ �
4

I∗(1 − I∗)[(� + 
L + f )(� + 
L + r) + �(2� + 2
L + r + f )]

− I∗2 r
1 − �

(2� + 2
L + r + ��f )
5

+ (� + 
L + r)
�

�(1 − I∗)(� + 
L + f ) − rI∗

1 − �
(� + 
L + (1 − �(1 − �))f )

�

+ fr(� + r)I∗

as a non-negative root if and only if the constant term is non-positive, i.e.

� + 
L + r)
0

�(1 − I∗)(� + 
L + f ) − rI∗

1 − �
(� + 
L + (1 − �(1 − �))f )

1

+ fr(� + r)I∗ f 0: (19)

It has a strictly positive root if and only if one of the following conditions is
met:

1. The constant term is strictly negative.
2. The constant term is 0 and the coefficient of the linear term is strictly
negative, i.e.

I∗(1 − I∗)[(� + 
L + f )(� + 
L + r) + �(2� + 2
L + r + f )]

− I∗2 r
1 − �

(2� + 2
L + r + ��f ) < 0:

The proof is given in Appendix A. As an example, the parameter
space for which � is real positive is explored numerically in Fig. 2.
Overall, � is well defined when the proportion of imports does not
exceed a certain threshold that depends strongly on case management
parameters, and to a lesser extent on incidence.

Additionally, we need I∗ < 1 and therefore, h < �r
1−� , leading

to an upper bound on the feasible incidence space which is rarely
reached in practical applications. In any case, it can be noted that the
simplified representation of P. vivax transmission in this model is not
suitable for high incidence settings, where immunity is expected to play
a large role in the disease dynamics and should be explicitly modelled.
Settings with important immunity levels could be characterized by an
entomological inoculation rate over 10 and hence a parasite prevalence
rate (measured by microscopy) approximately superior to 5% following
results from [14].

4. Effect of the parameters on the model outcomes

In this section, we explore the sensitivity of the model outcomes
depending on the inputs parameters. Because the model is intended to
be used for an unknown transmission rate � but with known incidence
and importation levels, the analysis is conducted under three observed
incidence scenarios (5, 50 and 100 cases per 1000 person–year) and
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Fig. 2. Calculated � values for varying incidence and importation levels, under 9 case management scenarios (� and �). Grey areas indicate that there is no real positive solution
for �. Other parameters are fixed to the following values from [7] (f = 1∕72, 
L = 1∕223, r = 1∕60) and � = 1.
Table 2
Parameter ranges considered in the LHS scheme for sensitivity analysis.
Parameter Range Reference

Biological parameters
Blood stage clearance rate r (day−1) 1/85–1/35 centered around 1/60 [7]
Liver stage clearance rate 
L (day−1) 1/500–1/200 covering median values from [7]
Relapse frequency f (day−1) 1/175–1/40 covering median values from [7]

Case management parameters
Proportion of notified cases � 0.1–0.8 assumed
Proportion of effective care � 0.1–0.8 assumed
Proportion of radical cure � 0–1 .
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two importation scenarios (0% and 10% of the new cases including
both new infections and relapses). The model outcomes considered
are the reproduction numbers (R0 and Rc) and the proportion of
ew infections due to relapses (defined as �fS∗

L
h ). Therefore, for each

parameter set and scenario, the associated value for � is calculated and
sed in the formulae given in (6), (5) and (14). With this approach, we
xplore how from the same observed data different model outcomes can
e inferred, based on various assumptions for input parameter values.

The six model parameters (r, 
L, f , �, � and �) are sampled using a
aximin latin hypercube sampling scheme of dimension 10,000 (from
hs R package [22]), with uniform ranges as indicated in Table 2. We
eglect the dependence between the parameters governing the liver
tage dynamics (
L and f ) [7,23] and sample them independently to
xplore the effect of all their potential combinations on the outcomes.

.1. Uncertainty analysis

The overall variation in the three outcome quantities is presented
n Fig. 3A. R0 values display large variability, with most values con-
entrated between 1 and 5, but ranging to more than 20 for some
arameter sets. R0 is lower when the importation rate is higher, but
or the considered incidence and importation scenarios, the variation
cross parameter values within a given scenario is larger than the
ariation between these scenarios.

