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ABSTRACT ARTICLE HISTORY
Integrating animals into therapy is applied increasingly in Received 21 July 2020
patients in a minimally conscious state (MCS). This pilot Accepted 2 February 2021
study investigates the effect of animal presence on frontal
brain activity in MCS patients compared to healthy subjects. Minimally conscious state;
O,HB, HHb and tHb of Fwo MCS patients an.d two heglthy Animal contact; Animal-
adults was measured in frontal cortex using functional assisted therapy; Brain
near-infrared spectroscopy during three sessions with a live activity; Neurorehabilitation.
animal and three sessions with a mechanical toy animal

present. Each session had five phases: (1) baseline, (2)

watching animal, (3) passive contact, (4) active contact, (5)

neutral. Data were descriptively analysed. All participants

showed the largest hemodynamic response during direct

contact with the live or toy animal compared to “baseline”

and “watching.” During active contact, three of the four

participants showed a stronger response when stroking the

live compared to the toy animal. All participants showed an

inverted signal with higher HHb than O,Hb concentrations

while stroking the live or toy animal. Animal contact leads

to a neurovascular reaction in both MCS patients and

healthy subjects, indicating elevated neural activity in the

frontal cortex. We conclude that while a toy animal can

elicit attention processes, active contact to a living animal

is combined with emotional processes.

KEYWORDS

Introduction

Patients in a minimally conscious state (MCS) need early treatment to facilitate
physical as well as cognitive recovery and to reduce the risk of long-term disabil-
ity and institutionalization (Seel et al., 2013). Early onset stimulation in an enrich-
ing environment as an integrative part of early rehabilitation programmes has
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emerged as an effective treatment for encouraging MCS patients’ recovery (La
Gattuta et al., 2018; Pistarini & Maggioni, 2018). A central component of this
approach is an individualized and integral activation of the patient as well as
the promotion of inner perception and emotional sensation (Zieger, 2002). Bio-
graphical or emotionally loaded stimuli lead to increased consciousness as well
as an increase in vegetative responses and psychomotor reactions in MCS
patients (Perrin et al., 2015). Animals are emotionally relevant stimuli for most
people (Zieger, 2016) and animal-assisted therapy (AAT) is increasingly seen
as an important component in early rehabilitation of patients with severe dis-
orders of consciousness (Blankenburg et al., 2011; Bottger, 2008; Janssen &
Zieger, 2009).

Although AAT is increasingly used with MCS patients in neurorehabilitation
clinics, there is little research on its effects on the central nervous system. A
single-case report documents a young woman who, after being in a persistent
vegetative state for five years without signs of recovery, showed increased vege-
tative, emotional reactions and goal-directed motor behaviour towards a therapy
dog (Bardl etal., 2013). Similar effects were noted in a report by Zieger (2011) who
investigated the effects of dog-assisted therapy sessions with 13 patients with
severe disorders of consciousness. The authors reported significant increases in
the patients’ positive facial expressions, visual exploration and spontaneous,
goal-directed orientation towards the dog during the AAT session in comparison
to sessions when the dog was not present. A first controlled study found more
behavioural reactions and increased physiological arousal during AAT compared
to control sessions in MCS patients, indicating that the presence of an animal
might increase consciousness (Hediger et al,, 2019).

These results suggest positive effects of AAT on patients with severe dis-
orders of consciousness but further work is needed to evaluate AAT as a treat-
ment approach.

Since awareness might not be fully reflected by only behavioural reactions
(Bruno et al,, 2011; Naro & Calabro, 2020) or is only shown by very subtle
signs such as changes in muscular tone for example, it is important to investi-
gate neurophysiological processes in order to better understand effects of an
intervention. We used functional near infrared spectroscopy (fNIRS) to
measure the influence of animals on brain activity of MCS patients. fNIRS pro-
vides an effective measure of neural activity reflecting e.g.,, mental workload
or emotional processing (Hirshfield et al., 2015; Minati et al., 2009; Scheune-
mann et al, 2019) and has also been used in MCS patients (Kempny et al.,
2016). Since we were interested in attention and emotional processing, we
measured prefrontal activity. For a better interpretation of the results in MCS
patients, we included healthy subjects as control group.

