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Real	 objects	 are	 always	 parts	 of	 institutions,	 trembling	 in	 their	 mixed	
status	as	mediators,	mobilizing	faraway	lands	and	people,	ready	to	become	
people	or	things,	not	knowing	if	they	are	composed	of	one	or	of	many,	of	
a	black	box	counting	for	one	or	of	a	labyrinth	of	multitudes.	And	this	is	
why	the	philosophy	of	technology	cannot	go	very	far:	an	object	is	a	subject	
that	only	sociology	can	study	–	a	sociology,	in	any	case,	that	is	prepared	to	
deal	with	nonhuman	as	well	as	human	actants.	

	
	
	 	 	 	 Bruno	Latour,	On	Technical	Mediation	(1994),	p.	46	

		 	 	 	 	 		

 	



 4	

Table	of	contents	
Acknowledgments	..................................................................................................	7 

Summary	/	Zusammenfassung	...............................................................................	9 

Chapter	1:	Background	and	Rationale	...................................................................	14 

1.1	Human	trust	and	trustworthy	machines	...................................................................	15 

1.2	Modern	artificial	intelligence:	between	success	and	hype	......................................	17 

1.3	Black-box	algorithms:	the	problem	of	opacity	..........................................................	22 

1.4	Trust	and	trustworthy	AI	..........................................................................................	24 

1.5	Structure	of	this	thesis	...............................................................................................	26 

1.6	References	..................................................................................................................	29 

Chapter	2:	Methodology	........................................................................................	35 

2.1	Bioethics	at	the	intersection	of	values	and	facts	......................................................	36 

2.2	Towards	integrated	empirical	bioethics	...................................................................	38 

2.3.	Methodology	of	this	thesis	........................................................................................	41 

2.4.	Methodological	outlook	..........................................................................................	44 

2.5	References	..................................................................................................................	44 

Chapter	3:	Intentional	Machines:	A	Defence	of	Trust	in	Medical	AI	...................	48 

Abstract	............................................................................................................................	50 

3.1	Introduction	................................................................................................................	51 

3.2	Trust	and	trustworthiness	.........................................................................................	52 

3.3	Trust	in	medical	AI:	conceptual	nonsense?	..............................................................	54 

3.4	The	intentions	of	machines	.......................................................................................	57 

3.5	Dimensions	of	trust	...................................................................................................	60 

3.6	Towards	trustworthy	medical	AI	.............................................................................	65 

3.7	References	..................................................................................................................	67 

Chapter	4:	Towards	a	Pragmatist	Dealing	with	Algorithmic	Bias	in	Medical	
Machine	Learning	.................................................................................................	72 

Abstract	............................................................................................................................	74 

4.1	Introduction	................................................................................................................	75 

4.2	Bias	in	medical	machine	learning	.............................................................................	77 

4.3	Bias	and	the	pragmatist	theory	of	truth	..................................................................	80 

4.4	Bias	in	medical	ML:	a	pragmatist	approach	............................................................	86 

4.5	Lessons	for	the	evaluation	of	medical	ML	...............................................................	90 

4.6	Conclusion	..................................................................................................................	93 

4.7	References	...................................................................................................................	93 



 5	

Chapter	5:	Karl	Jaspers	and	Artificial	Neural	Nets:	On	the	Relation	of	Explaining	
and	Understanding	Artificial	Intelligence	in	Medicine	......................................	98 

Abstract	...........................................................................................................................	100 

5.1	The	promises	of	artificial	intelligence	for	medicine	................................................	101 

5.2	The	challenge	of	explainable	AI	systems	in	medicine	...........................................	103 

5.3	Karl	Jaspers:	explaining	and	understanding	...........................................................	105 

5.4	Dealing	with	the	artificial	black	box:	Explaining	and	Understanding	AI	.............	110 

5.5	Understanding	AI	as	misguided	anthropomorphism?	...........................................	114 

5.6	Explaining	and	understanding	medical	AI	..............................................................	117 

5.7	Conclusion	.................................................................................................................	121 

5.8	References	.................................................................................................................	122 

Chapter	6:	The	Emperor’s	New	Clothes?	Transparency	and	Trust	in	Machine	
Learning	for	Clinical	Neuroscience	.....................................................................	126 

Abstract	...........................................................................................................................	128 

6.1	Introduction	..............................................................................................................	129 

6.2	Opportunities	for	applied	machine	learning	in	clinical	neuroscience	.................	131 

6.3	The	ideal	of	transparency	........................................................................................	134 

6.4	Trust	and	trustworthiness	........................................................................................	137 

6.5	The	paradox	relation	of	trust	and	transparency	....................................................	140 

6.6	Trust	and	transparency	of	applied	ML	for	neuroimaging	....................................	144 

6.7	References	.................................................................................................................	147 

Chapter	7:	Computing	Schizophrenia:	Ethical	Challenges	for	Machine	Learning	
in	Psychiatry	.........................................................................................................	152 

Abstract	...........................................................................................................................	154 

7.1	Introduction	..............................................................................................................	155 

7.2	Machine	learning	in	psychiatry	...............................................................................	156 

7.3	Applications	of	ML	for	schizophrenia	.....................................................................	159 

7.4	Three	cases	and	four	principles	................................................................................	161 

7.5	Conclusion	................................................................................................................	170 

7.6	References	.................................................................................................................	170 

Chapter	8:	Explainability	as	Fig	Leaf?	An	Exploration	of	Researchers’	Ethical	
Expectations	Towards	Machine	Learning	in	Psychiatry	.....................................	178 

Abstract	...........................................................................................................................	180 

8.1	Introduction	...............................................................................................................	181 

8.2	Methods	....................................................................................................................	185 

8.3	Results	.......................................................................................................................	187 

8.4	Discussion	.................................................................................................................	198 



 6	

8.5	Conclusion	...............................................................................................................	204 

8.6	References	.................................................................................................................	205 

Chapter	9:	Machine	Learning	and	its	Impact	on	Psychiatric	Nosology:	Findings	
from	a	Qualitative	Study	Among	German	and	Swiss	Experts	..............................	211 

Abstract	............................................................................................................................	213 

9.1	Introduction	..............................................................................................................	214 

9.2	Methods	....................................................................................................................	217 

9.3	Results	.......................................................................................................................	220 

9.4	Discussion	.................................................................................................................	225 

9.5	Conclusion	.................................................................................................................	231 

9.6	References	.................................................................................................................	233 

Chapter	10:	Why	Educating	for	Clinical	Machine	Learning	Still	Requires	
Attention	to	History	.............................................................................................	238 

10.1	Introduction	............................................................................................................	240 

10.2	From	the	history	of	schizophrenia	to	machine	learning	.....................................	241 

10.3	References	................................................................................................................	243 

Chapter	11:	Discussion	.........................................................................................	245 

11.1	Filling	the	gaps:	what	this	thesis	adds	to	current	debates	...................................	246 

11.2	Towards	a	new	model	of	trust	in	medical	ML	.......................................................	247 

11.3	Fostering	the	trustworthiness	of	medical	ML	........................................................	250 

11.4	Integrating	history	into	integrated	empirical	bioethics	.......................................	254 

11.5	Limitations	and	implications	for	future	research	..................................................	257 

11.6	Conclusion	..............................................................................................................	260 

11.7	References	................................................................................................................	261 

Appendix	.............................................................................................................	266 

Appendix	1:	COREQ	Checklist	......................................................................................	267 

Appendix	2:	Interview	guide	........................................................................................	269 

Appendix	3:	Jurisdictional	inquiry	................................................................................	271 

	
 	



 7	

Acknowledgments	

Before	all	else,	I	owe	thanks	to	the	many	who	made	this	thesis	possible.		

To	my	supervisors,	for	their	invaluable	intellectual	support	and	personal	encouragement	

throughout	 the	past	 years.	 I	 thank	Prof.	 Bernice	Elger	 for	 her	 trust	 and	professional	

guidance,	offering	me	the	opportunity	to	develop	a	project	based	on	my	own	interests	

and	providing	the	funding	to	complete	this	research.	I	am	indebted	to	Dr.	Eva	De	Clercq	

for	her	essential	advice	and	often	spontaneous	availability	for	philosophical	discussion	

or	 support	 in	 empirical	methods,	 allowing	me	 to	 delve	 into	 empirical	 bioethics.	My	

sincere	thanks	to	Prof.	Volker	Roth,	for	his	interdisciplinary	interest	and	for	encouraging	

and	 enabling	me	 to	 build	my	 research	 on	 the	 necessary	 fundamental	 knowledge	 in	

computer	 science,	 and	 to	Prof.	Georg	Marckmann	 for	his	willingness	 to	 evaluate	my	

thesis,	despite	his	busy	schedule	and	professional	obligations	related	to	the	pandemic.		

I	 am	 immensely	 grateful	 to	my	 colleagues	 and	 friends	 in	 Basel.	 To	Andrea	Martani,	

Bettina	 Zimmermann,	 and	 Christopher	 Poppe	 for	 everything	 from	 co-authoring	 and	

proof-reading	papers	 to	cooling	 swims	 in	 the	Rhine.	To	Maddalena	Favaretto,	Lester	

Geneviève,	Giorgia	Lorenzini	and	Laura	Arbelaez	Ossa,	for	constructive	feedback	on	my	

work	and	inspiring	coffee-breaks,	whether	online	and	offline.	To	Prof.	Fabrice	Jotterand,	

for	 his	 advice	 in	 the	 choice	 of	 topic.	 To	 Prof.	 Markus	Wild	 I	 am	 indebted	 for	 the	

intellectual	 and	 personal	 joy	 of	 attending	 his	 doctoral	 colloquia	 in	 the	 philosophy	

department.	Prof.	Thomas	Vetter	and	Dennis	Madsen	provided	invaluable	support	 in	

learning	 the	basics	 of	Python	and	pattern	 recognition.	 I	 am	also	 very	 grateful	 to	PD	

Tenzin	Wangmo	for	familiarizing	me	with	empirical	methods	and	for	help	in	all	matters	

organizational.		



 8	

I	owe	thanks	to	everyone	involved	in	the	project,	most	of	all	to	the	experts	who	agreed	

to	 take	 part	 in	 the	 interview	 study,	 often	 despite	 additional	 Covid-related	 clinical	

obligations.	To	Benedikt	Schmidt	for	his	help	with	the	transcription	of	the	interviews.	

To	 my	 colleagues	 at	 other	 universities,	 especially	 Felix	 Gille,	 Thomas	 Grote,	 Pim	

Haselager,	 Philipp	 Kellmeyer,	 Stuart	 McLennan,	 Emilian	 Mihailovich,	 and	 Andreas	

Wolkenstein	for	valuable	support	at	various	stages	during	this	thesis.	I	also	thank	the	

students	I	had	the	privilege	of	teaching,	on	AI	Ethics	in	spring	2020,	and	on	Ethics	of	

Medical	AI	in	fall	2021,	who	brought	in	new	perspectives	challenging	me	from	a	variety	

of	backgrounds	in	humanities,	medicine,	and	natural	sciences.		

Several	institutions	have	provided	invaluable	support	for	this	thesis.	I	am	grateful	to	the	

European	Association	of	Centers	for	Medical	Ethics	for	encouraging	me	with	the	award	

of	the	Paul	Schotsmans	Prize,	and	to	EUCOR,	for	funding	a	cross-border	workshop	on	

trustworthy	AI	in	medicine.	My	sincere	thanks	also	go	to	Fondation	Brocher	and	their	

staff	for	providing	a	most	inspiring	research	environment	in	Hermance	in	summer	2021	

for	working	on	this	thesis.	I	am	also	grateful	for	the	institutional	support	I	have	received	

from	the	University	of	Basel,	especially	the	travel	grants	for	conference	attendance.		

To	 Cécile,	 my	 ardent	 gratitude	 for	 emotional,	 moral,	 and	 intellectual	 support,	 for	

patience	with	my	night-time	writing,	and	the	joy	of	our	life	together.	To	Bernhard,	for	

friendship	and	encouragement,	from	joint	writing	sessions	to	hazardous	cycling	trips.	I	

thank	Niklas	for	help	with	higher	algebra,	Torben	for	helpful	discussions	on	vacations,	

and	my	brother	Philipp	for	critical	proof-reading.	To	my	parents,	without	whom	this	

thesis	would	not	have	been	possible.



 

	

	
 

	
	
	
	
	
	

 
	
	
	
	
	

Summary	/	Zusammenfassung	
	
 	



Summary	/	Zusammenfassung	

 10	

Summary	

Based	 at	 the	 intersection	 of	 AI	 ethics	 and	 bioethics,	 this	 cumulative	 doctoral	 thesis	

investigates	the	question	if	and	under	which	conditions	we	can	and	should	trust	black	

box	algorithms	used	for	medical	purposes,	with	a	specific	focus	on	psychiatry.	To	do	so,	

it	sheds	light	on	epistemic	and	ethical	questions	arising	from	opaque	machine	learning	

techniques	in	eight	independent,	peer-reviewed	papers	that	form	the	core	of	this	thesis	

and	reflect	its	two-pronged	approach:	the	first	four	chapters	investigate	general	ethical	

questions	 of	 trust	 and	 trustworthiness	 of	 medical	 machine	 learning,	 driven	 by	

considerations	 from	 philosophy	 and	 science	 and	 technology	 studies	 (chapters	 3-6),	

while	the	remaining	four	chapters	relate	abstract	theoretical	considerations	to	particular	

applications	 of	 machine	 learning	 in	 psychiatry,	 drawing	 also	 on	 empirical	 methods	

(chapters	7-10).		

The	stage	is	set	in	chapter	1,	providing	a	brief	introduction	to	the	topic,	and	chapter	2,	

which	 introduces	 the	 theoretical	 and	 methodological	 framework	 of	 the	 thesis,	

embracing	an	integrated	approach	to	empirically	informed	bioethical	deliberation.		

The	general	part	of	the	thesis	starts	with	chapter	3,	which	defends	the	notion	of	trust	

in	medical	machine	learning	against	recent	criticism	and	suggests	a	novel,	dimensional	

model	 of	 trust	 in	 the	 spirit	 of	 Daniel	 Dennett.	 The	 following	 three	 chapters	 (4-6)	

investigate	 properties	 of	 machine	 learning-based	 appliances	 that	 make	 them	

trustworthy.	Chapter	 4	 scrutinizes	 algorithmic	 fairness	 through	 the	 lens	 of	William	

James’	pragmatist	theory	of	truth.	Chapter	5	investigates	the	possibility	of	explaining	

and	 understanding	 medical	 machine	 learning,	 drawing	 on	 Karl	 Jaspers’	

Psychopathology.	 Chapter	 6	 argues	 with	 Onora	 O’Neill	 why	 transparency	 as	 mere	



Summary	/	Zusammenfassung	

 11	

disclosure	 it	 too	 little	 to	 generate	 trust	 in	 medical	 machine	 learning	 and	 suggests	

embracing	an	approach	of	intelligent	openness	instead.		

The	following	four	chapters	aim	to	root	these	conceptual	considerations	in	practice,	by	

looking	at	specific	applications	of	ML	in	psychiatry	and	neuroscience,	and	by	engaging	

with	relevant	stakeholders	through	semi-structured	 interviews.	To	provide	an	 insight	

into	the	challenges	posed	by	machine	learning	in	mental	health,	chapter	7	systematizes	

ethical	questions	that	arise	from	computational	methods	employed	to	diagnose,	treat,	

and	predict	schizophrenia,	following	the	principlist	framework	of	Tom	Beauchamp	and	

James	Childress.	Checking	these	considerations	against	the	attitudes	of	researchers	in	

the	field,	chapter	8	provides	a	unique	contribution	to	the	existing	literature	insofar	as	

it	is	the	first	article	that	examines	attitudes	and	expectations	of	experts	on	psychiatric	

machine	learning	towards	ethical	questions,	drawing	on	a	sample	from	Germany	and	

Switzerland.	Chapter	9	examines	these	empirical	findings	further,	exploring	the	impact	

of	machine	learning	on	psychiatric	nosology.	Finally,	chapter	10	gives	an	outlook	to	the	

future	by	addressing	necessary	changes	in	the	training	of	junior	doctors,	arguing	for	the	

ongoing	importance	of	an	education	informed	by	historical	reflection.		

Chapter	 11	 completes	 the	 dissertation,	 summarizing	 and	 discussing	 the	 different	

findings	 in	 light	 of	 each	 other.	 It	 also	 acknowledges	 its	 limitations	 and	 provides	

suggestions	for	further	research.		
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Zusammenfassung	
	
An	 der	 Schnittstelle	 von	 KI-Ethik	 und	 Bioethik	 untersucht	 diese	 kumulative	

Doktorarbeit	die	Frage,	ob	und	unter	welchen	Bedingungen	wir	Black-Box-Algorithmen	

für	medizinische	Zwecke	vertrauen	können,	mit	besonderem	Fokus	auf	Anwendungen	

in	der	Psychiatrie.	Zu	diesem	Zweck	werden	epistemische	und	ethische	Fragen,	die	sich	

durch	 die	 technische	 Opazität	 des	 maschinellen	 Lernens	 ergeben,	 in	 acht	

unabhängigen,	 begutachteten	 Beiträgen	 beleuchtet,	 die	 die	 beiden	Hauptteile	 dieser	

Arbeit	bilden	und	ihren	zweigleisigen	Ansatz	widerspiegeln:	(1)	einen	allgemeinen	Teil,	

der	 sich	 auf	 Überlegungen	 aus	 der	 Philosophie	 und	 den	 Wissenschafts-	 und	

Technologiestudien	 stützt	 (Kapitel	 3-6),	 und	 (2)	 einen	 spezifischen	 Teil,	 der	 die	

abstrakte	 Theorie	 mit	 konkreten	 Anwendungen	 des	 maschinellen	 Lernens	 in	 der	

Psychiatrie	in	Beziehung	setzt	(Kapitel	7-10).		

Nach	 einer	 Einführung	 ins	 Thema	 in	Kapitel	 1	 stellt	Kapitel	 2	 den	 konzeptuellen	

Rahmen	und	die	Methodologie	der	Arbeit	vor,	die	ihre	bioethischen	Überlegungen	auch	

auf	empirische	Untersuchungen	stützt.		

Der	 erste,	 allgemeine	Teil	der	Arbeit	beginnt	mit	Kapitel	 3,	welches	den	Begriff	des	

Vertrauens	in	medizinisches	maschinelles	Lernen	gegen	jüngere	Kritik	verteidigt	und	

ein	 neues,	 dimensionales	 Modell	 von	 Vertrauen	 im	 Geiste	 von	 Daniel	 Dennett	

vorschlägt.	Daran	anschliessend	werden	in	den	folgenden	drei	Kapiteln	Eigenschaften	

untersucht,	die	für	die	Vertrauenswürdigkeit	von	Anwendungen	maschinellen	Lernens	

entscheidend	 sind.	 So	 beleuchtet	 Kapitel	 4	 die	 Fairness	 von	 Algorithmen	 aus	

Perspektive	 der	 pragmatistischen	 Wahrheitstheorie	 von	 William	 James,	 während	

Kapitel	 5	 mit	 Karl	 Jaspers’	 Psychopathologie	 auslotet,	 wie	 man	 medizinisches	
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maschinelles	Lernen	erklären	und	verstehen	kann.	Kapitel	6	beschliesst	den	Abschnitt	

und	 argumentiert	 mit	 Onora	 O’Neill,	 warum	 Transparenz	 im	 Sinne	 einer	 blossen	

Offenlegung	 zu	 wenig	 ist,	 um	 Vertrauen	 in	maschinelles	 Lernen	 in	 der	Medizin	 zu	

generieren.	Alternativ	wird	ein	Modell	intelligenter	Offenheit	vorgestellt.		

Der	zweite	Teil	der	Arbeit	zielt	darauf	ab,	diese	konzeptionellen	Überlegungen	in	der	

Praxis	zu	verankern.	Hierzu	werden	konkrete	medizinische	Anwendungen	maschinellen	

Lernens	 untersucht	 und	 die	 Ergebnisse	 einer	 Interviewstudie	 vorgestellt.	Kapitel	 7	

systematisiert	 ethische	 Fragen,	 die	 sich	 aus	 der	 computergestützten	 Diagnose,	

Behandlung	 und	 Vorhersage	 von	 Schizophrenie	 ergeben,	 um	 einen	 Einblick	 in	 die	

Herausforderungen	biomedizinischen	maschinellen	Lernens	im	Bereich	der	Psychiatrie	

zu	geben.	Als	Referenzpunkt	dienen	hierbei	die	Prinzipien	der	Bioethik	von	Beauchamp	

und	Childress.	Kapitel	8	stellt	diese	Überlegungen	in	Bezug	zu	den	Einstellungen	von	

Forscher*innen	auf	dem	Gebiet.	Dieser	Beitrag	ist	die	erste	qualitative	Arbeit,	die	die	

ethischen	 Einstellungen	 und	 Meinungen	 von	 Expert*innen	 für	 psychiatrisches	

maschinelles	 Lernen	 untersucht.	 Kapitel	 9	 erörtert	 die	 Bedeutung	 maschinellen	

Lernens	für	die	psychiatrische	Krankheitslehre.	Kapitel	10	rundet	den	zweiten	Teil	mit	

einem	Ausblick	auf	Curricula	angehender	Fachkräfte	in	der	Psychiatrie	ab	und	plädiert	

für	 die	 weiterhin	 grosse	 Relevanz	 der	 Psychiatriegeschichte,	 um	 eine	 ethische	 und	

verantwortungsvolle	 Implementierung	 maschinellen	 Lernens	 in	 der	 Klinik	 zu	

ermöglichen.	

Kapitel	11	beschliesst	die	Dissertation,	indem	es	die	verschiedenen	Ergebnisse	der	zwei	

Teile	zusammenfasst	und	im	Lichte	der	jeweils	anderen	diskutiert.				
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1.1	Human	trust	and	trustworthy	machines	

Trust	 is	 fundamental	 to	human	 life.	But	are	we	 justified	 to	 trust	machines,	 let	 alone	

opaque	 machines	 used	 in	 medicine?	 It	 was	 this	 initial	 question	 that	 sparked	 an	

intellectual	 journey	partially	 reflected	 in	 the	 eight	 publications	 collected	 as	 chapters	

here.	In	light	of	recent	advancements	in	the	field	of	Artificial	Intelligence	(AI)	and	in	

particular	 machine	 learning	 (ML)	 techniques	 employed	 in	 the	 medical	 domain,	 the	

question	 of	 their	 trustworthiness	 is	 more	 pressing	 than	 ever.	 Techniques	 such	 as	

support-vector	 machines	 (SVM),	 k-nearest	 neighbours	 (k-NN)	 algorithms	 and,	 in	

particular,	deep	learning	(DL)	applied	on	health-related	data	promise	paradigm-shifting	

advances	(Challen	et	al.,	2019;	Darcy,	Louie,	&	Roberts,	2016;	Esteva	et	al.,	2019;	Hinton,	

2018;	 Topol,	 2019b).	 More	 accurate	 and	 efficient	 diagnostic	 tools,	 personalised	

therapeutic	regimes	as	well	as	prognostic	or	predictive	measures	seem	bound	to	impact	

the	treatments	of	patients,	leading	to	what	some	call	an	age	of	“Deep	Medicine”	(Topol,	

2019a).	

While	many	authors	have	voiced	general	ethical	concerns	with	view	to	this	development	

(Char,	Shah,	&	Magnus,	2018;	Vayena,	Blasimme,	&	Cohen,	2018)	–	many	of	which	are,	

in	fact,	not	new	at	all	(Marckmann,	2003)	–	in-depth	ethical	analysis	of	modern	AI	driven	

by	DL	integrated	into	clinical	care	is	still	 in	its	infancy.	The	three	years	in	which	this	

thesis	was	written	have	seen	many	advances	in	the	ethical	literature	scrutinizing	medical	

ML,	 focussing	 in	 particular	 on	 topics	 that	 are	widely	 discussed	 in	 AI	 ethics	 such	 as	

fairness	or	explainability	(Char,	Abramoff,	&	Feudtner,	2020;	London,	2019;	Mittelstadt,	

Russell,	&	Wachter,	2019).	As	has	become	increasingly	clear,	these	ethical	questions	can,	

however,	 not	 be	 discussed	 without	 proper	 philosophical	 reflection,	 examining	 the	
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epistemic	 conditions	 of	 our	 interaction	with	 these	 programs	 (Grote	 &	 Berens,	 2020;	

Sullivan,	2022).			

Taking	their	cue	from	the	Ethics	Guidelines	for	Trustworthy	AI	published	by	the	EU	High	

Level	Expert	Group	on	Artificial	Intelligence	in	2019,	the	papers	in	this	thesis	shed	light	

on	the	meaning	of	trust	in	the	context	of	medical	AI,	and	on	important	conditions	for	

trustworthiness	such	as	fairness,	transparency,	and	explainability.	To	situate	the	abstract	

considerations	 at	 the	 practical	 intersection	 of	 computer	 science	 and	 medicine,	 this	

thesis	embraces	a	two-pronged	approach,	mirrored	in	two	parts.	A	more	general	part,	

comprising	the	chapters	three	to	six,	provides	conceptual	clarification	and	normative	

reasoning	informed	by	literature	from	philosophy	and	science	and	technology	studies.	

To	relate	these	general	theoretical	considerations	to	real-life	problems,	the	second	part	

looks	closely	at	particular	medical	applications	of	ML,	supported	by	qualitative	empirical	

research.		

Before	delving	 into	specifics	of	human	trust	 in	 trustworthy	medical	ML,	 this	chapter	

provides	 a	 brief	 overview	 sketching	 the	 scientific	 background	 and	 rationale	 of	 this	

doctoral	thesis.	This	will	be	done	in	three	steps.	The	first	one	introduces	the	investigated	

object,	i.e.	opaque	ML	models,	providing	a	brief	overview	of	the	terminology	and	a	small	

glimpse	at	the	architecture	of	DL	in	particular.	The	second	step	highlights	the	epistemic	

challenges	posed	by	such	opaque	ML,	commonly	described	as	“black	boxes”.	Advancing	

to	 questions	 of	 ethics,	 the	 third	 step	 motivates	 the	 specific	 angle	 chosen	 here,	 by	

discussing	 the	 role	 of	 trust	 and	 trustworthiness	 in	 current	 academic	 and	 regulatory	

debates	about	opaque	ML	in	medicine.	I	conclude	by	giving	an	outlook	on	the	scope	and	

structure	of	the	thesis.		
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1.2	Modern	artificial	intelligence:	between	success	and	hype	

The	ongoing	integration	of	AI	into	everyday	life	has	had	a	great	impact	on	human	life	

and	will	 further	reshape	many	aspects	of	society.	Given	the	successes	of	modern	ML,	

driven	largely	by	the	availability	of	big	datasets	and	the	advent	of	DL	based	on	Artificial	

Neural	 Networks	 (ANNs),	 and	 the	 public	 hype	 revolving	 around	 the	 topic,	 recent	

literature	on	AI	abounds,	as	even	a	short	stroll	through	one’s	favourite	bookstore	will	

undoubtedly	demonstrate.	Whether	it’s	Kazuo	Ishiguro’s	latest	novel	Klara	and	the	Sun	

(2021)	or	Ian	McEwan	Machines	Like	Me	(2019),	whether	Kate	Crawford’s	pointed	social	

critique	Atlas	of	AI	(2021)	or	the	similarly	titled	Atlas	of	Anomalous	AI	(2020)	providing	

an	artistic	take	on	AI	in	the	tradition	of	Aby	Warburg,	even	offline	and	in	print	the	topic	

seems	unavoidable.		

