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The prevalence of fecal colonization with extended-spectrum β-lactamase-producing
Escherichia coli (ESBL-Ec) among children in low- and middle-income countries is
alarmingly high. This study aimed to identify the sources of ESBL-Ec colonization
in children < 1 year old through comparative analysis of E. coli isolates from
child stool, child’s mother stool, and point-of-use drinking water from 46 rural
households in Bangladesh. The pairwise similarity in antibiotic susceptibility of E. coli
from all three sources was evaluated, followed by phylogenetic clustering using
enterobacterial repetitive intergenic consensus polymerase chain reaction and whole-
genome sequence analysis of the isolates. Matching antibiotic susceptibility and
enterobacterial repetitive intergenic consensus polymerase chain reaction patterns were
found among ESBL-Ec isolates from child–mother dyads of 24 and 11 households,
respectively, from child–water dyads of 5 and 4 households, respectively, and from child–
mother–water triads of 3 and 4 households, respectively. Whole-genome sequence
analysis of 30 isolates from 10 households revealed that ESBL-Ec from children in
five households (50%) was clonally related to ESBL-Ec either from their mothers (2
households), drinking water sources (2 households), or both mother and drinking-
water sources (1 household) based on serotype, phylogroup, sequence type, antibiotic
resistance genes, mobile genetic elements, core single-nucleotide polymorphisms,
and whole-genome multilocus sequence typing. Overall, this study provides empirical
evidence that ESBL-Ec colonization in children is linked to the colonization status of
mothers and exposure to the household environments contaminated with ESBL-Ec.
Interventions such as improved hygiene practices and a safe drinking water supply may
help reduce the transmission of ESBL-Ec at the household level.

Keywords: antibiotic resistance, transmission, colonization, whole genome sequencing, E. coli, ESBL, children,
drinking water
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INTRODUCTION

Antimicrobial resistance is a growing public health challenge
expected to disproportionately affect low- and middle-income
countries in the coming decades (Nadimpalli et al., 2021).
The rate of intestinal colonization with antibiotic-resistant
organisms has been increasing globally, especially in low- and
middle-income countries where both exposure to antibiotic-
resistant organisms and use of antibiotics are high (Woerther
et al., 2013). Children younger than 5 years, including
infants, are frequent carriers of antibiotic-resistant bacteria and
antimicrobial resistance genes (ARGs) in their gut (Kaarme
et al., 2013; Fernandez-Reyes et al., 2014; Farra et al., 2016;
Islam et al., 2018). In rural Bangladesh, we previously found
that around 78% of healthy infants (asymptomatic) younger
than 1 year were colonized by extended-spectrum β-lactamase-
producing Escherichia coli (ESBL-Ec) with a mean of 6.21 log10
CFU/g wet weight of stool (Islam et al., 2019). Moreover,
ESBL-Ec encompassed an average of one-third of the total
culturable E. coli found in stool samples. Intestinal colonization
with ESBL-Ec is associated with an increased risk of drug-
resistant infections, treatment complications, and mortality (Ben-
Ami et al., 2009; Freeman et al., 2012; Van Aken et al.,
2014; Rottier et al., 2015; Isendahl et al., 2019), as it has
been shown that multidrug-resistant (MDR) commensal E. coli
causes extraintestinal infections such as urinary tract infection,
bloodstream infections, and neonatal meningitis (Poolman and
Wacker, 2016). Additionally, gut colonization with ESBL-Ec
represents a gene pool for ARGs that can be exchanged with
human pathogens in the gut (Gekenidis et al., 2020).

Escherichia coli is one of the most common commensal gut
microflora that account for a significant proportion of antibiotic-
resistant bacteria both in infants and adults (Moore et al., 2013;
Backhed et al., 2015; Pärnänen et al., 2018). E. coli is also one
of the first bacterial species to colonize an infant’s gut through
exposure to maternal fecal flora and/or environmental bacteria
(Ducluzeau, 1993; Nowrouzian et al., 2003; Hetzer et al., 2019).
E. coli also share antibiotic resistance determinants with other
pathogenic and non-pathogenic organisms via horizontal gene
transfer of mobile genetic elements (MGEs), including plasmids,
integrons, or transposons (Wright, 2007). Therefore, reducing
the level of gut colonization with antibiotic-resistant organisms
is considered an effective strategy to control infections caused by
MDR organisms in hospitals and in the community (Karanika
et al., 2016). Identifying the sources and transmission routes of
resistant organisms that colonize infants’ gut will be helpful for
designing effective intervention strategies.

