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Abstract: o-Quinodimethanes have remarkable utility as
reactive intermediates in Diels–Alder reactions, ena-
bling significantly accelerated routes to complex poly-
cyclic compounds. The discovery of different discrete
precursors to thermally generate o-quinodimethanes
thereby greatly augmented their availability and versa-
tility. However, due to the required high temperatures
and the immense reactivity of o-quinodimethanes,
stereoselectivity to afford isomerically defined products
still constitutes a critical challenge. Herein, we describe
the accessibility of atropisomeric o-quinodimethanes,
the enantioselective synthesis of their precursors, their
remarkable configurational stability and the stereo-
specific transformation by the benzannulation of dien-
ophiles. A catalyst-stereocontrolled [2+2+2] cycloaddi-
tion, the generation of o-quinodimethane atropisomers
and ensuing stereospecific Diels–Alder reactions en-
abled enantioselectivities through these transient inter-
mediates with of up to 96 :4 e.r.

Introduction

Owing to their exemplary ability to undergo Diels–Alder
reactions, o-quinodimethanes (o-QDMs)[1] emerged as val-
uable intermediates for the synthesis of complex polycyclic
compounds with exquisite applicability in material science,[2]

fullerene chemistry[3] and the synthesis of natural products.[4]

Sophisticated methods for the generation of reactive
o-QDM intermediates were systematically established by

means of 1,4-eliminations of disubstituted o-xylenes, cyclo-
reversions or extrusion reactions of benzannulated
heterocycles.[1,5] The majority of these methods utilize
benzocyclobutene,[6] benzocyclic sulfone[7] and benzo-
sultine[8] precursors to generate the dearomatized o-QDMs
for efficient benzannulations to rapidly enhance the molec-
ular complexity of dienophile substrates (Figure 1A). How-
ever, the high temperatures required for generating o-
QDMs renders stereoselective reactions challenging and the
transformation of enantioenriched o-QDMs has therefore
yet to reach its full potential, in particular for products with
different stereogenic units. Due to their well-defined top-
ology, we hence considered atropisomeric systems as an
ideal platform to induce stereoselectivity if the stereogenic
axes is rendered sufficiently configurationally stable for the
harsh conditions required to generate o-QDMs. Notably,
benzannulated atropisomeric products are of pronounced
significance as functional molecular systems, catalysts and as
natural or unnatural bioactive compounds, which prompted
the development of multiple distinct organocatalytic- and
transition metal-catalyzed approaches for their stereocon-
trolled synthesis.[9] Cross-coupling reactions,[10] transforma-
tions of stereodynamic biaryl systems,[11] the functionaliza-
tion of biaryl scaffolds[12] and stereoselective arene
formation[13] thereby emerged as comprehensive strategies.
Among these methods, the transition-metal-catalyzed arene-
forming [2+2+2] cycloaddition was found to be particularly
versatile for the synthesis of unusually congested
products[13e–m] and especially chiral rhodium(I) catalysts
enabled an excellent efficiency and selectivity for the
enantioselective synthesis of atropisomeric biaryls from
functionalized triynes.[14] Prior to these enantioselective
[2+2+2] cycloadditions, Funk and Vollhardt disclosed a
seminal total synthesis of (�)-estrone by combining a [2+2
+2] cycloaddition with a subsequent Diels–Alder reaction
through a corresponding o-QDM (Figure 1B).[4a] Captivated
by this groundbreaking strategy, we thus questioned if a
catalyst-controlled [2+2+2] cycloaddition and a subsequent
thermal treatment would generate atropisomeric o-QDMs,
representing reactive equivalents of prototypical biaryl
atropisomers for stereospecific benzannulations (Figure 1C).
Notably, the ortho-aryl substituents of atropisomeric
o-QDMs would not only impart high bond rotational
barriers, but also orient the dienophiles to influence the
configuration of the newly forged stereocenters aside the
encoding stereogenic axis. While Rodriguez, Coquerel and
co-workers recently demonstrated the outstanding versatility
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of aryne atropisomers,[15] atropisomeric o-QDMs would
hence constitute a novel class of configurationally stable
reactive atropisomers.
Based on our findings on the catalytic stereoselective