The	field	of	AI	Ethics	has	also	seen	an	enormous	proliferation	of	articles,	conferences,	

journals,	 and	 textbooks	 dedicated	 to	 the	 ethical	 challenges	 of	 AI.	 Much	 of	 this	

development	falls	in	the	narrow	timeframe	of	the	three	years	during	which	this	thesis	

was	written.	From	Mark	Coeckelbergh’s	AI	Ethics	(2020),	Sven	Nyholm’s	Humans	and	

Robots	 (2020)	 or	 Julian	 Nida-Rümelin’s	Digital	 Humanism	 (2018)	 to	 Stuart	 Russell’s	

Human	 Compatible	 (2019)	 and	 Erik	 Larson’s	Myth	 of	 Artificial	 Intelligence	 (2021),	 to	

name	 just	a	 few,	comprehensive	and	 insightful	books	on	 the	 topic	are	numerous.	To	

show	what	this	thesis	adds	to	these	larger	existing	debates,	a	few	points	of	clarification	

are	in	order,	delineating	the	scope	of	the	research	presented	here.		

1.2.1	Artificial	intelligence	and	machine	learning	

First,	 it	 is	 imperative	 to	provide	 a	 short	 overview	over	 the	used	 terminology,	 and	 to	

distinguish	 between	 three	 terms	 that	 are	 frequently	 conflated	 in	 public	 discourses:	



Chapter	1:	Background	and	Rationale	

 18	

artificial	intelligence	(AI),	machine	learning	(ML),	and	deep	learning	(DL).1	As	depicted	

in	 figure	 1,	 among	 these	 three,	 AI	 serves	 as	 an	 umbrella	 term	 that	 is	 often	 taken	 as	

capturing	all	attempts	to	create	artificial	entities	that	think	or	act	like	humans.	Notions	

of	AI	in	this	sense	are	dominant	in	the	humanities	(Dennett	&	Chalmers,	2019),	and	are	

also	reflected	in	Alan	Turing’s	famous	test	evaluating	an	AI	based	on	an	observer’s	ability	

to	distinguish	between	human	and	machine	(Turing,	1950).2	However,	such	definitions	

come	 with	 the	 significant	 problem	 that	 they	 require,	 to	 some	 extent,	 definitions	 of	

human	 thought	 or	 human	 agency.	 Sidestepping	 this	 challenge,	 more	 technically	

oriented	approaches	therefore	often	attempt	to	define	AI	as	artificial	agents	that	“act[...]	

so	 as	 to	 achieve	 the	 best	 outcome	 or,	 when	 there	 is	 uncertainty,	 the	 best	 expected	

outcome”	as	measured	by	a	predefined	objective	(Russell	&	Norvig,	2021,	p.	22).	

	

	

Fig.	1.1:	Venn-Diagram	representing	the	relation	of	AI,	ML,	and	DL.	Adapted	from	

(Goodfellow,	Bengio,	&	Courville,	2016,	p.	9)	

 
1	In	the	following	chapters,	the	terms	are	used	at	times	interchangeably.	This	is	largely	owed	to	different	
terminological	 preferences	 in	 the	 different	 scientific	 communities	 and,	 at	 times,	 respective	 calls	 for	
papers.	However,	the	focus	of	investigation	are	always	opaque	machine	learning	methods,	as	described	
below,	unless	explicitly	noted	otherwise.		
2	The	Nobel	 laureate	Herbert	 Simon’s	 (in)famous	 prediction	 from	 1956	 points	 in	 the	 same	 direction,	
claiming	that	within	20	years	“machines	will	be	capable	of	doing	any	work	Man	can	do”	(Simon	1956,	cit.	
in	Larson	2021,	p.	52).	

Artificial		
Intelligence

Machine	
Learning

Deep	
Learning	
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Within	the	overarching	area	of	AI,	machine	learning	(ML)	provides	a	subset	of	methods	

that	improve	their	performance	with	experience.	In	contrast	to,	for	instance,	knowledge	

bases,	ML	methods	learn	in	the	sense	that	they	improve	their	performance	over	time.	

Put	formally,	ML	can	be	defined	as	a	program	that	improves	its	performance	in	a	class	

of	tasks	T	as	measured	by	a	performance	measure	P	with	experience	E	concerning	said	

class	 of	 tasks	 T	 (Mitchell,	 1997).	 This	 broad	 definition	 encompasses	 a	 plethora	 of	

different	 statistical	 approaches,	 from	 support	 vector	 machines	 (SVM)	 and	 random	

forests	to	k-nearest	neighbours	or	logistic	regression.		

1.2.2	A	short	primer	on	deep	learning	

Deep	learning	in	turn	represents	a	small	but	significant	subset	of	ML	methods	that	have	

only	risen	to	fame	in	the	past	two	decades.	In	DL,	programs	can	find	their	own,	multi-

layered	representations	based	on	vast	training	data,	allowing	the	program	to	find	novel	

patterns	in	the	data	(LeCun,	Bengio,	&	Hinton,	2015).	While	the	fundamental	theoretical	

underpinnings	of	these	systems	date	back	to	the	1960s	(Goodfellow	et	al.,	2016,	p.	221),	

it	was	only	the	exponentially	increased	computational	power	of	modern	processors	that	

enabled	 its	 recent	 successes.	 Particularly	 well-known	 to	 the	 general	 public	 are	 its	

successes	in	image	or	voice	recognition	(Thompson,	Greenewald,	Lee,	&	Manso,	2020),	

or	AlphaGo’s	widely	noted	victory	in	the	board	game	Go	(Silver	et	al.,	2016).		

Publicly	 less	well-known	 than	 the	advertised	 success	 stories	of	DL	are	 its	underlying	

statistical	 methods.	While	 I	 will	 leave	 details	 to	 pertinent	 textbooks	 on	 the	 matter	

(Goodfellow	et	al.,	2016),	it	is	important	for	the	rationale	of	this	thesis	to	understand	the	

epistemic	problems	posed	by	this	ML	approach	in	particular.	DL	is	said	to	be	“deep”	in	

the	sense	that	it	comprises	different	techniques	relying	on	artificial	neural	networks	with	

multiple	 groups	 of	 units	 called	 layers.	 Commonly,	 multiple	 layers	 are	 then	 in	 turn	
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arranged	in	a	chain	structure,	where	each	layer	can	be	considered	a	function	of	the	layer	

preceding	it.	A	very	simple	example	of	a	fully	connected	ANN	with	three	hidden	layers	

is	depicted	in	figure	1.2	and	may	be	useful	to	elucidate	this	architecture.3		

								 	

																		Input	Layer	 							Hidden	Layer	1									Hidden	Layer	2	 						Hidden	Layer	3							Output	Layer	

Fig.	1.2:	Schematic	of	a	simple	fully-connected	artificial	neural	network	with	three	hidden	

layers.	Created	with	NN-SVG	(LeNail,	2019).		

Let	us	assume	that	the	output	values	of	each	layer	y	are	computed	using	a	non-linear	

function	𝜎	(e.g.,	with	a	sigmoidal	function	or	a	Rectified	Linear	Unit	(ReLU)	activation	

function),	weighted	by	a	learnable	parameter	wi.	If	we	define	the	input	as	x	𝜖	ℝm	and	the	

output	as	y	𝜖	ℝn,	then	this	output	can	be	computed	as	follows:		

𝑦 = &
σ	(w!,!	x! +⋯+w!,#	x#
σ	(w$,!	x! +⋯+w$,#	x#

.	

 
3	There	are	of	course	many	other	popular	network	architectures	such	as	convolutional	neural	networks	
(CNN).	
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Let	us	now	assume	that	the	ANN	depicted	here	is	intended	to	classify	individual	patients	

with	a	major	depressive	episode	as	responders	and	non-responders	to	treatment	with	

selective	serotonine	reuptake	inhibitors	(SSRIs)	based	on	multiple	factors,	covering	e.g.	

(neuro-)	biological	data,	psychometric	scores,	time	since	first	depressive	symptoms,	or	

previously	received	medication,	all	of	which	might	enter	the	 input	 layer	(Durstewitz,	

Koppe,	&	Meyer-Lindenberg,	2019;	Lin	et	al.,	2018).	To	train	the	network	for	the	purpose	

of	 identifying	 (non-)	 responders,	 a	 large	dataset	 from	a	 comparable	patient	 group	 is	

required	from	known	responders	and	non-responders.	Based	on	(more	or	less	random)	

model	parameters,	 the	ANN	can	calculate	 a	 first	prediction	 from	 the	 input	data	 and	

compare	this	prediction	against	the	ground-truth	of	the	labelled	cases.	Using	techniques	

such	as	gradient	descent,	the	network	can	then	be	trained	to	minimize	an	error	function	

concerning	its	prediction.	To	do	so,	the	error	is	backpropagated	through	the	network	to	

update	 the	weights	 (cf.	Theodoridis	&	Koutroumbas,	 2009,	pp.	 162-169).	This	 implies	

calculating	the	respective	gradients	 %&
%'

	of	the	error	function	J	(w,	x)	with	input	x	and	

learnable	weights	w.	These	gradients	can	then	be	used	to	update	the	weights	for	each	

iteration	t+1	based	on	the	previous	iteration	t	and	the	learning	rate	λ:	

𝑤()! =	𝑤( − 	𝜆	
𝑑𝐽
𝑑𝑤	

This	procedure	is	repeated	until	the	predictions	of	the	model	approach	fit	the	training	

data.4	 If	 the	DL	model	 can	 then	 also	 pass	 various	measures	 of	 quality	 control,	most	

importantly	 its	 validation	 in	 an	 independent	 sample,	 it	 could	 then	 potentially	 be	

employed	to	predict	treatment	response	in	individual	patients.		

 
4	For	the	sake	of	simplicity,	I	omit	further	details	here	such	as	hyperparameter	tuning,	regularization	or	
comparison	of	different	optimization	algorithms.		
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1.3	Black-box	algorithms:	the	problem	of	opacity	

For	what	follows,	it	is	crucial	to	note	that,	owing	to	the	complexity	of	typical	ANNs	and	

the	 number	 of	 parameters,	 their	 decision	making	 on	 an	 individual	 basis	 is	 typically	

opaque	to	human	understanding.	After	all,	as	we	have	seen	in	the	previous	section,	ML	

methods	such	as	DL	can	result	 in	exceedingly	complex	models,	rendering	them	both	

inscrutable	 and	 nonintuitive	 to	 the	 human	 observer	 (Selbst	 &	 Barocas,	 2018).	 For	

instance,	already	the	very	simple	example	above	would	comprise	close	to	400	updated	

weights,	so	a	real-life	example,	drawing	on	multi-dimensional	clinical	data	may	easily	

comprise	tens	or	hundreds	of	millions	of	weights.	In	such	cases,	we	therefore	understand	

how	 the	program	was	designed	and	 trained	but	we	may	not	 fully	understand	why	 it	

arrives	 at	 a	 particular	 decision,	 classifying	 for	 instance	 a	 particular	 patient	 as	 non-

responder.	 In	 the	 literature,	 such	 programs	 are	 therefore	 typically	 called	 black-box	

algorithms	(Durán	&	Jongsma,	2021).		

The	 notion	 “black	 box”	 and	 its	 history	 seem,	 ironically,	 somewhat	 of	 a	 black	 box	

themselves	(Geitz,	Vater,	&	Zimmer-Merkle,	2020:	7).	The	term,	widely	used	in	different	

contexts,	serves	its	respective	purpose	well,	and	yet	we	know	rather	little	about	how	it	

works,	or	how	it	came	about	(ibid.).	One	attempt	to	trace	the	black	box	terminology	to	

its	origins	has	identified	the	electrical	engineer	Harold	Stephen	Black	as	its	name	giver	

(Vater,	2020),	who	designed	the	Integrated	Feedback	Amplifier	in	1934	while	working	at	

the	 Bell	 Laboratories	 to	 automatically	 improve	 the	 signal-to-noise-ratio	 in	

telecommunication	networks	through	feedback	instead	of	filtering.	In	this	narrative,	the	

black	box	would	actually	be		“Black’s	Box”	that	moves	towards	a	kind	of	machine	learning	

avant	 la	 lettre	 (Vater,	 2020).	Others	 attribute	 the	 “blackness”	 of	 the	 box	 to	 the	 1939	

development	 of	 a	 flight	 recorder	 by	 François	Hussenot	 that	 shared	 similarity	with	 a	



Chapter	1:	Background	and	Rationale	

 23	

camera,	 requiring	 total	darkness	 in	 its	 insides	 (Engber,	 2014),	 or	 to	 a	plumbed	black	

suitcase	in	which	the	physicist	Edward	Bowen	transported	an	early	cavity	magnetron	

from	the	UK	to	the	US,	providing	the	allied	forces	with	a	decisive	advantage	in	radar	

technology	(Von	Hilgers,	2010).5		

Wherever	its	origin	may	be,	the	concept	of	the	black	box	quickly	grew	in	popularity,	not	

least	in	the	context	of	behaviourism,	where	it	was	prominently	employed	by	B.F.	Skinner	

(1985),	describing	the	human	brain	linking	sensorial	inputs	with	behavioural	outputs.	

Given	 the	wide-ranging	metaphorical	use	of	black	boxes,	 it	 is	 therefore	 crucial	 to	be	

precise	in	one’s	terminology.	As	Jenna	Burrell	has	noted,	their	opacity	can	take	three	

different	forms	(Burrell,	2016).	It	can	occur	(1)	as	an	opacity	that	is	intended,	for	instance	

to	safeguard	secrecy	on	a	corporate	or	state	level,	(2)	as	opacity	due	to	users’	technical	

illiteracy,	and	(3)	as	opacity	that	results	from	the	very	characteristics	of	ML	(ibid.).	This	

thesis	 is	almost	exclusively	concerned	with	the	third	form	of	opacity,	such	as	opacity	

resulting	 from	 DL	 architectures.6	 In	 clinical	 contexts,	 such	 opacity	 poses	 particular	

ethical	challenges.	How	can	we	address	so-called	responsibility	gaps,	created	by	complex	

interactions	 between	 human	 agents	 and	 black-box	 algorithms,	 if	 a	 program’s	

recommendation	 is	 erroneous	 and	 endangers	 patients	 (Matthias,	 2004)?	 How	 can	

informed	consent	be	obtained	to	use	a	program	if	it	is	by	principle	incomprehensible	to	

both	patients	and	health	care	professionals?	How	can	we	avoid	discrimination	against	

 
5	While	the	term	is	still	highly	present	in	current	debates	and	despite	its	racially	innocent	history,	it	has	
recently	also	drawn	criticism	within	a	discourse	that	strives	towards	a	racially	more	neutral	terminology	
in	technology	(Cope	&	Gurung,	2020).	 In	this	vein,	 the	UK	National	Cyber	Security	Centre	decided	to	
substitute	 the	 widely	 used	 term	 “blacklist”	 in	 2020	 with	 the	 term	 “deny	 list”	
(National	Cyber	Security	Center,	 2020).	 For	 the	 time	 being,	 the	 notion	 of	 black-box	 systems	 remains	
common	in	the	literature,	but	it	may	make	sense	to	substitute	it	with	a	more	descriptive	term	such	as	
“opaque	box”	in	the	future.	
6	Minor	exceptions	are	chapter	6	on	transparency,	that	touches	on	the	topic	of	secrecy,	and	chapter	10	on	
education,	addressing	questions	of	technical	literacy.	
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socially	salient	groups	and	protect	vulnerable	populations	from	systematic	bias	without	

understanding	the	underlying	computational	processes?		

As	 noted	 at	 the	 beginning,	 many	 authors	 have	 recently	 suggested	 that	 trust	 could	

provide	a	model	to	deal	with	such	challenges	ensuing	from	opaque	ML	techniques.	 I	

discuss	different	theoretical	approaches	to	trust	at	length	in	chapters	3	and	6.	Here,	I	

will	 therefore	 only	 briefly	 reflect	 on	 the	 role	 of	 trust	 and	 trustworthiness	 in	 recent	

regulatory	debates	and	embed	my	work	in	current	scholarly	discussions	on	the	ethics	of	

medical	AI.		

1.4	Trust	and	trustworthy	AI	

In	March	2019,	the	EU	Commission’s	High	Level	Expert	Group	on	Artificial	Intelligence	

published	their	widely	received	Ethics	Guidelines	for	Trustworthy	AI	("Ethics	guidelines	

for	trustworthy	AI,"	2019).	In	these	guidelines,	52	experts	(among	whom	only	four	were	

trained	ethicists	(Metzinger,	2019))	formulated	conditions	for	lawful,	ethical,	and	robust	

AI	that	they	took	to	be	crucial	for	trustworthy	systems	(European	Commission,	2021).7	

The	 recommended	 conditions	 for	 ethical	 AI	were	 structured	 around	 four	 principles:	

respect	for	human	autonomy,	prevention	of	harm,	fairness,	and	explicability.		

These	 four	 principles	 were,	 in	 turn,	 largely	 derived	 from	 the	 AI4people	 framework	

(Floridi	 et	 al.,	 2018),	 that	 synthesized	 47	 recommendations	 from	 six	 international	

regulatory	 suggestions	 into	 five	 principles.	 These	 five	 principles	 represent	 the	 four	

classical	principles	of	bioethics,	as	 laid	out	by	Tom	Beauchamp	and	 James	Childress,	

namely	 beneficence,	 non-maleficence,	 respect	 for	 autonomy,	 and	 justice,	 and	

 
7		The	first	draft	of	the	guidelines	was	amended	after	a	public	consultation	with	over	500	contributions	
from	companies,	associations,	academic	scholars,	and	private	individuals	(European	Commission,	2021).		
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complement	them	with	an	AI-specific	principle	of	explicability	(ibid.).	This	resemblance	

to	 principlist	 approaches	 in	 bioethics	 does	 not	 seem	 entirely	 surprising,	 given	 that	

Luciano	 Floridi,	 lead	 author	 of	 the	 AI4people	 framework	 and	 one	 of	 the	 EU	

Commission’s	 experts,	 regards	 bioethics	 as	 the	 field	 that	 reflects	 most	 closely	 the	

requirements	of	digital	ethics,	with	novel	challenges,	agents,	and	environments	(Floridi,	

2013;	Floridi	et	al.,	2018).	

Following	the	lead	of	the	EU	guidelines,	trust	has	taken	centre	stage	in	academic	debates	

about	the	ethics	of	AI,	and	medical	AI	in	particular.	While	some	have	strongly	opposed	

it	as	being	too	anthropomorphist	a	notion	that	lends	itself	to	ethics-washing	(Bryson,	

2018;	DeCamp	&	Tilburt,	 2019;	Hatherley,	 2020;	Metzinger,	 2019;	Ryan,	 2020),	 others	

have	defended	its	contribution	to	current	debates	when	understood	properly.	Drawing	

on	earlier	work	on	trust	in	robots	and	e–trust	(Coeckelbergh,	2012;	Taddeo,	2010;	Taddeo	

&	Floridi,	2011),	the	different	suggested	defences	of	trust	in	AI	share	the	conviction	that	

for	 trust	 to	 be	 ethically	 meaningful,	 it	 needs	 to	 be	 bound	 to	 certain	 conditions	 of	

trustworthiness	(Braun,	Bleher,	&	Hummel,	2021;	Durán	&	Jongsma,	2021;	Ferrario,	Loi,	

&	Viganò,	2021;	Gille,	Jobin,	&	Ienca,	2020;	Hartmann,	2020;	Starke,	van	den	Brule,	Elger,	

&	Haselager,	2021).		

While	this	stance	is	not	new	and	in	line	with	broader	theories	of	trust	(Baier,	1986,	2013;	

Hardin,	 2002;	 Luhmann,	 1979;	 Misztal,	 1996;	 O'Neill,	 2002a,	 2002b),	 there	 is	 some	

disagreement	 as	 to	which	 conditions	 of	 trustworthiness	 should	be	 considered	 in	 the	

particular	 context	 of	medicine,	 and	how	 trust	 should	be	 conceptualized	 (Gille	 et	 al.,	

2020).	For	instance,	Juan	Durán	and	Karin	Jongsma	have	defended	trust	in	medical	AI	

based	on	 “computational	 reliabilism”	 (2021)	 that	 is	 evaluated	 	based	on	 four	 criteria,	

namely	 on	 verification	 and	 validation	 methods,	 robustness	 analysis,	 a	 history	 of	
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(un)successful	 implementations	 and	 expert	 knowledge	 (Durán	 &	 Formanek,	 2018).	

Andrea	Ferrario,	Michele	Loi,	and	Eleonora	Viganò	have	suggested	a	layered	model	with	

simple,	reflective,	and	paradigmatic	trust	as	incremental	forms	building	upon	each	other	

(2021).	 This	 thesis	 adds	 to	 the	 expanding	 theoretical	 literature	 on	 trust	 in	 opaque	

medical	 ML	 by	 suggesting	 a	 novel	 dimensional	 model	 of	 trust	 that	 allows	 to	

independently	combine	technical	reliability	measures	of	ML	with	ethical	and	societal	

evaluations,	allowing	for	a	flexible	and	fine-grained	assessment.8	

1.5	Structure	of	this	thesis	

In	its	structure,	the	thesis	moves	from	general	questions	of	trust	and	trustworthiness	to	

particular	 challenges	 posed	 by	ML	 in	 psychiatry.	 The	 first	 chapters	 are	 dedicated	 to	

questions	 of	 trust	 and	 trustworthiness	 on	 a	 general,	 conceptual	 basis.	 After	 a	 short	

overview	of	the	employed	methodology	in	chapter	2,	chapter	3	lays	the	groundwork	with	

a	defence	of	 trust	 in	medical	AI.	There,	 I	 introduce	a	dimensional	model	 inspired	by	

Daniel	Dennett	 that	 allows	 to	 evaluate	 the	 trustworthiness	 of	 a	 black-box	 algorithm	

from	three	independent	angles.	However,	the	focus	of	ethics	should	lie	on	promoting	

conditions	 of	 trustworthiness,	 not	 fostering	 potentially	 unwarranted,	 blind	 trust	 as	

Onora	O’Neill	has	convincingly	argued	(O’Neill,	2013).	Therefore,	the	following	chapters	

are	predominantly	concerned	with	different	aspects	of	trustworthiness.	Hence,	I	next	

address	 questions	 of	 fairness	 and	 transparency,	 which	 are	 commonly	 considered	 to	

constitute	the	two	most	vital	ethical	concerns	of	clinically	applied	ML	(Vayena	et	al.,	

2018).	

 
8	It	may	be	worth	noting	that	our	paper	was	written	and	submitted	before	the	two	other	papers	mentioned	
here	were	published,	which	is	why	they	are	not	discussed	in	chapter	3	itself.		
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With	view	to	fairness,	in	chapter	4,	I	draw	on	the	pragmatist	framework	developed	by	

Hasok	Chang	following	William	James	to	argue	why	in	many	cases,	instead	of	aiming	at	

a	supposedly	objective	truth,	therapeutic	usefulness	should	serve	as	guiding	principle	

for	assessing	the	fairness	of	ML	applications	in	medicine	(Chang,	2017).	The	following	

two	chapters	are	concerned	with	transparency	and	the	related	concept	of	explainability.	

This	focus	seems	warranted	since	explainability	is	commonly	assumed	to	build,	gain,	or	

increase	trust	in	AI	(Braun,	Hummel,	Beck,	&	Dabrock,	2020;	Markus,	Kors,	&	Rijnbeek,	

2021;	Miller,	 2019).	 I	 defend	 a	 slightly	more	 sceptical	 view,	 in	 line	with	 other	 recent	

publications	(Ferrario	&	Loi,	2021).	Chapter	5	discusses	medical	ML	in	light	of	Karl	Japers’	

distinction	 between	 explaining	 and	 understanding	 (Jaspers,	 1948).	 Expanding	 on	 the	

problem	of	often	unknown	causal	relations	 in	the	realm	of	biomedicine,	 I	argue	how	

understanding	could	provide	a	useful	complimentary	model	 to	explaining.	Chapter	6	

concludes	 the	 first	part	of	 the	 thesis,	 arguing	with	Onora	O’Neill	 against	a	model	of	

transparency	 as	 mere	 disclosure	 and	 in	 favour	 of	 intelligent	 openness,	 aimed	 at	

successful	 communication	 with	 the	 relevant	 stakeholders	 (Manson	 &	 O'Neill,	 2007;	

O'Neill,	2002a,	2018).			

In	the	following	chapters,	the	thesis	then	situates	these	conceptual	considerations	in	the	

messy	 reality	 of	 opaque	 ML	 employed	 in	 clinical	 settings,	 integrating	 theoretical	

examination	 and	 empirical	 data	 collection.	 Looking	 at	 a	 specific	 field	 of	 potential	

applications,	I	focus	exclusively	on	applications	in	psychiatry	and	neuroscience.	Beyond	

reasons	of	 convenience,	namely	my	prior	experience	with	computational	methods	 in	

psychiatric	neuroimaging		(Mulej	Bratec	et	al.,	2020;	Starke,	2020),	this	focus	has	also	

substantive	motives.	On	the	one	hand,	neuroscience	has	often	provided	inspiration	to	

the	 development	 of	 AI	 –	 not	 least	 in	 the	 form	 of	 ANNs	 –,	 rendering	 the	 two	 fields	
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inherently	closer	than,	e.g.	computer	science	and	rheumatology	(Ullman,	2019).	On	the	

other	hand,	psychiatry	and	neuroscience	have	 long	dealt	with	an	archetypical	black-

box	–	 namely	 the	 human	 brain	 (Clark,	 2013).	While	 analogies	 between	ML	 and	 the	

human	brain	are	necessarily	limited,	psychiatry	in	particular	has	developed	strategies	to	

pragmatically	act	under	uncertainty	that	can	also	be	informative	to	debates	in	AI	ethics.		

To	provide	readers	with	an	introduction	to	ethical	challenges	of	psychiatric	ML,	I	first	

map	the	field	by	identifying	different	ethical	issues	related	to	its	potential	application.	

Using	a	well-established	example	from	the	field	of	biological	psychiatry,	namely	real-life	

applications	 of	 ML	 for	 patients	 with	 schizophrenia,	 chapter	 7	 offers	 a	 systematic	

overview	based	on	the	principlist	framework	by	Tom	Beauchamp	and	James	Childress.	I	

then	 present	 the	 results	 of	 an	 empirically	 informed	 study	 in	 bioethics,	 drawing	 on	

interviews	with	 experts	 on	ML	 in	 psychiatry,	 in	 two	 chapters.	Chapter	 8	 reports	 the	

attitudes	 and	 ethical	 expectations	 of	 researchers	 towards	 psychiatric	 ML,	 shedding	

further	 doubt	 on	 the	 ascribed	 role	 of	 explainability.	 Chapter	 9	 addresses	 a	 topic	

particular	to	the	context	of	psychiatry	by	reporting	the	views	and	attitudes	of	researchers	

towards	the	impact	of	ML	on	psychiatric	nosology.	Chapter	10	concludes	this	part	by	

discussing	 possible	 changes	 to	 psychiatric	 curricula,	 arguing	 that	 an	 ethically	

responsible	implementation	of	machine	learning	in	the	clinic	still	requires	attention	to	

history.		