This pilot study investigates prefrontal hemodynamic responses of MCS
patients and healthy control subjects in the presence and interaction with a
live animal compared to a mechanical toy animal.
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Materials and methods
Participants

Two patients in a minimally conscious state, mean age of 37.0 years (SD = 1.0) par-
ticipated in this study. Patients were in stationary neurorehabilitation at REHAB
Basel and diagnosed with acquired brain injury with non-traumatic causes (N
=2). In order to participate, patients needed a MCS diagnosis on the basis of
the original JFK Coma Recovery Scale (Giacino et al., 1991; Giacino et al., 2002)
(CRS) and following the Aspen diagnostic criteria (Kempny et al., 2016). Patients
were assessed by physicians not involved in the study. Exclusion criteria were per-
sonal or medical contraindications such as phobias or allergies to animals.
According to the clinic’s hygiene concept, one patient with a minor bacterial
infection had to wear sterile rubber gloves during the contact with the live
animal. To control for specific effects in MCS patients, we included two healthy
adults, mean age of 50.0 years (SD = 4.5). Healthy control subjects had no allergies
or fear of animals and needed to be >18 years. The number of participants was
chosen according to the pilot character of the study. Informed consent was
obtained from the legal representative of each patient, while healthy participants
provided their informed consent in writing prior to their participation. The
human-related protocols were approved by the Human Ethics Committee for
Northwest and Central Switzerland (EKNZ) and the animal-related protocols
were approved by the Veterinary Office of the Canton Basel-Stadt, Switzerland.
Human-animal interaction was performed according to the guidelines of the
International Association of Human Animal Interaction Organizations (IAHIAO)
(2018). No adverse incidents occurred and no session had to be terminated.
After participating in the study, all MCS patients had the possibility to continue
with AAT as part of their rehabilitation programme.

Study design and procedure

The study had a controlled within-subject design with repeated measurements.
Over two weeks, each participant was assigned to a total of six standardized ses-
sions. Three were experimental sessions with a live animal present and three
were control sessions with a mechanical toy animal present.

MCS patients were either seated in a wheelchair or mobilized in bed in an
upright position while the healthy control subjects were seated on a chair.
Before the start of a session, both patients and healthy control participants
were informed about the procedure and shown the fNIRS device. After fitting
the fNIRS cap on the participant’s head, all sources and detectors were adjusted
until the signal quality was adequate.

Each session consisted of five phases in a defined order, each lasting 60 s. In
the first phase (1: baseline), participants looked at the white wall in front of them
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and the live animal or mechanical toy animal was kept out of sight. During the
second phase (2: watching), a table, on which the live or mechanical toy animal
was placed, was moved into sight but kept out-of-reach. The participants
watched the live or mechanical toy animal. During the third phase (3: passive
contact), the live or mechanical toy animal was placed on the participant’s
lap but it was not touched by the participant. During the fourth phase (4:
active contact), the participants stroked the live or mechanical toy animal.
Healthy participants stroked the animal self-initiated while patients were
assisted. During direct contact with the live animal, the animal was closely
observed by the animal attendant and the patient was monitored by a staff
member to enable intervention if necessary. During the fifth and final phase
(5: neutral), the live or mechanical toy animal was placed out of sight and par-
ticipants looked at the wall in front of them as they did in phase 1. In total, each
session lasted for about 15 min.

Functional near infrared spectroscopy (fNIRS)

Brain activity was measured with a portable functional NIRS device (NIRSport,
NIRx Medizintechnik GmbH, Berlin, Germany). The device consisted of a cap
with seven sources and eight detectors arranged so that 15-channels covered
the prefrontal area of the head. The sources illuminated the cranial cavity
using near-infrared light just beyond the visible red region of the electromag-
netic spectrum. The light had a wavelength of 760 and 850 nm. This enables
measuring the changes in the concentration of cerebral oxygenated (O,Hb in
pMM), deoxygenated (HHb in puM), total hemoglobin (tHb in uM) and tissue
oxygen saturation of hemoglobin (StO, in %) of the frontal cortex. The tHb
reflects changes in the cerebral blood flow and the StO, the balance between
the cerebral metabolic rate of oxygen and blood flow. Source-detector distance
was kept constant at 2.5 cm and sample rate was 8.93 Hz. Measurements were
recorded using NIRx acquisition software (NIRStar, Ver. 14.1, NIRx Medizintech-
nik GmBH, Berlin, Germany). Markers were set to identify the start and end of
each phase during all sessions: (1) baseline, (2) watching, (3) passive contact,
(4) active contact, and (5) neutral. All signals were recorded on a laptop PC
and stored on its hard drive for subsequent analysis. The raw data were trans-
formed, normalized and bandpass filtered (0.01 Hz Low cutoff and High cutoff
0.2 Hz, Roll off width (%): 15, 15) with NIRSLab software.