The antibiotic resistome (collection of antibiotic resistance
genes) and mobilome (collection of MGEs) present in a child’s
gut are influenced by diet and the external environment
(Wu et al., 2016; Li et al., 2021). For example, maternal
gut microbiome and breast milk microflora influence child
microbiomes (Pärnänen et al., 2018). The gut microbiome
of children in resource-poor settings is also impacted by
environmental flora, as children are frequently exposed to
contaminated environments such as courtyard soil, toys
and other inanimate objects, contaminated complementary

foods, and drinking water (Hartinger et al., 2021). In low-
income settings, complementary foods are often contaminated
with microorganisms that can cause diseases in infants, and
unhygienic food preparation practices are potential sources of
contamination (Islam et al., 2012).

In both urban and rural Bangladesh, point-of-use drinking
water is found to be frequently contaminated with fecal indicator
bacteria that are resistant to antibiotics (Hoque et al., 2006;
Talukdar et al., 2013). Given the frequent contamination of
point-of-use drinking water within households, as demonstrated
by higher levels of contamination compared with water at the
source, drinking water may be an important route of exposure
to antibiotic-resistant bacteria (Ercumen et al., 2015). However,
empirical evidence demonstrating household stored water as a
reservoir of antibiotic-resistant bacteria is scarce.

In this study, we analyzed E. coli isolates from mother–
child dyads along with stored drinking water in a number
of rural households in Bangladesh. The findings of the study
provide important insights into the possible intra-household
transmission of ESBL-Ec from mother and/or household
drinking water to children.

MATERIALS AND METHODS

Study Participants Enrollment and
Sample Collection
A total of 100 households having an infant (≤ 1 year) were
randomly selected during the period from March to October
2017 in rural villages of Hajigonj (n = 50) and Matlab (n = 50),
two subdistricts of Chandpur, Bangladesh. Infant’s mothers were
enrolled in this study upon written consent either by signature
or by thumbprint if they were not literate and were approached
for stool sample collection in a sterile container provided by
our field staff. Infant demographic information, including age,
mode of delivery, feeding practices, and antibiotic consumption
within 3 months before sampling, was collected (Supplementary
Table 1). Three types of samples, including mother stool (MS),
child stool (CS), and point-of-use drinking water (WU), were
collected on the same day from each household and marked as
Hajigonj and Matlab sample ID as RH and RM, respectively.
All samples were immediately kept in a cold box (4–8◦C) and
transported to the laboratory within 4–6 h.

Detection and Isolation of Escherichia
coli
Escherichia coli was isolated from stool and water samples
following a standard culture-based procedure described
previously (Islam et al., 2019). Briefly, 50 µl of each of four
10-fold serial dilutions (10−1 to 10−4) of each stool sample
from mothers and children was inoculated using drop plate
techniques onto MacConkey agar plates (Becton Dickson, MD,
United States) and then incubated at 37◦C for 18 h. For water
samples, 100 ml was filtered through a 0.45-µm membrane filter,
which was placed on modified membrane thermotolerant E. coli
agar (m-TEC) (Becton Dickinson, MD, United States) according
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to the procedure described by the US Environmental Protection
Agency (Method 1603, EPA) (US Environmental Protection
Agency, 2002). At least one well-isolated colony typical of E. coli
from each MacConkey and m-TEC plate was tested by API-20E
(bioMerieux, France) for confirmation and stored at −80◦C.