I	conclude	the	thesis	with	a	discussion	that	critically	relates	the	results	of	both	parts	to	

each	other:	The	empirical	findings	of	the	interviews	are	confronted	with	the	theoretical	

ethical	 considerations,	 whereas	 the	 interviews	 themselves	 also	 challenge	 previous	

assumptions	grounded	in	moral	theory	(Molewijk,	Stiggelbout,	Otten,	Dupuis,	&	Kievit,	

2004).		
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In	 2019,	 the	 American	 philosopher	 Robert	 Brandom	published	 his	magnum	opus	 on	

Hegel’s	Phenomenology	of	Spirit,	entitled	A	Spirit	of	Trust	(Brandom,	2019).	In	this	book,	

Brandom	suggests	an	“ethics	of	trust”	(Knappik,	2020),	drawing	on	the	idea	that	both	

truth	and	linguistic	meaning	are	normative	matters	(Sartwell,	2020).	While	Brandom’s	

reading	of	Hegel	goes	far	beyond	the	scope	of	trust	discussed	in	this	thesis,	the	insight	

that	communication,	whether	in	medical	or	scientific	contexts,	requires	some	form	of	

trust	(Manson	&	O'Neill,	2007;	Shapin,	1995),	is	reflected	at	various	stages	in	this	thesis.	

It	may	therefore	also	be	read	as	an	attempt	to	promote	a	“spirit	of	trust”,	for	as	Brandom	

puts	it:	

A	proper	understanding	of	ourselves	as	discursive	creatures	obliges	us	to	institute	

a	 community	 in	 which	 reciprocal	 recognition	 takes	 the	 form	 of	 forgiving	

recollection:	a	community	bound	by	and	built	on	trust.	(Brandom,	2019:	635)	
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2.1	Bioethics	at	the	intersection	of	values	and	facts	

In	his	Lectures	on	Logic,	Immanuel	Kant	famously	summarized	the	scope	of	philosophy	

in	four	questions:	“1)	What	can	I	know?	2)	What	ought	I	to	do?	3)	What	may	I	hope?	

4)	What	is	man?”	(AA	IX:	25).	Normative	ethics,	as	opposed	to	descriptive	ethics,	strives	

for	answers	to	the	second	question,	not	investigating	the	state	of	moral	phenomena	but	

how	 they	 should	 be,	 reappraising	 them	 in	 light	 of	 moral	 desiderata	 critically	 and	

systematically	(Marckmann,	2022,	p.	3f.).	Put	briefly,	ethical	 theory	can	therefore	“be	

thought	 of	 as	 a	 set	 of	 reasons	 and	 interconnected	 arguments,	 explicitly	 and	

systematically	articulated,	with	some	degree	of	abstractness	and	generality	 that	gives	

directions	for	ethical	practice”	(Nussbaum,	2000,	p.	56f.).	While	the	practice	of	ethics	is	

not	the	privilege	of	a	chosen	few	but	of	anyone	reflecting	systematically	on	their	actions,	

ethical	theory	is	rooted	traditionally	in	academic	philosophy.	

In	many	ways,	this	has	long	kept	ethics	as	a	systematic	investigation	of	the	normative	

apart	from	the	empirical	sciences.	At	least	since	Hume	postulated	in	his	1739	Treatise	on	

Human	Nature	postulated	 in	 1739	 that	we	 cannot	 logically	 infer	 an	ought	 from	an	 is	

(Hume,	1739	[1896],	p.	469f.),	philosophers	have	been	wary	of	committing	such	fallacy.	

In	fact,	Kant’s	moral	philosophy	can	be	read	as	one	attempt	to	avoid	this	conundrum.	

Within	his	distinction	between	theoretical	reason,	concerned	with	laws	of	nature,	and	

practical	reason,	concerned	with	what	we	ought	to	do,	Kant	differentiated	between	two	

kinds	of	practical	reason:	an	empirically	determined	and	a	pure	form	of	practical	reason	

(Höffe,	2007,	p.	211f.).	Since	the	morally	good	is	defined	in	terms	of	pure	practical	reason,	
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without	 recourse	 to	empirical	 experiences,	one	can	arrive	at	 statements	about	moral	

obligations,	about	oughts,	without	recourse	to	an	empirical	is	(ibid).9	

While	Kant’s	system	provides	moral	principles	that	can	guide	action,	his	non-empirical	

construction	 of	 normative	 obligations	 rivals	 with	 many	 other	 non-consequentialist	

theories	 such	 as	 virtue	 ethics,	 and	 consequentialist	 theories	 such	 as	 utilitarianism.	

Reflecting	 societal	 pluralism	 and	 the	 lack	 of	 agreement	 on	 fundamental	 high-level	

ethical	principles	such	as	the	categorical	imperative,	current	bioethics	therefore	often	

relies	on	mid-level	principles,	upon	which	scholars	from	different	traditions	can	agree	

and	 that	 are	 designed	 to	 reflect	 common	morality	 (Beauchamp	&	 Childress,	 2019).10	

Ethical	 reasoning	 based	 on	 mid-level	 principles	 has	 long	 constituted	 a	 dominant	

paradigm	 in	 medical	 ethics	 and	 equally	 shapes	 recent	 approaches	 in	 AI	 ethics	

(Beauchamp	&	Childress,	2013;	Floridi	et	al.,	2018).		

However,	over	the	past	decades,	a	supposed	disregard	of	principle-oriented	ethics	for	

the	 empirical	 has	 drawn	 substantive	 criticism,	 suggesting	 for	 instance	 casuistry	 or	

narrative	ethics	as	alternative	approaches	(e.g.,	Nussbaum	(1990);	Toulmin	(1981);	see	

Flynn	 (2021)	 for	 a	 comprehensive	 overview).	 In	 addition,	 feminist	 authors	 also	 have	

pointed	 out	 how	 bioethical	 inquiry	 stressing	 liberal	 individualist	 principles	 such	 as	

autonomy	has	not	paid	sufficient	attention	to	gendered	social	contexts	(Mackenzie	&	

Stoljar,	 2000;	 Scully,	 Baldwin-Ragaven,	 &	 Fitzpatrick,	 2010;	 Wolf,	 1996).	 In	 medical	

 
9	Even	if	one	agrees	with	Kantian	principles,	the	challenge	remains	of	how	to	act	on	them	in	particular	
situations.	Here,	 judgement	 is	 required,	 a	 “peculiar	 talent	which	can	be	practiced	only	but	 cannot	be	
taught”	(Kant	AA	III:	172;	cf.	O’Neill	2018	,	110-112).	
10	 The	Principles	 of	 Biomedical	 Ethics	 can	 also	 be	 seen	 as	 providing	 primarily	 a	 compromise	 between	
utilitarianism	 and	 deontology	 though,	 with	 comparatively	 little	 focus	 on	 e.g.,	 virtue	 ethics,	 with	 the	
authors	 representing	 a	 rule-utilitarian	 (Beauchamp)	 and	 Christian	 deontologist	 (Childress)	 tradition	
respectively	 (Arras	 2017:	 3).	 For	 a	 more	 comprehensive	 discussion	 of	 the	 coherentism	 defended	 by	
Beauchamp	and	Childress	see	also	Marckmann	(2003,	pp.	7-9).	
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ethics,	 both	 voices	 from	 outside	 the	 discipline	 as	 well	 as	 ethicists	 themselves	 have	

therefore	called	for	more	attention	to	context	by	grounding	research	in	empirical	work	

(Bruchhausen,	2001;	Musschenga,	2009).	Taking	a	slightly	different	 form,	criticism	of	

general	ethical	principles	enshrined	in	guidelines	has	recently	also	come	to	the	forefront	

in	AI	ethics.	In	particular,	critics	surmise	that	such	ethical	guidelines	may	eclipse	more	

pressing	 challenges	 such	 as	 underlying	 social	 conditions,	 power	 structures	 and	

environmental	costs	of	AI	(Crawford,	2021;	Hao,	2021),	which	also	need	to	be	investigated	

from	a	social	science	perspective,	involving	relevant	stakeholders.	To	address	the	ethical	

challenges	 posed	by	medical	ML,	 it	 seems	 therefore	 imperative	 to	 engage	 both	with	

abstract	philosophical	thought	and	its	empirical	reality.		

In	this	thesis,	I	embrace	a	two-pronged	approach,	relating	general,	abstract	reasoning	to	

particular	applications	of	medical	ML,	supported	by	empirical	investigation.	The	results	

of	both	parts	are	 related	 to	each	other	 in	 the	 sense	of	 integrated	empirical	bioethics	

which	 recognizes	 an	 interdependent	 relation	 between	 values	 and	 facts	 (Molewijk,	

Stiggelbout,	Otten,	Dupuis,	&	Kievit,	2004).	This	chapter	introduces	and	justifies	this	

methodology	in	two	steps.	In	the	first	section	(2.2),	I	offer	a	very	short	introduction	to	

empirical	 bioethics	 and	 argue	 why	 an	 integrated	 approach	 is	 the	 most	 appropriate	

framework	 to	 investigate	 ethical	 questions	 posed	 by	 medical	 ML.	 In	 the	 second	

subsection,	I	then	provide	a	brief	description	of	the	methods	of	this	thesis,	motivating	

both	its	conceptual	as	well	as	its	empirical	methodology.		

2.2	Towards	integrated	empirical	bioethics		

Responding	to	the	aforementioned	critics	of	armchair	ethics,	calls	 for	a	 larger	role	of	

social	 sciences	 in	 bioethics	 have	 resulted	 in	 vast	 increases	 of	 empirical	 research	

published	in	key	bioethical	journals	(Borry,	Schotsmans,	&	Dierickx,	2006;	Wangmo	et	
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al.,	2018).	Following	Pascal	Borry	and	colleagues,	this	“empirical	turn”	is	thought	to	have	

it	 origins	 in	 three	 complementary	 developments:	 (1)	 theoretical	 discontent	 of	

bioethicists	 with	 top-down	 approaches	 of	 applied	 ethics,	 (2)	 practical	 exposure	 of	

clinical	 ethicists	 to	 qualitative	 methods	 due	 to	 their	 professional	 integration	 into	

medical	departments,	and	(3)	the	focus	on	evidence-based	approaches	in	medicine	since	

the	1990s	(Borry,	Schotsmans,	&	Dierickx,	2005).		

However,	the	challenging	question	remains	how	to	combine	empirical	and	normative	

investigation	 with	 appropriate	 methodological	 rigour	 (Hurst,	 2010;	 Ives	 et	 al.,	 2018;	

Marckmann,	2013)	and	without	bioethicists	becoming	jacks	of	all	trades,	masters	of	none	

(Dunn,	 Gurtin-Broadbent,	 Wheeler,	 &	 Ives,	 2008).	 In	 a	 highly	 received	 paper,	 Bert	

Molewijk	 and	 colleagues	 (2004)	 have	 distinguished	 four	 types	 of	 ethicists	 that	 use	

empirical	data	in	different	ways	and	form	a	kind	of	spectrum.		

(1)	 The	 “prescriptive	 applied	 ethicist”	 reasons	 deductively	 from	 a	 fixed	moral	

theory	and	uses	empirical	findings	for	arriving	at	particular	judgements,	e.g.,	a	

consequentialist	who	investigates	the	likely	outcomes	of	an	action	empirically.		

(2)	The	“theorist”	also	assumes	that	moral	theory	takes	precedence	over	empirical	

findings	but	 allows	a	 refinement	of	moral	 theory	based	on	empirical	 findings.	

Frances	 Kamm’s	 non-consequentialist	 approach	 to	 an	 ethics	 refined	 by	

empirically	traceable	intuitions	to	thought	experiments	may	come	to	mind	here	

(Kamm,	2008).	

(3)	 The	 critical	 applied	 ethicist	 does	 not	 give	 precedence	 to	 either	 theory	 or	

empirical	data,	allowing	for	both	to	criticise	each	other.	Many	current	approaches	

to	empirical	bioethics	fall	into	this	camp,	and	an	explicit	defence	is	offered,	for	

instance,	by	Leget,	Borry,	and	De	Vries	(2009).	
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(4)	The	particularist,	finally,	does	away	with	moral	theory	altogether,	making	the	

empirically	traceable	morality	present	in	specific	social	contexts	the	only	arbiter	

of	ethics	–	casuistry	can	serve	as	an	example	here.		

As	 an	 addition	 to	 these	 four	 types,	 Molewijk	 and	 colleagues	 have	 suggested	 a	 fifth	

approach,	 “integrated	 empirical	 bioethics”,	 which	 seems	 the	 most	 adequate	 for	

investigating	biomedical	ML.	In	contrast	to	the	other	attempts	of	empirical	bioethics	

mentioned	above,	integrated	empirical	bioethics	is	guided	by	the	belief	that	facts	and	

values	are,	contrary	to	Hume,	inextricably	interwoven,	in	a	triple	sense	(Molewijk	et	al.,	

2004).	 This	 model	 assumes	 firstly	 that	 epistemic	 values	 specific	 to	 the	 respective	

disciplines	 are	 deeply	 embedded	 in	 the	 findings	 of	 empirical	 sciences,	 it	 considers	

secondly	 moral	 theory	 as	 based	 on	 “empirical	 background	 assumptions”	 such	 as	

particular	assumptions	concerning	anthropology.	Thirdly,	it	respects,	as	the	authors	put	

it,	“that	‘ought’	implies	‘can’”	(ibid.,	p.	59),	so	that	bioethics	aimed	at	providing	guidance	

for	action	needs	to	consider	the	factual	possibilities	of	the	relevant	agents.			

There	are	at	least	two	main	reasons	why	integrated	empirical	ethics	constitutes	the	most	

appropriate	methodology	for	the	topic	of	this	thesis.	First,	the	fact-value	dichotomy	that	

is	already	problematic	with	regard	to	biological	phenomena	seems	even	more	dubious	

when	applied	to	technological	artifacts	(Latour,	1987),11	including	medical	ML.	After	all,	

the	 very	 object	 of	 investigation	here	 is	 not	 something	 given,	 a	datum,	 but	 a	 factum,	

something	 human-made,	 arising	 from	 particular	 social	 practices.	 It	 is	 therefore	

inseparably	 linked	 to	 the	 epistemic	 and	 non-epistemic	 values	 and	 practices	 of	 the	

different	 involved	 scientific	 communities.	 For	 instance,	 in	 the	 design	 of	 a	 binary	

 
11	 In	 fact,	 Latour	 even	 compares	 the	 “building”	 of	 scientific	 facts	 with	 the	 building	 of	 a	 black-box	
automaton,	with	both	processes	enlisting	human	and	non-human	actors	(pp.	130-132.).	
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classification	tool	for	a	medical	diagnosis,	ML	developers	will	be	guided	by	epistemic	

values	 such	as	 simplicity	of	 the	model	but	also	consider	 social,	non-epistemic	values	

when	determining	the	error	costs	in	optimization,	to	arrive	at	an	acceptable	inductive	

risk	linked	to	misclassification	(Karaca,	2021).		

Second,	an	integrated	approach	promises	the	most	fruitful	results	–	fruitful,	at	least,	if	

we	assume	 that	bioethics	 should	 strive	 for	 a	positive	 impact	on	 society	 (Lindemann,	

2019).	As	the	last	years	have	shown,	conceptual	starting	points,	developing	guidelines	

based	on	abstract	bioethical	principles,	are	prone	to	ethics	washing	(Metzinger,	2019).	

At	the	same	time,	relying	on	empirical	methods	in	AI	ethics	to	foster	 interpretability	

without	reflecting	on	the	role	of	non-human	actors	in	structural	power	imbalances,	has	

been	empirically	shown	to	yield	ethically	highly	questionable	models	(John-Mathews,	

2022).	Contrary	to	others,	I	do	therefore	not	believe	that	keeping	the	empirical	and	the	

normative	separate	“as	in	a	good	friendship	or	marriage”	is	warranted	here	(Leget	et	al.,	

2009),	but	that	instead,	bioethical	methodology	should	reflect	the	mutual	dependency	

of	fact	and	values	when	considering	the	ethics	of	medical	ML.		

2.3.	Methodology	of	this	thesis	

The	topic	of	this	thesis	is	inherently	interdisciplinary,	drawing	not	only	on	literature	in	

bioethics	and	philosophy,	but	also	 from	history,	medicine,	psychology,	neuroscience,	

human-computer-interaction	 studies,	 and	 computer	 science,	 aiming	 towards	 an	

integrated	 approach	 in	 its	 fullest	 sense.	 Consequently,	 to	 do	 justice	 to	 its	 object	 of	

inquiry,	this	thesis	needs	to	engage	with	theoretical	and	empirical	approaches	that	suit	

the	multifaceted	and	multidisciplinary	 aspects	of	 ethical	questions	posed	by	medical	

ML.	Since	methodological	details	are	also	discussed	in	the	following	individual	chapters,	

I	will	only	focus	on	my	choice	of	conceptual	and	integrative	framework	here.	
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2.3.1	Conceptual	approaches	to	trust	and	trustworthiness	of	medical	ML	

In	 the	 next	 four	 chapters,	 I	 turn	 to	 philosophers	 who	 embody	 interdisciplinary	

approaches,	using	their	theoretical	 framework	to	answer	specific	questions	related	to	

trust	 and	 trustworthiness.	 For	 normative	 arguments,	 I	 draw	 mostly	 on	 non-

consequentialist	 lines	 of	 reasoning	 by	 authors	 whose	 work	 can	 provide	 valuable	

additions	to	the	existing	literature,	motivated	by	two	deliberations.	First,	this	tradition	

offers	extensive	discussions	of	trust	and	trustworthiness	in	the	context	of	bioethics,	most	

notably	 in	 the	work	 of	Onora	O’Neill	 (Baier,	 2013;	Manson	&	O'Neill,	 2007;	O'Neill,	

2002a,	2002b;	O’Neill,	2013).	Second,	while	there	are	of	course	also	myriad	contributions	

to	the	ethics	of	medical	ML	from	consequentialist	authors	(Afnan	et	al.,	2021;	D’Hotman,	

Loh,	&	Savulescu,	2021;	Savulescu,	Kahane,	&	Gyngell,	2019),	John	Rawls,	incidentally	the	

PhD	 supervisor	 of	 O’Neill,	 is	 not	 without	 reason	 considered	 “artificial	 intelligence’s	

favorite	philosopher”	(Procaccia	2019,	cit.	 in	Lundgard,	2020:	3).	His	theory	of	 justice	

provides	 operationalizable	 constraints	 of	 fairness	 on	 an	 otherwise	 outcome-driven	

scientific	endeavour,	and	his	method	of	reflective	equilibrium	is	widely	accepted	as	a	

standard	 approach	 in	 bioethics,	 endorsed,	 for	 instance,	 also	 by	 Beauchamp	 and	

Childress	(Arras	2017:	182,	cit.	in	Flynn	(2021)).		

More	 importantly	 though,	my	 conceptual	 approach	 is	 rooted	 in	 the	methodological	

approach	of	integrated	empirical	bioethics.	Highlighting	its	aforementioned	skepticism	

about	the	fact-value-dichotomy,	chapter	3	is	heavily	inspired	by	Bruno	Latour	(Latour,	

2000),	while	chapter	4	draws	on	pragmatist	philosophy	of	science	(Chang,	2017;	James,	

1907	[1922])	–	a	tradition	that	has	long	been	concerned	with	the	interplay	of	facts	and	

values	(Putnam,	2004).	Chapter	5	draws	on	the	writings	of	Karl	Jaspers,	psychiatrist	and	

philosopher,	whose	system	has	also	been	read	as	bridging	the	ethical	divide	between	
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values	 and	 facts	 in	 his	 existentialist	 philosophy	 (Dege,	 2020).	 Finally,	my	 reading	 of	

Onora	O’Neill’s	views	of	trust	and	transparency,	representing	one	of	the	most	prominent	

Kantian	voices	in	contemporary	bioethics,	concludes	the	first	part,	drawing	explicitly	on	

empirical	findings	from	sociology	(Beck,	2016).	 

2.3.2	Integrative	approaches	to	the	implementation	of	medical	ML	

The	second	part	of	my	thesis,	concerned	with	the	more	practical	implementation	of	ML	

in	psychiatry,	 is	 even	more	 clearly	 grounded	 in	 an	 integrated	 approach	 to	bioethics.	

Chapters	7	and	10,	written	for	a	medical	audience,	bridge	principlist	ethics	and	history	

of	science	with	the	reality	of	current	psychiatric	ML	applications,	while	chapters	8	and	

9	represent	and	discuss	the	empirical	findings	of	a	qualitative	interview	study.	Here,	the	

thesis	explores	the	attitudes	and	beliefs	of	researchers	 involved	in	creating	and	using	

medical	 black	 boxes,	 to	 enable	 ethical	 and	 conceptual	 reflection	 that	 pays	 close	

attention	to	context	and	can	thereby	help	to	fill	“blind	spots	in	AI	ethics”	(Hagendorff,	

2021). 

For	this	purpose,	I	draw	on	qualitative	interviews	with	experts	on	ML	in	psychiatry.	The	

aim	of	these	interviews	was	to	understand	the	attitudes	and	beliefs	towards	medical	ML	

within	 this	 community,	 with	 their	 respective	 educational	 backgrounds,	 professional	

cultures	and	at	times	even	incommensurable	terminologies	(Turilli	&	Floridi,	2009),	to	

tackle	 the	challenges	which	arise	at	 the	 intersection	of	computer	science,	psychiatry,	

and	ethics.	Due	to	the	lack	of	empirical	research	in	this	field,	this	qualitative	interview	

study	 was	 of	 explorative	 nature.	 Hence,	 research	 questions	 were	 not	 guided	 by	

preconceived	hypotheses	but	aimed	to	inform	further	ethical	analysis	of	medical	ML	by	

(1)	identifying	key	ethical	challenges	for	medical	ML,	(2)	addressing	specific	conditions	

of	 trustworthiness	 such	 as	 fairness,	 transparency	 and	 explainability	 and	 (3)	explore	
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expert’s	perspectives	on	current	regulatory	frameworks.	The	study	followed	the	COREQ	

check-list	 (Consolidated	 Criteria	 for	 Reporting	 Qualitative	 Research,	 see	 appendix)	

(Tong,	 Sainsbury,	 &	 Craig,	 2007).	 A	 detailed	 description	 of	 the	 study’s	 methods	 is	

provided	in	chapters	8	and	9.		

2.4.	Methodological	outlook		

As	will	become	increasingly	clear	throughout	this	dissertation,	Kant’s	clear	separation	

of	 four	 different	 domains	 of	 philosophical	 investigations	 is	 largely	 untenable	 when	

investigating	ethical	challenges	posed	by	medical	ML.	Any	attempt	of	evaluating	what	

we	ought	to	do	requires	at	the	very	least	some	knowledge	about	what	we	can	know.	Or,	

put	differently,	the	ethical	question	whether	we	should	trust	a	particular	ML	model	will	

depend	largely	on	the	epistemic	question	of	what	we	can	know	about	it,	and	thereby	

about	its	trustworthiness.	Before	turning	to	trustworthiness,	let	us	first	examine	though	

whether	 trust	 can	 constitute	 an	 adequate	 way	 of	 dealing	 with	 black-box	 algorithms	

employed	in	medical	contexts	at	all.		
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Abstract	

Trust	constitutes	a	fundamental	strategy	to	deal	with	risks	and	uncertainty	in	complex	

societies.	 In	 line	with	 the	 vast	 literature	 stressing	 the	 importance	of	 trust	 in	doctor-

patient	relationships,	trust	is	therefore	regularly	suggested	as	a	way	of	dealing	with	the	

risks	of	medical	AI.	Yet,	this	approach	has	come	under	charge	from	different	angles.	At	

least	 two	 lines	 of	 thought	 can	 be	 distinguished:	 (1)	 that	 trusting	 AI	 is	 conceptually	

confused,	i.e.	that	we	cannot	trust	AI,	and	(2)	that	it	is	also	dangerous,	i.e.	that	we	should	

not	trust	AI	–	particularly	if	the	stakes	are	as	high	as	they	routinely	are	in	medicine.	In	

this	paper,	we	aim	to	defend	a	notion	of	trust	in	the	context	of	medical	AI	against	both	

charges.	 To	 do	 so,	 we	 highlight	 the	 technically	 mediated	 intentions	 manifest	 in	 AI	

systems,	rendering	trust	a	conceptually	plausible	stance	for	dealing	with	them.	Based	on	

literature	from	Human-Robot	Interaction,	psychology	and	sociology,	we	then	propose	a	

novel	model	to	analyse	notions	of	trust,	distinguishing	between	three	different	aspects:	

reliability,	competence,	and	intentions.	We	discuss	each	aspect	and	make	suggestions	

how	medical	AI	may	become	worthy	of	our	trust.		
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3.1	Introduction		

Trust	is	crucial	for	human	actions	and	interactions	in	technologically	advanced	societies.	

It	 constitutes,	 as	 the	 sociologist	 Niklas	 Luhmann	 famously	 put	 it,	 “a	mechanism	 to	

reduce	 social	 complexity”	 (Luhmann,	 1968)	 and	 enables	 us	 to	 act	 in	 situations	

characterised	by	uncertainty.	Across	different	areas	of	life,	our	actions	are	increasingly	

shaped	 by	 technological	means	 and	 computational	 operations	 characterised	 by	 such	

uncertainty	–	a	development	which	the	rise	of	Artificial	 Intelligence	(AI)	 is	bound	to	

accelerate	further.	In	medicine,	this	progress	has	already	spawned	diagnostic,	predictive	

and	therapeutic	programs,	and	will	likely	leave	no	medical	specialty	untouched	(Topol,	

2019).	Potential	applications	range	from	automated	pathological	evaluations	of	cancer	

biopsies	(Arvaniti	et	al.,	2018)	to	AI-assisted	surgery	planning	(Knoops	et	al.,	2019),	from	

predicting	 acute	 circulatory	 failure	 in	 intensive	 care	 units	 (Hyland	 et	 al.,	 2020)	 to	

choosing	 an	 appropriate	 medication	 for	 psychiatric	 disorders	 (Starke,	 De	 Clercq,	

Borgwardt,	&	Elger,	2021).		