Live animal

We included guinea pigs and a small dog in the experimental sessions with par-
ticipants. The same animal was always present for a specific participant for all
sessions according to their preference. All animals were trained to interact
with patients with severe disorders of consciousness. To ensure security and
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comfort, participants were accompanied by a trained member of the study team
during the entire session. This person closely observed the patients for any signs
of fear or discomfort. If any were observed, the session would have been termi-
nated immediately. Animals were brought into the room before the start of the
session, allowing them to acclimatize. The guinea pigs were placed on an enclo-
sure-like table. A house as well as their transport box allowed them to retreat
before and after the session. The animals were placed on the participants lap
on a pet bed during the phases “passive contact” and “active contact.” During
all session, the animal’s safety was ensured by the presence of an animal attend-
ant of the clinic and the therapy dog was always accompanied by its owner.

Mechanical toy animal

A battery-driven mechanical toy rabbit (Hamleys Movers & Shakers, London, UK)
served as the control stimulus. The toy rabbit had synthetic fur, measured 17 x
12X 19 cm, hopped, moved its ears and simultaneously emitted a squeaky
sound.

Data analysis

Data of any fNIRS channels that did not record a good signal were excluded from
analysis. Final analysis was performed using the data of six channels that showed
a consistent, clear signal in all participants. For each channel, the mean concen-
tration of O,Hb, HHb and tHb was calculated, and the values were saved in an
ASClIfile. These values were subsequently used to derive the median and percen-
tage of hemoglobin concentrations relative to the maximum of each individual.
Data were then averaged for all corresponding phases over the three AAT ses-
sions and the three control sessions. The baseline was gained by calculating
the mean average of the baseline phase and the neutral phase for each partici-
pant over all six sessions. Mean O,Hb and HHb changes were calculated for
each participant and each phase. Data were descriptively analysed.

Results

Data of one female and one male patient, total of five sessions each, were ana-
lysed. One patient interacted with a dog and one patient with guinea pigs. Data
from one female and one male control participant, total of six sessions each,
held with either a dog or the guinea pigs, were included. Patients were
younger, with a mean age of 37 years (SD=1.0), compared to the healthy
control participants, with a mean age of 50 years (SD =4.5). According to the
CRS, both patients had auditory reactions such as opening eyes and turning
the head towards a stimulus while patient 1 showed only occasional gaze at
visual stimuli by chance but patient 2 followed objects and persons with her
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gaze at study start. Patient 1 reacted to passive tactile stimuli while patient 2
showed spontaneous and targeted movements with her hands (see Table 1).

Neural activity and hemodynamic response

The individual hemodynamic response of every participant is shown in Figure 1.
Both MCS patients showed an increased hemodynamic response, resulting in an
increase in O,Hb, as the intensity of the stimulus increased. The signal was
weakest during the baseline and when watching the live and toy animal,
while it was strongest during active contact when either the live or the mech-
anical toy animal was stroked. This clear pattern could not be observed in
healthy control subjects.

During active contact, three of four participants showed a larger hemody-
namic response when stroking the live animal compared to stroking the mech-
anical toy animal. One patient showed a larger hemodynamic response while
stroking the mechanical toy compared to the live animal. During passive
contact, three of four participants showed larger hemodynamic responses
with the mechanical toy compared to the live animal. One healthy control
subject reacted with a larger hemodynamic response when the live animal
was placed on the lap compared to the mechanical toy animal, representing
the maximum response of this person over all sessions (see Figure 1).

Patterns of hemodynamic response

When comparing the signal in O,Hb and HHb, we observed three different
hemodynamic patterns. The first follows the typical fNIRS response, with an

Table 1. Sample characteristics.