On the contrary, the importation level strongly influences the Rc
alues. In the absence of importation, due to the model assumption of
ndemic equilibrium, Rc values must be above 1. Consequently, the
btained values are very close to 1 and increase with increasing inci-
ence. When importation is assumed to be 10%, Rc values are largely
ariable between 0 and 1, with some values above 1 and most values
lose to 0.7. As expected, accounting for importation influences the

ualitative interpretation of the reproduction number under control: t

5

he same incidence level corresponds to a higher local risk if it is
ntirely attributed to local transmission rather than if it is ignited by
mportation.

The proportion of relapses among new infections varies widely
cross parameters values, with a median close to 60%, and similar
anges of values are observed for the three incidence levels and the
wo importation levels.

.2. Sensitivity analysis

The relative contribution of the parameters to the variability ob-
erved is explored by variance decomposition [24], calculating Sobol
ndices with the soboljansen function of the sensitivity R package [25],
hich is based on [26,27]. The first order and total effects are presented

n Fig. 3B. Overall, the parameters related to case management and
eporting are more influential on the reproduction numbers and relapse
roportion than the biological parameters governing the clearance and
elapse rates. The shape of the association of the case management
arameters with the three outcomes is displayed in Fig. 3C.

The effective coverage parameters (� and �) are the most influential
n R0 (Sobol indices above 0.6 and 0.2 respectively) and they are both
ositively associated with the outcome regardless of the importation
evel. Although these parameters do not enter in Eq. (6), their val-
es influence the estimated transmission rate � for a given observed
ncidence. We can interpret this association in the following way:
hen assuming high intensity of effective control, the only possibility

o retrieve the observed incidence is with a higher intrinsic risk of
ransmission. And inversely, for the same observed incidence, a low
ntensity of control will suggest that the intrinsic risk is also low.

On the contrary, the effect of the model parameters on Rc differs
epending on the level of importation. In the absence of importation,
he most influential parameter is the observation rate � (negative



C. Champagne, M. Gerhards, J. Lana et al. Mathematical Biosciences 343 (2022) 108750
Fig. 3. Sensitivity of R0, Rc and the proportion of relapses to the model parameters for differing incidence and importation scenarios. A. Distribution of the outcome values given
the variability in parameters. B. Sobol indices (first order and total effects) quantifying the relative contribution of the input parameters to the variance in each outcome. Similar
findings were observed for the 3 considered incidence levels, and only the scenario with incidence = 50 per 1000 PY is displayed. C. Relationship between the case management
parameters and the three outcome variables. The simulated parameter ranges were subdivided into 50 bins, and the median, minimum and maximum within each bin are displayed
(solid line and shaded area). Similar findings were observed for the 3 considered incidence levels, and only the scenario with incidence = 50 per 1000 PY is displayed.
e
a
c

association): a higher observation rate indicates a lower number of
unreported infections for the same number of reported infections and
therefore a lower overall transmission risk. When importation is as-
sumed to be 10%, the most influential parameter is the probability
of radical cure � (positive association). Higher values for � lead to
higher values of the transmission rate � that overcompensate the direct
negative effect of � on Rc .

Concerning the proportion of relapses, unsuprisingly, the probabil-
ity of radical cure � is the most influential parameter: improving the
treatment of liver-stage parasite reduces the proportion of relapses.
This effect is very similar for the three incidence levels and the two
importation levels considered.

5. Comparison of intervention effect sizes with those by [15]

One intended use of this model is to quantify the impact of anti-
malarial interventions such as changes in case management. In the
absence of a dataset with enough details for a formal validation,
6

the model is confronted to a more detailed individual-based P. vivax
transmission model [14,15]. Because of their very different structure
and levels of complexity, this individual-based model and the com-
partmental model represented by Eqs. (1)–(4) do not share the same
scope of applications and are not interchangeable; however, it is im-
portant to ensure that they provide coherent results with one another.
The objective is therefore to evaluate if the simple model presented
here predicts intervention effect sizes of similar magnitude as those
produced by Nekkab et al. [15] when increasing the proportion of
radical cure by introducing tafenoquine in the treatment pathway.
The parameters for the main scenario under the three incidence levels
detailed in Nekkab et al. [15] were extracted and incorporated in
the present model, as indicated in Table 3. For each setting, we first
calculated the transmission parameter � from the observed incidence
under the primaquine scenario (PQ, using � = �PQ). The associated
quilibrium values for the state variables are also derived. These values
re then used to simulate another scenario where the rate of radical
ure was increased from �PQ to �TQ. The observed incidence after
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