construction of atropisomers[16] and in particular the rho-
dium-catalyzed [2+2+2] cycloaddition to congested tripty-
cene products,[16c] we thus evaluated substrates allowing the
catalyst-controlled enantioselective [2+2+2] cycloaddition
to precursors of o-QDM atropisomers and the subsequent
transformation in stereospecific Diels–Alder reactions. The
tractability of this strategy was further unveiled in the
retrosynthetic analysis, in which the unique accessibility of
the triyne substrates enables a collective approach for the
stereoselective intramolecular [2+2+2] cycloadditions to
atropisomeric benzocyclobutene, sulfone or sultine o-QDM
precursors by arene formation (Figure 1D). Crucially, heat-
ing these precursors generates identical o-QDM atropisom-
ers for ensuing stereospecific Diels–Alder reactions with
corresponding dienophiles. However, several difficulties also
came to our attention, such as the congested nature of the
atropisomeric o-QDM precursors that likely impacts the
enantioselectivity of the [2+2+2] cycloaddition, the possibil-
ity for racemization of o-QDM atropisomers, precursors or
products at the required high temperatures and the
uncertain reactivity of sterically hindered o-QDMs in the
Diels–Alder reaction. Herein, we describe that these hurdles
are surmountable by the enantioselective synthesis of
atropisomeric o-QDM precursors via the intramolecular
[2+2+2] cycloaddition of triynes and the in situ generation
of o-QDM atropisomers for subsequent Diels–Alder reac-

tions to stereospecifically provide substituted biaryls with
high efficiency and enantioselectivity over the overall
reaction sequence (Figure 1E).

Results and Discussion

Our initial studies centered on the generation of o-QDM
atropisomers from benzocyclobutene precursors and triyne
1a was thus prepared and employed in a stereoselective Rh-
catalyzed [2+2+2] cycloaddition (Figure 2A, see Supporting
Information for details). To our delight, (Ra)-BINAP as
ligand provided the atropisomeric benzocyclobutene (Ra)-2a
in 83% yield and 95 :5 e.r. and the thermal ring opening
followed by the Diels–Alder reaction with dimethyl acetyle-
nedicarboxylate (DMAD) confirmed the feasibility of the
stereospecific benzannulation ((Ra)-3a: 93 : 7 e.r.). However,
all our attempts to increase the yield remained unfruitful
and partial racemization of (Ra)-2a was observed when the
Diels–Alder reaction was conducted above 180 °C. With
atropisomeric benzocyclobutenes, a racemization is hence
already initiated during thermal ring opening to form the
o-QDM. A lower temperature or a further increase of the
bond rotational barrier were hence deemed necessary. Our
attention was therefore turned to atropisomeric sulfone and
sultine o-QDM precursors that undergo chelotropic ring
opening or cycloreversions with SO2 cleavage. In addition,
compared to the benzocyclobutene atropisomers with the
four-membered ring structure, these penta- and hexacyclic
precursors for o-QDM atropisomers were expected to have

Figure 1. Background and concept of the work.
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significantly increased bond rotational barriers to endure the
necessary temperatures for o-QDM formation in the direct

stereospecific Diels–Alder reactions. We thus prepared the
trialkynyl sulfone substrate 4a and the analogous sulfinic

