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Abstract: The importance of the stable isotopes in tree rings for the study of the climate variations
caused by volcanic eruptions is still unclear. We studied δ18O, δD, δ13C stable isotopes of larch and
cembran pine cellulose around four major eruptions with annual resolution, along with a superposed
epoch analysis of 34 eruptions with 5-year resolution. Initial analysis of the tropical Tambora
(1815 CE) and Samalas (1257 CE) eruptions showed a post-eruption decrease in δ18O values attributed
to post-volcanic cooling and increased summer precipitation in Southern Europe, as documented
by observations and climate simulations. The post-volcanic cooling was captured by the δD of
speleothem fluid inclusion. The δ18O decrease was also observed in the analysis of 34 major tropical
eruptions over the last 2000 years. In contrast, the eruptions of c. 750, 756, and 764 CE attributed
to Icelandic volcanoes left no significant responses in the cellulose isotopes. Further analysis of all
major Icelandic eruptions in the last 2000 years showed no consistent isotopic fingerprints, with
the exception of lower post-volcanic δ13C values in larch. In summary, the δ18O values of cellulose
can provide relevant information on climatic and hydroclimatic variations following major tropical
volcanic eruptions, even when using the 5-year resolution wood samples of the Alpine Tree-Ring
Isotope Record database.

Keywords: volcanic eruption; tree rings; stable isotope; fluid inclusion; Alps; climate

1. Introduction

Major volcanic eruptions are important drivers of short-term climate variability [1].
Such eruptions can cause surface cooling on regional and global scales through stratospheric
injection of aerosols and fine ash particles [2]. The solid ash particles have a residence time
of a few months, but the volcanic gases—especially SO2 and H2S—produce much more
significant effects, as they reach global coverage in the troposphere and form sulphuric
acid (H2SO4) aerosols with a residence time of 1–3 years [1]. Aerosols backscatter incoming
solar radiation, resulting in net cooling at the surface [1]. The climatic impacts are affected
by the geographical location and other source parameters of the eruptions. Those at
low latitudes often produce global aerosol dispersion, whereas those in high-latitude
areas, such as Iceland, typically disperse aerosols only in the hemisphere where they are
located [3,4]. The global climatic impacts of some volcanic eruptions have left evident
historical and environmental records, including the explosive eruptions of Tambora in
1815 CE [5] and Krakatau in 1883 CE [6] in Indonesia, as well as the long-lasting fissure
eruption of Laki in 1783/84 [7,8] in Iceland. These eruptions had effects on the global and
regional temperatures, and they could also have effects on the hydrological cycle, changing
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the amounts of summer precipitation [9,10]. The post-eruption spring and summer cooling
is a homogeneous response that occurs both regionally and globally [11–14], while the
hydroclimatic response is much more spatially heterogeneous [15].

Tree rings are among the few paleoclimate proxies that provide continuous annual res-
olution [16] with high dating accuracy [17]. This makes them very important for dating and
studying past eruptions [2,18]. Trees are living organisms, and environmental changes affect
their metabolism, producing changes that are recorded in the biomass growth rate, which is
detectable in tree-ring parameters [16]. Tree-ring width (TRW) has mainly been used as indicator
of plant growth, which depends on various limiting factors—predominantly on temperature
and water availability [16]. Therefore, TRW has been used to date some eruptions [19–21] and
to study their climatic impact [22–24]. However, TRW can overestimate the duration of volcanic
cooling, since the strong climatic variation caused by the eruptions can have a long-lasting effect
on the tree growth [25,26]. This does not occur for another tree-ring proxy—the maximum
latewood density (MXD), which exhibits a minor memory effect [27]. Stable isotopes of the tree
rings’ cellulose (δ13C, δ18O, and δD) have been used to complement the climatic information
gained from TRW [28], but only a few studies have examined how they respond to volcanic
eruptions, e.g., [24,29–31]. These studies indicated variability of the responses depending on the
isotope, tree type, and location. For example, eco-physiological responses of δ13C and δ18O in
European trees were reported following eruptions of volcanoes located at mid-latitudes [32] or
at high latitudes [30]. Other volcanic eruptions imprinted signals in the δ13C and δ18O values of
trees grown at high latitudes or high altitudes [31], as well as those of oaks in Central Europe [33].
The isotope values of Southern European oaks were sensitive to summer drought and showed
a decade-long dry trend after 12 Icelandic eruptions [33]. However, they did not record tropical
eruptions [33], while the TRWs of pines from different sites in the Northern Hemisphere were
temperature-sensitive and showed post-eruption cold signals [34]. A multi-tree-ring study on
volcanic eruptions showed a site-specific climate influence on Siberian larch, but with a general
decrease in carbon and oxygen isotope ratios in the first five years after the eruption, along with
a long-lasting sequence of small tree-ring width in the post-eruption period, reflecting changes
in temperature and sunshine duration [31].

The conifers growing at high altitudes in the Alps are among the best trees to study to
analyse the climatic response following volcanic eruptions. They are particularly sensitive to
summer temperature, precipitation, and sunshine duration, and their cellulose δ18O values have
been shown to be influenced by large-scale synoptic circulation, with a strong common signal of
different sites and species [35]. Moreover, their δ13C values reflect local climatic conditions with
species-specific signals [36,37] and can be linked to temperature and precipitation [35,38,39]. In
contrast, their δD values have not been widely used for climate interpretation, as they contain
strong biological signals that have not been fully elucidated [40,41].