Antibiotics Susceptibility Test
Standard disk diffusion technique following the Clinical and
Laboratory Standards Institute guidelines was used to determine
antibiotic susceptibility (AS) of E. coli (Patel, 2017). The
list of antibiotics used in this study included ampicillin
(10 µg), gentamycin (10 µg), tetracycline (30 µg), meropenem
(10 µg), imipenem (10 µg), ceftriaxone (30 µg), cefotaxime
(30 µg), cefepime (30 µg), ciprofloxacin (5 µg), nalidixic acid
(30 µg), azithromycin (15 µg), trimethoprim/sulfamethoxazole
(25 µg), and chloramphenicol (30 µg) (Oxoid, Hampshire,
United Kingdom). The isolates were classified as resistant or
sensitive by measuring the zone of inhibition according to the
Clinical and Laboratory Standards Institute (Patel, 2017). If an
isolate was resistant to at least one agent in three or more
classes of antibiotics, it was categorized as MDR (Magiorakos
et al., 2012). Third-generation cephalosporin-resistant E. coli
isolates were further tested for ESBL using the combined disk test
described previously (Patel, 2017).

Typing of Escherichia coli Isolates by
Enterobacterial Repetitive Intergenic
Consensus Polymerase Chain Reaction
All E. coli isolates were analyzed using enterobacterial repetitive
intergenic consensus polymerase chain reaction (ERIC-PCR)
according to the procedure described earlier (Morales-Erasto
et al., 2011). ERIC-PCR was carried out in a Thermal Cycler
system (C1000 Touch, BioRad, Hercules, CA, United States),
and amplified products were separated in 1.5% agarose gel,
normalized using the 100-bp DNA ladder as an external reference
standard, stained with Midori Green, and visualized by FastGene
Blue/Green LED Gel Illuminator (Nippon Genetics, Tokyo,
Japan). The TIF formatted image was analyzed with BioNumerics
version 4.5 (Applied Maths, Kortrijk, Belgium) to determine the
similarity among the isolates. A dendrogram showing the degree
of similarity among isolates was generated by Dice, and clustering
correlation coefficients were calculated by the unweighted pair
group method with arithmetic averages. In ERIC-PCR typing,
clusters were considered at approximately 85% similarity in
banding patterns between E. coli isolates (Casarez et al., 2007).

DNA Extraction and Whole-Genome
Sequencing of Escherichia coli Isolates
DNA was extracted from an overnight culture of E. coli isolates
using the Maxwell culture DNA extraction kit and Maxwell
automated nucleic acid extraction system (Promega, Madison,
USA) following the manufacturer’s instruction. The purity and
concentration of the extracted DNA were evaluated using
NanoDrop spectrophotometer (Thermo Scientific, United States)
and Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA,
United States), respectively. Libraries were prepared using the

Nextera XT kit, and paired-end sequencing was performed
using the Illumina NextSeq500 platform (Illumina, San Diego,
CA, United States). Whole-genome sequencing (WGS) data
of 30 E. coli isolates from 10 households were submitted to
the National Center for Biotechnology Information under the
accession numbers listed in Supplementary Table 2. The size
of the assembled genome of E. coli isolates ranged from 4.39 to
5.43 Mb with a mean guanine–cytosine (GC) content of 49.6%.

Bioinformatics Analyses
FastQC version 0.11.4 was used for assessing the quality of the
reads1. Reads were de novo assembled using ABySS assembler
version 2.2.3 (Simpson et al., 2009). Contigs generated by
ABySS were ordered and orientated using ABACAS (Assefa
et al., 2009). Prokka 1.12 was used for genome annotation
(Seemann, 2014). ParSNP was used for identification of core
genome single-nucleotide polymorphisms (SNPs) by comparing
to the reference genome of strain E. coli SEC470, which showed
closed similarity with our study isolates, and construction
of phylogenetic tree was done based on aligned core-SNPs
(Treangen et al., 2014; Liu et al., 2016). Furthermore, SNP
difference was assessed using snp-dists available at https://
github.com/tseemann/snp-dists. The sequence types (STs) and
serotypes of the isolates were determined using the Achtman
scheme and SRST2 v0.2.02, respectively (Inouye et al., 2014).
ARGs were identified using ARIBA available at https://github.
com/sanger-pathogens/ariba considering identity and coverage
threshold greater than 90% against the Comprehensive Antibiotic
Resistance Database (Hunt et al., 2017). The presence of
virulence genes associated with intestinal pathogenic E. coli
and plasmid replicons was identified using VirulenceFinder
and PlasmidFinder database (Carattoli et al., 2014; Joensen
et al., 2014). ClermonTyping was used for E. coli phylo-
grouping (Beghain et al., 2018). For MGEs, annotation of
transposons was done using ISsaga, and integrons were
identified using the database reported earlier (Varani et al.,
2011; Cury et al., 2016). Whole-genome multilocus sequence
typing (wgMLST) of isolates was carried out using Enterobase
schemes with 25,002 loci for E. coli and minimum spanning
tree based on wgMLST generated using MSTree Algorithm
(Zhou et al., 2020).