Figure 2. Initial results for the stepwise synthesis by the atroposelective [2+2+2] cycloaddition followed by the transformation of o-QDM precursors
for stereospecific Diels–Alder reactions and the optimization of the combined sequence. A) o-QDMs from a benzocyclobutene substrate 1a;
B) from sulfone substrate 4a; C) from sulfinic acid ester substrate 6a; D) Control reactions for the transformation of (Sa)-7a to (Sa)-5a;
E) Optimization: [a] Rh(cod)2BF4 (20.0 mol%) and the ligand (20.0 mol%) were dissolved in CH2Cl2 (5 mL) and the resulting mixture was stirred
for 20 minutes. A hydrogen atmosphere (1 atm) was introduced, the mixture was stirred for 1 h to activate the Rh catalyst and the solvent was
removed. The reactions were performed with 6a (50 μmol) and this activated Rh catalyst in the specified solvent (10 mL) and temperature for 16 h.
Upon filtration (SiO2), the Diels–Alder reaction was performed with N-phenylmaleimide (3.00 equiv) in diphenyl ether (500 μL) at 220 °C for 12 h.
[b] Isolated yield for the combined sequence. [c] Determined by 1H NMR and confirmed by HPLC. [d] Determined by HPLC on a chiral stationary
phase after isolation. [e] No solvent and catalyst removal after the [2+2+2] cycloaddition. [f ] 10.0 mol% Rh(cod)2BF4 and 10.0 mol% ligand. Ad:
adamantyl. NR: no reaction.
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acid ester 6a (see Supporting Information for details).[8d,17]

Gratifyingly, the [2+2+2] cycloaddition of the sulfone 4a to
atropisomeric (Sa)-5a resulted in 82% yield and 89 :11 e.r.
with the catalytic system used for the benzocyclobutene
(Ra)-2a (Figure 2B). Interestingly, when the sulfinic acid
ester 6a[17] was employed as substrate for the [2+2+2]
cycloaddition, the identical cyclized sulfone (Sa)-5a was
received in leu of the sultine (Sa)-7a through a thermal
rearrangement (Figure 2C).[8d] In this case, the Rh/(Sa)-
BINAP catalyst provided the atropisomeric sulfone (Sa)-5a
with an enhanced selectivity of 93 :7 e.r. Since we previously
encountered purification issues with (Ra)-3a obtained with
DMAD presumably due to partial aromatization of the
dihydronaphthalene moiety, we next conducted the stereo-
specific Diels–Alder reaction of the atropisomeric sulfone
(Sa)-5a with N-phenylmaleimide to further optimize the
Diels–Alder reaction. Notably, no conversion took place
when the temperature was below 200 °C (see Supporting
Information for details) and we were pleased to find
satisfactory results both in terms of yield and enantioselec-
tivity for (Sa,R,S)-8a when we heated the reaction in PhOPh
to 220 °C (90% yield, 5 :1 d.r., 93 : 7 e.r.). To evaluate the
generation of the o-quinodimethane atropisomer intermedi-
ate and the transformation of the sultine precursor (Sa)-7a
to the cyclic sulfone (Sa)-5a after the [2+2+2] cycloaddition,
we carried out control reactions and thereby gained valuable
insights (Figure 2D). As expected, no product was detected
when the Diels–Alder reaction of (Sa)-5a was conducted at
100 °C and remarkably, when the [2+2+2] cycloaddition and
the Diels–Alder reaction were performed simultaneously at
100 °C, the cycloaddition product (Sa)-5a was isolated in
63% yield accompanied with 4% of the Diels–Alder
product from N-phenylmaleimide (Sa,R,S)-8a (see Support-
ing Information for details). These experiments indicate that
the sultine product (Sa)-7a extrudes SO2 at 100 °C[8b,c] to give
the reactive o-QDM intermediate which is then trapped
again by SO2 or the dienophile, resulting in the cyclic sulfone
product (Sa)-5a and the Diels–Alder product (Sa,R,S)-8a. It
is also pertinent to note that heating products (Ra)-3a or
(Sa,R,S)-8a to 230 °C for 6 hours did not diminish their
enantioenrichment (<1% racemization), confirming the
exceptional configurational stability in both cases (see
Supporting Information for details). To elaborate the
simultaneous transformation at 100 °C (see Supporting
Information, Table S6 for details), we performed the reac-
tion under reduced pressure to remove SO2 (400 mbar) and
obtained (Sa,R,S)-8a in 28% yield. However, lower pres-
sures using other solvents or the addition of SO2 capture
reagents again resulted in (Sa)-5a as the major product,
indicating the high reactivity of the o-quinodimethane
intermediate with SO2. Since the studies on the separate
[2+2+2] cycloadditions of 6a and Diels–Alder reactions
through (Sa)-5a established a high stereoselectivity, stability
and conversion, we combined this reaction sequence to
further streamline the method (Figure 2E). Consistent with
our initial results, the Rh/(Sa)-BINAP catalyst provides the
product of the sequence in good yield and enantioselectivity
(entry 4, 69% yield over both stages, 5 : 1 d.r., 93 :7 e.r.). The
evaluation of chiral bisphosphine ligands revealed that other