Yet,	the	impending	employment	of	these	complex	systems	for	clinical	decision-making	

necessitates	 an	 appropriate	 attitude	 of	 dealing	 with	 the	 lack	 of	 explainability	 often	

inherent	in	these	programs.	In	the	past	years,	both	public	and	private	research	bodies	

have	repeatedly	suggested	trust	as	a	possible	way	to	deal	with	the	uncertainty	posed	by	

applications	of	AI	(Desai	&	Kroll,	2017;	Hatherley,	2020).	In	medicine,	calls	for	trust	in	

AI	seem	particularly	tempting,	given	the	importance	ascribed	to	trust	for	the	complex	

relations	between	patients,	physicians	and	other	agents	in	healthcare	settings	(O'Neill,	

2002a),	and	consequently	for	the	functioning	of	the	health	care	system	in	general	(Gille,	

Smith,	&	Mays,	2015).	However,	it	remains	open	to	debate	whether	trust	constitutes	a	

conceptually	defensible	attitude	towards	medical	AI.	As	several	authors	have	argued,	



Chapter	3:	A	Defence	of	Trust	in	Medical	AI	

 52	

trust	should	be	reserved	exclusively	to	human	agents,	as	opposed	to	any	non-human	

systems,	which	supposedly	lack	the	necessary	motives	to	be	recipients	of	trust	(DeCamp	

&	Tilburt,	2019;	Hatherley,	2020).		

In	 this	paper,	we	will	 argue	against	 this	distinction,	defending	 the	notion	of	 trust	 in	

medical	AI	by	highlighting	the	motives	enacted	by	potential	applications.	The	crucial	

question	we	aim	to	answers	is:	 if	we	are	to	trust	AI	systems,	how	could	such	trust	be	

conceived?	 Despite	 the	 prominence	 “trustworthiness”	 enjoys	 in	 regulatory	 debates,	

fostered	by	the	EU	guidelines	for	trustworthy	AI,	substantive	conceptualisations	of	trust	

in	medical	AI	are	still	largely	lacking	(Gille,	Jobin,	&	Ienca,	2020).	We	aim	to	address	this	

gap	by	suggesting	a	three-dimensional	framework	of	trust,	distinguishing	between	the	

reliability,	competence,	and	intentions	of	an	AI	system.	In	doing	so,	we	hope	to	foster	

greater	conceptual	clarity	while	simultaneously	defending	trust	as	a	meaningful	attitude	

to	deal	with	the	inherent	risks	of	medical	AI.		

3.2	Trust	and	trustworthiness	

At	the	outset	of	any	debate	about	trust,	it	seems	vital	to	briefly	revisit	the	distinction	

between	 trust	 and	 trustworthiness	 (Hardin,	 2002).	 In	 general,	 trust	 is	 foremost	 a	

cognitive	attitude	of	a	trustor	(an	agent	doing	the	trusting)	towards	a	trustee	(an	agent	

who	is	a	candidate	for	being	trusted)	to	act	or	behave	in	a	beneficial	way	toward	the	

trustor	 (McLeod,	 2015).	 Which	 characteristics	 a	 trustor	 takes	 to	 be	 important	 for	

assessing	a	trustee’s	trustworthiness	may	depend	on	the	characteristics	of	the	trustor	

(sometimes	called	trustfulness)	(Tullberg,	2008),	the	situation	in	which	the	interaction	

takes	place,	the	nature	of	the	task,	the	type	of	agent	the	trustor	is	engaging	with,	and	

the	propensity	of	the	trustor	to	engage	in	trust	relationships.	For	instance,	if	someone	

says	“I	don’t	trust	Billy	with	that	chainsaw”,	the	meaning	of	trust	differs	dramatically	
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whether	Billy	is	a	curious	four-year-old	child	or	an	outraged	forty-year-old	lumberjack.	

In	the	first	case,	the	statement	will	likely	refer	to	the	fact	that	Billy	is	too	young	to	know	

how	 to	 handle	 a	 chainsaw	 and	 might	 hurt	 someone	 (or	 himself)	 because	 of	 his	

incompetence.	In	the	latter	case,	there	is	a	good	chance	that	Billy	is	very	competent	with	

a	chainsaw,	but	might	hurt	someone	because	he	has	bad	intentions.	Trust	is	thus	based	

on	the	subjective	inferences	of	the	trustor	from	the	perceived	features	of	the	trustee	and	

past	experience	with	the	trustee,	reflecting	its	trustworthiness.	Although	trust	in	both	

situations	is	low,	it	can	lead	to	quite	different	behavioural	responses.	In	the	first	case,	

the	response	may	well	be	to	approach	Billy	and	take	away	the	chainsaw,	whereas	in	the	

latter	situation	the	appropriate	response	will	arguably	be	to	run	away.	

In	either	case,	trust	can	be	construed	as	a	multi-part	relationship	in	which	the	trustor	

(A)	 entrusts	 the	 trustee	 (B)	 with	 a	 specific	 task	 (T)	 or	 in	 matters	 (Y)	 in	 specific	

circumstances	Z	(Baier,	1986).	Within	this	relation,	A’s	trust	in	B	is	often	limited	to	the	

specific	task	T	or	the	field	of	expertise	Y.	A	patient	may	very	well	trust	his	dermatologist	

to	distinguish	between	nevi	and	melanoma	but	may	be	very	reluctant	to	also	trust	her	

with	the	extraction	of	a	carious	tooth.	The	specific	properties	of	the	doctor	leading	to	

this	 judgement	 can	 in	 turn	 be	 summarized	 as	 trustworthiness,	 which	 concerns	 the	

prerequisites	for	a	trust	relationship.	It	refers	to	the	qualities	of	a	trustee,	as	observed	

and	evaluated	by	the	trustor,	which	give	the	trustor	the	confidence	to	engage	in	a	trust	

relationship	(Hardin,	2002).	

While	 the	 exact	 nature	 of	 trust	 remains	 subject	 to	much	 debate	 in	 philosophy	 and	

sociology	 (Misztal,	 1996;	Möllering,	 2001;	 O'Neill,	 2002b),	 two	 characteristics	 of	 this	

relation	 seem	 instructive	 here.	 First,	 trust	 requires	 a	 state	 of	 imperfect	 knowledge	

concerning	the	trustee	B	on	the	side	of	the	trustor	A:	those	with	complete	knowledge	
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need	 not	 trust	 while	 those	 without	 any	 knowledge	 cannot	 reasonably	 trust	 at	 all	

(Simmel,	1908	[1983]).12	Second,	the	task	T	needs	to	include	some	risk	for	the	trustor,	

putting	her	in	a	vulnerable	relation	towards	the	trustee	(Baier,	1986).	Trustworthiness	

on	the	other	hand	is	a	property	of	the	trustee	that	renders	A’s	trust	in	B	with	regard	to	T	

justifiable	(McLeod,	2015).	It	is	assembled	of	multiple	different	characteristics	that	are	

subject	to	much	disagreement.	However,	some	often-found	characteristics	seem	rather	

uncontroversial,	 such	 as	 a	 trustee’s	 capability	 to	 perform	 the	 task	 in	 question	 and	 a	

reliable	performance	in	the	past.	One	should	note	though	that	trust	and	trustworthiness	

are,	on	a	factual	level,	not	necessarily	linked.	Some	credulous	and	gullible	agents	may	

place	their	trust	in	untrustworthy	trustees,	whereas	others	may	be	driven	by	caution	to	

withhold	trust	even	where	it	is	warranted,	foregoing	a	potentially	useful	interaction.		

3.3	Trust	in	medical	AI:	conceptual	nonsense?	

The	two	mentioned	conditions	of	trust,	uncertainty	and	risk,	generally	characterise	the	

practice	of	medicine	and	clearly	apply	 in	 the	context	of	medical	AI	 (Grote	&	Berens,	

2020).	Few	experts,	if	any,	command	the	knowledge	to	understand	medical	AI	systems,	

and	even	those	may	not	be	able	to	scrutinise	the	internals	of	a	specific	program,	due	to	

the	much-discussed	black-box	nature	of	specific	AI	models	(London,	2019).	While	this	

creates	a	multitude	of	ethical	and	regulatory	challenges	 in	medical	contexts	(Vayena,	

Blasimme,	&	Cohen,	2018),	it	certainly	also	fulfils	the	condition	of	an	intermediate	state	

of	knowledge	between	complete	knowledge	and	no	knowledge	at	all.	At	the	same	time,	

the	magnitude	of	risks	created	by	AI	systems	for	diagnostic,	prognostic,	therapeutic	or	

 

12	«Der	völlig	Wissende	braucht	nicht	zu	vertrauen,	der	völlig	Nichtwissende	kann	vernünftigerweise	nicht	
einmal	vertrauen.»	(p.	263)	
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even	 predictive	 clinical	 decisions	 is	 evident.	 Patients	 and	 research	 participants	 as	

potential	trustors	are	clearly	vulnerable	to	physical	or	psychological	harm	throughout	

their	 exposure	 to	 the	 health	 care	 system.	 IBM	 Watson’s	 incorrect	 and	 dangerous	

treatment	 suggestions	 for	 cancer	 patients	 that	 would	 have	 created	 severe	 harm	 if	

implemented	are	a	common	example	(Ross,	2018),	highlighting	Luhmann’s	description	

of	trust	as	a	“risky	investment”	(Luhmann,	1979,	p.	24).	However,	while	the	presence	of	

risks	and	the	absence	of	complete	knowledge	may	constitute	necessary	conditions,	they	

certainly	do	not	render	trust	in	medical	AI	plausible	or	justified	by	themselves.	Rather,	

they	 create	 the	 conditions	under	which	 trust	 can	play	 a	meaningful	 and	 reasonable,	

albeit	risky,	role.	

In	 fact,	 following	 the	 2019	 publication	 of	 the	 guidelines	 for	 trustworthy	 artificial	

intelligence	 by	 the	 European	 Commission’s	 High	 Level	 Expert	 Group	 on	 Artificial	

Intelligence	("Ethics	guidelines	for	trustworthy	AI,"	2019),	there	has	been	much	renewed	

discussion	 whether	 artificial	 intelligence	 (AI)	 can	 be	 trustworthy	 at	 all.	 In	 a	 widely	

discussed	newspaper	comment,	the	philosopher	Thomas	Metzinger,	himself	a	member	

of	 the	 EU’s	 expert	 group,	 has	 posited	 that	 the	 very	 notion	 of	 trustworthy	 AI	 is	

“conceptual	nonsense”	(Metzinger,	2019).	Fitting	the	brief	format	of	his	intervention	and	

the	different	focus	of	his	article,	Metzinger	claims:	“Machines	are	not	trustworthy;	only	

humans	can	be	trustworthy	(or	untrustworthy)”	(ibid.).	Other	critics	of	trustworthy	AI	

have	since	chimed	in,	e.g.	arguing	with	a	nod	to	Nietzsche	that	we	can	only	trust	beings	

that	can	make	promises.	However,	since	(current)	AI	does	not	have	an	inner	emotional	

life	nor	feelings	such	as	remorse	or	pride,	it	cannot	make	promises,	and	can	thus	not	be	

worthy	of	our	(direct)	trust	(Lauer,	2019).	
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With	specific	regard	to	medical	AI,	two	recent	articles	have	spelled	out	this	criticism	

further	(DeCamp	&	Tilburt,	2019;	Hatherley,	2020).	Both	articles	are	important	insofar	

as	they	highlight	limitations	of	trust	in	medical	AI,	such	as	the	difficulty	of	apportioning	

responsibility	 and	 liability	 for	 potential	 mistakes.	 Both	 articles	 rely	 on	 models	 of	

interpersonal	trust	that	put	a	trustee’s	motives	front	and	rightly	point	out	that	that	a	

system’s	mere	reliability	or	accuracy	 is	 too	 little	 to	warrant	trust.	However,	 they	also	

presume	a	categorical	division	between	the	realm	of	(potentially	trustworthy)	humans	

and	 a	 realm	 of	 artificial	 things,	 that	 cannot	 be	 worthy	 of	 trust:	 „Although	 well	

intentioned,	applying	trust	to	AI	is	a	category	error,	mistakenly	assuming	that	AI	belongs	

to	a	category	of	things	that	can	be	trusted“	(DeCamp	&	Tilburt,	2019).	Supposedly,	the	

reason	for	this	lies	in	the	lack	of	motives	and	good	(or	bad)	will	on	side	of	the	AI	as	the	

trustee.	Key	to	this	argument	is	the	assumption	that	these	systems	do	not	have	motives	

or	 intentions.	 Referring	 to	 theories	 of	 trust	 by	 Russell	 Hardin	 and	 Annette	 Baier,	

Hatherley	puts	his	claim	as	follows:	“AI	systems	lack	the	right	kind	of	motivation	for	

trust	—	either	in	the	form	of	encapsulated	interest	or	a	sense	of	good	will	—	since	they	

lack	motivation	entirely”	(Hatherley,	2020).	Hence,	„[t]o	say	that	one	can	trust	an	AI	

system,	or	that	the	AI	is	trustworthy,	is	merely	to	say	that	one	can	rely	on	the	AI	system,	

or	that	the	system	is	reliable“	(ibid).	In	other	words,	the	critics	insist	that	proper	trust	

presupposes	some	kind	of	(benevolent)	motives,	which	only	human	agents	possess.		

We	take	it	that	there	are	at	least	three	problems	with	this	kind	of	argument.	First,	if	we	

subscribe	to	a	Wittgensteinian	approach	that	(in	most	cases)	the	meaning	of	a	word	is	

its	use	in	the	language,	trust	factually	describes	a	much	broader	phenomenon	than	mere	

interpersonal	relations.	From	trust	in	local	governments	to	trust	in	health	care	systems,	

trust	is	commonly	used	to	denote	an	attitude	towards	non-human	or	non-living	entities,	
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for	 instance	 towards	 bridges,	 cars	 or	 institutions	 (Gille,	 Smith,	 &	 Mays,	 2017;	

Grimmelikhuijsen,	 2010).	 Second,	by	 focusing	 exclusively	on	motive-based	models	 of	

interpersonal	trust,	the	critics	leave	out	many	other	models	that	would	be	better	suited	

to	 encompass	 trust	 in	 AI.	 For	 example,	 it	 is	 far	 from	 uncontroversial	 that	 trust	

necessarily	demands	good	will	on	part	of	the	trustee	(O’Neill,	2013).	In	the	same	vein,	

Ferrario	 et	 al.	 have	 recently	 suggested	 a	multi-layered	model	 of	 trust,	 distinguishing	

between	 incremental	 layers	of	 simple,	 reflective,	 and	paradigmatic	 trust,	 of	which	at	

least	the	first	two	are	applicable	to	AI	(Ferrario,	Loi,	&	Viganò,	2020).13	As	they	argue,	

one	 should	 therefore	 not	 model	 all	 forms	 of	 trust	 exclusively	 on	 “paradigmatic”,	

interpersonal	trust	relations	(ibid).	Third,	doing	away	with	the	notion	of	trust	in	AI	also	

seemingly	disregards	decades	of	 research	 from	Human-Computer-Interaction	 studies	

that	 have	 embraced	 the	 notion	 of	 trust,	 if	 only	 in	 a	 very	 specific	 and	 narrow	 sense	

(Hancock	et	al.,	2011;	Lee	&	See,	2004;	Sanders,	Oleson,	Billings,	Chen,	&	Hancock,	2011).	

It	 thus	 seems	worth	 revisiting	 the	debate	whether	 trust	 in	AI	 is	 indeed	conceptually	

flawed.		

3.4	The	intentions	of	machines	

Let	us	for	now	assume	that	the	motives	of	the	trustee	are	in	fact	crucial	for	a	trusting	

relation.	Then,	trust	could,	it	would	seem,	come	in	two	guises:	a	direct	and	an	indirect	

form	–	a	distinction	which	mirrors	debates	about	trust	in	robots,	distinguishing	between	

direct	and	indirect	trust	in	artefacts	(Coeckelbergh,	2012).	In	its	indirect,	weaker	sense,	

trust	in	AI	does	not	require	a	fully	independent	agency	of	the	program	itself	but	rather	

ties	 trust	 to	 the	 intentions	 of	 its	 developers	 or	 those	 involved	 in	 its	 quality	 control,	

 
13	The	authors	have	recently	also	used	their	framework	to	reply	to	the	paper	by	Hatherley	(Ferrario,	Loi,	
&	Viganò,	2021).		
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promoting	 “indirect	 trust	 in	 the	humans	 related	 to	 the	 technology”	 (ibid,	p.	 54).	For	

example,	we	may	trust	a	system	of	medical	AI	because	we	trust	the	people	who	develop	

and	regulate	it.	Even	in	this	very	limited	sense,	it	may	already	be	plausible	to	describe	a	

potential	attitude	towards	medical	AI	as	 “trusting”	 (Ferrario	et	al.,	2021).	However,	 it	

may	 indeed	 fall	 short	 of	 a	 proper	 concept	 of	 trust	 and	 could	 potentially	 be	 better	

described	as	“trust-as-reliance”	(Coeckelbergh,	2012).	A	stronger,	direct	conception	of	

trust	in	AI	in	turn	requires	defending	the	system	as	a	somewhat	independent	agent,	to	

which	we	can	ascribe	motives	and	intentions.		

Defending	the	notion	of	trust	in	AI	requires	to	look	at	the	kind	of	agency	one	can	find	

in	inanimate	objects.	We	build	our	argument	on	the	rather	strong	assumption	here	that	

one	can	reasonably	attribute	agency	to	AIs.	Since	it	would	be	beyond	our	scope	here	to	

cover	the	rich	literature	which	discusses	the	status	of	AI	as	artificial	agents,14	we	merely	

sketch	 one	 argument	 in	 its	 favour.	 Drawing	 on	 the	 work	 of	 Bruno	 Latour,	 Martin	

Hartmann	has	recently	suggested	such	an	approach	towards	AI	in	the	context	of	trust	

that	pays	particular	attention	to	the	meaning	constituted	by	an	object	itself	through	its	

relations	 in	 social	 contexts	 (Hartmann,	 2020,	 pp.	 230-232).	 Latour’s	 famous	 example	

from	The	Berlin	key	or	how	to	do	words	with	things	is	a	rather	simple	device,	namely	a	

door	key	(Latour,	2000).	This	key,	common	in	Berlin	tenant	houses	during	the	first	half	

of	the	20th	century,	is	constructed	in	a	way	that	it	compels	its	user	to	re-lock	the	door	of	

a	building	after	entering:	After	unlocking	a	door,	the	key	cannot	be	simply	removed	like	

a	usual	key	but	remains	stuck	in	its	position,	unless	it	is	pushed	through	the	keyhole	to	

 
14	A	popular	account	is,	for	example,	provided	by	Russell	and	Norvig	(2021,	pp.	34-59).	See	also	Haselager	
(2005)	and,	for	a	discussion	of	agency	in	the	specific	context	of	medical	AI,	Braun,	Hummel,	Beck,	and	
Dabrock	(2020).	
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the	other	 side	of	 the	door.	Only	after	 locking	 the	door	 from	the	other	 side	can	 it	be	

removed.	By	its	very	design,	the	key	thus	contains	a	complex	and	specific	action	program	

that	is	born	out	of	a	set	of	specific	motives,	e.g.	the	proprietor’s	interest	in	a	locked	door.	

However,	 in	 Latour’s	 view	 such	 objects	 are	 not	 mere	 intermediaries	 that	 simply	

transport	 or	 reflect	 the	motives	 of	 the	 homeowner.	 Instead,	 by	 playing	 its	 part	 in	 a	

complex	network	of	actors	that	would	not	be	feasible	without	the	material	manifestation	

of	the	key,	it	contributes	to	the	disciplinary	relation	itself:	“Meaning	does	not	antecede	

technological	devices.	[…]	From	being	a	simple	tool,	the	steel	key	assumes	all	the	dignity	

of	a	mediator,	a	social	actor,	an	agent,	an	active	being”	(Latour,	2000,	p.	19).	

If	we	follow	this	account	and	accept	that	even	a	simple	key	can	be	considered	an	agent	

in	complex	social	relations,	placing	trust	in	AI	seems	no	longer	conceptually	confused	

at	all.15	As	Latour	puts	it:	“To	speak	of	“humans”	and	“non-humans”	allows	only	a	rough	

approximation	that	still	borrows	from	modern	philosophy	the	stupefying	idea	that	there	

exist	humans	and	non-humans,	whereas	there	are	only	trajectories	and	dispatches,	paths	

and	trails”	(Latour,	2000).	Under	this	premise,	the	concern	that	we	cannot	trust	medical	

AI	simply	due	to	it	being	non-human	seems	no	longer	convincing.	However,	this	is	still	

begging	the	arguably	more	important	question	if	and	under	which	conditions	we	should	

place	trust	in	medical	AI.	In	consequence,	a	substantial	account	of	the	determinants	of	

trust	in	medical	AI	is	urgently	needed.		

 	

 
15	Arguably,	one	could	call	such	a	form	of	trust	“methodological	trust”	to	distinguish	it	conceptually	from	
e.g.	interpersonal	trust.	Such	a	notion	would	highlight	the	primacy	of	methodology	in	the	context	of	actor-
network-theory,	clarifying	the	notion	of	non-human	agency	involved	here.	(Sayes,	2014).	
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3.5	Dimensions	of	trust		

We	suggest	that	different	aspects	of	the	act	of	trusting	itself	can	be	distinguished,	based	

on	 the	 features	 that	 the	 trustor	 utilizes	 to	 arrive	 at	 a	 trust	 decision.	 Specifically,	we	

propose	 that	 the	 decision	 to	 trust	 an	 AI-based	 program	 depends	 on	 features	 of	 the	

trustor	 (e.g.	 overall	 willingness	 to	 trust),	 and	 the	 context	 (e.g.	 level	 of	 risk)	 in	

combination	with	the	perceived	reliability,	competence,	and	intentions	of	the	program.	

Given	the	broad	range	of	potential	applications	of	medical	AI,	these	distinct	aspects	are	

likely	to	be	weighed	differently	across	different	usages.	Furthermore,	such	a	model	needs	

to	be	supported	by	empirical	research	into	the	factual	ramifications	of	trust	in	medical	

AI,	as	Gille	et	al	have	stressed	(Gille	et	al.,	2020).	

Fortunately,	 as	 a	 tentative	 approach,	 we	 can	 draw	 on	 the	 rich	 literature	 addressing	

human-machine	 interaction	 (HCI),	 which	 has	 explored	 the	 conditions	 of	 trust	 in	

machines	in	the	past	decades.	Building	on	our	earlier	empirical	work	in	human-robot	

interaction	 (Van	den	Brule,	 Bijlstra,	Dotsch,	Haselager,	&	Wigboldus,	 2016;	Van	 den	

Brule,	Bijlstra,	Dotsch,	Wigboldus,	&	Haselager,	2013;	Van	den	Brule,	Dotsch,	Bijlstra,	

Wigboldus,	&	Haselager,	2014),	the	work	of	Ososky	et	al.	(2013),	Hancock	et	al.	(2011),	

and	in	parallel	with	Dennett’s	three	levels	of	analysis	(Dennett,	1989),	we	thus	suggest	

that	a	trustor	can	take	one	of	three	stances	towards	the	trustee.	First,	one	can	take	a	

physical	 stance,	 considering	 a	 system’s	 physical	 properties	 and	 the	 reliability	 of	 its	

functioning	 (“Will	 it	break	down?”).	 In	many	cases,	 this	will	 require	 scrutinizing	 the	

hardware	on	which	 a	 specific	 system	depends.	 Second,	 one	 can	 also	 take	 the	design	

stance,	focusing	on	a	system’s	basic	functions	and	performance	(“What	does	it	do,	and	

what	are	the	odds	of	its	performance?”).	Here,	trust	concerns	its	competence	to	achieve	

a	task,	evaluated	by	the	likelihood	of	its	success.	Finally,	one	can	take	the	intentional	
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stance,	looking	at	the	motives	manifested	in	the	system	(“Why	is	it	acting	like	this?”).	

Trust	here	concerns	a	system’s	“intentions”,	in	the	weak	sense	discussed	above:	not	as	

something	an	AI	develops	on	its	own,	but	rather	as	something	manifest	in	a	system	due	

to	its	embeddedness	in	a	given	social	context	with	many	different	actors.16	

3.5.1	Trusting	reliability	

One	crucial	aspect	 in	determining	an	AI	system’s	trustworthiness	 lies	 in	assessing	 its	

basic	reliability	(i.e.,	whether	it	will	work).	A	system	can	be	considered	reliable	when	it	

can	perform	its	required	function	under	stated	conditions	for	an	indicated	amount	of	

time.	 Evaluating	 reliability	 is	 distinct	 from	 assessing	 performance	 during	 normal	

functioning	 (i.e.	 competence)	 in	 that	 it	 addresses	 the	 robustness	 of	 an	 agent,	 i.e.,	

whether	deviations	from	normal	functioning	occur	(usually	labelled	as	“breakdowns”	or	

“malfunctioning”).	 Importantly,	 reliability	 in	 this	 sense	 focuses	 on	 the	 avoidance	 of	

malfunctioning,	not	on	a	 lower	or	higher	degree	of	 competence.	For	 example,	 let	us	

consider	a	hypothetical	AI-aided	detection	system	for	adenoma,	which	assists	physicians	

in	their	diagnostic	process	during	colonoscopy.	Let	us	further	suppose	that	this	system	

provided	the	most	accurate	diagnoses	available	to	date,	and	would	thus	be	trusted	based	

on	 its	 competence.	However,	 if	 the	 system	was	 prone	 to	 breaking	 down	 during	 the	

procedure,	whether	due	 to	hardware	problems	or	 software	glitches,	 the	same	system	

could	be	distrusted	with	regard	to	its	reliability.		

 	

 
16	Also	from	Dennett’s	original		“instrumentalist”	use	of	the	intentional	stance,	one	may	ascribe	intentions	
to	AI	as	 they	have	been	designed	 in	a	particular	way	or	because	humans	attribute	 intentions	to	 them	
automatically,	especially	if	they	are	embodied	in	a	robot,	shaping	our	behaviour	towards	them	(Dennett,	
1978,	1991;	Terada,	Shamoto,	&	Ito,	2008).	
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3.5.2	Trusting	competence	

An	 important	 aspect	 of	 interpersonal	 evaluation,	 as	 studied	 by	 social	 psychology,	 is	

competence.	In	the	context	of	AI	systems,	this	translates	into	assessing	features	related	

to	 its	 performance	 as	 measured	 for	 instance	 by	 the	 validity	 and	 accuracy	 of	 its	

predictions.17	 To	 stay	 with	 a	medical	 example,	 when	 using	 a	 diagnostic	 tool	 for	 the	

automated	detection	of	melanoma	or	squamous	cell	carcinoma,	developers,	physicians	

and	 patients	 alike	 will	 closely	 scrutinize	 the	 rate	 of	 false-positive	 and	 false-negative	

decisions,	and	compare	the	system’s	results	to	the	performance	of	trained	physicians.	

Similarly,	a	system	suggesting	oncological	treatment	may	foremost	be	evaluated	based	

on	its	performance,	i.e.	whether	it	recommends	a	treatment	regime	in	line	with	current	

guidelines,	or	whether	patients	treated	according	to	its	recommendations	have	a	better	

outcome,	e.g.	measured	in	their	5-year	survival	rate.	In	contrast,	recommendations	that	

endanger	 a	 patient’s	 life	 would	 drastically	 undermine	 the	 system’s	 trustworthiness.	

From	this	perspective,	the	question	is	not	whether	the	system	occasionally	breaks	down	

in	practice,	but	only	whether,	under	ideal	circumstances,	it	will	perform	well	in	a	certain	

task.		