Additionally, the hydrogen isotope composition of fluid inclusion of speleothems (hereafter
δDfi) records past climate variability—particularly temperature variability [42]. It integrates
climate information over the whole year, including the cold season, complementing the tree-ring
proxies that are sensitive to the warm season. It has already been suggested to be sensitive
to the climatic effects of volcanic eruptions [42]. However, it is characterised by a greater age
uncertainty compared to tree rings, which achieve single-year precision [42,43].

The present work discusses variability of stable isotopes in the cellulose of the tree-ring
samples of the past 2000 years in the Alpine Holocene Triple Tree-Ring Isotope Record project
(AHTTRIR) [44]. It aims to verify how they were affected by the climate fluctuations following
major volcanic eruptions over the last two millennia, and to compare them to deuterium in
the fluid inclusion of speleothems to better understand the short-term climatic signals.

Initially, we investigated single eruption events, studying the periods around major
eruptions of the tropics (e.g., 1809 and Tambora 1815 CE) and others attributed to Iceland
(i.e., in 750, 756, and 764 CE, with an absolute age uncertainty of ±1 year) at annual
time resolution, along with other major eruptions (e.g., Samalas 1257 or Laki 1783) at
5-year time resolution. Then, we investigated 34 major eruptions of the last 2000 years
via a superposed epoch analysis approach [2] to detect a general volcanic fingerprint on
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the cellulose isotopes. Additionally, the stable isotope data were compared with other
published tree-ring proxies—tree-ring width (TRW) and maximum density (MXD)—and
with an independent proxy, i.e., the paleotemperatures based on the hydrogen isotope
composition of speleothem fluid inclusion water from Milandre Cave in Switzerland.

2. Materials and Methods
2.1. Subfossil Wood Samples and Sampling Sites in the Alps

The wood sections were made available by the Department of Geography of the Uni-
versity of Innsbruck, where the Eastern Alpine Conifer Chronology (EACC) was compiled
based on a calendar-dated tree-ring width series [43]. The samples were from deciduous
larch (Larix decidua Mill.) and the evergreen cembran pine (Pinus cembra L.). They were
collected from treeline sites in different parts of the European Alps covering a southwest–
northeast transect with an elevation range between 1930 and 2400 m (Figure 1). The wood
samples continuously cover the past 9000 years, and only a few of them contain tree rings
that grew after the Industrial Revolution, i.e., after 1850 CE. The tree-ring width of all sam-
ples was measured with a precision of ±0.001 mm, as described in [43]. Dated tree samples
with relatively wide rings were selected in order to collect enough material for the isotope
measurements. As described in previous studies [45,46] and in the publicly available
database AHTTRIR [44], all of the wood samples of the database have a 5-year resolution,
and they were prepared and analysed for stable oxygen, carbon, and hydrogen isotope
ratios. The same procedure was used to resolve annual rings of four trees—two larches
and two cembran pines—by precisely cutting annual rings for the time intervals between
1800 and 1825 CE and between 720 and 780 CE.
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Figure 1. Sampling locations of the analysed tree and speleothem samples: Green symbols corre-
spond to sites where cembran pines were collected, red symbols indicate larch samples, and blue 
symbols denote where samples of both species were collected. Dots indicate the sites of isotope 
samples with 5-year resolution, while triangles represent the sites of annually resolved isotope se-
ries. The black rhomboid corresponds to Milandre Cave, from which the speleothem record origi-
nates. Left panel: sampling sites of the trees covering the Tambora eruption. Central panel: location 
of the trees covering the mid-8th-century Icelandic eruptions; the site MAZE provides samples with 

Figure 1. Sampling locations of the analysed tree and speleothem samples: Green symbols corre-
spond to sites where cembran pines were collected, red symbols indicate larch samples, and blue
symbols denote where samples of both species were collected. Dots indicate the sites of isotope
samples with 5-year resolution, while triangles represent the sites of annually resolved isotope series.
The black rhomboid corresponds to Milandre Cave, from which the speleothem record originates.
Left panel: sampling sites of the trees covering the Tambora eruption. Central panel: location of the
trees covering the mid-8th-century Icelandic eruptions; the site MAZE provides samples with both
resolutions. Right panel: all sites of the Eastern Alpine Conifer Chronology (EACC) that provided
material for the complete tree-ring isotope dataset: green = cembran pine, red = larch samples, and
blue = both species.

2.2. Stable Isotope Analysis and Carbon Isotope Correction

The cellulose extraction procedure, the determination of the cellulose content [46],
and the δ13C, δD, and δ18O isotope analysis [47] have been described previously. Briefly,
we used continuous-flow isotope-ratio mass spectrometry (Isoprime 100) coupled with a
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pyrolysis unit (HEKAtech GmbH, Wegberg, Germany) similar to the Thermo Scientific high-
temperature conversion elemental analyser (TC/EA; for technical details see [47]). This
approach was extended to measure the exchangeable hydrogen of alpha-cellulose using
the online equilibration method [47,48]. The results are reported in parts per thousand (‰)
relative to the Vienna Pee Dee Belemnite (VPDB) for carbon and to the Vienna Standard
Mean Ocean Water (VSMOW) for hydrogen and oxygen [49]. The precision of the measure-
ment was ±3.0 ‰ for hydrogen, ±0.3 ‰ for oxygen, and ±0.15 ‰ for carbon [47]. Time
series of the isotope results are given in Figure 2. The “Alpine Holocene Triple Tree Ring
Isotope Record” (AHTTRIR) database used in this work is now publicly accessible [44].