BINAP-type ligands provide slightly lower yields and
enantiomeric enrichment after the benzannulation of the
dienophile (entries 1–5). The spirocyclic diphosphine ligand
(S)-xyl-SDP (L6) which was ideal for the rhodium-catalyzed
[2+2+2] cycloaddition to triptycene-based atropisomers[16c]

gave a low yield and moderate enantioselectivity (entry 6,
35% yield, 4 : 1 d.r., 80 : 20 e.r.). Furthermore, decreasing the
temperature to 70 °C resulted in the same enantioselectivity
of 93 :7, but the yield was reduced to 55% (entry 7).
Changing the solvent to CH2Cl2 or 1,2-dichloroethane also
lowered the yield and e.r. (entries 8 and 9), while using the
same solvent (PhOPh) as in the Diels–Alder reaction led to
good yield and atropisomeric enrichment (entry 10, 66%
yield, 3.5 :1 d.r., 91 :9 e.r.). Finally, decreasing the amount of
catalyst and ligand to 10 mol% gave the same enantioselec-
tivity of 93 :7 with a compromised yield (entry 11, 46%).
The most favorable outcome of the sequence was therefore
identified with L4 in toluene (entry 4), which we used for
the remainder of the study. With the optimal reaction
conditions in hand, we set out to verify the generality of the
synthesis and consequent transformation of o-QDM atrop-
isomers by exploring the substrate scope (Figure 3). The
reaction scale was successfully increased to 100 μmol with-
out affecting selectivity, providing (Sa,R,S)-8a in 70% yield
with an e.r. of 92 :8. The X-ray crystallographic analysis of
5a and 8a established an (Sa)-configuration of the stereo-
genic axis, while the stereocenters are configured as
expected by the shielding of the atropisomeric o-QDM.[18]

We next evaluated the stereospecific Diels–Alder reactions
with a set of representative dienophiles. More specifically,
N-aryl maleimides with different substituents on the N-aryl
group, such as bromide or ketone as suitable reactive
handles were found to be compatible, giving (Sa,R,S)-8b and
(Sa,R,S)-8c with good enantio- and diastereoselectivity
(4.5 : 1 and 5.5 : 1 d.r.). N-(Carbomethoxy)maleimide as
dienophile gave a lower yield for (Sa,R,S)-8d but an
increased selectivity of 93 :7 e.r. with a d.r. of 5 : 1. In these
four cases (Sa,R,S)-8a–d, the diastereomers were obtained
with good stereocontrol, indicating a dienophile preorgani-
zation by the o-QDM atropisomer that induces diastereose-
lectivity. Notably, trapping o-QDM atropisomeric precursor
(Sa)-5a with maleic anhydride proceeded smoothly with an
e.r. of 91 :9, but with a lower d.r. of 3.5 :1 to afford product
(Sa,R,S)-8e. The reduced diastereoselectivity may be due to
the lower steric hindrance of maleic anhydride relative to
N-aryl maleimides. Dimethyl maleate as the dienophile
afforded the corresponding product (Sa,R,S)-8f in 2.5 : 1 d.r.
with 93 :7 e.r. While fullerene derivatives where not
obtained (see Supporting Information for details), fumaroni-
trile as smaller dienophile was also reactive with atropiso-
meric o-QDMs and gave the product (Sa,R,R)-8g in 92 :8
and 91 :9 e.r. with a d.r. of 2.0 : 1. The impact of the
adamantyl group was next investigated as sterically demand-
ing ortho-substituents greatly influence the bond rotational
barrier of the atropisomeric precursors, intermediates and
products. When the adamantyl group was replaced by a tert-
butyl group, the product (Sa,R,S)-8h with N-phenylmalei-
mide as the dienophile could be observed with 91 :9 e.r. and
3.5 : 1 d.r. The selectivity of the [2+2+2] cycloaddition
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leading to the corresponding sulfone intermediate (Sa)-5h
was also successfully established, providing an e.r. of 92 :8
and confirming that almost no racemization of the sulfone
intermediate (Sa)-5h takes place at 220 °C. We then directed
our attention to the impact of the polyaromatic structure on
reactivity and selectivity and were pleased to find that triyne
substrates 6 i–k, possessing various polyaromatic residues
such as substituted naphthyl, phenanthrene and pyrene units