Statistical Analysis
Data were entered in SPSS 20.0 (IBM Inc., Chicago, IL, United
Ststes). Data cleaning statistical analysis was done in R-3.4.2
(R Core Team, 2013). Data visualization was done using
MS Office Excel 2010 (Microsoft, Washington, United States).
Jaccard/Tanimoto similarity test was done for similarity index
analysis among E. coli strains isolated from CS, MS, and WU
sample types (Chung et al., 2019). AS patterns of isolates were
analyzed for similarity using the Jaccard index (J-index), where
J > 0.6 is considered a statistically significant association (Kain
et al., 2016; Lavers and Bond, 2016).

1https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2https://github.com/katholt/srst2
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FIGURE 1 | Heatmap showing antibiotic susceptibility (AS) pattern of ESBL-Ec isolated from stool samples of mother–child dyads and point-of-use drinking water
samples from 46 households. Amp, ampicillin; CN, gentamycin; TE, tetracycline; MEM, meropenem; IMP, imipenem; CRO, ceftriaxone; CTX, cefotaxime, FEP,
cefepime; CIP, ciprofloxacin; NA, nalidixic acid; AZM, azithromycin; STX, trimethoprim/sulfamethoxazole; C, chloramphenicol; HH, households; MS, mother stool;
CS, child stool; WCM, AS patterns matched among E. coli isolates from mother–child gut and point-of-use drinking water origin; MC, AS pattern matched between
E. coli isolates of mother–child gut origin; WC; AS pattern matched between E. coli strains from child-gut and point-of-use drinking water origin; UR; AS pattern
among E. coli strains from all sample sources were diverse.
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FIGURE 2 | Dendrogram generated by BioNumerics software, showing distances calculated by Dice similarity index of enterobacterial repetitive intergenic
consensus polymerase chain reaction banding patterns of E. coli strains obtained from stool samples of mother and child and point-of-use drinking water samples
from 46 households. Degree of similarity (%) is shown on scale.
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TABLE 1 | Distribution of serotype (O and H types), sequence type (ST), phylogroup, and pathotype in 30 E. coli isolates obtained from 10 households.

HHa No. HH ID H type O type STb type Phylogroupc Pathotyped

HH-01 RH-01-MS H21 O28ac-O42 Unknown B1 -

RH-01-CS H9 Onovel14 410 C -

RH-01-WU H9 Onovel14 410 C -

HH-04 RH-04-MS H27 O51 226 A -

RH-04-CS H10 Onovel17 226 A -

RH-04-WU H42 O157 3,744 A astA(STEC)

HH-12 RH-24-MS H33 O99 10 A aaiC (EAEC), astA(STEC)

RH-24-CS H33 O99 10 A aaiC (EAEC), astA(STEC)

RH-24-WU H21 Onovel4 602 B1

HH-26 RH-45-MS H10 O45 226 A astA(STEC)

RH-45-CS H30 O153 315 D -

RH-45-WU H9 Onovel32 10 A -

HH-28 RH-48-MS H23 O8 224 B1 -

RH-48-CS H4 O25 131 B2 aatA(EAEC)

RH-48-WU H41 O137 3,018 E

HH-31 RM-55-MS H18 O17-O44-O77 394 D aatA(EAEC), astA(STEC)

RM-55-CS H18 O17-O44-O77 394 D aatA(EAEC), astA(STEC)

RM-55-WU H18 O17-O44-O77 394 D aatA(EAEC), astA(STEC)

HH-35 RM-65-MS H48 O164 2,705 A -

RM-65-CS H15 O23 70 D astA(STEC)

RM-65-WU H12 O8 3,580 B1 -

HH-36 RM-69-MS H21 not found 443 B1 -

RM-69-CS H4 O25 131 B2 -

RM-69-WU H4 O25 131 B2 -

HH-44 RM-96-MS H30 O153 38 D aatA(EAEC)