Fossil fuel burning and land-use changes in the Industrial Revolution from about
1850 onward led to a continuous increase in atmospheric carbon dioxide (CO2), which
is depleted in δ13C [50]—known as the Suess effect [51]. This change is reflected in the
carbohydrates of the plants; therefore, a correction must be made to the isotopic series of
the tree rings. For all of the δ13C values after 1000 CE, we applied the correction factor
described previously [50].

2.3. Selected Major Volcanic Eruptions

The samples of the AHTTRIR database have a 5-year resolution, which might be too
large for the short-term climatic variations that follow the eruptions. To verify this, we also
analysed samples with annual resolution obtained from one cembran pine and one larch
for the periods around 4 major eruptions: that of Tambora (1815), the preceding—yet
unidentified—eruption [52,53] in 1809, and two mid-8th-century eruptions attributed to
Icelandic volcanoes (750 and 764). Additionally, an Icelandic eruption (Laki, 1783–1784) and
a tropical eruption (Samalas, 1257) were analysed at the 5-year resolution only. We analysed
the tropical and the non-tropical eruptions separately; see Figure 1 for the corresponding
sample locations. The eruption of Tambora (Indonesia) in April 1815 is an example of a
tropical eruption.

Tambora had a major impact on the global climate, especially in Europe and North America
(Supplementary Figure S1a). The released aerosols led to substantial annual cooling of the
tropics and the extratropical Northern Hemisphere by approximately 0.4–0.8 ◦C compared to
the preceding 30 years. Large socioeconomic impacts following widespread crop failures and
subsequent famines in 1816 have been partially associated with the Tambora eruption [5,54]. The
1257 eruption of the tropical Samalas volcano in Indonesia [55] was one of the largest eruptions
of the Common Era [56]. The sulphur deposits in ice cores were twice as large as those of the
Tambora eruption in 1815 [2]. The years following the eruption—1258 and 1259—experienced
some of the coldest Northern Hemisphere summers of the past millennium. However, cooling
in the Northern Hemisphere was spatially heterogeneous [57,58].

An example of a non-tropical eruption is the 1783–1784 Laki eruption in Iceland
(Grímsvötn volcano), which began on 8 June 1783 and lasted episodically for 8 months
until February 1784. The eruption in the summer of 1783 is thought to have caused air
temperatures in the Northern Hemisphere to drop by about 1.0 ◦C, and to have caused
winter cooling over a period of three years after the eruption [7,59]. Unlike shortlived
explosive eruptions such as Tambora (CE 1815) and Pinatubo (CE 1991), long-lasting high-
latitude fissure eruptions such as Laki are not as well-understood in terms of their sulphate
dispersal, radiative forcing, and atmospheric circulation. The persistence of Laki sulphate
aerosols in the atmosphere and their effects on regional climate are also uncertain, as are
the magnitude and duration of volcano-induced radiative forcing of climate and its impacts
(Supplementary Figure S1b) [60].

In addition to Grímsvötn and Bárdarbunga, Katla volcano is also a source of large
subglacial explosive eruptions of predominantly basaltic magmas in Iceland. With an
average return interval of 50 years, Katla is Iceland’s most active volcanic system [61].
Katla, Grímsvötn, and Bárdarbunga all had volcanic eruptions dated to the mid-8th cen-
tury [62–65], and here we tentatively attribute a sequence of three volcanic sulphate peaks
detected in Greenland ice cores dated to CE 750, 756, and 764 to Icelandic eruptions. We
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note that [66] assumed eruption latitudes of 45◦ N (CE 750 and 756) and 0◦ (CE 764) in their
reconstruction of stratospheric aerosol optical depth (SAOD) from ice-core records.

2.4. Superposed Epoch of the Major Volcanic Eruptions after 1 CE

We further investigated 34 different strong volcanic eruptions that occurred during the
last 2000 years [2] (see Table S1). The eruption parameters for the 34 volcanic eruptions used in
the superposed epoch analyses are based on the work of Toohey and Sigl [66]. We selected all
eruptions with a global mean stratospheric aerosol optical depth (SAOD) ≥ SAOD of Krakatau
(1883) and all eruptions with SAOD30-90◦ N > 0.10 (e.g., Veiðivötn 1477 CE, Katla 822 CE).

For each eruption, we chose a preceding background period without a known major
eruption and compared the post-eruption isotopic signals (see Table S1). Only trees covering
both periods were selected. We superimposed the data of the different eruptions by
assigning 0 to the time (years) of each eruption. For each tree, we converted the values
into anomalies from the mean of the period 15 to 5 years before the volcanic eruption.
Since oxygen was the only isotope for which there was coherence among values between
species [67] and the climate sensitivity was similar, we merged the values of two species for
the oxygen isotope and kept the species separated for the carbon and hydrogen isotopes.

2.5. Relation of Cellulose Isotopes to Climatic Parameters

For this comparison, we used instrumental observation data of the HISTALP database [68]
for temperature and precipitation—i.e., their anomalies from the 1800–2000 means—and for
sunshine duration, i.e., its anomaly from the 1880–2000 mean, since the observational database
for sunshine duration is shorter than those for temperature and precipitation. We calculated
the 5-year averages of the anomalies to be compatible with the temporal resolution of the
stable isotopes in cellulose. For the analyses, we created cellulose isotope mean series using
the normalised values of individual trees to avoid some geographical or species effects. We
applied Pearson’s correlation between the time series for precipitation and temperature with
the average series of each isotope type. The correlation was calculated from 1840 to 1970 CE
for temperature and precipitation, and from 1880–1970 CE for sunshine duration.