are suitable to provide the corresponding products 8 i–k with
high enantioselectivities. Furthermore, the influence of the
tether moiety was investigated by changing the oxygen-
linked 6a to a nitrogen-bridged triyne 6 l or diethyl malonate
6m. To our delight, the triyne with the tosylamide linkages
provided a good yield and selectivity ((Sa,R,S)-8 l, 76% yield
over both stages, 3.5 :1 d.r., 90 :10 e.r.) and the diethyl
malonate tether was also applicable, giving the product

Figure 3. Scope of the synthesis and transformation of o-quinodimethane atropisomers. Rh(cod)2BF4 (20.0 mol%) and indicated ligand
(20.0 mol%) were dissolved in CH2Cl2 (10 mL) and the resulting mixture was stirred for 20 minutes. A hydrogen atmosphere (1 atm) was
introduced, the mixture stirred for 1 h to activate the Rh catalyst and the solvent was removed. The reactions were performed with 6a–o
(100 μmol) and this activated Rh catalyst in toluene (25 mL) at 100 °C for 16 h. Upon filtration (SiO2), the Diels–Alder reaction was performed with
the dienophiles (3.00 equiv) in diphenyl ether (1.0 mL) at 220 °C for 12 h. Isolated yields. The d.r. values were measured by 1H NMR and the e.r.
values of isolated products were determined by HPLC on a chiral stationary phase.
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(Sa,R,S)-8m in 65% yield for the combined sequence (94 :6
e.r., 3.7 :1 d.r.). While confirming the scope, we also
encountered limitations that further frame the range of
application. The triyne substrate (6n) bearing a naphthyl
ortho-OMe group led to the tetra-ortho substituted precur-
sor (Sa)-5n with low enantioselectivity (54 :46 e.r.) and
benzannulated (Sa,R,S)-8n was consequently obtained in
44% yield in nearly racemic form. The increased d.r. of
3.0 : 1 compared to (Sa,R,R)-8g and 8 i is possibly attributable
to the higher rigidity of the tetra-ortho substituted o-QDM
atropisomer. When changing the adamantyl group to a
phenyl group, the o-QDM atropisomer precursor (Sa)-5o
was isolated with 81 :19 e.r., but the Diels–Alder reaction at
220 °C resulted in product (Sa,R,S)-8o with an enantioen-
richment of only 60 :40 e.r. These results confirm the
prerequisite for pronounced configurational stability of the
topologically well-defined reactive atropisomers for the
stereoselective transformations at these markedly elevated
temperatures.

Conclusion

In conclusion, we describe the formation and viability of
o-quinodimethane atropisomers for stereoselective synthe-
sis. The three main o-QDM precursors were atroposelec-
tively prepared by the rhodium-catalyzed intramolecular [2
+2+2] cycloaddition of corresponding triynes. The excep-
tional configurational stability of the sulfinic acid ester
precursors allowed a thermal in situ ring opening to o-
QDMs atropisomers with defined configuration, which
stereospecifically react in Diels–Alder reactions with dien-
ophiles by benzannulation to form complex substituted
biaryl atropisomers with high enantiomeric enrichment.
With atropisomeric o-QDMs established as reactive inter-
mediates with exceptional configurational stability and
versatility, we anticipate that o-QDM atropisomers will
open avenues for the expeditious preparation of stereo-
chemically defined polycyclic aromatics.
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