3.5.3	Trusting	intentions	

Trust	based	on	the	 intentions	present	 in,	or	attributed	to,	a	trustee	has	been	studied	

especially	 in	 social	 psychology,	 particularly	 in	 the	 field	 of	 person	 perception	 (Fiske,	

Cuddy,	&	Glick,	2007),	but	has	not	yet	received	enough	attention	in	the	context	of	trust	

in	AI.	The	prevailing	view	in	person	perception	is	that	people	are	judged	primarily	based	

 

17	 Of	 course,	 a	 particular	 challenge	 in	 the	 context	 of	 self-learning	 systems	 lies	 in	 the	 fact	 that	 the	
performance	of	the	system	may	change	over	time,	if	its	keeps	being	trained	with	new	data.	In	these	cases,	
evaluations	of	competence	would	need	to	be	updated	regularly.			
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on	 their	 intentions,	 which	 is	 conceived	 of	 as	 a	 “warmth”	 or	 valence	 (positivity	 and	

negativity)	judgment.	Already	in	1946,	Asch	showed	that	a	valence	judgment	can	alter	

the	impression	of	a	person	in	a	way	that	is	relevant	for	our	understanding	of	trust		(Asch,	

1946).	Asch	asked	students	to	form	an	impression	of	two	persons	based	on	a	list	of	traits	

(e.g.,	intelligent,	skilful,	practical,	sincere),	which	also	included	either	“warm”	or	“cold”	

depending	 on	 the	 experimental	 condition.	 Whereas	 participants	 described	 a	 warm	

intelligent	 person	 as	wise,	 a	 cold	 intelligent	 person	was	 seen	more	 as	 sly.	 “Warmth”	

captures	 moral-social	 traits	 related	 to	 perceived	 intent,	 including	 friendliness,	

helpfulness,	and	sincerity.		

In	the	context	of	medical	AI,	it	is	here,	we	believe,	that	most	of	the	current	debates	about	

the	ethical	challenges	posed	by	medical	AI	could	be	adequately	reflected.	Conflicts	of	

interests,	 e.g.	 through	 financial	 ties	 to	 a	 company	which	would	 benefit	 from	 certain	

recommendations,	a	lack	of	transparency	concerning	the	system’s	development	as	well	

as	 systematic	 biases	 against	 specific	 groups	 of	 patients	 would,	 for	 instance,	 all	

undermine	 trust	 in	 the	 (derived	or	 indirect)	 intentions	 of	 such	 a	 system.	A	 system’s	

explainability	or	 interpretability	do,	 in	turn,	also	seem	crucial	 to	 foster	 this	aspect	of	

trust,	insofar	as	they	attempt	to	answer	why	a	system	behaves	in	a	specific	way	(Ras,	van	

Gerven,	&	Haselager,	2018;	Shin,	2020).	

3.5.4	Combining	the	aspects	

For	 researchers	 striving	 to	 advance	 trustworthy	 medical	 AI,	 it	 seems	 crucial	 to	

distinguish	 between	 these	 three	 aspects	 of	 trust	 (i.e.,	 competence,	 intention,	 and	

reliability).	Of	course,	in	any	situation,	more	than	one	aspect	of	trust	may	influence	the	

interaction;	a	system	could	be	trusted	well	on	its	intentions,	poorly	on	its	reliability,	and	

average	on	its	competence	in	a	certain	situation.	Although	there	are	different	ways	to	
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visualize	 the	 possible	 combinations	 of	 the	 three	 aspects	 of	 trust,	 the	 most	 neutral	

approach	 is	 to	 consider	 them	 as	 dimensions	 of	 a	 three-dimensional	 space	 that	

encompasses	all	their	logically	possible	combinations	(see	fig.	3.1).	Thus,	trust	is	not	a	

single,	uniform	phenomenon,	but	can	vary	within	that	three-dimensional	space,	where	

there	may,	for	instance,	be	no	trust	at	all	in	competence	of	the	system,	complete	trust	

in	 its	 good	 intentions,	 and	 only	 little	 trust	 in	 its	 reliability.	 Bringing	 together	 these	

different	perspectives,	a	trustor	may	then	decide	whether	to	engage	with	a	system	in	a	

specific	situation.	

	

Fig	 3.1:	 Three-dimensional	 space	 representing	 different	 aspects	 of	 trust:	 reliability,	

competence,	and	intentions	

Whether	all	 logical	possibilities	are	psychologically	meaningful	is	a	topic	of	empirical	

investigation.	 Certain	 combinations	 may	 simply	 not	 be	 psychologically	 plausible	

whereas	other	combinations	might	be	quite	common.	It	is	possible	that	dependencies	

between	 the	 aspects	 of	 trust	 are	 so	 strong	 that	 they	 can	 be	 viewed	 as	 having	 a	
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hierarchical	relationship	in	which	the	different	types	build	upon	each	other,	similar	to	

Maslow’s	 famous	 hierarchy	 of	 needs	 (Maslow,	 1943).	 For	 instance,	 the	 reason	 that	

intentions	 play	 such	 a	 large	 role	 in	 trust	 research	 in	 person	 perception	may	well	 be	

because	 in	 general	 a	 healthy	 person	 is	 assumed	 to	 meet	 some	 basic	 standards	 of	

reliability	and	competence.	It	is	conceivable	that	also	in	the	context	of	medical	AI	certain	

“precedence”	relations	exist	between	the	various	aspects.	That	is,	it	might	be	the	case	

that	trust	in	intentions	is	second	to	trust	in	statistically	measurable	degrees	of	reliability	

and	competence	in	the	context	of	medical	AI,	simply	because	we	would	otherwise	not	

choose	 to	 interact	 with	 the	 system	 and	 may	 also	 not	 be	 allowed	 to	 do	 so,	 due	 to	

regulatory	restraints.		

In	 addition	 to	 features	 of	 the	 trustee,	 various	 trustor	 characteristics	 may	 play	 an	

important	role	in	the	eventual	degree	of	human	trust	in	a	specific	system:	the	propensity	

to	 trust	may	 be	 quite	 influential	 in	 the	 intentional	 context,	 but	 of	 less	 relevance	 in	

assessing	a	systems	reliability	or	performance.	Likewise,	background	knowledge	(e.g.	a	

user’s	knowledge	about	and	experience	with	medical	procedures)	may	be	most	relevant	

when	 assessing	 competence,	 rather	 than	 intentions	 of	 a	 system.	 Such	 variations	 can	

influence	 a	 trustor’s	 behaviour	 quite	 significantly,	 and	 it	 is	 therefore	 important	 that	

studies	carefully	consider	the	background	of	the	trustors	in	empirical	investigations	of	

trust.	

3.6	Towards	trustworthy	medical	AI	

In	this	article,	we	have	defended	the	notion	of	trust	in	medical	AI	against	recent	charges	

that	have	criticised	trust	in	non-human	intelligences	as	conceptually	confused.	We	did	

so	by	highlighting	the	kind	of	intentions	that	are	manifest	in	inanimate	objects.	Having	

established	the	conceptual	plausibility	of	trust	in	medical	AI,	we	then	suggested	a	novel	
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approach	 for	understanding	 this	kind	of	 trust,	distinguishing	between	 the	aspects	of	

reliability,	competence	and	intentions.	In	our	view,	such	trust	may	not	only	appear	as	a	

possible	attitude	towards	medical	AI,	but	potentially	even	as	a	necessary	condition	for	

its	successful	implementation	and	acceptance	at	the	bedside.		

Importantly,	in	this	sense,	fostering	justified	trust	does	not	diminish	the	importance	of	

scrutiny	 and	 appropriate	 regulation	 of	 medical	 AI.	 On	 the	 contrary,	 to	 introduce	 a	

medical	AI	system	for	clinical	use,	it	will	be	important	to	define	acceptable	thresholds	

of	trustworthiness	with	regard	to	the	three	dimensions	we	have	sketched.	However,	we	

believe	 that	our	model	 stresses	 the	necessity	 to	 look	beyond	the	mere	reliability	and	

performance	of	a	system	and	take	into	account	its	wider	ramifications,	including	ethical	

considerations	 that	 need	 be	 recognized	 under	 the	 aspect	 of	 intentions,	 relevant	 for	

instance	during	its	conception,	development	and	implementation	(Char,	Abràmoff,	&	

Feudtner,	2020).	Close	attention	to	these	challenges	of	medical	AI	systems	seems	thus	

as	vital	as	ever,	requiring	public	debates	about	an	appropriate	pipeline	for	their	ethical	

evaluation	(Wiens	et	al.,	2019).	In	other	words,	it	remains	important	to	not	trust	blindly,	

but	only	place	trust	in	agents,	both	human	and	non-human,	that	are	worthy	of	it,	and	

reconsider	 this	 judgement	 regularly	 (O'Neill,	 2002b).	 Only	 then	may	 we	 enable	 the	

different	agents	in	healthcare	systems	to	evaluate	and	weigh	the	risks	and	benefits	that	

these	systems	entail,	to	make	a	justified	judgement	whether	to	trust	ML	integrated	into	

clinical	care.		

In	this	sense,	calls	for	trust	in	medical	AI	should	not	be	mistaken	for	“ethics	washing”	

Metzinger,	 2019)	 or	 for	 a	 naïve	 embrace	 of	 authority,	 but	 rather	 as	 a	well-grounded	

attitude	 towards	 systems	 that	 have	 been	 appropriately	 probed	 concerning	 their	

reliability,	 competence	 and	 intentions.	 The	 form	 of	 trust	 recommended	 here	 is	 not	
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opposed	 to	 searching	 for	 knowledge,	 but	 rather	 underlines	 its	 necessity	 while	 still	

acknowledging	our	epistemic	limitations.	In	fact,	as	Steven	Shapin	has	argued,	such	trust	

constitutes	a	fundamental	necessity	of	science	itself,	as	a	collective	enterprise	where	the	

overwhelming	majority	of	propositions	is	accepted	by	trusting	others,	or	as	Shapin	puts	

its:		

Science	is	a	trusting	institution.	Trust	is	not	an	epistemic	problem	for	science;	it	

is	 -	 if	 one	wants	 to	 engage	 in	 such	 evaluations	 -	 an	 evident	 epistemic	 virtue.	

(Shapin,	1995)	
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Abstract	

Machine	 Learning	 (ML)	 is	 on	 the	 rise	 in	 medicine,	 promising	 improved	 diagnostic,	

therapeutic	 and	 prognostic	 clinical	 tools.	While	 these	 technological	 innovations	 are	

bound	to	transform	health	care,	they	also	bring	new	ethical	concerns	to	the	forefront.	

One	particularly	elusive	challenge	regards	discriminatory	algorithmic	judgements	based	

on	 biases	 inherent	 in	 the	 training	 data.	 A	 common	 line	 of	 reasoning	 distinguishes	

between	 justified	differential	 treatments	 that	mirror	 true	disparities	between	socially	

salient	 groups,	 and	 unjustified	 biases	 which	 do	 not,	 leading	 to	 misdiagnosis	 and	

erroneous	 treatment.	 In	 the	 curation	 of	 training	 data	 this	 strategy	 runs	 into	 severe	

problems	though,	since	distinguishing	between	the	two	can	be	next	to	impossible.	We	

thus	plead	for	a	pragmatist	dealing	with	algorithmic	bias	in	healthcare	environments.	

By	recurring	to	a	recent	reformulation	of	William	James’s	pragmatist	understanding	of	

truth,	we	recommend	that,	instead	of	aiming	at	a	supposedly	objective	truth,	outcome-

based	 therapeutic	 usefulness	 should	 serve	 as	 the	 guiding	 principle	 for	 assessing	ML	

applications	in	medicine.	

	

Keywords:	 Artificial	 Intelligence,	 Machine	 Learning,	 Pragmatism,	 Philosophy	 of	

Science,	Algorithmic	Bias,	Fairness	
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4.1	Introduction	

	“Ethics	and	epistemology	are	always	very	closely	related,	and	if	we	want	to	understand	

our	ethics,	we	must	look	at	our	epistemology”,	the	British	philosopher	and	novelist	Irish	

Murdoch	noted	 in	her	 early	 essay	Metaphysics	 and	Ethics	 (Murdoch,	 1957,	 p.	 113).	Her	

statement	 rings	 eminently	 true	 with	 regard	 to	 ethical	 challenges	 posed	 by	 the	

integration	 of	 Artificial	 Intelligence	 (AI)	 into	 health	 care.	 Medical	 decisions	 are	

increasingly	 aided	 by	 recommender	 systems	 based	 on	 machine	 learning	 (ML)	 that	

support	health	care	providers,	e.g.	in	choosing	an	appropriate	diagnosis	or	treatment	for	

their	patients.	Particularly	promising	are	programs	using	Deep	Learning	(DL)	based	on	

Artificial	 Neural	 Networks	 (ANN)	 (Esteva	 et	 al.,	 2019;	 Topol,	 2019b).	 While	 much	

research	has	been	devoted	to	ML-based	diagnostic	classifiers,	ranging	from	oncology	to	

psychiatry,	recent	advances	also	promise	more	robust	predictive	measures	of	immediate	

clinical	 utility.	 For	 example,	 it	 has	 been	 shown	 that	ML-based	 systems	 can	 identify	

patients	 suffering	 from	 chronic	 lymphocytic	 leukaemia	 (CLL)	 for	 whom	 additional	

immunosuppression	would	 constitute	 a	major	 risk	 for	 infection	 (Agius	 et	 al.,	 2020).	

Another	very	recent	application	of	ML	promises	early	predictions	of	circulatory	failure	

for	 patients	 in	 intensive	 care	 settings	 (Hyland	 et	 al.,	 2020)	 –	without	 doubt	 of	 high	

interest	 during	 the	 Covid-19	 pandemic	 –,	 and	 the	 list	 of	 such	 applications	 is	 ever	

increasing.	 For	 these	 reasons,	 many	 expect	 DL	 to	 revolutionize	 medicine	 and	 to	

constitute	a	major	paradigm-shift	in	the	practice	of	medicine	towards	an	era	of	“Deep	

Medicine”	(Topol,	2019a).	

By	enhancing	treatment	and	freeing	time	for	patient-physician	interactions,	these	new	

developments	 have	 great	 potential	 to	 improve	 clinical	 care.	 Still,	 they	 also	 pose	

numerous	 ethical	 challenges	 that	 are	 narrowly	 tied	 to	 epistemological	 questions	
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concerning	 these	programs.	Of	key	concern	are	 the	 replication	and	reinforcement	of	

existing	discriminatory	practices	by	 training	ML	programs	on	biased	data.	As	 is	well	

documented,	 bias	 in	 medicine	 is	 pervasive,	 whether	 it	 is	 based	 on	 unconscious	

prejudices	or	rooted	in	systematically	skewed	data	collection,	e.g.	through	clinical	trials	

carried	out	predominantly	with	male	participants.	In	some	instances,	such	biases	can	be	

easily	detected	and	countered	by	appropriate	data	curation,	for	instance	by	assuring	an	

appropriate	balancing	of	male	and	female	training	cases.	In	other	instances,	such	biases	

remain	hidden	and	may	prove	impossible	to	trace,	particularly	if	the	target	variable	of	

interest,	such	as	a	diagnostic	category,	is	based	on	medical	convention.		

Following	 the	 lead	 of	 others,	 we	 therefore	 turn	 our	 attention	 to	 questions	 of	

epistemology	 (Grote	&	 Berens,	 2020),	 and	 propose	 a	 different	 approach	which	 takes	

inspiration	 from	philosophy	 of	 science.	 Following	 a	 recent	 reformulation	 of	William	

James’	 pragmatist	 theory	 of	 truth	 (Chang,	 2017),	 we	 argue	 that	 for	 some	 medical	

contexts,	 the	 debate	 about	 bias	 can	 be	 improved	 by	 shifting	 the	 focus	 of	 attention	

beyond	the	mere	correspondence	of	input	and	target	variables.	Instead	of	clinging	to	a	

supposedly	objective	truth	of	the	training	data,	the	outcome-based	clinical	utility	of	any	

medical	ML	program	should	be	put	to	the	forefront.	The	paper	proceeds	in	three	steps:	

first,	we	introduce	the	notion	of	algorithmic	bias	and	provide	some	salient	examples	of	

bias	in	medicine.	We	then	provide	a	critique	of	an	understanding	of	ground	truth	based	

on	the	correspondence	theory	of	truth	and	suggest	an	alternative	pragmatist	reading.	

Lastly,	we	show	how	such	an	alternative	view	could	be	applied	to	reshape	the	debate	

about	biases	 of	medical	ML.	Modifying	Box’s	well-known	maxim	 that	 all	models	 are	

wrong,	 but	 some	 are	 useful	 (Box,	 1976:	 792),	 we	 propose	 what	 one	may	 call	 James’	
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maxim:	that	some	models	are	true	precisely	because	they	are	useful	(James,	1907	[1922]:	

204).	

4.2	Bias	in	medical	machine	learning	

Bias	has	been	at	the	forefront	of	ethical	debates	both	in	ML	and	in	medicine	for	decades.	

The	 word	 originates	 from	 the	 Old	 Provençal	 word	 biais,	 where	 it	 described	 the	

behaviour	of	balls	with	a	greater	weight	on	one-side	(Oxford	English	Dictionary	Online,	

2020).	In	consequence,	these	balls	tended	to	roll	systematically	in	an	oblique	line	into	

one	particular	direction	and	thus	shifted	the	odds	of	a	game.	In	the	modern	metaphoric	

sense,	 bias	 similarly	 describes	 such	 one-sided	 tendencies,	 usually	 with	 regard	 to	

decisions	 that	 systematically	 and	 erroneously	 favour	 or	 disadvantage	 particular	

decisions	over	others.	In	the	context	of	ML,	such	biases	take	many	different	forms	and	

can	stem	from	various	causes	but	are	commonly	summarized	by	the	term	algorithmic	

bias.	Danks	and	London	have	suggested	a	useful	taxonomy	distinguishing	between	five	

different	kinds	of	algorithmic	bias,	based	on	where	in	the	design	or	use	of	a	program	the	

bias	occurs	(Danks	&	London,	2017).	 In	the	context	of	healthcare,	Thomas	Ploug	and	

Søren	Holm	have	recently	distinguished	between	at	least	three	different	ways	in	which	

bias	 could	 lead	 to	 discrimination	 in	 ML-based	 diagnostics	 and	 treatment	 planning	

(Ploug	&	Holm,	2020).	While	our	discussion	here	follows	examples	of	algorithmic	biases	

linked	 to	 training	data,	we	believe	 that	an	outcome-oriented	approach	could	equally	

address	 other	 forms	 of	 biases	 such	 as	 algorithmic	 processing	 bias,	 e.g.	 introduced	

through	the	choice	of	regularization	or	smoothing	parameters	(Danks	&	London,	2017:	

4693).		

In	medicine,	practical	examples	of	biases	are	frequently	based	on	gender	or	race.	They	

shape	a	plethora	of	vital	diagnostic	and	therapeutic	decisions,	leading	for	example	to	the	
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classic	 case	 of	 missed	 myocardial	 infarctions	 in	 women	 which	 do	 not	 show	 the	

supposedly	 typical	 symptoms	of	 a	 heart	 attack	 prevalent	 in	men	 (Hobson	&	Bakker,	

2019).	 Another	 well-researched	 case	 concerns	 psychiatric	 decision	 making	 in	 black	

populations:	 black	 US-Americans	 are	 much	 more	 likely	 to	 be	 diagnosed	 with	

schizophrenia	 when	 presenting	 with	 affective	 symptoms	 than	 their	 Caucasian	 peers	

(Strakowski	et	al.,	2003).	White	patients	presenting	with	similar	symptoms	are	in	turn	

more	 likely	 to	be	diagnosed	 (arguably	 correctly)	with	mood	disorders	 such	 as	major	

depression.	Partially,	 this	persistent	phenomenon	of	misdiagnosis	 is	 thought	 to	arise	

from	 socially	 entrenched	 biases	 passed	 on	 by	 clinicians	 (Gara,	 Minsky,	 Silverstein,	

Miskimen,	 &	 Strakowski,	 2019).	 Other	 examples	 include	 widespread	 misperceptions	

about	 pain	 management	 in	 black	 patients	 based	 on	 erroneous	 assumptions	 about	

physiological	differences	between	black	and	white	patients	(Hoffman,	Trawalter,	Axt,	&	

Oliver,	2016).	

The	rise	of	ML	in	medicine	runs	risk	to	exacerbate	such	biases,	since	structural	racism	

is	known	to	shape	the	collection	and	integration	of	data	as	well	as	the	delivery	of	targeted	

therapeutic	interventions	(Genevieve,	Martani,	Shaw,	Elger,	&	Wangmo,	2020).	If,	 for	

example,	one	were	to	use	the	historical	health	records	of	black	schizophrenic	patients	

in	the	US	to	train	a	diagnostic	ML	program,	it	would	arguably	use	race	as	a	predictor	for	

its	 calculations	 and	 continue	 the	 overdiagnosis	 of	 schizophrenia	 in	 its	

recommendations.	 However,	 one	 would	 not	 only	 risk	 purporting	 false	 clinical	

judgements	from	the	past	in	the	diagnostic	ML	program.	More	problematically,	if	such	

procedures	would	be	dignified	by	 the	common	belief	 in	 the	objectivity	of	algorithms	

(Galison,	2019),	discriminatory	practices	will	become	even	more	entrenched	in	medical	

practice	and	more	difficult	to	address.	Existing	biases	could	become	deeply	hidden	in	
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the	 hyperparameters	 of	 an	 ANN,	 beyond	 the	 grasp	 of	 human	 understanding	 and	

intervention.	Such	algorithmic	bias	would	skew	the	recommendations	systematically	for	

one	particular	group	resulting	in	unfair	treatment.		

What	about	instances	where	we	actually	do	want	to	discern	between	different	socially	

salient	groups	 though?	A	different	example,	where	ethnicity	also	plays	a	crucial	 role,	

may	 serve	 as	 a	 useful	 example	 here.	 Systemic	 lupus	 erythematosus	 (SLE),	 a	 severe	

autoimmune	 rheumatological	 disease	which	 typically	 affects	 the	 skin,	 but	 also	many	

other	tissues	and	internal	organs,	is	known	to	affect	more	women	than	men	and	have	a	

significantly	higher	prevalence	in	people	of	African,	Asian	or	Hispanic	descent	(Lewis	&	

Jawad,	2017).	Similar	to	schizophrenia,	the	exact	underlying	aetiology	is,	as	of	now,	still	

unclear,	 rendering	diagnosis	 rather	difficult.	With	gender	and	ethnicity	being	crucial	

predictors	for	the	occurrence	of	SLE,	it	would	seem	justified	to	include	information	on	

the	ethnicity	or	gender	of	patients	in	the	training	data	for	a	diagnostic	program	for	this	

disease.	In	contrast	to	schizophrenia,	such	inclusion	could	be	seen	as	warranted	since	it	

accurately	mirrors	true	disparities	between	socially	salient	groups.18	

Unfortunately,	 in	most	medical	examples	 the	relation	between	the	predictor	and	the	

target	variable,	which	shapes	the	so-called	ground	truth	for	an	ML	algorithm,	is	difficult	

to	determine	since	 the	 features	of	 interest	are	based	on	medical	convention.	 In	such	

instances,	the	feature	may	prove	to	be	somewhat	of	a	shifting	target,	e.g.	due	to	changing	

diagnostic	 classifications	 over	 time.	 Diagnostic	 categories	 in	 psychiatry,	 which	 have	

 
18	Of	 course,	 this	 is	not	 to	make	 any	metaphysical	 claims	or	 advocate	 a	naturalistic	understanding	of	
diseases.	We	merely	want	to	highlight	that	categories	such	as	gender	or	ethnicity,	intricately	related	to	
social	 and	 environmental	 factors,	 can	 often	 serve	 as	 useful	 predictors	 for	 diagnostic	 or	 therapeutic	
decisions.	
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shifted	drastically	over	the	past	decades,	as	seen	easily	by	the	consecutive	revisions	of	

the	Diagnostic	and	Statistical	Manual	of	Mental	Disorders	(DSM)	over	the	past	decades,	

may	serve	as	a	particularly	salient	example.	Here,	distinguishing	between	wrong	biases	

that	lead	to	misdiagnosis	and	erroneous	treatment	and	justified	differential	treatment	

that	 mirrors	 true	 differences	 seems	 highly	 challenging	 –	 particularly	 for	 the	 many	

conditions	 and	 treatment	 options	 where	 underlying	 causal	 relations	 remain	 unclear	

(London,	2019).	Yet,	simply	leaving	out	potentially	discriminatory	labels	such	as	gender	

or	ethnicity	as	input	variables	can	apparently	not	solve	the	problem	either.	After	all,	to	

our	best	knowledge,	ethnicity	and	gender	seem	to	play	a	role	for	diagnostic,	therapeutic	

and	prognostic	purposes	in	many	diseases,	as	the	example	of	SLE	highlights.	So,	what	

may	we	do	about	these	unclear	instances	of	bias,	in	lieu	of	a	clear	standard	against	which	

to	measure	it?	

4.3	Bias	and	the	pragmatist	theory	of	truth	

A	common	strategy	to	address	the	problem	of	bias	is	to	further	the	transparency	of	ML	

models	(Mittelstadt,	Russell,	&	Wachter,	2019;	Vayena,	Blasimme,	&	Cohen,	2018).	The	

underlying	assumption	is	that	greater	transparency	will	render	algorithmic	bias	easier	

to	detect	and	help	understand	a	program’s	erroneous	decisions,	so	that	one	can	correct	

the	algorithm’s	mistakes	and	avoid	bias	by	curating	the	input	variables	accordingly.	For	

many	 instances	 this	 solution	 can	 be	 sufficient,	 e.g.	 to	 identify	 so-called	Clever	Hans	

predictors	that	base	a	ML	program’s	classification	strategy	on	irrelevant	correlations.	A	

good	example	for	such	a	misleading	predictor	is	a	program	basing	the	classification	of	

an	image	as	“horse”	on	a	source	tag	in	the	training	images	for	horses	(Lapuschkin	et	al.,	

2019).	Based	on	such	ill-curated	input	data,	the	program	will	erroneously	assume	that	

all	future	testing	images	displaying	this	source	tag	depict	horses,	largely	independent	
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from	the	image’s	actual	content.	Increasing	a	program’s	transparency,	one	could	identify	

the	 source	 tag	 as	 a	decisive,	 yet	meaningless	 factor	 for	 the	decision-making	process,	

enabling	an	ex-post	 correction.	Transferred	 to	 the	clinical	 example,	 if	 an	explainable	

program	allows	 seeing	 that	a	diagnosis	of	 schizophrenia	 is	 at	 least	partly	based	on	a	

person’s	 skin	 colour,	 anyone	 commanding	 trained	 judgement	 could	 notice	 this	 as	

erroneous	and	account	for	it.	

In	medicine,	checking	a	program’s	decisions	 is	not	 just	a	technical	challenge	though.	