RM-96-CS H30 O153 38 G aatA(EAEC)

RM-96-WU H16 O185 2,280 B1 -

HH-46 RM-103-MS H19 Onovel1 1,290 A -

RM-103-CS H19 Onovel1 1,290 A -

RM-103-WU H18 O17-O44-O77 8,131 G aatA(EAEC), astA(STEC)

aHousehold number.
bSequence type (ST) based on multilocus sequence typing Achtman scheme (Achtman et al., 2012).
cPhylogenetic group based on Clermon Typing (Beghain et al., 2018).
dPathotype: EPEC: eae, bfp, and perA; EAEC: aatA; EIEC: ipaH and ial; ETEC: eltA, eltB, and lt; EHEC: espK, espN, nleA, nlec, and nleG; STEC: astA, aaic, stx1a, stx1b,
stx2a, and stx2db (Joensen et al., 2014).

RESULTS

Antibiotic Susceptibility Profiles of
Escherichia coli From Child Stool,
Mother Stool, and Point-of-Use Drinking
Water Samples
Of 100 households enrolled in this study, E. coli was detected
in samples from all three sources (MS, CS, and WU samples)
of 55 households. AS tests of E. coli from these 55 households
showed that all E. coli isolates from MS samples were resistant
to ampicillin, followed by 98% (n = 54) to third-generation
cephalosporins (3GC), 55% (n = 30) to azithromycin, 53%
(n = 29) to fourth-generation cephalosporins (4GC), 31%
(n = 17) to sulfamethoxazole–trimethoprim, 29% (n = 16) to
tetracycline, and 27% (n = 15) to fluoroquinolones. E. coli isolates
from CS samples were all resistant to ampicillin, followed by
95% (n = 52) to 3GC, 85% (n = 47) to azithromycin, 71%

(n = 39) to 4GC, 49% (n = 27) to fluoroquinolones, 40%
(n = 22) to sulfamethoxazole–trimethoprim, and 27% (n = 15) to
tetracycline. For E. coli from WU samples, 55% (n = 30) isolates
were resistant to ampicillin, followed by 42% (n = 23) to 3GC,
35% (n = 19) to sulfamethoxazole–trimethoprim, 33% (n = 18) to
fluoroquinolones, and 24% (n = 13) to 4GC. The prevalence of
MDR E. coli was high (98%) among isolates from CS samples,
followed by MS (87%) and WU (55%). Of 55 households, CS
and MS samples from 46 households (designated as HH1 to
HH46) were positive for ESBL-Ec, of which 23 households had
ESBL-Ec in WU sample.

Among these 46 households, E. coli isolates from CS and
MS samples in 24 households (52%) had matching AS profiles,
whereas similar results were observed between CS and WU
isolates only in five households (11%) based on the J-index
similarity matrix (Supplementary Table 3). Furthermore, E. coli
from all three sources (CS, MS, and WU) with matching AS
profiles was found only in three households (6%) (Figure 1).
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FIGURE 3 | Distribution of antibiotic resistance genes retrieved from whole-genome sequence of 30 E. coli strains isolated from CS, MS, and WU samples from 10
households. Blue and gray boxes indicate presence and absence of genes, respectively. HH, households; MS, mother stool; CS, child stool; WU, point-of-use
drinking water.

Enterobacterial Repetitive Intergenic
Consensus Polymerase Chain Reaction
Patterns of E. coli Isolates From Child
Stool, Mother Stool, and Point-of-Use
Drinking Water Samples
Considering a similarity cutoff of 85% among ERIC-PCR banding
patterns, a total of 138 isolates consisting of 92 from CS and MS
(46 each) and 46 from WU (23 each of ESBL-Ec and non-ESBL-
Ec) were grouped into 19 major clusters designated as C1–C19
(Figure 2). CS isolates from 11 (24%) and 4 (9%) households had
matching ERIC-PCR patterns with their corresponding MS and
WU isolates, respectively. Furthermore, isolates from all three
sources (MS, CS, and WU) from four additional households
had identical ERIC-PCR profiles. Overall, ESBL-Ec from children
of 19 households (41%) were related to isolates either from
their mothers or drinking water or both, whereas isolates from
the remaining 27 households (59%) were unrelated to each
other (Figure 2).