Assisting Analysed

Subject  Gender Age CRS® Etiology Main pathology Animal Sessions
Patient ~ Male 38 Total: 10 (arousal=3; nonTBlI  Hypoxic and Dog 5
1 motor = 3; auditory metabolic-toxic
=2; visual = 1; encephalopathy
tactile=1;
oromotor/verbal =
0)
Patient Female 36 Total: 17 (arousal=5; nonTBI Right hemispheric Guinea 5
2 motor = 4; auditory intracerebral pig
=2; visual = 3; hemorrhage
tactile=2;
oromotor/verbal =
1)
Control  Male 46 - - - Dog 6
1
Control  Female 55 - - - Guinea 6
2 pig

Notes: TBI: traumatic brain injury, CRS: JFK Coma Recovery Scale total score at study start.
?Refers to the original, not the revised instrument with a maximum total score of 25.
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Figure 1. Mean O,Hb and HHb concentrations for each phase and each participant.

increase in oxygenated hemoglobin and a decrease in deoxygenated hemo-
globin (Tachtsidis & Scholkmann, 2016). This pattern was observed in all partici-
pants but more frequently in the two healthy control subjects than in the two
MCS patients. Second, an inverted fNIRS response was observed, in which O,Hb
decreased and HHb increased. In all four participants, this pattern occurred



NEUROPSYCHOLOGICAL REHABILITATION 1331

reliably only during active contact, when either the live or mechanical toy
animal was stroked. Additionally, one MCS patient also showed this inverted
signal during passive contact with the mechanical toy animal. Third, a pattern
with almost similar O,Hb and HHb signals occurred randomly during some
phases in the MCS patients.

Discussion

Data analysis revealed clear hemodynamic responses in the two MCS patients
and the two healthy control subjects in response to different levels of inter-
action with the live and the mechanical toy animal. First, we found a consistent
pattern of increased hemodynamic response of O,Hb with increasing stimulus
interaction in both MCS patients. Second, we found differences in the responses
to the experimental condition with a live animal present and the control con-
dition with a mechanical toy animal present. During active contact, three of
four participants showed a higher hemodynamic response when stroking the
live animal compared to stroking the mechanical toy. Conversely, during
passive contact, three of four participants showed larger hemodynamic
responses with the mechanical toy compared to the live animal. Third, we con-
sistently found an inverted signal with higher HHb than O,Hb concentrations in
all four participants when either the live or mechanical toy animal was stroked.
In all other phases, the signal matched the expected neural activation response
typically measured using fNIRS with an increase in O,Hb and a decrease in HHb.

The fact that we found clear hemodynamic responses in both the MCS
patients and the healthy control subjects in response to different activities
leads to the assumption that fNIRS is a valid tool to investigate effects of
animal contact in MCS patients. However, we found differences between MCS
patients and healthy controls, with MCS patients showing a much more consist-
ent response in relation to different levels of stimulus intensity. MCS patients
reacted to tactile stimulation during passive contact and showed the largest
reaction during active contact with the live or toy animal, when interaction
was maximal. These results are in line with previous research showing that
patients with severe brain injuries react better to tactile stimulation (Keller
et al, 2007) and to multiple stimulation compared to singular stimulation
(Maegele et al.,, 2005; Megha et al.,, 2013).

The observed different responses to the presence of a live or mechanical toy
animal lead us to assume that a live animal elicits more distinct psychological
and neuronal processes than a mechanical toy animal. We propose that the
reactions to the mechanical toy animal represent attention processing, while
the active contact with the live animal includes an additional emotional com-
ponent. This assumption is in line with previous research documenting that
interacting with animals can lead to increased positive emotions being
reflected on a neurophysiological level. In children, activation of the emotional
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prefrontal area was detected via fNIRS while they were experiencing AAT after
having stressful surgery (Calcaterra et al., 2015). Patients with mood disorders
showed increases in oxygenated hemoglobin in the prefrontal cortex during
interaction with a dog compared to performing a verbal fluency task (Aoki
et al.,, 2012). Watching positive human-animal interactions led to larger prefron-
tal brain activation in healthy participants than watching aggressive interactions
(Vanutelli & Balconi, 2015).

In our study, only one patient showed a stronger response to touching the
mechanical toy animal compared to touching the live animal. This was a
patient who had to wear sterile rubber gloves for hygienic reasons. The live
animal usually did not move, while the mechanical toy animal was moving.
Therefore, the mechanical toy animal might have had a stronger sensory
input because this patient could feel movements through the glove but the sen-
sation of the soft fur in both the living and the toy animal was missing. This indi-
cates that direct skin contact is important when interacting with an animal.
Moreover, we propose that the active interaction is an important component.
In all four participants, the hemodynamic response changes from a typical
fNIRS reaction into an inverted reaction when having active contact with the
animal. The decrease in O,Hb is usually associated with decreased neuronal
activity (Tachtsidis & Scholkmann, 2016). However, it could also be that the
number of activated neurons increased during the active contact, (Marcar &
Loenneker, 2004) consequently leading to a higher oxygen consumption, and
therefore still representing a higher prefrontal activation of the participants.
Another explanation for the inverted signal during active contact could be
the relaxing and stress reducing effect that is known to be elicited by animals
(Ein et al., 2018). The decrease in O,Hb, therefore, would reflect a decrease in
brain activity due to relaxation. Previous PET imaging and fNIRS studies have
shown that relaxing and stress reducing effects of animals can be reflected by
neurophysiological processes in the brain (Aoki et al., 2012; Sugawara et al.,
2015).