3. Results
3.1. Early 19th Century Eruptions (of Tambora 1815 and Unidentified 1809 CE)

The stable isotopes of the period 1800–1825 CE were from wood specimens collected at
the sites shown in Figure 1A. We studied tree rings with annual resolution from one larch
and one cembran pine, as well as rings with 5-year resolution from two larches and
four cembran pines. The solid lines in Figure 2 show the annual δD, δ18O, and δ13C values
of the period 1800–1825 for larch (LADE) and cembran pine (PICE). Variations in annual
oxygen isotope values (Figure 2b) were similar for both species, with a minimum around
1815 followed by a continuous increase until 1820, but with larch showing additional
minima in 1811 and 1812. The two larch trees with 5-year resolution (dotted lines) showed a
similar pattern, with a decrease until 1815 followed by a steady increase. The four cembran
pines with 5-year resolution also showed similar patterns, all with a steady decline until
1815, followed by an increase.

The annually resolved hydrogen isotope curve of cembran pine was consistent with the
corresponding 5-year resolution curve—both were flat before the eruption date, followed
by a general increase (Figure 2a). In contrast, for the larch there was a divergence between
the annually resolved and 5-year resolution values, and they did not show consistent
changes around the eruption.

The annually resolved values of the larch carbon isotope showed an evident increase
in the period 1805–1815, followed by levelling off; a trend could be observed in one of
the two trees with 5-year resolution (Figure 2c). In contrast, the annual values of cembran
pine exhibited no trend and a negative peak centred on 1821, which was not visible in the
four trees analysed with 5-year resolution. Consequently, δ13C did not show consistent
trends around this eruption.
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Panel (a): δD values. Panel (b): δ18O values. Panel (c): δ13C values.

Furthermore, we performed a statistical analysis of the correlations between the
different cellulose isotopes from 1800 to 1825 CE and between cembran pine and larch. The
Pearson’s correlation coefficient (r) between the annually resolved δ18O values of the larch
and cembran pine was 0.64 (p-value < 0.05). For δD, r was 0.53 (p-value = 0.05), while for
δ13C r was −0.07 and was non-significant (p-value > 0.05). The high correlation between
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the oxygen isotope values of the two species allowed us to combine them in one chronology
by averaging. However, this was not possible for the carbon isotope, as there was no
correlation between larch and pine.

We then compared these results with the fluid-inclusion-based temperatures of a
stalagmite from Milandre Cave in the Jura Mountains, which represent a mean annual or
slightly cold season-biased temperature signal [42]. Despite their lower temporal resolution,
they showed a cool phase followed by a positive post-eruption trend similar to Alpine
conifer cellulose δ18O records (Figure 3b). We also compared our cellulose δ18O series with
instrumental data and climate proxy records (Figure 3). These included the summer tem-
peratures reconstructed from TRW data [69] (Figure 3e), temperatures reconstructed from
MXD data [70] (Figure 3d), and instrumental annual mean temperatures from HISTALP
measured in the Alps [68] (Figure 3c) and from the Swiss Plateau [71] (Figure 3f). A sum-
mary of the characteristics of the different records can be found in Table 1. The cellulose
δ18O record closely followed the HISTALP and MXD temperatures, with positive peaks
in 1807 followed by a decline until 1815/16 and a subsequent increase until 1820. There
was a temporal shift in the minimum around the Tambora eruption; in the cellulose δ18O it
occurred in 1815, while in the measured and reconstructed temperature records it occurred
in 1816. The values of speleothem δDfi showed a marked cool phase followed by an increase
between 1815 and 1820. The TRW-based temperature reconstruction decreased until 1815,
followed by a slightly negative trend until 1821, which was different from the other data.

Table 1. Comparison of our database with other paleoclimatic temperature reconstructions and
temperature measurements.

This Study This Study Affolter et al. 2019 Büntgen et al. 2006 Büntgen et al. 2011 Auer et al. 2006 Climhist
(Pfister, 2015)

Proxy δD, δ18O,
δ13C cellulose

δD, δ18O,
δ13C cellulose

δD fluid
inclusion MXD TRW HISTALP

Climhist Swiss
Central Plateau

temperature

Temporal
resolution Annual 5-Year Multi-annual to

Multi-decadal Annual Annual Monthly Monthly

Region Alps Alps Europe European Alps Central Europe European Alps Swiss Central
Plateau

Parameter Temperature Temperature Temperature Measured
temperature

Measured
temperature

Season Annual JJAS JJA JJA All year

Periods 1800–1815 CE
750–780 CE 8930 b2k–2010 CE −12596

BCE–2011 CE 755–2004 CE 499 BCE–2003 CE 1760–2008 CE 1760–2007

Pearson statistical analysis of the data from 1800 to 1825 CE showed significant corre-
lation (p-value < 0.05) between the δ18O of cellulose and (i) the temperature reconstruction
from MXD (Figure 3d) (r = 0.66), (ii) the measured instrumental summer temperature values
of HISTALP [68] (Figure 3c) (r = 0.48), and (iii) the temperature of the Swiss Plateau [71]
(Figure 3f) (r = 0.41). In contrast, the correlation with the TRW-based temperature recon-
struction was not significant (Figure 3e).