Returning	 to	 the	 two	clinical	examples,	both	schizophrenia	as	well	as	SLE	constitute	

heuristic	 constructs	 based	 on	 a	 number	 of	 diagnostic	 criteria,	 while	 the	 underlying	

aetiology	 remains	 subject	 to	 scientific	 debate.	 Put	 differently,	 there	 is	 no	 valid	 gold	

standard	 for	 establishing	 a	 ground	 truth	 –	 a	wide-spread	 problem	 in	medicine,	 that	

concerns	all	medical	fields,	even	those	with	supposedly	clear-cut	pathological	correlates	

such	as	oncology	(Adamson	&	Welch,	2019).	After	all,	most	biological	differences	only	

become	meaningful	in	medicine	if	they	are	correlated	with	symptoms	and	complaints	–	

a	process	that	is	by	definition	highly	conventional	and	ultimately	also	pragmatic.	How	

may	 one	 distinguish	 in	 these	 instances	 between	 irrelevant	 correlations,	 shaped	 by	

human	 prejudice	 and	 convention,	 and	 causally	 relevant,	 yet	 currently	 unknown,	

predictors,	e.g.	based	on	genetic	factors	that	are	more	prevalent	in	certain	groups?	One	

seemingly	 easy	 remedy	 to	 avoid	 discriminatory	 practices	 would	 be	 to	 forego	 the	

potentially	problematic	category	altogether.	For	example,	one	could	simply	 leave	out	

ethnicity	or	gender	as	an	input	to	achieve	a	non-discriminatory	program.		

Prima	 facie,	 this	 would	 safeguard	 the	 World	 Medical	 Association’s	 Declaration	 of	

Geneva,	 prohibiting	 considerations	 of	 ethnic	 origin,	 gender	 or	 race	 to	 interfere	with	

medical	 duties	 (Parsa-Parsi,	 2017).	 However,	 this	 approach	 runs	 into	 two	 major	
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problems.	 First,	 it	 has	 been	 shown	 to	 be	 very	 challenging	 to	 implement,	 since	 the	

category	 which	 should	 not	 influence	 the	 training	 data	 may	 be	 inferred	 by	 other	

seemingly	 innocent	 input	 data,	 with	 ZIP-codes	 and	 socio-economic	 status	 being	

amongst	 the	most	obvious	 (Mehrabi,	Morstatter,	 Saxena,	 Lerman,	&	Galstyan,	 2019).	

Second,	for	specific	instances,	e.g.	unequal	distribution	of	genetic	disease	predisposing	

factors	in	humans	from	different	races,	some	form	of	positive	discrimination	may	seem	

warranted,	justifying	the	inclusion	of	ethnicity	in	the	training	data.	Again,	the	example	

of	 SLE	 can	 serve	 as	 a	 useful	 example	 here.	 As	 discussed	 above,	 SLE	 mainly	 affects	

populations	which	 constitute	minorities	 in	most	Western	 countries.	 If	 ethnicity	was	

categorically	excluded	as	a	potential	input	in	the	training	data,	it	would	be	more	difficult	

to	obtain	a	correct	diagnosis	for	this	vulnerable	population.	Rendering	the	diagnosis	of	

a	disease	such	as	SLE	less	accurate	in	minority	populations	by	disregarding	race	could	

easily	be	regarded	as	discriminatory.		

One	solution	to	this	conundrum	may	lie	in	taking	a	step	back	and	looking	at	the	relation	

between	 input	and	output	space	anew,	which	as	 the	 terminology	of	 the	 field	already	

indicates,	is	supposed	to	be	a	truth	relation.	The	way	such	truth	is	usually	constructed	

assumes	the	classic	understanding	of	truth,	namely	the	correspondence	theory	of	truth.19	

Commonly	ascribed	to	Aristotle,	this	theory	posits	that	a	proposition	“p”	is	true	if	and	

only	 if	 it	 corresponds	 to	 some	 fact.	 Put	 differently,	 according	 to	 this	 theory	 truth	

describes	a	relation	between	a	truth	bearer	such	as	a	proposition	or	a	judgement	and	a	

 
19	 Of	 course,	 this	 is	 not	 to	 make	 any	 claims	 concerning	 the	 factual	 epistemological	 beliefs	 of	 ML	
developers.	Many	may	 in	 fact	 embrace	 an	 instrumental	 understanding	 of	 truth,	whether	 explicitly	 or	
implicitly.	 However,	 the	 term	 ground	 truth	 itself	 and	 its	 historical	 origins	 in	 geography	 and	 aerial	
reconnaissance,	 referring	 to	 the	 physical	 ground,	 seem	 to	 suggest	 a	 relation	 of	 correspondence	 (Gil-
Fournier	&	Parikka,	2020).		



Chapter	4:	Algorithmic	Bias	in	Medical	Machine	Learning	

 83	

truth-maker,	such	as	an	observable	fact	in	the	empirical	world.	In	the	context	of	ML,	the	

ground	truth	relation	can	be	similarly	described	as	a	mapping	of	different	spaces	onto	

each	other.		

In	its	simplest	form,	such	mapping	occurs	between	an	observable	input	space	and	an	

intended	output	or	decision	space.	In	addition	to	these,	some	authors	have	proposed	

adding	a	so-called	construct	space	in-between	these	two,	capturing	unobservable,	yet	

meaningful	predictors,	 as	a	 third	mediating	 space	 to	 formally	address	 structural	bias	

(Friedler,	Scheidegger,	&	Venkatasubramanian,	2016).	Seemingly,	one	could	also	apply	

their	 framework	 to	 the	 medical	 cases	 at	 hand	 here:	 the	 input	 space	 would	 contain	

clinical	 observations,	 e.g.	 symptoms	 or	 clinical	 findings,	 whereas	 the	 decision	 space	

would	contain	the	recommended	treatment.	The	construct	space	could	be	found	in	the	

agreed	upon	diagnostic	 criteria	 that	 are	presumed	 to	be	of	 relevance	by	 the	medical	

community.	Unfortunately,	for	the	many	and	highly	relevant	cases	in	medicine	where	

such	 causal	 relations	 between	 the	 different	 spaces	 continue	 to	 be	 unknown,	 such	

mapping	remains	highly	spurious.	As	long	as	we	do	not	know,	for	example,	the	causal	

link	 between	 brain-based	 pathology	 causing	 psychotic	 episodes,	 the	 presumed	

diagnostic	 construct	 of	 schizophrenia	 and	 the	 therapeutic	 mechanism	 of	 specific	

antipsychotic	drugs,	any	such	mapping	will	remain	to	some	extent	arbitrary	and	open	

to	challenge.		

However,	there	are	also	other	ways	to	construe	truth,	that	look	at	practices	rather	than	

at	propositions	and	which	may	be	better	suited	to	the	medical	contexts	at	hand.	One	

suggestive	model	is	the	pragmatic	theory	of	truth,	the	best-known	version	of	which	was	

formulated	 by	William	 James	 in	 1907	 (James,	 1907	 [1922]).	 James,	 who	 tellingly	 had	

received	medical	training	himself,	famously	stressed	the	practical	value	of	statements.	
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Turning	against	both	rationalist	and	empiricist	conceptions,	James	argued	for	defining	

their	 truth	 in	terms	of	utility.	 In	his	 lectures	Pragmatism:	A	New	Name	for	Some	Old	

Ways	of	Thinking,	James	famously	espoused	this	“instrumental	view	of	truth”,	describing	

it	 as	 “any	 idea	 upon	 which	 we	 can	 ride,	 so	 to	 speak;	 any	 idea	 that	 will	 carry	 us	

prosperously	 from	 any	 one	 part	 of	 our	 experience	 to	 any	 other	 part,	 linking	 things	

satisfactorily,	working	securely,	simplifying,	saving	labour”	(James,	1907	[1922]:	58).	His	

challenge	 to	 the	 correspondence	 theory	 finally	 culminates	 in	 his	 frequently	 cited	

statement	that	“you	can	say	of	it	then	either	that	“it	is	useful	because	it	is	true”	or	that	

“it	is	true	because	it	is	useful”.	Both	these	phrases	mean	exactly	the	same	thing”	(James,	

1907	[1922]:	204).	

Ever	 since	 their	 publication,	 these	 claims	have	 subjected	 James	 to	myriads	of	 strong	

criticism,	due	to	his	supposedly	antirealist	stance	(Capps,	2019).	Notwithstanding	this	

critique,	we	take	it	that	a	pragmatic	approach	may	be	worth	reconsidering	for	construing	

truth	in	medical	ML	and,	in	particular,	to	address	some	of	the	ethical	challenges	posed	

by	 algorithmic	 bias.	 However,	 to	 do	 so,	 it	 may	 be	 more	 convenient	 to	 turn	 to	 a	

contemporary	reading	of	James	from	the	philosophy	of	science,	which	already	addresses	

the	criticism	of	James’	account.	The	philosopher	of	science	Hasok	Chang,	whose	work	

has	already	been	successfully	employed	to	address	other	challenges	 in	the	context	of	

nosology	(Kendler	&	Parnas,	2012),	prominently	advocates	a	Jamesian	pragmatist	model	

of	 epistemology	 in	 the	 sciences.	 Chang	 reframes	 James’	 model	 to	 provide	 an	

understanding	of	truth	based	on	operational	coherence,	rooted	in	action.	While	Chang	

explicitly	rejects	a	correspondence	theory	of	truth,	his	notion	of	coherence	also	“goes	

beyond	consistency	between	propositions;	rather,	it	consists	in	various	actions	coming	

together	in	an	effective	way	towards	the	achievement	of	one’s	aims”	(Chang,	2017:	109).	
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Applied	to	the	medical	context,	such	aims	can	entail	simpler	tasks	such	as	immobilizing	

a	broken	bone	with	a	plaster	cast	to	promote	its	healing	process,	or	highly	complex	aims	

requiring	many	different	actors.	The	recent	development	of	workable	tracing	apps	to	

contain	 the	 spread	 of	 Covid-19	 may	 serve	 as	 an	 example	 here.	 Within	 such	 given	

contexts,	true	statements	are	those	necessary	to	achieve	one’s	aims.	As	Chang	puts	it:	“A	

statement	is	true	in	a	given	circumstance	if	(belief	in)	it	is	needed	in	a	coherent	activity”	

(Chang,	 2017:	 113).	Based	 on	 the	 coherent	 system	 in	 question,	 different	 and	 possibly	

contradictory	statements	may	have	been	adopted	as	true	in	the	history	of	science	insofar	

as	they	produced	or	improved	certain	kinds	of	knowledge	for	particular	aims.		

Given	this	historical	contingency	of	science,	one	may	be	tempted	to	disregard	the	notion	

of	 truth	 in	 science	altogether.	While	 James’s	original	 approach	may	 seem	 to	 support	

such	 a	 relativist	 stance,	 rendering	 the	 world	 dependent	 upon	 the	 interests	 of	 its	

describer	(Putnam,	1994:	448),	Chang’s	model	of	operational	coherence	does	not	severe	

the	 crucial	 connection	between	knowledge	 and	 reality	 in	 a	 similar	 fashion,	 precisely	

because	it	demands	to	be	rooted	in	empirical	facts:	“operational	coherence	cannot	be	

achieved	in	an	arbitrary	fashion	by	decree,	wishful	thinking,	or	mere	mutual	agreement.	

On	the	contrary,	 in	order	 to	do	things	successfully	 in	the	world,	we	need	to	have	an	

understanding	and	mastery	of	our	 surroundings.	 It	 is	operational	coherence,	not	 the	

mirage	 of	 correspondence,	 through	 which	 the	 mind-independent	 world	 is	 actually	

brought	to	bear	on	our	knowledge”	(Chang,	2017:	112).		

Leaving	 more	 fundamental	 philosophical	 questions	 aside,	 this	 implies	 two	 crucial	

practical	benefits	 for	 its	 application	 to	medical	ML.	First,	 it	does	not	undermine	 the	

powerful	 notion	 of	 scientific	 truth	 in	 the	 public	 sphere	 –	 a	 notion	 that	 seems	 to	 be	

intricately	related	to	public	trust	in	science	(Shapin,	1995).	Second,	it	supports	retaining	
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the	vocabulary	of	(ground)	truth	as	a	technical	term	for	the	necessary	pairing	of	input	

and	output	variables	(Gil-Fournier	&	Parikka,	2020),	without	making	overly	ambitious	

claims	about	medical	truths	–	which	as	we	have	seen	are	frequently	subject	to	contingent	

conventions.	As	Chang	notes,	his	approach	of	“[c]hecking	for	pragmatic	necessity	may	

not	live	up	to	some	overblown	image	of	a	philosophical	test,	but	it	is	how	we	get	on	in	

science,	and	in	the	rest	of	life	too”	(Chang	2017:	115).	In	the	following,	we	will	show	what	

this	may	mean	practically	in	the	context	of	medical	ML.		

4.4	Bias	in	medical	ML:	a	pragmatist	approach	

We	argue	that	a	pragmatic	understanding	of	“ground	truth”	can	be	highly	informative	

for	 algorithmic	 bias	 in	 medical	 ML.	 Clearly,	 the	 overarching	 aim	 of	 the	 medical	

community	needs	to	concur	with	the	Ancient	Hippocratic	idea:	the	aim	of	medicine	is	

to	work	for	the	benefit	of	the	sick,	to	cure	them	or	at	least	make	them	better.	In	our	

opinion,	 these	 general	 ambitions	 provide	 a	 rather	 clear	 purpose	 for	 our	 collective	

epistemic	practices	–	even	though	the	exact	determination	of	its	content	will	be	subject	

to	 much	 debate	 for	 different	 applications	 in	 different	 diseases	 and	 diverse	 clinical	

contexts.	To	enable	an	open	debate	about	the	clinical	utility	of	particular	programs	and	

their	potential	risks,	it	is	worth	trying	to	consider	medical	ML	in	terms	of	operational	

coherence	 guided	 by	 specific	 medical	 aims.	 Outcome-based	 therapeutic	 usefulness	

should	serve	as	the	guiding	principle	for	their	design,	not	a	recourse	to	a	supposedly	

objective	truth	based	on	a	static	correspondence	theory.20		

 
20	With	regard	to	diagnostic	hypotheses,	Stanley	Donald	and	Rune	Nyrup	have	recently	made	a	similar	
point	drawing	on	Charles	Sanders	Peirce,	and	suggested	to	conceptualise	the	diagnostic	process	as	a	form	
of	strategic	reasoning	(2020).	
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Returning	to	the	two	clinical	examples	of	schizophrenia	and	SLE,	we	can	now	apply	this	

model	to	the	context	of	bias	in	medical	ML.	In	the	case	of	schizophrenia,	it	seems	clear	

that	the	diagnostic	practice	of	US	psychiatrists	of	readily	diagnosing	their	black	patients	

with	 schizophrenia	did	not	 further	 their	well-being	but	may	 in	 fact	have	 resulted	 in	

maltreatment	and	harmful	medication	and	should	hence	be	abolished.	In	comparison,	

the	 case	 of	 lupus	provides	 quite	 a	 different	 picture.	Here,	 a	 differentiation	based	on	

ethnicity	 could	 contribute	 to	 patients’	 well-being,	 if	 it	 increases	 diagnostic	 accuracy	

resulting	 in	 adequate	 treatment;	 it	would	 thus	 be	 (to	 some	degree)	warranted	 to	 be	

included	in	the	construction	of	ground	truth.		

There	 are	 at	 least	 three	 points	 of	major	 concern	 that	 could	 be	 levelled	 against	 this	

position.	 First,	 one	 could	 argue	 that	 a	 utility-based	 account	 of	 ground	 truth	 is	 not	

adequate	 for	 all	 medical	 applications.	 And	 indeed,	 for	 some	 instances,	 mere	 data	

curation	may	be	sufficient.	When	causal	links	between	clinical	observation,	diagnostic	

construct	and	available	treatment	are	clearly	established,	interpretable	or	explainable	

ML	models	 can	help	 to	 identify	misleading	or	unnecessary	 input	data.	As	 a	 classical	

example	one	could	 think	of	diabetes	mellitus	 type	 1	 (DM1),	where	 the	destruction	of	

pancreatic	beta-cells	provides	a	clear	aetiology	that	can	be	linked	to	clinical	observations	

such	 as	 recurrent	 hyperglycaemia,	 the	 diagnostic	 construct	 of	 DM1	 with	 certain	

predicted	 measurements	 under	 fasting,	 and	 the	 suggested	 treatment	 with	 insulin	

(Stegenga,	2018:	26).	However,	as	we	have	shown,	this	is	far	from	the	rule	in	medicine	–	

not	only	in	specialties	with	a	notoriously	challenging	nosology	such	as	psychiatry	but	

also	in	e.g.	internal	medicine	or	dermatology.	As	Alex	London	has	argued,	the	unknown	
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aetiology	of	many	medical	conditions	thus	demands	a	primate	of	accurate	diagnosis	and	

treatment	over	explainability	in	the	context	of	medical	ML	(London,	2019).	21		

A	 second	 and	 potentially	 more	 serious	 problem	 concerns	 the	 measurement	 and	

operationalisation	of	clinical	utility.22	After	all,	a	pragmatist	evaluation	of	medical	ML	

based	on	clinical	utility	will	need	to	be	based	on	clear	and	operationalizable	criteria	to	

avoid	an	infinite	circle	and	yield	a	useful	guide	for	developers	and	regulating	bodies.	At	

the	 same	 time,	 one	 should	 also	 aim	 to	 avoid	 an	 overly	 prescriptive	 and	 potentially	

paternalistic	definition	of	clinical	utility,	without	patient	involvement.	The	increasing	

use	 of	 short-	 and	 long-term	 Patient-Reported	Outcome	Measures	 (PROMs)	 aims	 to	

address	this	conundrum	(McClimans,	2010),	but	relies	on	inherently	subjective	criteria	

(Alexandrova,	2017:	135-138).	Of	course,	this	is	a	problem	that	not	only	applies	to	medical	

ML,	 but	 evidence-based	 medicine	 more	 generally,	 and	 defies	 a	 simple	 and	 general	

answer.	 In	 consequence,	 heading	 Jacob	 Stegenga’s	 advice	 that	 “(t)he	 instruments	

employed	 in	 clinical	 research	 should	 measure	 patient-relevant	 and	 disease-specific	

parameters”	(Stegenga,	2015:	62),	it	may	be	fruitful	to	return	to	the	concrete	examples	of	

SLE	and	schizophrenia.		

In	the	case	of	schizophrenia,	the	very	construct	of	the	disorder,	as	laid	out	in	ICD-10	and	

DSM5,	 largely	 relies	on	clinical	observations	by	 the	attending	psychiatrist,	which	are	

based	on	verbal	self-reports	from	the	patient.	Outcome	measures	of	schizophrenia	are	

thus	 always	 multi-faceted	 attempts	 to	 grasp	 this	 complex	 reality	 –	 including	

neurobiological	 measures,	 drop-out	 from	 antipsychotic	 treatment,	 hospitalisations,	

 
21	While	we	agree	with	London	(2019),	who	recommends	prioritizing	accuracy	over	explainability	in	the	
context	of	medical	ML,	we	believe	that	a	pragmatic	focus	on	clinical	utility	may	be	better	suited	to	stress	
the	value-ladenness	of	ML	systems	as	well	as	their	embeddedness	in	a	pragmatic	context.		
22	We	would	like	to	thank	two	anonymous	reviewers	for	their	help	in	making	this	point	more	explicit.	
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structured	symptom	scales	and	patient-reported	outcomes	such	as	personal	well-being	

–	and	have	changed	drastically	since	 the	disorder	was	 first	described	by	Kraepelin	 in	

1896	(Burns,	2007).	In	addition,	since	the	course	of	the	disorder	seems	to	be	influenced	

heavily	by	social	context	(Leff,	Sartorius,	Jablensky,	Korten,	&	Ernberg,	1992),	outcome	

measures	need	 to	be	adapted	 to	specific	contexts.	 In	comparison,	SLE	seems	 to	pose	

fewer	 problems,	 with	 standardized	 and	 congruent	 diseases	 activity	 scores,	 based	 on	

clinical	 observations	 such	 as	 seizures	 and	 objectifiable	 measures	 like	 proteinuria	

(American	College	of	Rheumatology,	2004).	Similarly,	standardized	PROMs	for	SLE	have	

successfully	been	adapted	for	different	cultural	contexts	(Bourré-Tessier	et	al.,	2013;	Kaya	

et	al.,	2014;	Navarra	et	al.,	2013),	so	the	utility	of	an	intervention	for	SLE	could	tentatively	

be	 evaluated	 based	 on	 a	 combination	 of	 these	 instruments.	 Still,	 as	 these	 examples	

highlight,	 choosing	 an	 appropriate	 outcome-measure	 will	 be	 context-	 and	 disease-

specific,	 and	 always	 open	 for	 debate	 –	 in	 the	 context	 of	 ML	 as	 much	 as	 for	 other	

medicinal	 products.	 It	 is	 thus	 crucial	 that	 studies	 are	 explicit	 about	 their	

operationalization	and	measurement	of	clinical	benefit,	to	allow	patients	and	physicians	

to	arrive	at	an	informed	choice	regarding	their	individual	use.			

A	third	challenge	relates	directly	to	ethics.	If	we	are	to	follow	clinical	utility	as	the	single	

most	important	criterion	for	the	evaluation	of	medical	applications	of	ML,	this	could	be	

misinterpreted	 as	 a	 call	 for	 a	 simplistic	 reading:	 that	maximizing	 the	benefit	 for	 the	

majority	of	patients	justifies	disregarding	the	needs	of	a	potentially	vulnerable	minority.	

Our	approach	is	different	insofar	as	we	deem	it	necessary	to	embrace	explicit	criteria	for	

algorithmic	fairness,	derived	from	moral	philosophy.	We	consider	John	Rawls’	difference	

principle	to	be	a	potential	contender,	which	prioritizes	the	well-being	of	those	who	are	

worst	off	(Rawls,	1999:	132-134).	
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Such	a	principle	may	be	enacted	by	constrained	optimization	algorithms	that	maximize	

clinical	 utility	 but	 also	 need	 to	 satisfy	 other	 set	 conditions,	 based	 on	 evaluations	

calculated	 separately	 for	 various	 subgroups	 (Corbett-Davies,	 Pierson,	 Feller,	 Goel,	 &	

Huq,	2017).	There	is	extensive	research	from	the	area	of	fair	ML	that	demonstrates	how	

Rawls’	 theory	 of	 justice	 can	 be	 practically	 incorporated	 (Lundgard,	 2020),	 e.g.	 as	 a	

constraint	for	classification	(Jabbari,	Joseph,	Kearns,	Morgenstern,	&	Roth,	2017;	Joseph,	

Kearns,	 Morgenstern,	 Neel,	 &	 Roth,	 2016)	 or	 as	 loss	 minimization	 (Hashimoto,	

Srivastava,	Namkoong,	&	Liang,	2018).	Of	course,	implementing	a	fairness	constraint	for	

ML	 algorithms	 requires	 intricate	 ethical	 judgements,	 e.g.	 concerning	 who	 counts	 as	

worse-off	than	others,	a	point	which	will	often	be	contentious.	In	addition,	there	may	

be	 good	 reasons	 to	 implement	 fairness	 constraints	 that	 go	 beyond	 Rawls,	 “artificial	

intelligence’s	 favorite	 philosopher”	 (Procaccia	 2019,	 cit.	 in	 Lundgard,	 2020:	 3).	 For	

instance,	 in	many	ML	 applications	 ensuring	 the	 benefit	 of	 the	 patient	will	 require	 a	

careful	 evaluation	 of	 different	 layers	 of	 vulnerabilities,	 as	 Paolo	Corsico	 has	 recently	

argued	with	view	to	psychosis	(2020).	 In	the	medical	context,	such	approaches	could	

translate	to	regulatory	rules	that	demand	tests	whether	an	ML	program	performs	worse	

in	ethnic	minorities,	in	terms	of	clearly	defined	outcome-measures,	and	denies	approval	

to	those	which	do.		

4.5	Lessons	for	the	evaluation	of	medical	ML	

For	 the	 design	 of	 medical	 ML	 programs,	 developers	 should	 thus	 focus	 on	 ex-post	

corrections	 of	 particular	 ML	 programs	 in	 medicine	 and	 evaluate	 a	 program’s	

performance	 based	 on	 the	 relative	 treatment	 outcome	 within	 certain	 vulnerable	
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populations.23	 The	 examples	 of	 schizophrenia	 and	 SLE	 highlight	 this.	 Clearly,	 the	

pragmatic	 benchmark	 of	 a	 ML-based	 diagnostic	 program	 would	 be	 the	 treatment	

success	 that	 results	 from	 applying	 it	 to	 patients.	 Let	 us	 consider	 two	 options:	 (1)	

implementing	a	ML	program	designed	to	be	blind	to	ethnicity	and	(2)	designing	the	ML	

algorithm	in	a	way	that	it	explicitly	or	implicitly	incorporates	ethnicity	as	input	variable	

in	the	training	data.	Embracing	a	pragmatic	approach,	the	decision	for	using	program	1	

or	 2	 would	 focus	 on	 the	 clinical	 results	 which	 either	 program	 brings	 about.	 If,	 for	

example,	algorithm	2	results	in	better	outcomes	in	both	black	and	white	populations,	

than	the	differential	treatment	would	be	useful	and	hence,	in	the	pragmatic	sense,	true.	

Based	on	our	current	knowledge,	one	would	expect	to	find	this	result	for	the	case	of	SLE.	

However,	 if	 algorithm	 1	 results	 in	better	 treatment	outcomes	 in	both	groups,	 than	 a	

differential	treatment	is	apparently	harmful,	biased	and	should	be	disregarded,	as	may	

be	the	case	in	schizophrenia.		

Still,	based	on	the	concept	of	operational	coherence,	these	a	priori	assumptions	require	

empirical	 testing.	 After	 all,	 one	 could	 similarly	 envision	 a	 contrary	 case,	 where	 an	

algorithm	explicitly	taking	into	account	ethnicity	performs	better	in	terms	of	fairness	

for	diagnosing	schizophrenia.	For	example,	depending	on	the	design,	ethnicity	could	be	

used	 as	 a	 correcting	 factor	 that	 counters	 the	 known	 overdiagnosis	 of	 schizophrenia	

among	black	patients.	Here,	transparency	will	be	key	for	a	critical	reassessment	of	the	

assumptions	underlying	each	particular	program.	Still,	the	choice	of	ML	program	will	

ultimately	need	to	be	adjudicated	by	its	tangible	clinical	benefit.	

 

23	With	regard	to	diagnostic	decisions	based	on	ML,	we	take	it	that	these	will	also	largely	affect	treatment	
outcomes	since	they	determine	the	indication	of	therapeutic	intervention.		
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While	this	may	run	counter	to	preferences	in	the	machine	learning	community	to	focus	

on	 ex-ante	mechanisms	 to	 ensure	 fairness,	 such	 an	 approach	has	been	proven	 to	be	

highly	efficient	in	addressing	discriminatory	behaviour	of	algorithms,	based	for	example	

on	gender	 stereotypes	 (Zhao,	Wang,	Yatskar,	Ordonez,	&	Chang,	 2017).	 In	medicine,	

some	 form	 of	 such	 ex-post	 tests	 on	 fairness	 could	 be	 integrated	 in	 clinical	 trials,	

conducted	so	that	a	specific	program	receives	approval	by	regulatory	bodies	such	as	the	

US	Food	and	Drug	Administration	(FDA)	(He	et	al.,	2019).	This	would	also	imply	that	

both	short-	and	long-term	outcome	of	the	ML	system	are	tested	and	its	safety	and	utility	

evaluated	in	different	phases,	transitioning	from	few	healthy	volunteers	to	large	clinical	

trials	in	the	target	population	(Paulus,	Huys,	&	Maia,	2016).		