Limitations, strengths and future Directions

The pilot character of this study, with its small sample size, does not allow for
generalization of the results but rather provides hypotheses about effects and
mechanisms for future research. Another limitation is that participants could
not be blinded for the two conditions, because the presence of the live
animal was obvious. In our design, we cannot distinguish between the patient’s
reactions to the touch of the therapist or the live or toy animal. It might be poss-
ible that the increased reaction from the passive contact to the active contact
with the animal also includes a reaction to being touched by the therapist’s
hand to guide the patient’'s movements. This is a method to facilitate move-
ments according to the Affolter concept (Affolter et al., 2000). However, in the
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Affolter concept, it is thought that touch of the therapist while guiding a
patient’s hands in a correct way will lose its salience because there is little
change in sensory input between the therapist’s hand and the patient’s hand,
while there is clear change in sensory input between the patient’s hand and
an external stimulus such as the animal’s fur (either live or toy). It might be
that some of the reactions that the patients showed, however, are reactions
to the touch of the therapist. But since stroking was facilitated in both con-
ditions, the clear difference between the live and the toy animal can be seen
as an effect of direct physical contact with the animal. Moreover, we do not
know what characteristics of the presented stimuli (live or toy animal) such as
movement, sound, fur, warmth etc. lead to the patients’ reactions. To increase
knowledge about what characteristics of a stimulus help increase awareness
and arousal in MCS patients should be investigated in further studies by system-
atically controlling for these aspects. fNIRS data has to be interpreted with
caution since it not only reflects cerebral hemodynamic changes but also extra-
cerebral hemodynamic changes. However, the data display a clear difference
between the single phases of the session in all participants, and the reaction
patterns were very comparable. This implies that, besides all limitations, neuro-
vascular responses to animal presence and contact can be measured in MCS
patients using fNIRS. All participants were measured repeatedly in both con-
ditions. This within-subject design made it possible to control for the
different medical conditions of the patients.

Further research should investigate the effects of animals with more patients
and healthy controls and with longer lasting phases of active and passive animal
contact. A more comparable and less distracting control object should be
chosen to control for the actual effect of a live animal, and we recommend com-
bining different physiological parameters with behaviour based evaluations.
Future studies should also include systematic behavioural analysis to further
investigate clinical relevance of these findings. In our study, the patients
showed clear behavioural reactions, but we did not analyse it systematically
via video coding. One of the patients showed facial expressions that we inter-
preted as a possible smile indicating a positive emotional reaction while he
touched the live animal. No such facial expression was observed before he
touched the live animal. Moreover, he opened his eyes, which were closed for
most of the session, when he touched the animal and kept them open while
stroking it. The other patient reacted with smiling and turning her head
during passive as well as active contact with the live and the mechanical toy
animal. Again, this behaviour was not observed before the contact with the
animal and we interpret these behaviours as a sign of an emotional reaction.
These observations are in line with the results of a study indicating that patients
in MCS show more behavioural reactions during AAT compared to control ses-
sions (Hediger et al., 2019) and refer to possible clinical application of AAT in
patients with MCS.
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Conclusion

Our results show that MCS patients show increased neuronal reactions with
increasing stimulus interaction. This indicates that stimuli should be presented
in a way that the patients can actively interact with them and perceive them
with multiple senses. Our data imply that mechanical toy animals might be a
useful instrument in neurorehabilitation treatments to activate attention pro-
cesses in MCS patients. However, the results suggest that animals can lead to
an even higher activation based on emotional processes. This emotional com-
ponent is central in integral rehabilitation (Zieger, 2002). The integration of
animals in neurorehabilitation of patients in a minimally conscious state could
therefore be a promising treatment approach and we propose to further inves-
tigate possibilities and effects of such interventions for patients with severe dis-
orders of consciousness.
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