3.1.1. Mid-8th-century eruptions attributed to Iceland (750, 756, and 764 CE)

A series of eruptions attributed to Iceland occurred in the mid-8th century between
750 and 764 CE. The solid lines of Figure 4 show the annual δ18O, δD, and δ13C values
for the interval 720–780 CE for larch and cembran pine. The δ18O records of both species
(Figure 4b) show a good agreement between the annual and the 5-year resolution values,
which remain within the variance range of the 25 years before the first eruption and show
no changes around the years of the eruptions.
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Figure 3. Comparison between the trends of tree-ring oxygen isotopes and those of other climate
proxies in the period of the Tambora eruption: (a) Average series of the δ18O values of the two trees
with annual resolution. (b) Temperature from the speleothem fluid inclusions from Milandre Cave.
(c) The summer temperature anomaly of instrumental climate observation from high-elevation
sites of the HISTALP database. (d) Reconstructed summer temperature based on MDX by [70].
(e) Reconstructed temperature evolution based on TRW by [69]. (f) The annual temperature anomaly
of the mean measured temperature on the Swiss Plateau [71].
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For the hydrogen isotope, the annual and 5-year resolution records overlap for both 
species (Figure 4a), except for the years 735 CE in larch and 750 CE in cembran pine. No 
significant changes can be seen around the years of the three eruptions, i.e., the δD values 
remain within the variance interval of the 25 years before the first eruption, similar to the 
oxygen.  
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trees have a negative peak at 765 CE. Thus, both species show higher values in the period 

Figure 4. Plots of tree-ring cellulose isotope series in mid-8th-century eruptions attributed to Icelandic
volcanoes; the points are the individual measurements, and the lines are the spline of each tree. The
values of the series with annual resolution are shown by the continuous lines, while the values of
the series with 5-year resolution are given by the dotted lines. The left column shows the values of
larch samples (LADE, in red) and the right column shows the values of cembran pine (PICE, blue).
The vertical dotted lines indicate the years of the eruptions (750 and 764 CE). Panel (a): δD values.
Panel (b): δ18O values. Panel (c): δ13C values.

For the hydrogen isotope, the annual and 5-year resolution records overlap for both species
(Figure 4a), except for the years 735 CE in larch and 750 CE in cembran pine. No significant
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changes can be seen around the years of the three eruptions, i.e., the δD values remain within
the variance interval of the 25 years before the first eruption, similar to the oxygen.

For the carbon isotope, the annual and 5-year resolution records also agree for both
species (Figure 4c), with a minor exception for larch, where only the two 5-year-resolution
trees have a negative peak at 765 CE. Thus, both species show higher values in the period
between the first and last eruptions, but still within the range of variability of the time
before the eruptions.

The Pearson’s correlation coefficient (r) between the annually resolved δ18O data
for larch and cembran pine was 0.63; for δD it was 0.59, and it was 0.39 for δ13C; all of
these correlations were significant. The high correlation for oxygen and hydrogen isotopes
between the two species allowed them to be combined into average series, increasing the
sample replication, as described above. The correlation coefficient (r) between the two mean
series of hydrogen and oxygen isotopes was 0.73 and was significant. This averaging was
not performed for the carbon isotope due to the low correlation value between the larch
and cembran pine data.

Next, we compared the data of the cellulose isotopes with the speleothem fluid
inclusion temperature values and the temperature reconstruction from TRW [69] (Figure 5).
However, the time resolution of the speleothem samples was too low for this period.
Lower values between 749 and 759 CE were found in the temperature reconstruction from
TRW [69], while the cellulose δ18O and δD values remained stable after the two eruptions.

3.1.2. Eruptions of Laki (1783–1784 CE) and Samalas (1257 CE)

The good agreement between the annual and 5-year resolution values of cellulose
isotopes observed in the early 19th century and mid-8th century periods suggests that
the large database of 5-year Alpine tree-ring isotope samples (AHTTRIR) can be used to
study other major eruptions. We selected the Icelandic Laki eruption of 1783–1784 CE
and the tropical Samalas eruption of 1257 CE as examples of high-latitude and tropical
eruptions, respectively, since no other significant eruptions are known in the years around
these events (Table S1). Figure 6 shows the plots of the cellulose isotopes of two larches and
two cembran pines, the temperature reconstruction from speleothem fluid inclusion, and
the temperature reconstructions from TRW and MXD for the period around the eruption of
Laki. The δ18O cellulose values of three out of the four trees show a positive peak in the
year of the eruption (Figure 6a). These trees are from Engadin and Tyrol, while the tree
without a peak is from the Valaisan Alps in Switzerland—differences that indicate regional
sensitivity that may affect the records. The carbon (Figure 6b) and hydrogen isotope ratios
(Figure 6c) show no evident trends around the eruption.

The temperature based on speleothem fluid inclusion shows a minimum close to the
eruption time and an increase in values in the 10 years post-eruption (Figure 6d), while
the temperature reconstruction from TRW displays a positive peak (Figure 6e), and the
temperature reconstruction from MXD shows no evident signature around the eruption
time (Figure 6f). Overall, the δ18O of cellulose and calcite as well as the TRW-based
temperature show positive peaks at the time of or after the eruption, but with different
duration and absolute timing.

The climate proxy records for the period around the Samalas eruption are shown in
Figure 7. The cellulose δ18O values of two cembran pines show a negative peak at the
time of the eruption (Figure 7a). The δD and δ13C curves do not show evident patterns
(Figure 7b,c). The speleothem record does not show any clear trend around the eruption
time (Figure 7d), and the temperature reconstruction from MXD shows a negative post-
eruption peak (Figure 7f). The temperature reconstruction from TRW shows no modification
(Figure 7e). Overall, the data suggest that the 5-year AHTTRIR values can record the climate
anomalies generated by some major eruptions, and that the geographic location of the
eruptions may leave different imprints in the various stable isotope records.
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3.1.2. Eruptions of Laki (1783–1784 CE) and Samalas (1257 CE) 

Figure 5. Comparison between the trend of the oxygen isotope series and those of other climate
proxies in mid-8th-century eruptions attributed to Icelandic volcanoes: (a) Average series of the
δ18O values of the two trees with annual resolution. (b) Temperature from the speleothem fluid
inclusions from Milandre Cave. (c) Reconstructed temperature evolution based on TRW by [69]
(d) Reconstructed summer temperature based on MDX by [70].