We	thus	believe	that	a	pragmatist	approach	focusing	on	a	program’s	output	would	also	

constitute	a	viable	and	realistic	way	to	address	disparities	for	medical	applications	where	

ex-ante	considerations	are	potentially	impossible	due	to	limited	etiological	knowledge	

and	 the	 often-conventional	 nature	 of	medical	 practice.	 If	we	 thereby	move	 closer	 to	

accepting	 that	 also	ML	will	 replicate	 and	not	 remove	 the	 shifty	 and	often	pragmatic	

ground	of	medicine,	this	could	be	a	safeguard	to	avoid	an	overselling	of	the	promises	of	

medical	ML.	Such	a	viewpoint	may	further	render	us	humbler	and	more	willing	to	accept	

the	 epistemic	 limitations	 and	 historical	 contingency	 of	much	 contemporary	medical	

knowledge	(Stegenga,	2018:	185-187).	Thus,	 instead	of	focusing	on	potentially	fruitless	

nosological	 speculations,	 we	 should	 instead	 try	 and	 privilege	 a	 focus	 on	 operational	

coherence,	 centred	 around	 the	 most	 crucial	 criterion	 in	 the	 medical	 domain:	 the	

betterment	of	the	patient.		
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4.6	Conclusion	

In	this	paper,	we	have	argued	for	a	pragmatic	construction	of	truth	in	the	context	of	

supervised	 medical	 ML.	 Following	 two	 clinical	 examples	 with	 unknown	 etiological	

underpinnings,	we	have	defended	a	position	that	stresses	the	importance	of	rigorous	ex-

post	 tests	 for	medical	ML	programs	 to	 tackle	harmful	biases.	 Instead	of	aiming	 for	a	

potentially	unobtainable	objective	 truth,	developers,	 clinicians	and	 regulators	 should	

pragmatically	focus	on	clinical	utility	for	specific	socially-salient	groups	when	evaluating	

the	 fairness	 of	 a	 ML	 system	 –	 as	 well	 as	 the	 many	 other	 ethical	 and	 value-laden	

considerations	that	Char,	Abràmoff,	and	Feudtner	(2020)	have	recently	identified,	such	

as:	who	devises	these	programs,	based	on	which	assumptions,	and	with	which	aims?	If	

a	pragmatist	account	of	bias	can	help	to	clear	the	view	for	such	questions,	this	may	be	

all	the	more	reason	to	embrace	it.		
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Abstract	

Assistive	systems	based	on	Artificial	 Intelligence	(AI)	are	bound	to	reshape	decision-

making	in	all	areas	of	society.	One	of	the	most	intricate	challenges	arising	from	their	

implementation	 in	 high-stakes	 environments	 such	 as	 medicine	 concerns	 their	

frequently	unsatisfying	 levels	of	explainability,	especially	 in	the	guise	of	the	so-called	

black-box	 problem:	 highly	 successful	 models	 based	 on	 deep	 learning	 seem	 to	 be	

inherently	opaque,	resisting	comprehensive	explanations.	This	may	explain	why	some	

scholars	 claim	 that	 research	 should	 focus	 on	 rendering	 AI	 systems	 understandable,	

rather	than	explainable.	Yet,	there	is	a	grave	lack	of	agreement	concerning	these	terms	

in	much	of	 the	 literature	on	AI.	We	argue	 that	 the	 seminal	distinction	made	by	 the	

philosopher	 and	 physician	 Karl	 Jaspers	 between	 different	 types	 of	 explaining	 and	

understanding	in	psychopathology	can	be	used	to	promote	greater	conceptual	clarity	in	

the	context	of	Machine	Learning	(ML).	Following	Jaspers,	we	claim	that	explaining	and	

understanding	constitute	multi-faceted	epistemic	approaches	that	should	not	be	seen	

as	mutually	exclusive,	but	rather	as	complementary	ones	as	in	and	of	themselves	they	

are	necessarily	 limited.	Drawing	on	 the	 famous	example	of	Watson	 for	Oncology	we	

highlight	 how	 Jaspers’	 methodology	 translates	 to	 the	 case	 of	 medical	 AI.	 Classical	

considerations	from	the	philosophy	of	psychiatry	can	therefore	inform	a	debate	at	the	

centre	of	current	AI	ethics,	which	in	turn	may	be	crucial	for	a	successful	implementation	

of	ethically	and	legally	sound	AI	in	medicine.		
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5.1	The	promises	of	artificial	intelligence	for	medicine	

The	 integration	of	 artificial	 intelligence	 (AI)	 seems	bound	 to	 reshape	 the	practice	of	

medicine	(Topol,	2019).	Due	to	the	convergence	of	Big	Data,	increased	computational	

capacities	and	the	rise	of	deep	learning,	a	new	generation	of	AI	systems	promises	vast	

improvements,	 from	new	research	approaches	to	their	clinical	 implementation	at	the	

bedside.	While	 for	 some	authors	 the	current	hype	of	AI	creates	a	danger	of	bringing	

about	a	new	AI	winter,	 i.e.,	a	period	of	decreased	interest	and	funding	(Müller,	2020;	

Floridi	 2020),	 the	underlying	 technology	may	 still	 usher	 in	 an	 age	of	Deep	Medicine,	

given	its	tangible	successes	(Topol,	2019).	After	all,	AI	can	provide	tools	that	improve	

clinical	outcomes	across	disparate	medical	specialties,	from	dermatology	(Esteva	et	al.,	

2017)	to	pathology	(Campanella	et	al.,	2019),	from	intensive	care	(Hyland	et	al.,	2020)	to	

plastic	surgery	(Knoops	et	al.,	2019)	and	psychiatry	(Bzdok	&	Meyer-Lindenberg,	2019).	

Questions	concerning	the	ethical	and	responsible	design	and	use	of	medical	AI	are	thus	

of	high	urgency	and	importance.	

One	major	challenge	to	the	implementation	of	AI	in	high-risk	settings	such	as	medicine	

lies	in	the	lack	of	explainability	of	many	current	AI	systems	in	healthcare	(Vayena	et	al.,	

2018;	Amann	et	al.,	2020).	This	challenge	results	from	the	opacity	of	AI	models,	which	

in	particular	deep	learning	models	exhibit	(Burrell,	2018).	Explainability	seems	of	crucial	

instrumental	value	to	foster	trust	in	AI	systems,	to	correct	a	model’s	errors	and	to	enable	

vital	ethical	aspirations	 like	 informed	consent.	Accordingly,	ethical	guidelines	 for	the	

implementation	 of	 AI	 have	 even	 granted	 explainability	 a	 place	 alongside	 the	 four	

influential	principles	of	biomedical	ethics	by	Beauchamp	and	Childress,	complementing	

beneficence,	 non-maleficence,	 respect	 for	 autonomy	 and	 justice	 (Floridi	 et	 al,	 2018;	
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Beauchamp	&	Childress,	2019).		In	addition,	as	the	European	General	Data	Protection	

Regulation	 (GDPR)	 highlights,	 explainability	 does	 not	 constitute	 a	 mere	 ethical	

recommendation	but	has	become	a	legal	requirement	in	some	jurisdictions	and	is	seen	

as	a	part	of	fundamental	rights	(Wachter	et	al.,	2017).	

	Yet,	despite	 its	 importance,	exact,	 formal	definitions	of	explainability	are	 scarce	and	

often	differ	across	research	domains	(Adadi	&	Berrada,	2018).	Mittelstadt	and	colleagues	

(2019)	 and	Durán	 (2021)	 have	 examined	 the	 notion	 of	 explainability	 cautiously	 with	

regard	 to	 the	 philosophy	 of	 science,	 situating	 it	 in	 the	 broader	 context	 of	 scientific	

explanations.	However,	as	Páez	(2020)	has	convincingly	argued,	explanations	resting	on	

full	model	transparency	which	would	allow	to	answer	counterfactual	questions	run	into	

severe	 and	 potentially	 insurmountable	 problems.	 Hence,	 the	 complexity	 of	 a	model	

renders	certain	types	of	AI	inherently	opaque	to	causal	explanations.	While	this	may	not	

preclude	epistemically	more	modest	explanations	for	specific,	single	decisions	of	an	ML	

system,	it	still	seems	worth	turning	to	a	scientific	tradition	that	has	long	struggled	with	

the	problem	of	explaining	phenomena	that	defy	full	mechanistic	explanation,	namely	

philosophy	of	psychiatry.24	In	particular,	we	argue	that	Karl	Jaspers’	seminal	framework	

of	 explaining	 and	 understanding	 in	 psychopathology	 provides	 a	 rich	 conceptual	

background	that	can	be	fruitfully	adapted	to	address	the	challenges	posed	by	current	AI	

systems	developed	for	medical	purposes.	

Our	argument	proceeds	in	five	steps.	First,	we	provide	a	short	primer	on	current	debates	

about	 the	 explainability	 of	 AI,	 highlighting	 its	 limits.	 Second,	 we	 turn	 to	 Jaspers,	

elaborating	the	elements	of	his	theoretical	framework	for	the	debate	at	hand.	In	a	third	

 
24	In	the	same	vein,	Páez	also	turns	to	a	distinction	derived	from	psychology	between	functional	and	
mechanistic	understanding	to	advance	his	argument	(Lombrozo	&	Gwynne,	2014).		
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step,	we	argue	why,	psychopathology	can	serve	as	a	model	to	develop	a	framework	of	

explaining	 and	 understanding	 AI,	 and	 fourth,	 why	 applying	 a	 model	 from	

psychopathology	to	AI	is	warranted,	despite	the	danger	of	anthropomorphism.	Finally,	

bringing	together	these	considerations,	we	suggest	a	framework	for	understanding	and	

explaining	medical	 AI	 inspired	 by	 Jaspers.	We	 conclude	 by	 drawing	 on	 examples	 of	

medical	AI	to	highlight	the	practical	and	ethical	implications	of	our	approach.	

5.2	The	challenge	of	explainable	AI	systems	in	medicine	

Rendering	AI	systems	explainable	is	commonly	regarded	as	crucial	for	their	successful	

implementation.	Consequently,	the	development	of	explainable	AI	(XAI)	takes	centre	

stage	in	myriads	of	research	efforts	worldwide	(Adadi	&	Berrada,	2018).	Explainability	

has	the	instrumental	value	enabling	crucial	epistemic	and	ethical	goals	(Floridi	et	al.,	

2018).	On	the	epistemic	side,	by	allowing	closer	scrutiny	of	a	system’s	decisions,	XAI	

promises	 developers,	 regulators,	 and	 end	 users	 the	 possibility	 to	 spot	 systematic	

mistakes,	correct	erroneous	decisions	and	improve	the	system’s	performance.	In	turn,	

these	properties	promote	important	ethical	aims,	such	as	fostering	informed	consent,	

accountability	and	avoiding	discriminatory	biases.		

In	 clinical	 settings,	 the	 degree	 of	 a	 system’s	 explainability	may	 also	 have	 important	

consequences	for	the	complex	web	of	relations	between	software	developers,	regulatory	

bodies,	physicians,	and	patients	(Amann	et	al.,	2020).	For	example,	explainability	is	not	

only	 crucial	 for	 obtaining	 informed	 consent,	 which	 requires	 at	 least	 some	 minimal	

standards	of	knowledge,	but	 is	 also	 a	 vital	property	 for	promoting	 trust	 in	 a	 specific	

system	(Diprose	et	al.	2020).	Furthermore,	from	the	perspective	of	patients,	some	degree	

of	 explainability	 is	 required	 to	 be	 able	 to	 contest	 an	 AI’s	 diagnostic	 decision	 –	 an	
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important	 ethical	 desideratum,	 rooted	 in	 the	 patients’	 right	 to	 defend	 themselves	

against	harm	(Ploug	&	Holm,	2020).	

Unfortunately,	 the	 opacity	 of	 AI	 systems	 often	 resists	 simple	 explanations.	 Besides	

intentionally	created	secrecy	measures	within	a	program,	opacity	can	come	in	the	guise	

of	 technical	 illiteracy	 on	 the	 side	 of	 its	 users	 or	 as	 a	 system’s	 property,	 necessarily	

following	 from	 its	design	and	use	 (Burrell,	 2016).	Here,	we	are	only	 interested	 in	 the	

latter.	Such	necessary	opacity,	commonly	addressed	as	black-box	problem	in	AI	ethics,	

is	particularly	prevalent	in	deep	learning	models	based	on	artificial	neural	nets	(ANN).	

To	some	extent,	this	opacity	may	constitute	a	necessary	characteristic	of	the	program,	

following	directly	from	an	architecture	with	multiple	hidden	layers	and	a	huge	number	

of	weights,	optimized	with	vast	and	complex	training	data	containing	multiple	features.	

At	 the	moment,	 approaches	 to	 increase	 an	AI	 system’s	 explainability	 often	 focus	 on	

visualizations,	 providing	 e.g.	 a	 heat	 or	 saliency	 map	 for	 a	 program’s	 decision.	 As	

Mittelstadt	and	colleagues.	(2019)	have	succinctly	pointed	out	though,	such	approaches	

fall	 short	 of	 common	 human	 expectations	 towards	 a	 meaningful	 explanation,	

characterized	by	their	contrastive,	social,	and	selective	nature.	In	the	same	vein,	Páez	

(2020)	has	argued	in	favour	of	a	pragmatic	turn	that	cedes	unrealistic	attempts	aiming	

at	full	causal	explainability	in	favour	of	interpretative	models	that	are	easily	accessible	

to	 the	 intended	 users.	 Within	 the	 specific	 context	 of	 medicine,	 Alex	 London	 has	

famously	taken	an	even	more	provocative	approach	by	arguing	that	we	should	prioritize	

the	diagnostic	or	predictive	accuracy	of	an	AI	system	over	 its	explainability	(London,	

2019).	Similarly,	we	also	agree	with	the	view	advocated	by	Durán	and	Jongsma	(2021)	

that	 reliable,	 yet	 opaque	 black	 box	 algorithms	 can	 provide	 trustworthy	 tools	 for	

improving	medical	care.	
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Yet,	given	the	ethical	and	epistemic	importance	of	explainability,	it	would	seem	prudent	

to	aim	for	a	framework	that	retains	the	important	aspirations	ingrained	in	the	project	of	

rendering	 medical	 AI	 explainable	 wherever	 possible.	 As	 in	 other	 ML	 systems,	

explainability	would	comprise	both	ex-ante	considerations,	that	focus	on	the	input	to	a	

particular	 program,	 and	 ex-post	 evaluations,	 scrutinizing	 the	 output	 of	 a	 trained	

algorithm	 (Braun	 et	 al.,	 2020).	 Furthermore,	 in	 the	 specific	 context	 of	 medicine,	

explainability	 will	 also	 need	 to	 take	 into	 account	 the	 complex	 relation	 between	

physician,	patient,	and	ML	system,	e.g.,	because	physicians	need	to	explain	a	decision	to	

their	patients	(Braun	et	al.,	2020).	To	enable	successful	forms	of	such	communication	

and	thereby	establish	the	necessary	preconditions	for	trust	in	a	particular	program,	it	

will,	as	argued	elsewhere,	be	crucial	to	not	merely	disclose	information	but	render	them	

intelligible,	accessible,	and	assessable	to	the	concerned	parties	(blinded	for	peer	review).		

These	theoretical	considerations	are	also	supported	empirically,	e.g.,	by	a	recent	survey	

among	170	physicians	in	New	Zealand	which	confirmed	that	physicians’	understanding	

of	a	ML	model,	their	ability	to	explain	the	program's	output	to	their	patients	and	their	

trust	in	using	it	are	indeed	related	to	each	other	(Diprose	et	al.,	2020).	In	light	of	these	

findings,	it	seems	advisable	to	address	the	particular	challenges	of	medical	ML	through	

a	 lens	 which	 not	 only	 discerns	 between	 different	 notions	 of	 explaining	 and	

understanding	but	relates	them	to	each	other	in	a	systematic	manner.	As	we	will	show	

in	the	following,	Karl	Jaspers’	methodological	groundworks	in	psychopathology	offers	

this	very	kind	of	framework.		

5.3	Karl	Jaspers:	explaining	and	understanding	

In	 his	 seminal	Allgemeine	Psychopathologie	 (AP)	 from	 1913	 (cited	 in	 the	 4th	 edition;	

Jaspers,	1946),	Jaspers	famously	distinguished	between	different	approaches	to	address	
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the	 epistemic	difficulties	 of	 dealing	with	 the	 inner	 life	 of	 his	 patients.	Crucial	 to	his	

writings	 is	 the	 distinction	 between	 explaining	 and	 understanding.	 This	 classic	

distinction	drew	on	debates	about	methodological	differences	between	humanities	and	

natural	sciences	spearheaded	by	the	German	philosopher	Wilhelm	Dilthey	in	the	late	

19th	century,	who	famously	declared:	“Nature	we	explain,	but	psychic	life	we	understand”	

(1894,	 p.	 144,	 quoted	 in	 Kumazaki,	 2013).	It	 also	 relates	 to	 Wilhelm	 Windelband’s	

distinction	between	“nomothetic”	and	“idiographic”	empirical	sciences,	with	the	former	

seeking	“the	general	in	the	form	of	a	law	of	nature”,	and	the	latter	seeking	“the	particular	

in	the	form	of	the	historically	defined	structure”	(Windelband,	1980	[1894],	p.	175).				

Expanding	on	this	framework,	Jaspers	developed	a	systematic	approach	encompassing	a	

multi-faceted	attempt	to	integrate	subjective	and	objective	phenomena	and	inferences,	

which	 comprised	 three	 consecutive	 steps.	 According	 to	 Jaspers,	 any	 attempt	 of	

explaining	or	understanding	first	needs	to	fully	grasp	the	relevant	facts	(Jaspers,	1913,	p.	

22f.),	 that	 encompass	 both	 objective	 and	 subjective	 data.	 For	 an	 objective	

psychopathological	 assessment,	 the	 evaluation	 draws	 on	 outward	 observations	 and	

quantifiable	 data	 such	 as	 persons’	 interaction	 with	 their	 environment	 or	 their	

quantifiable	 performance	 in	memory	 assessment	 (Jaspers,	 1946,	 p.	 130).	 Ideally,	 such	

objective	 assessment	would	 imply	 that	 the	 clinician	 refrains	 from	all	 theoretical	 and	

personal	 prejudices	 and	 presuppositions,	 relying	 for	 example	 on	 objective	measures	

such	as	established	psychometric	scales,	allowing	for	interindividual	comparisons.		In	

contrast,	to	take	stock	of	the	subjective	facts	of	the	inner	life	of	a	person	such	as	their	

lived	experience	of	a	delusion,	Jaspers	suggests	a	‘phenomenological’	approach,	loosely	

based	on	Edmund	Husserl’s	phenomenology,	attempting	to	grasp	an	individual’s	own	
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perspective	of	 their	 lived	experience.	As	 Jaspers	describes	 the	method	with	regard	 to	

patients	in	his	psychopathology:		

“The	task	of	phenomenology	is	to	visualize	the	mental	states	that	the	sick	really	

experience,	 to	 look	 at	 them	 according	 to	 their	 relationship,	 to	 limit	 them	 as	

sharply	as	possible,	to	distinguish	between	them	and	to	assign	them	fixed	terms.”	

(Jaspers,	1946,	p.	47)	25	

Jaspers	 himself	 calls	 this	 phenomenological	 realization	 and	 envisionment	 of	 a	

psychological	 state	 “static	 understanding”	 (Jaspers,	 1946,	 p.	 24).	 It	 should	 be	 noted	

though	that	this	is	not	the	kind	of	understanding	in	which	we	are	interested	here.		

	Having	taken	stock	of	the	‘factual	data’,	the	psychopathologist	then	needs	to	make	sense	

of	these	fragmentary	data	by	investigating	the	relations	between	them	(Jaspers,	1946,	p.	

23).	Jaspers	proposes	two	ways,	and	it	is	here	that	we	finally	encounter	the	distinction	

between	 understanding	 (“verstehende	 Psychologie”)	 and	 explaining	 (“erklärende	

Psychologie”)	that	is	of	interest	to	our	argument.	

“We	 need	 to	 draw	 a	 distinction	 between	 these	 relations	 that	 is	 just	 as	

fundamental	 as	 the	 distinction	 between	 subjective	 psychopathology	

(phenomenology)	and	objective	psychopathology.	1.	By	putting	ourselves	into	the	

psychic	situation,	we	understand	genetically	how	one	psychic	event	emerges	from	

another.	2.	By	objectively	linking	several	factual	data	into	regularities	based	on	

repeated	experiences,	we	explain	causally.”	(Jaspers	1946,	p.	250)	

 
25	Here	as	in	the	following,	translation	from	the	German	original	is	provided	by	the	authors.			
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For	Jaspers,	explaining	therefore	hinges	on	identifying	a	clear	causal	connection	between	

cause	and	effect,	and	is	commonly	rooted	in	biology.	According	to	Jaspers,	establishing	

such	an	explanatory	relation	allows	to	formulate	a	rule	that	is	valid	for	similar	instances	

(Jaspers,	 1946,	 p.	 251).	 Such	 explanations	 therefore	 closely	 correspond	 to	 the	

methodological	 approach	 of	 the	 natural	 sciences,	 which	 according	 to	 Jaspers	 only	

investigate	genuine	causal	relations	(ibid.).26		

In	contrast,	 and	going	beyond	 the	scope	of	natural	 science,	 subjective	understanding	

concerns	itself	with	comprehensible,	meaningful	relations	that	are	related	to	personality	

and	 biography.	 It	 establishes	 meaningful	 connections	 by	 drawing	 on	 the	

psychopathologists’	 own	 inner	 experiences,	 resulting	 in	 a	 “direct	 evidence	 that	 we	

cannot	 trace	 back	 any	 further”	 (Jaspers	 1946,	 p.	 252).	 The	 evidence	 of	 these	

understandable	 relations	 is	 not	 based	 on	 genuine	 causal	 explanations	 but	 rather	 on	

psychological	plausibility,	and	is	achieved	by	contemplating	mental	life	(Jaspers,	1946,	

p.	 48).	 Jaspers	 calls	 such	 understanding	 “genetic”,	 to	 distinguish	 it	 from	 the	 “static	

understanding”	mentioned	above	(Jaspers,	1946,	p.	252).	Since	we	are	only	interested	in	

this	form	of	understanding,	we	will	neglect	the	qualification	as	“genetic”	in	the	following.		

In	a	nutshell,	Jaspers	proposes	a	model	of	psychopathology	that	offers	a	subjective	and	

an	 objective	 approach	 both	 for	 the	 gathering	 of	 factual	 data	 and	 for	 establishing	

meaningful	 relations	 between	 them.	 The	 psychopathologist	 first	 needs	 to	 gather	 all	

relevant	observations	from	their	patient,	including	the	patient’s	subjective	mental	state	

as	 well	 as	 their	 objective	 environment	 and	 biological	 state.	 Having	 brought	 both	

together	in	a	full	description,	there	are	then	two	ways	to	establish	meaningful	relations	

 
26	 It	 should	 be	 noted	 that	 Jaspers’	 original	 model	 from	 1913	 predates	 the	 vast	 philosophical	 debates	
concerning	scientific	explanations	that	take	their	cue	from	Carl	Hempel’s	Deductive-Nomological	Model	
from	1942	(Woodward	2021).	
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between	 them,	 either	 through	 subjective	 (“genetic”)	 understanding	 or	 objective	

explanations.	 A	 schematic	 depiction	 of	 the	 complementary	 subjective	 and	 objective	

approaches	is	provided	in	Figure	1,	to	give	a	succinct	overview	over	Jaspers’	terminology.		

		

	

Fig.	 5.1:	 Schematic	 representation	 of	 the	 subjective	 and	 objective	 evaluation	 in	 Jaspers’	

psychopathological	approach.			

Jaspers’ model has been subject to fundamental criticism, including a recent call to give up the 

distinction between understanding and explaining in psychiatry altogether (Gough, 2021). More 

important to our argument, however, are attempts to disentangle the notion of causality in the 

context of Jaspers’ distinction. For instance, many current scientific claims would possibly not 

fall under Jaspers’ rigorous definition of explainability, as long as causal relations remain 

unclear.27  Drawing on the writing of Elizabeth Anscombe, Christoph Hoerl (2013) has 

therefore suggested to describe both explaining and understanding in terms of causality, but 

with an important difference: Explaining provides “general causal claims linking types of 

events”, whereas understanding “is concerned with singular causation […] – i.e. with the 

 
27	We	would	like	to	thank	one	of	our	anonymous	reviewers	for	pointing	this	out.		
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particular way in which one psychic event emerges from or arises out of another on a particular 

occasion.” (Hoerl 2013, p. 111) 

This reading, distinguishing between general causal claims and singular causation, in fact 

mirrors Jaspers’ own distinction between two different kinds of causality that seems in line with 

Husserl’s distinction of volitional and natural causality (Spano, 2021; Husserl, 2020), yet 

sometimes renders Jaspers’ arguments seemingly contradictory. While causal relations in the 

strict sense are, according to Jaspers, only to be found (Jaspers 1946, p. 250) in the objectifiable 

outward observations of the natural sciences, he sometimes also employs a notion of causality 

that grasps the understandable subjective phenomena:  

One has also called the intelligible connections of the mental causality from within, and 

thus denoted the unbridgeable abyss that exists between these merely parabolically 

causal connections and the genuine causal connections, the causality from without."  

(Jaspers 1946, p. 250) 

If we follow this distinction by Jaspers and Hoerl’s interpretation of it, we take it that there are 

important lessons to derive from his model for current debates about explaining and 

understanding AI.28  

5.4	Dealing	with	the	artificial	black	box:	Explaining	and	Understanding	AI	

Models	 of	 explaining	 and	 understanding	 developed	 for	 dealing	 with	 human	

psychopathology	may	provide	a	promising	approach	to	address	the	challenges	of	black-

box	AI	systems	and	can	elucidate	how	human	users	can	attempt	to	make	sense	of	an	AI’s	

behaviour	in	two	different,	yet	complementary	ways.	Going	back	to	Jaspers’	framework,	

 
28	Jaspers’	methodological	convictions	changed	in	the	course	of	his	life,	and	he	moved	away	from	his	strict	
methodological	dualism	later	in	life	(Schlimme	et	al	2012).	We	still	rely	on	this	early	model	here	since	it	
seems	most	instructive	with	regard	to	medical	ML	models.	
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we	may	take	a	new	look	at	the	problem	of	opacity.	In	accordance	with	Jaspers,	we	can	

distinguish	two	steps,	the	gathering	of	factual	data	and	the	establishment	of	relations	

between	these	data.		