Genomic Analysis of Escherichia coli
Isolates From Child Stool, Mother Stool,
and Point-of-Use Drinking Water
Samples
Based on ERIC-PCR clustering, we selected 30 isolates from
10 households for WGS analysis. Of these, four households

had matching CS-MS isolates (HH4, HH12, HH44, and HH46),
two had matching CS–WU isolates (HH1 and HH36), one
had matching CS–MS–WU isolates (HH31), and three had
unmatched isolates (HH26, HH28, and HH35). Of these 30
isolates, 28 were ESBL-Ec, and the remaining two were non-
ESBL-Ec.

WGS analysis revealed that E. coli isolates from CS–MS dyads
in four households (HH4, HH12, HH44, and HH46) had similar
serotype, ST, phylogroup, and pathotype except for HH4 and
HH44, where isolates from CS–MS dyads differ only in serotype
and phylogroup, respectively. Similarly, E. coli from WU–CS
dyads from two households (HH1 and HH36) and CS–MS–
WU triad from one household (HH31) were identical based on
serotype, ST, phylogroup, and pathotype (Table 1).

A total of 31 different antibiotic resistance genes were found
among these E. coli isolates (Figure 3). Antibiotic resistance genes
that were commonly found in both CS and MS isolates were
as follows: blaCTX−M−15 (β-lactum) and qnrS1 (quinolones) in
HH4; blaCTX−M−15, blaTEM−1 (β-lactum), and ermB (macrolide)
in HH12; aadA1, aph(3)-Ib, aph(6)-Id (aminoglycosides),
blaCTX−M−15, dfrA1 (trimethoprim), and ermB in HH44; and
aadA2, blaCTX−M−15, catA1 (chloramphenicol), dfrA5, dfrA12,
ermB, and qnrS13 for HH46. The common genes among
CS–WU isolates from HH1 were aadA1, blaCTX−M−15, and
dfrA17, whereas aac(6)-Ib-cr5 (aminoglycoside), blaCTX−M−15,
blaOXA−1, dfrA17, ermB, and sul1 (sulphonamides) were
common in HH36. Furthermore, blaCTX−M−15, blaTEM−1,
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TABLE 2 | Distribution of mobile genetic elements in 30 E. coli isolates
of 10 households.

HH ID E. coli isolates ID Plasmid Inca Integron Transposon

HH-01 RH-001-MS N/F - Tn3(R)

RH-001-CS IncFIA, IncFIB, IncFII Int 1, int 2 Tn3(CR)

RH-001-WU IncFIA, IncFIB, IncFII Int 1, int 2 Tn3 (CR)

HH-04 RH-004-MS N/F - Tn3(R)

RH-004-CS N/F - Tn3(R)

RH-004-WU N/F - -

HH-12 RH-024-MS IncFII, IncI1, IncX4 - Tn3(R)

RH-024-CS IncFII, IncI1, IncX4 - Tn3(R)

RH-024-WU IncFIB, IncFIC, IncX1 Int 1 Tn3(R)

HH-26 RH-045-MS IncFIA, IncFII - Tn3(R)

RH-045-CS IncFIB, IncFII Int 1, int 2 Tn3(R)

RH-045-WU IncFIB, IncFII, IncX1 Int 1 Tn3(R)

HH-28 RH-048-MS IncFIA, IncFIB, IncFII Int 1 -

RH-048-CS IncFIA, IncFIB, IncFII Int 1 -

RH-048-WU IncX4 - Tn3(R)

HH-31 RM-055-MS IncFIB, IncFII - Tn3(R)

RM-055-CS IncFIB, IncFII - Tn3(R)

RM-055-WU IncFIB, IncFII - Tn3(R)

HH-35 RM-065-MS N/F - Tn3(R)

RM-065-CS IncB/O/K/Z, IncFII Int 1 Tn3(R)

RM-065-WU N/F - Tn3(R)

HH-36 RM-069-MS IncFIA, IncFIB, IncFII Int 1 Tn3(R)

RM-069-CS IncFIA, IncFII Int 1, int 2, Int3 Tn3(CR)

RM-069-WU IncFIA, IncFII Int 1, int 2, Int3 Tn3(R)

HH-44 RM-096-MS IncFIB, IncFII Int 1 Tn3(R)

RM-096-CS IncFIB, IncFII Int 1 Tn3(R)

RM-096-WU N/F - Tn3(R)

HH-46 RM-103-MS IncB/O/K/Z Int 1 Tn3(R)

RM-103-CS IncB/O/K/Z Int 1 Tn3(R)

RM-103-WU IncB/O/K/Z, IncFIB, IncFII - -

aPlasmid Inc type based on Carottoli (Carattoli et al., 2014).

and qnrS1 genes were commonly found in ESBL-Ec from
CS–MS–WU isolates in HH31.