3.1.3. Superposed Analysis of Large Volcanic Eruptions during the Past Two Millennia

We used the tree-ring isotope data with a 5-year resolution (AHTTRIR) to analyse the
periods around 34 volcanic eruptions during the Common Era described in [2], including
eruptions in both the extratropical Northern Hemisphere and the tropics. The data for each
isotope for larch (red) and cembran pine (blue) are shown in Figure 8; we separated the
values of the Northern Hemispheric Extratropical (NHET) and tropical eruptions from the
Icelandic ones. We combined the values of the two species only for the oxygen isotope, as
this signature is not species-specific, in contrast to the carbon and hydrogen isotopes [67].
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Figure 6. Plots of tree-ring cellulose isotopes and climate proxies in the period of the Laki eruption:
(a) δ18O of two larch trees (red) and of two cembran pines (blue) with 5-year resolution. (b) δ13C of
the trees above. (c) δD of the trees above. (d) Temperature reconstruction from fluid inclusions from
Milandre Cave. (e) The temperature reconstruction based on TRW by Büntgen et al., 2011. (f) The
temperature reconstruction based on MXD by Büntgen et al., 2006. The dotted vertical line indicates
the eruption year (1783 CE).
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Figure 7. Plots of tree-ring cellulose isotopes and climate proxies in the period of the Samalas eruption,
1257 CE: (a) δ18O of two larch trees (orange) and of two cembran pines (blue) with 5-year resolution;
the dotted vertical line indicates the eruption year. (b) δ13C of the trees from (a). (c) δD of the
trees from (a). (d) Temperature reconstruction from fluid inclusions from Milandre Cave. (e) The
temperature reconstruction based on TRW by Büntgen et al., 2011. (f) The temperature reconstruction
based on MXD by Büntgen et al., 2006.

To compare and superpose the values of the 34 eruptions, the data around the eruptions
were subtracted from the mean value of the pre-eruption period for each tree. The wood
samples span 5-years, so that the time resolution is 5 years. The δ18O data show a decrease
around the “NHET + Tropical” eruptions with respect to the calibration period (Figure 8a). In
contrast, the δ18O values show no obvious changes after the Icelandic eruptions. The δ13C
values of cembran pine and larch values tended to reach more positive values up to 5 years
after the “NHET + Tropical” eruptions, while they increased after the Icelandic eruptions
(Figure 8b). There was a small increase in both species of deuterium around the Icelandic
eruptions. Larch does not show a clear behaviour in “NHET + Tropical” eruptions, unlike
cembran pine, which displays a lower value around “NHET + Tropical” eruptions (Figure 8c).
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Figure 8. Analysis of the main volcanic eruptions after 0 CE: Boxplots of the cellulose isotope
anomaly (δ18O (a); δ13C (b); δD (c)) for the 34 strongest volcanic eruptions after 0 CE included in [2].
The cellulose isotope values are from the Eastern Alpine Conifer Chronology database and have
a 5-year resolution. The Northern Hemisphere Extra Tropical (NHET) and tropical eruptions are
separated from the Icelandic ones; the larch trees and the cembran pine are represented as red and
blue boxes, respectively. The data are aligned on the year of the eruption, indicated by the blue dotted
vertical line. Forcing and response are calculated to a 10-year background period before the eruption,
with the assumption that it is undisturbed by volcanic eruptions. The solid lines connect the mean
value of each boxplot. The calibration period is shaded in green, and the horizontal red dotted line is
the average of the calibration period. The points are the mean values of each boxplot.

3.1.4. Isotopes’ Climatic Sensitivity in the Recent Period

A correlation analysis of the climatic variables and the EACC data may provide
information on the climate sensitivity of each cellulose isotope. We averaged the isotope
data of different samples for the same years from all sites; we considered the larch and
cembran pine species separately and together and compared them to climate variables (i.e.,
summer temperature, summer precipitation, and sunshine) (Supplementary Figure S2).
We then calculated the correlations of isotope series with the summer (June, July, August)
temperature and precipitation time series from 1850 CE to 1980 CE. For the sunshine
duration, we used the data from 1880 to 1980 CE available from the HISTALP database [68].
We chose these periods because we selected samples with a cambial age > 100 years to
avoid age effects [67].

Additionally, we chose to avoid the recent past (after 1980), in which isotope values
diverged from climate variables due to the recent climate [72]. In fact, after 1980 the isotopes
of the two species present different trends, even in the same region; the oxygen isotope
value increased in larch, while it remained unchanged in cembran pine larch (Figure S2).
This difference is unprecedented in the past 200 years, but the scarcity of data prevents us
from investigating it more in detail.

To avoid geographical effects [67], we normalised each tree instead of using the “raw
data” and averaged all values. Figure 9a–c show that the δ18O of both species has a
significant negative correlation with precipitation (r value of about −0.5) but a positive
correlation with temperature and sunshine. The δ13C of cembran pine is significantly
positively correlated with temperature, while that of larch has no significant correlation
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with temperature, precipitation, or sunshine. Deuterium has no significant correlation
with temperature, precipitation, or sunshine in either species. The oxygen isotope is the
only isotope with similar climatic correlation between the two species, while carbon and
hydrogen show different or even opposite climatic correlations in the two species. The
precipitation and temperature of JJA are correlated, with an r value of −0.5.
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Figure 9. Climate correlations of cellulose isotopes: Pearson’s correlation coefficient between the
mean of 5 years of (a) temperature anomaly, (b) precipitation anomaly, and (c) mean sunshine duration
from the HISTALP database [68] with cellulose isotopes with 5-year time resolution; for oxygen, the
two species were merged (blue) in the larch (LADE, orange) and cembran pine (PICE, green). The
data are from 1880 to 1970 CE for temperature and precipitation, and from 1880 to 1970 CE for mean
sunshine duration; ns: non-significant.
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4. Discussion

Large volcanic eruptions in the tropics and extratropics can perturb the climate system,
peaking for 1–3 years [73], but climate responses depend critically on the eruptions’ source
parameters, such as the strength of radiative forcing, the location, the and season of the
eruption. Here, we explored how large volcanic eruptions in the tropics and from Iceland
affected the stable isotopes’ variability in an array of temperature-sensitive tree-ring records
from the European Alps (the AHTTRIR database) over the past 2000 years. This database
seems to be well-suited for this study, since models project that the climate at the sampling
sites (in the Alps between 45◦ and 47◦ northern latitude) is strongly influenced by both
tropical and Icelandic eruptions, e.g., [3,74]. Moreover, observations, along with climate and
glacier reconstructions, show a strong sensitivity of the alpine climate to volcanic forcing
(e.g., [5,75,76]). We compared the isotopic values of tree-ring cellulose with proxies for the
European climate and direct temperature measurements, as well as with the reconstructed
temperatures based on the hydrogen isotope ratios of speleothem fluid inclusions from
Milandre Cave in Switzerland [42], which provided information on the cold seasons not
accessible from the tree-ring records.

We first analysed the well-documented eruption of the tropical volcano Tambora in
1815 CE, which was followed by a “year without a summer” in some parts of Europe [5].
The results show that the δ18O values varied after the eruption, with good agreement
between the data of larch and cembran pine and those of 1-year and 5-year resolution.
Thus, the δ18O data are of sufficient robustness for climatic investigation, in agreement
with [28], and represent a better climate proxy than the other cellulose isotopes [77]. In fact,
the δD and δ13C values showed no consistent variations in the years around the eruption. To
further assess the robustness of δ18O climate signals, we compared them with the summer
temperature, precipitation, and sunshine duration of that period derived from the HISTALP
database [68]. The decrease in the δ18O signal between 1809 and 1815 is consistent with the
HISTALP summer temperature variability, and also with the temperature reconstructions
based on MXD data [70] and TRW [69]. They all also show the influence of an unidentified
volcanic eruption in 1809, which caused a cooling phase in Europe [35]. However, this
is not evident in the annual temperature of the Swiss Plateau, suggesting difference in
season sensitivity. The cellulose is synthesised in the growing season (summer), and its
δ18O mainly reflects summer temperatures and precipitation, while the Swiss Plateau
reflects the annual temperature through the fluid inclusion. The speleothem data show
a clear minimal temperature centred around 1810 CE [42], which would indicate that
both the summer and the winter temperatures in Switzerland cooled after those eruptions.
Thus, the comparison between the different proxy data should yield seasonal climate
information. The cellulose δ18O recovered rapidly after the Tambora eruption, similar
to MDX and to the measured temperatures, while TRW-derived temperatures showed a
longer recovery time. This suggests the absence of biological memory in cellulose δ18O (as
in MDX) that is present in TRW [27]. The minimum cellulose δ18O value coincided with
the 1815 CE eruption, while the minimum of the other proxies was one year later. A similar
one-year lag between the eruption and the tree rings’ proxy response was already reported
for Siberian larch [31]. It is worth noting that the isotopes of Central European oak and
the δ18O of Siberian larch at high- and low-altitude sites were not affected by the Tambora
eruption [31,69]. In fact, the most anomalous cold summer temperatures were reported in
Switzerland and eastern France, with a well-documented increase in summer precipitations
over Southern–Central Europe in 1816 [9], while Russia and Ukraine reported only a milder
summer [5]. We found that the cellulose δ18O had a positive relationship with temperature
and a negative relationship with precipitation, so the strong negative peak could be the
sum of the two effects.

We also conducted a detailed analysis of the mid-8th-century period (720–780 CE),
when a cluster of possibly Icelandic eruptions occurred. The data showed a good agree-
ment between the δ18O values of larch and cembran pine and between the 1-year- and
5-year-resolved data. Such an agreement was not observed for δ13C. However, all of the iso-
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topes showed constant variability throughout the whole period, without evident changes
around the eruptions. There are no direct temperature measurements in this ancient epoch
that could be used for comparison. Nevertheless, summer temperature reconstructions are
available from MDX and TRW data [69,70]. These show only minor changes in this period,
likely explained by the smaller magnitudes of sulphur injection into the atmosphere by
the eruption. The reconstructed temperatures provided good correlations with the mean
cellulose δ18O at annual resolution. The 750s–760s eruptions were mainly reported to cause
winter cooling, and one European historical source describes the 763/64 winter as among
the most outstanding cold episodes of the last 2000 years [78]. The speleothem data show
decreases in temperature values centred around 730 and 790 CE, albeit with significant age
uncertainties. The analysis of the Tambora and Iceland eruptions presented above indicated
that even the 5-year-resolution data of the EACC database provide information on climatic
changes caused by the eruptions. We therefore used this database to study the periods of
two other well-characterised eruptions—of the Icelandic volcano Laki in 1783 CE, and of
the tropical volcano Samalas in 1257 CE. We found evident signals of cellulose δ18O and
δD that occurred around the date of the Laki eruption and that showed a pattern similar
to that of the temperature reconstruction from TRW [69]. Moreover, the positive δ18O
peak fits with the very high summer temperature experienced in Western Europe in 1783,
followed by a very cold winter [79]. The long-lasting fissure eruption of Laki in 1783–1784,
emitting over 100 Tg of SO2 into the atmosphere, likely had a different forcing potential and
climate footprint than the assumed but otherwise poorly characterised prehistoric Icelandic
eruptions of Katla, Grímsvötn, and Bárdarbunga in the mid-8th century.