Same MGEs were found among isolates from multiple sources
within the same households. Plasmids that belonged to the
IncF family (FIA, FIB, FIC, and FII) along with the class
I integron (Int1) and Tn3 transposon were most commonly
found in isolates from different households (Table 2). In one
household (HH46), IncB/O/K/Z plasmid was detected in both CS
and MS isolates.

Genetic relatedness among E. coli isolates was determined
using core genome SNPs and wgMLST (Figure 4). Core SNPs
analysis of the isolates produced seven clusters (C1–C7), each
representing one household (Figure 4A). CS isolates from 4
(HH04, HH12, HH44, and HH46), 2 (HH01 and HH36), and 1
(HH31) households were clustered together with isolates from
the corresponding MS, WU, and both, respectively. Pairwise
core SNP difference among isolates in clusters C1 and C3–7
was minimum (less than 21 SNPs) and monophyletic (share
most common recent ancestor and include all its descendants)
in phylogenetic analysis, suggesting clonality among the isolates.

The SNP difference among isolates in cluster C2 was relatively
higher (1,231 SNPs), and they had a paraphyletic (share
a common ancestor, but some descendants are excluded)
relationship, suggesting that these isolates are distantly related.
The core SNP difference among isolates in the remaining three
households (HH26, HH28, and HH35) was very high (> 18,000),
suggesting that they are unrelated to each other (Supplementary
Table 4). A minimum spanning tree was also generated based on
wgMLST to further assess the genetic relatedness (Figure 4B).
wgMLST result shows that allelic distances among CS isolates
in five households were < 5 loci from their corresponding MS
(HH12 and HH46) or WU (HH1 and HH36) or both (HH31)
isolates, indicating their clonal relationship.

DISCUSSION

In this study, we investigated genomic characteristics of E. coli
isolates from MS, CS, and WU samples from the same households
in rural Bangladesh to identify the potential sources of ESBL-
Ec colonized in the intestine of children (Islam et al., 2019). We
found concordant results between ERIC-PCR typing and WGS
based analysis of isolates.

WGS analysis has increasingly been used as an essential
tool for microbial source tracking (Rantsiou et al., 2018). The
previous report suggests that isolates are predicted to be clonal
or originated from the same ancestral clone when pairwise SNP
difference is < 21, the allelic difference in wgMLST is 0–17
loci, and monophyletic topology is present in the phylogenetic
tree (Pightling et al., 2018; Blanc et al., 2020). The report also
added that a more precise decision on the clonality of isolates
could be made from WGS-based analysis when it is interpreted
along with available epidemiological data. In this study, 15 (33%)
of 46 households had identical ERIC-PCR banding patterns of
ESBL-Ec isolates from mother–child dyads, indicating possible
transmission of organisms from one source to the other within
the same household. The result is also supported by WGS
analysis, where three households (HH12, HH31, and HH46) had
identical ESBL-Ec strains in mother and child pairs based on the
core-SNPs and wgMLST analysis. Clonal relationship between
isolates from CS–MS dyads in the same households supports
vertical transmission, although the cross-sectional design of the
study did not permit us to determine the directionality of
transmission. This finding is concordant with the prior work,
which showed that there is a significant impact of mother’s
gut microflora on the colonization with the antibiotic-resistant
microbial community in infant’s gut (Zhang et al., 2011; Denkel
et al., 2014; Pärnänen et al., 2018).