The Laki eruption caused cold winter temperatures and a warm and dry summer
in Europe [80,81], explaining the positive peak in TRW δ18O and δD. A similar analysis
of Central European oaks at low altitudes gave the opposite results, i.e., no signal after
the Laki and tropical eruptions, but a negative Palmer Drought Severity Index for the
Icelandic eruptions [33]. Around the period of the 1257 Samalas eruption, only the cellulose
δ18O of larch showed minimal values. A temperature change was detected only in the
reconstruction from MXD. The Samalas eruption of 1257 was reported to have affected the
European hydroclimate, with a 3-year cooling and an increase in summer precipitation in
Southern Europe but a decrease in Northern Europe [10]. Nothing significant could be seen
from the speleothem record.

We analysed the 5-year binned cellulose isotope values of the database around
34 strong volcanic eruptions over the last 2000 years, as listed in Table S1 [2]. The
results showed lower mean δ18O values near the eruptions that persisted for up to
10 years after the events, in agreement with previous analyses of the volcanic impact
on climate reconstructed from TRW data [2,69]. Similar analyses have been conducted
previously—Siberian larches showed lower post-eruption δ18O values and δ13C values
for three different sites [31]. In Scandinavian pine trees at northern latitudes, δ13C values
have lower post-eruption values, likely related to changes in solar irradiance [30]. In
our case, a climate relationship of δ13C with sunshine was also observed, but only for
the larch. The δ13C values of larch and cembran pine showed a lower value around the
Icelandic eruptions, followed by value increments, while after the “NHET + Tropical”
eruptions an increase was visible in both species.

The δD trends were different for larch and cembran pine in the “NHET + Tropical”
eruptions, probably due to their different biological isotopic fractionation [67]. In larch
the values slightly increased, while in cembran pine the values were lower, with a pattern
similar to that of oxygen. This difference may be attributed to the strong post-eruption
cooling that caused lower δD values of precipitation, which was more represented in
the cembran pine than in the larch. In a previous work, we found that larch showed a
higher correlation between oxygen and hydrogen isotope data than cembran pine [82].
We attributed the strongest signal in the cellulose δ18O to the impact of both temperature
and precipitation, since the tropical eruptions not only have a cooling effect but also
produce circulation feedbacks at a continental scale that cause distinct effects on regional
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precipitation patterns [9]. In the superposed analysis of 34 eruptions, the speleothem fluid
inclusion temperature record could not be included due to its low temporal resolution.

5. Conclusions

In conclusion, our data show that the δ18O values of cellulose in the larches and
cembran pines show patterns similar to those of the meteorological parameters, recording
the very strong eruptions of Tambora, Laki, and Samalas, but not the lower sulphur-
emitting eruptions in the mid-8th century. The δ18O of cellulose was more sensitive to the
tropical eruptions than to the Icelandic ones, probably because the tropical eruptions had
a larger cooling effect on the alpine summer climate and increased summer precipitation
in Southern Europe. Cellulose δ18O shows no memory effect after an eruption, similarly
to MDX, making it an excellent proxy for studying short-term climate variability. The
δ13C and δD values showed no consistent signals, possibly because the sample replication
of the database was too low. Their marginal or non-significant correlations suggest that
these values of the two conifers species should be treated separately. The analysis of
superimposed major eruptions over the past 2000 years confirms the importance of the
oxygen data, which clearly show lower values around the tropical/NHET eruptions while
lacking a clear common signal around the Icelandic eruptions. The significance of carbon
and deuterium isotopes remains unclear.

Altogether, the isotope data with 5-year resolution from the AHTTRIR database pro-
vide climate signals of eruptions, but the data with annual resolution are more informative
and, if used in a multiproxy approach, can resolve seasonal climate signals, as shown in
this publication for the Tambora eruption.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/geosciences12100371/s1, Table S1: Parameter for the 34 volcanic
eruptions; Figure S1: (a) Spatially and temporally resolved Stratospheric Aerosol Optical Depth
(SAOD) reconstruction based on ice cores between 1804–1826 with volcanic eruptions in 1809 and
1815 (Toohey & Sigl 2017). (b) Spatially and temporally resolved SAOD reconstruction based on
ice cores between CE 748-768 with volcanic eruptions in CE 750, 756 and 764 (Toohey & Sigl 2017);
Figure S2: Timeline used for the correlation of Figure 8. The values are shown in z-score to be
compared in red the values of larch, green the value of cembran pine and blue the mean values
in the three isorope. In black the values of the climatic variable (a) temperature, (b) precipitation,
(c) sunshine. The correlation of Figure 8 considers the time window from 1850 to 1980 for precipitation
and temperature. For sunshine was use the time windows 1870–1980.
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