In 8 (35%) of 23 households, CS E. coli isolates had ERIC-PCR
patterns identical to isolates from WU samples, indicating that
drinking water could be a potential source of gut colonization
with these organisms (Günther and Schipper, 2013). The
observation is also supported by WGS analysis where ESBL-Ec
from WU samples were found similar with ESBL-Ec isolates from
CS samples in three representative households (HH01, HH31,
and HH36) based on core-SNP, wgMLST, serotype distribution,
phylogroup, antibiotic resistance genes, and MGE characteristics.
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FIGURE 4 | Phylogenetic analysis of 30 E. coli isolates. (A) Core-genome SNP tree using ParSNP alignment. (B) Minimum spanning tree generated by wgMLST.
Isolates from same household are shown by circles of identical color. Numbers next to branches indicate allelic differences according to wgMLST analysis.

MGEs such as plasmids, integrons, and transposons play an
important role in the transmission of antibiotic resistance in
the bacterial community. In this study, the majority of ESBL-Ec
isolates possessed IncF type plasmids, which are commonly found
in E. coli from different human specimens (e.g., rectal samples,
gastric aspirate samples, and vaginal samples) and animal sources
(e.g., poultry feces) (Marcadé et al., 2008). Furthermore, the IncF
plasmid family is predominantly associated with the transfer of
antibiotic resistance traits (Johnson et al., 2007; Lyimo et al.,
2016) and can persist under selective environments because
of the addiction systems harbored by these plasmids (Yang
et al., 2015). Apart from plasmids, E. coli isolates possessed
mostly int1, which is mainly involved in the spread of antibiotic
resistance (Domingues et al., 2012). In the present study, all
the isolates have int1 except one harbored aadA encoding
aminoglycosides and dfrA encoding trimethoprim resistance,
which is concordant with the previous studies (Lee et al.,
2006; Vinué et al., 2008; Bailey et al., 2010). Transposon
Tn3 family and Tn3-like subfamilies play an important role
in the dissemination of antibiotic resistance genes, especially
the β-lactam and aminoglycoside resistance genes (Tran van
Nhieu and Collatz, 1987; Tolmasky, 2000; Partridge and Hall,
2005).

Analysis of WGS data also revealed that 8 of 10 households
had at least one E. coli positive for pathogenic genes, either
aatA or astA or both. aatA encodes for an autotransporter

predominantly found in avian pathogenic E. coli and
enteroaggregative E. coli (EAEC), causing diarrhea in
humans. astA is found in multiple pathotypes, including
EAEC, enterohemorrhagic E. coli, and enteropathogenic E. coli.
EAEC has been shown to cause subclinical infection, is associated
with growth decrements in children in Bangladesh, and plays a
significant role as a co-pathogen (Lima et al., 2018). Moreover,
aatA- and astA-carrying E. coli are also prevalent in household
environments, including courtyard soil that is commonly
impacted by feces of domestic poultry carrying avian pathogenic
E. coli isolates (Montealegre et al., 2020). Children have direct
exposure to soil, as reported by a previous study that more than
80% of children < 30 months of age in rural Bangladesh were
observed mouthing soil, objects with visible soil, or food with
visible soil (Morita et al., 2017). It is also likely that children < 1
year of age can get the ESBL-Ec present in courtyard soil through
their mothers, as women in rural areas are regularly exposed to
soil (Montealegre et al., 2018).

Our findings should be interpreted in the context of this
study’s limitations. First, only one colony/isolate per sample
was analyzed, which is not sufficient to describe the genetic
heterogeneity among E. coli strains present in a sample. The
selection of colonies with different morphological characteristics
from each sample would have given us more confidence in
drawing the conclusion on the intra-household transmission
of ESBL-Ec, which has been underrepresented in this study.
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Second, only MS and WU samples were included for comparative
analysis, and sampling of other household environments such
as soil and domestic animals was not done, which might
be the potential sources of antibiotic resistance acquisition.
Nevertheless, this study was the first attempt to identify
potential sources of colonization with ESBL-Ec among children
in Bangladesh. Intestinal colonization with ESBL-Ec among
children is linked to the colonization status of mothers and
exposure to the contaminated household environments, which
are exacerbated by the lack of improved sanitation, safe drinking
water supply, and hygienic practices. Further studies could be
designed to longitudinally follow up the intestinal colonization
with ESBL-Ec in children, including other members of the
household, to understand the persistence and dynamics of
colonization by these organisms in this setting.
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