For	the	first	step,	we	can	distinguish	between	objective	and	subjective	data.	Objectively,	

we	can	observe	the	AI’s	behaviour	by	rigorous	testing.	Like	with	Jaspers,	this	objective	

stock	 taking	 should	 cover	 at	 least	 three	 different	 areas:	 (1)	 the	 AI’s	 performance,	

measured	e.g.	by	the	accuracy	of	an	AI’s	predictions,	(2)	its	interaction	with	the	world,	

measured	e.g.	by	its	behaviour	in	different	settings,	and	(3),	 if	applicable	in	instances	

such	as	the	Deep	Learning-based	language	model	GPT3,	the	AI’s	work.	On	the	subjective	

side	based	on	phenomenology,	our	options	for	assembling	factual	data	are	necessarily	

limited:	29	We	cannot	grasp	an	ML	models	own	perspective	of	their	operation,	unless	we	

assume	that	the	other	mind	is	characterized	to	a	large	degree	by	human-likeness	and	

has	a	similar	capacity	for	consciousness	(Shanahan,	2016).	At	 least	current	AI	models	

seem	 to	 lack	 both,	 barring	 us	 from	 a	 phenomenological	 Vergegenwärtigung	 of	 the	

machine	mind.	Here,	Jaspers’	model	does	therefore	not	offer	any	new	insights.		

However,	 we	 believe	 that	 Jaspers	 can	 contribute	 to	 a	 finer-grained	 analysis	 when	 it	

comes	to	the	second	step,	aimed	at	establishing	meaningful	relations	between	factual	

data.	It	 is	here	that	we	find	room	for	Jaspers’	distinction	between	understanding	and	

explaining.	The	scope	of	explaining	is	in	line	with	the	many	approaches	of	explainable	

AI	that	aim	to	establish	general	causal	claims,	in	the	sense	of	a	“causality	from	without”.	

Current	approaches	 that	e.g.	use	visualizations	of	weights	given	to	specific	 factors	 to	

provide	an	“explanation	interface”	accessible	to	domain	experts	point	in	this	direction	

 
29	To	some	extent,	this	is	of	course	also	true	with	view	to	the	mind	of	other	human	beings,	with	the	crucial	
difference	that	we	are	familiar	with	at	least	one	human	mind	from	an	inward	perspective:	our	own.	
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(Holzinger	et	al.,	2019).	On	an	even	more	fundamental	level,	ML	attempts	to	provide	

causal	 models	 by	 learning	 causal	 mechanisms	 would	 satisfy	 Jaspers’	 model	 here	

(Schölkopf	et	al.,	 2012;	Parascandolo	et	al.,	 2018).	However,	as	outlined	above,	causal	

explanations	are	only	available	to	a	limited	extend	in	current	machine	learning	practice,	

especially	when	it	comes	to	deep	learning.		

Like	in	psychopathology,	we	should	therefore	embrace	a	two-pronged	strategy	to	make	

sense	of	opaque	machine	learning	models,	based	on	both	understanding	and	explaining,	

on	 causality	 from	within	 and	 from	without.	 In	 this	 sense,	 understanding	 should	 be	

conceptualized	 as	 a	 valuable	 complementary	 route	 to	 explainability,	 allowing	 us	 to	

identify	meaningful,	comprehensible	relations,	that	may	become	immediately	evident	

to	 us.	An	 example	 by	 Jaspers	 himself	may	highlight	 how	understanding	 can	provide	

epistemic	evidence.	When	examining	the	evidence	of	understanding,	Jaspers	refers	to	

Nietzsche’s	use	of	genealogy,	especially	his	Genealogy	of	Morality:	“When	Nietzsche’s	

shows	us	convincingly	how	being	aware	of	our	own	frailty,	wretchedness,	and	suffering	

gives	 rise	 to	 about	 moral	 demands	 and	 religions	 […]	 we	 experience	 an	 immediate	

evidence	that	we	cannot	trace	back	any	further.”	We	understand	the	relation	Nietzsche	

construes	evidently.				

Similarly,	we	may	understand	certain	observable	behaviours	of	machine	learning	models	

by	examining	its	genealogy	and	its	training	history.	Emily	Denton	and	colleagues	have	

recently	 suggested	 this	 approach	with	 view	 to	 the	 history	 of	 the	 ImageNet	 database	

(2021).	 Furthermore,	 if	 we	 engage	 in	 a	 form	 of	 intentional	 anthropomorphizing	 and	

follow	 the	 analogy	 of	 machine	 learning,	 we	 can	 also	 understand	 certain	 features	 by	

comparing	the	machine’s	learning	to	our	own	learning	processes.	For	instance,	we	could	

infer	 from	 our	 own	 learning	 processes	 that	 an	 AI	 can	 only	 base	 its	 decisions	 and	
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recommendations	on	its	past	experiences	–	similarly	to	training	medical	staff	receives,	

improving	their	clinical	decision	making	through	experience	over	time:	a	diagnostic	tool	

trained	 to	 distinguish	 photographs	 of	 (malign)	 melanoma	 and	 (benign)	 naevi	 may	

perform	very	badly	in	Black	patients	if	trained	exclusively	on	white	patients	–	just	like	a	

human	dermatologist	who	only	received	training	using	examples	of	fairer	skin.	Here,	we	

understand	the	program	intuitively,	based	on	inferences	informed	by	introspection,	in	

a	sense	which	Jaspers	calls	“causality	from	within”.	Mathematically,	such	understanding	

could	 also	 be	 fostered	 by	 what	 Angelov	 and	 colleagues	 call	 a	 “cardinally	 different	

approach	to	explainability”	(2021):	By	choosing	actual	training	data	samples	based	on	

local	 peaks	 of	 the	 data	 distribution	which	 they	 call	 “typicality”,	 Angelov	 and	 Soares	

provide	“prototypes”	that	are	easily	understandable	by	human	users	(2020).	

Importantly,	 just	 like	 in	 psychopathology,	 such	 understanding	 may	 be	 empirically	

falsified	 (Ebmeier,	 1987).	 Nietzsche’s	 account	 of	 the	 genealogy	 of	 morality	 may	 be	

historically	false	in	the	particular	instance	of	Christianity	despite	being	understandable,	

as	Jaspers	notes	(Jasper	1946,	p.	252).	Similarly,	looking	at	the	genealogy	of	a	training	

data	 set	 or	 prototypes	 among	 the	 training	 data	 could	 be	misleading.	 It	 is	 therefore	

crucial	 to	 critically	 question	 the	 scope	 of	 understanding,	 as	 Jaspers	 repeatedly	

admonishes	in	in	critical	remarks	against	Freud,	and	not	jump	to	general	causal	rules.	

Also	in	machine	learning,	understanding	demands	to	closely	observe	the	program,	its	

design	and	behaviour,	or	as	Jaspers	puts	it:	“understanding	[…]	needs	to	be	grounded	in	

actual	facts”	(Jaspers,	1946,	p.	255).	30	

 
30	 It	 is	 in	 this	 factual	 grounding	 that	 we	 can	 also	 situate	 the	 difference	 between	 understanding	 and	
interpreting:	 If	 factual	knowledge	 is	 lacking,	one	may	still	provide	a	general	 interpretation	(“deuten”),	
which	is	lacking	the	properties	of	genuine	understanding	though	(Jaspers,	1946,	p.	252f.;	cf.	Hoerl,	2013).	
The	distinction	between	the	two	may	not	always	be	clear	though,	especially	in	the	context	of	incomplete	
knowledge.	
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Before	 we	 show	 how	 Jaspers	 model	 can	 inform	 debates	 about	 understanding	 and	

explaining	medical	AI	in	particular,	it	seems	imperative	though	to	address	the	potential	

objection	 that	 we	 misguidedly	 anthropomorphise	 AI	 despite	 its	 non-human	

characteristics.	

		

5.5	Understanding	AI	as	misguided	anthropomorphism?	

There	is	an	obvious	caveat	to	discussing	the	relation	of	explaining	and	understanding	of	

AI	 with	 Jaspers.	 Jaspers	 originally	 discussed	 human	 psychopathology.	We,	 however,	

want	to	draw	on	the	relation	of	explaining	and	understanding	with	regard	to	AI.	Indeed,	

the	 caveat	 is	often	brought	up	as	 a	 general	objection	 to	 the	use	of	human	 terms	 for	

artificial	applications	such	as	machine	learning	or	artificial	intelligence.	This	seems	to	be	

an	instance	of	anthropomorphism	which	is	defined	as	“the	attribution	of	distinctively	

human-like	feelings,	mental	states,	and	behavioural	characteristics	to	inanimate	objects,	

animals,	and	in	general	to	natural	phenomena	and	supernatural	entities”	(Salles,	Evers,	

&	Farisco,	2020,	p.	89).	

The	alleged	threat	of	anthropomorphism	to	our	adequate	understanding	of	AI	has	been	

widely	discussed	(Salles,	Evers,	&	Farisco,	2020;	Watson,	2019;	DeCamp	&	Tilburt,	2019)	

and	anthropomorphism	has	been	accused	of	being	ontologically	and	morally	dubious	

(Salles,	Evers,	&	Farisco,	2020).	The	issue	has	been	most	prominently	raised	in	relation	

to	moral	ascriptions,	such	as	responsibility	and	trustworthiness,	of	algorithms.	DeCamp	

and	 Tilburt	 (2019)	 have	 argued	 that	 this	 has	 severe	 consequences:	 “Trust	 properly	

understood	involves	human	thoughts,	motives,	and	actions	that	lie	beyond	technical,	

mechanical	characteristics.	To	sacrifice	 these	elements	of	 trust	corrupts	our	 thinking	

and	 values”	 (p.	 390).	 Similarly	 pointing	 out	 the	 differences	 between	 humans	 and	
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algorithms,	Watson	(2019)	writes:	“Algorithms	are	not	‘just	like	us’	and	the	temptation	

to	 pretend	 they	 are	 can	 have	 profound	 ethical	 consequences”	 (p.	 434).	 This	 finds	

expression	in	what	Proudfoot	(2011)	calls	the	forensic	problem	of	anthropomorphism,	

originally	related	to	ascriptions	of,	say,	intelligence	to	algorithms.	As	she	writes:	

“But	 how	 can	 a	 researcher’s	 effort	 to	 ‘convince	 himself	 or	 anyone	 else’	 of	

intelligence	 in	 machines	 be	 trusted	 if	 the	 researcher	 readily	 succumbs	 to	

anthropomorphism	and	make-believe	—	ascribing	joy	to	a	robot	vacuum	cleaner,	

for	example?”	(p.	952).	

Generally,	Proudfoot	(2011)	calls	this	the	forensic	problem	of	anthropomorphism	which	

describes	the	risk	of	introducing	cognitive	biases	in	favour	of	the	algorithm’s	intelligence	

by	anthropomorphizing	 it.	Unless	the	risk	 is	mitigated,	such	 judgements	are	deemed	

suspect.	 Is	 our	 attempt	 to	 understand	AI	 similarly	 based	 on	make-believe?	After	 all,	

some	may	 argue	 that	 it	 is	 an	 obvious	mistake	 to	 discuss	 algorithms	 with	 regard	 to	

Jaspers’	human	psychopathology.	

	However,	it	is	similarly	dubious	that	the	abolition	of	anthropomorphism	is	something	

that	 can	 be	 easily	 done.	 Proudfoot	 (2011)	 points	 out	 that	 even	 the	 critics	 of	

anthropomorphism	 in	 AI	 describe	 algorithms	 as	 stupid	 at	 the	 same	 time	—	 a	 clear	

anthropomorphism	as	being	stupid	 is	a	human	characteristic.	Our	answer	 is	 that	the	

employment	 of	 anthropomorphism	 should	 be	 pragmatic:	 if	 anthropomorphism	 is	

useful,	it	should	not	be	jettisoned.	

In	 the	 case	 of	 AI,	 there	 is	 some	 indication	 that	 it	 is.	 Bos	 et	 al.	 (2019)	 argue	 that	

anthropomorphism	is	an	effective	strategy	for	human	participants	to	predict	whether	a	

high-performing	 image	 classifier	 AI	 model	 would	 label	 an	 image	 correctly.	 The	
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participants	of	their	study	made	reference	to	their	own	perception,	either	explicitly	or	

implicitly,	to	predict	the	classifier’s	results.	Interestingly,	the	researchers	report	that	the	

mental	 model	 discussed	 “their	 own	 or	 general	 human	 abilities,	 indicating	 some	

cognitive	separation	of	human	and	classifier	abilities.	The	‘mental	model’	tag	indicated	

awareness	that	participants	were	forming	a	mental	model	of	the	system	as	they	did	the	

task”	(p.	954).	This	research	is	interesting	for	our	context	in	at	least	two	regards:	first,	it	

shows	that	anthropomorphism	can	be	used	for	modelling	(Cassini	&	Redmond,	2021)	in	

the	context	of	AI,	making	use	of	what	we,	as	humans,	know	about	our	own	abilities.	

Anthropomorphism	 in	 this	 sense	 seems	 also	 in	 line	 with	 a	 current	 human-centric	

approach	to	explainability	in	AI	“which	treats	it	as	a	human-centric	(anthropomorphic)	

phenomena	rather	than	reducing	it	to	statistics”	(Angelov	et	al.,	2021,	p.	8).		

Second,	 the	 study	 by	 Bos	 and	 colleagues	 also	 helps	 to	 disentangle	 the	 question	 of	

modelling	from	the	question	under	which	circumstances	such	anthropomorphist	fiction	

constitutes	an	empirically	effective	strategy.	After	all,	an	intentional	cognitive	effort	to	

understand	AI	by	comparison	to	similar	human	abilities	may	not	always	be	useful.	Since	

anthropomorphist	modelling	is	irrespective	of	the	model’s	veracity,	it	will	be	important	

to	distinguish	between	contexts	in	which	accurate	representation	is	required	(Nguyen,	

2020)	while	other	models	may	benefit	from	“felicitous	falsehoods”	(Elgin,	2017).	Bos	et	

al	(2019)	therefore	rightly	call	for	more	empirical	studies	testing	the	factual	effectiveness	

of	anthropomorphist	modelling	in	different	contexts.		

The	human-centred	distinction	of	explaining	and	understanding	can	therefore	help	to	

shed	some	light	on	explainability	in	AI.	The	discussion	of	understanding	of	AI	should	

therefore	not	be	hindered	by	general	objections	against	anthropomorphism	if	it	provides	
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a	useful	 tool.	However,	 this	 still	demands	a	 clear	 conception	of	what	explaining	and	

understanding	in	relation	to	AI	means.	

5.6	Explaining	and	understanding	medical	AI	

So	far,	we	have	sketched	how	a	model	developed	by	Jaspers	 in	the	context	of	human	

psychopathology	 can	 help	 to	 augment	 debates	 about	 explainable	 AI.	 Based	 on	 his	

distinction	of	explaining,	aimed	at	general	causal	claims,	and	understanding,	elicited	by	

plausible	 evidence	 in	 singular	 cases,	 we	 advocate	 for	 methodological	 pluralism,	

harnessing	both	 routes	 to	 establish	meaningful	 relations	between	 the	 factual	data	of	

machine	learning.	While	we	therefore	started	with	a	theory	derived	for	a	clinical	purpose	

and	 employed	 it	 in	 the	 context	 of	machine	 learning,	 we	 return	 to	 the	 clinic	 in	 this	

section,	highlighting	what	Jaspers’	model	may	imply	for	explaining	and	understanding	

medical	AI.	To	do	 so,	we	draw	on	 the	well-known	and	widely	 cited	 example	of	 IBM	

Watson	for	Oncology	(WFO)	and	its	shortfalls	here	(Strickland,	2019).	

As	we	have	seen,	the	first	step	of	assessing	such	an	AI	will	require	careful	observation	of	

the	program.	These	will	contain	different	kinds	of	evaluations,	both	ex-ante	and	ex-post,	

to	establish	a	factual	basis	for	understanding	and	explaining.	For	instance,	one	would	

need	 to	determine	how	the	model	and	 its	hyperparameters	were	chosen,	how	 it	was	

optimized,	and	on	which	data,	as	much	as	one	would	need	to	evaluate	its	performance	

in	different	validation	samples	and	identify	the	factors	that	had	the	largest	impact	on	

the	model’s	prediction.	To	stay	with	the	example,	one	would	e.g.	need	to	look	closely	at	

the	 health	 records	 which	 IBM	 used	 to	 train	 WFO,	 relying	 heavily	 on	 input	 from	

oncologists	at	the	Memorial	Sloan	Kettering	Cancer	Center	in	the	US	(Jie	et	al.,	2021),	

and	at	the	model	itself.	To	enable	this	kind	of	scrutiny,	the	program’s	developers	would	
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need	 to	 embrace	 open	 communication	 and	 share	 their	 “factual	 data”	 as	 openly	 as	

possible.		

Having	collected	all	this	information,	we	would	then	have	two	routes	to	find	meaningful	

relations	in	them.	First,	experts	may	aim	for	an	explanation	through	an	array	of	different	

methods	(cf.	Holzinger	et	al.,	2019).	Ideally,	such	an	explanation	would	provide	a	general	

causal	rule,	which	in	turn	may	be	used	to	improve	the	model.	To	stay	with	the	example	

of	WFO,	it	seems	conceivable	that	by	aiming	for	such	a	general	causal	rule,	researchers	

may	find	a	pattern	in	the	program’s	decision	that	helps	them	to	identify	some	novel	(epi-

)genetic	causes	underlying	certain	subtypes	of	cancer.		

However,	as	a	parallel,	complementary	approach,	we	should	also	aim	at	understanding	

the	ML	model.	As	we	have	shown	at	the	beginning,	to	foster	trust	and	enable	important	

ethical	goals	such	as	informed	consent,	some	grasp	concerning	the	program’s	behaviour	

seems	 crucial	 for	 the	 end-users	 of	 a	 clinical	 ML	 application.	 As	 outlined,	 such	 an	

understanding	can	be	based	on	plausible	evidence,	without	establishing	general	causal	

claims	 –	 like	 we	 would,	 to	 use	 Jaspers’	 example,	 understand	 a	 connection	 between	

gloomy	autumn	weather	and	a	tendency	to	commit	suicide	(Jaspers	1946,	p.	252f.).	In	

the	case	of	WFO,	such	understanding	may	help	us	to	make	sense	of	observations	that	

are	 immediately	 plausible	 to	 the	 lay	 person	 as	 well.	 A	 recent	 meta-analysis	 that	

compared	 WFO	 treatment	 recommendations	 with	 the	 recommendations	 of	

multidisciplinary	teams	of	human	experts	found	that	concordance	depended	highly	on	

regional	 differences	 and	 types	 of	 cancer.	 For	 instance,	 concordance	 of	 treatment	

recommendations	was	as	 low	as	29.9%	in	gastric	cancer,	when	comparing	WFO	with	

multidisciplinary	teams	from	Asian	countries	(Jie	et	al.,	2021).	This	observation	becomes	

immediately	plausible	if	one	considers	that	WFO	was	trained	and	validated	in	the	US	
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and	may	therefore	not	agree	with	experts	from	other	regions.	After	all,	there	are	“large	

difference	between	the	surgical	methods	and	guidelines	for	adjuvant	treatment	of	gastric	

cancer	 in	China	 and	 the	United	 States”	 (ibid.),	 and	 “WFO	 recommended	 the	 use	 of	

agents	that	are	considered	outdated	in	Korea”	(Choi	et	al.,	2019).	

In	 such	 cases,	 we	 can	 understand	 the	 program’s	 behaviour	 considering	 its	 training	

history,	drawing	on	a	form	of	“causality	from	within”.	Such	understanding	will	require	

some	form	of	knowledge	about	the	AI	model	that	can	be	related	to	our	own	reasoning	

processes,	 e.g.	 on	which	 data	 it	 has	 been	 trained,	where,	 by	whom,	 and	with	which	

intentions.	Other,	often	more	technical	details	may	arguably	not	foster	understanding,	

for	 instance,	 whether	 the	 underlying	 algorithm	 has	 been	 optimized	 using	 gradient	

descent,	how	many	hidden	layers	were	used	in	a	deep	learning	architecture,	or	whether	

a	 sigmoid	 or	 a	 Rectified	 Linear	 Unit	 (ReLU)	 function	 has	 been	 used	 as	 activation	

function.		

Like	 in	 psychopathology,	 it	 is	 important	 though	 to	 not	 mistake	 the	 evidence	 of	

understanding	for	the	epistemic	certainty	granted	by	explaining	(cf.	Hoerl,	2013,	p.	108).	

Jaspers	notes	 this,	when	stressing	 that	despite	us	understanding	an	autumnal	death-

wish,	more	people	actually	commit	suicide	in	spring	(Jaspers	1946,	p.	253).	Similarly,	we	

may	 also	 find	 that	 the	 underlying	 reason	 for	 WFO’s	 problematic	 treatment	

recommendations	 in	 gastric	 cancers	 was	 not	 attributable	 to	 differences	 in	 regional	

treatment	guidelines	but	based	on	the	prevalence	of	particular	mutations	as	has	been	

reported	for	lung	cancer	(Jie	et	al.,	2021).	

Put	differently,	understanding	does	not	imply	giving	up	on	causal	explanations,	just	like	

for	 Jaspers	 understanding	 based	 on	 causality	 from	 within	 and	 explaining	 based	 on	
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causality	 from	 without	 are	 not	 mutually	 exclusive.	 Yet,	 a	 complementary	 approach	

embracing	both	strategies	to	make	sense	of	an	AI	model	could	prove	fruitful	in	at	least	

three	 ways.	 First,	 understanding	meaningful	 correlations	 of	 an	 AI	 could	 be	 used	 to	

develop	 and	 test	 new	 hypotheses,	 thereby	 advancing	 genuinely	 causal	 explanations	

through	the	“encounter	with	the	incomprehensible”	(Jaspers,	1946,	p.	254).	Second,	and	

particularly	 important	 in	 the	 context	 of	 medical	 AI,	 the	 differentiation	 between	

understanding	and	explaining	could	be	seen	as	representing	two	different	approaches	

tailored	to	different	audiences.	While	explainability	may	continue	to	provide	important	

technical	tools	for	experts	to	improve	and	assess	clinical	AI,	broader	groups	of	end-users	

such	as	patients	or	physicians	that	do	not	command	expertise	in	computer	science	may,	

at	 least	 partially,	 gain	 comprehension	 of	 an	 AI	 by	 means	 of	 understanding.	 Third,	

understanding	and	explaining	could,	in	this	sense,	provide	two	complementary	routes	

to	increase	an	AI’s	trustworthiness:	As	recent	research	into	the	relation	of	explainability	

and	trust	has	argued,	the	trustworthiness	of	an	AI	depends	on	both	internal	and	external	

factors	(Jacovi	et	al.,	2021;	Ferrario,	&	Loi,	2021).	While	the	internal	trustworthiness	of	a	

model	 depends	 on	 the	 questions	whether	 the	 “reasoning	process	 aligns	with	human	

reasoning”	 (Jacovi	 et	 al.,	 2021,	 p.	 629)	 and	 may	 be	 promoted	 by	 a	 Jasperian	

understanding,	 the	 external	 path	 to	 trustworthiness	 relies	 on	 the	 observation	 from	

without	and	would	therefore	fall	into	the	domain	of	what	Jaspers	calls	explaining.		

Jaspers’	distinction	between	explaining	and	understanding,	rooted	in	different	accounts	

of	causality,	also	connects	well	with	recent	philosophical	contributions	to	the	field	such	

as	 Emily	 Sullivan’s	 work	 on	 link	 uncertainty	 (Sullivan	 2020),	 despite	 terminological	

differences.	 As	 she	 convincingly	 argues,	 when	 discussing	 the	 black	 box	 problem	 of	

(medical)	AI,	 one	 should	distinguish	between	uncertainty	 introduced	by	 a	particular	
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technical	implementation	–	i.e.,	that	we	may	not	know	how	a	particular	deep	learning	

model	 arrives	 at	 its	predictions	 –,	 and	 link	uncertainty,	 i.e.	 “the	 extent	 to	which	 the	

model	fails	to	be	empirically	supported	and	adequately	linked	to	the	target	phenomena”	

(ibid.).	 Such	 link	 uncertainty	 can	 vary	 vastly	 in	 medical	 contexts.	 For	 instance,	 an	

opaque,	deep	learning-based	program	employed	in	pathology	to	diagnose	cancer	with	

rather	clear	aetiology	and	histological	correlates	acts	on	a	fundamentally	different	link	

uncertainty	 than	 an	 algorithm	 employed	 in	 psychiatry	 to	 diagnose	major	 depressive	

disorder.	Given	the	many	diverging	levels	of	link	uncertainty	present	in	medical	practice,	

is	therefore	crucial	that	the	developers,	users,	and	subjects	of	medical	AI	heed	Jaspers’	

plead	for	methodological	pluralism:	

"All	categories	and	methods	have	their	specific	purpose.	It	makes	no	sense	to	play	

them	 off	 against	 each	 other.	 Each	 of	 them	 has	 its	 own	 pure	 and	 appropriate	

realization,	which	is	necessarily	 limited.	Each	of	them,	through	absolutization,	

results	 in	empty	demands,	 ineffective	 talk	and	 in	modes	of	behaviour	 through	

which	the	free	view	of	the	facts	is	destroyed."	(Jaspers,	1946,	p.	384)		

5.7	Conclusion	

In	 this	 article,	 we	 have	 argued	 that	 the	 distinction	 between	 explaining	 and	

understanding	 as	 developed	 by	 Karl	 Jaspers	 in	 the	 context	 of	 psychopathology	 can	

provide	a	fruitful	framework	for	current	debates	about	the	explainability	of	medical	AI.	

In	 line	 with	 Jaspers,	 we	 have	 argued	 that	 explaining	 and	 understanding	 should	 be	

conceptualized	as	complementary	epistemic	approaches	that	must	not	be	pitted	against	

each	other.	We	have	 shown	how	 these	 approaches	 relate	 to	 current	positions	 in	 the	

ongoing	philosophical	debate	about	medical	AI	and	provided	a	practical	example	of	its	

implications,	 drawing	 on	 IBM’s	 Watson	 for	 Oncology	 as	 case	 study.	 Recent	
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philosophical	and	ethical	reflection	on	medical	AI	can	therefore	benefit	from	revisiting	

long-standing	arguments	 from	the	philosophy	of	psychiatry	to	sketch	a	path	towards	

ethically	and	legally	sound,	trustworthy	AI	in	medicine.	
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Abstract	

	

Machine	 learning	 (ML)	 constitutes	 the	 backbone	 of	 many	 applications	 of	 Artificial	

Intelligence.	 In	 the	 field	of	 clinical	neuroscience,	 applying	ML	 to	neuroimaging	data	

promises	 wide-ranging	 advancements.	 Yet,	 such	 potential	 diagnostic	 and	 predictive	

tools	pose	new	challenges	with	regard	to	old	problems	of	transparency	and	trust.	After	

all,	the	very	design	of	many	ML	applications	can	preclude	comprehensive	explanations	

of	 its	 inner	 workings	 and	 impede	 accurate	 predictions	 about	 its	 future	 behaviour,	

supposedly	 clashing	 with	 the	 ideal	 of	 transparency.	 It	 is	 often	 claimed	 that	 these	

shortcomings,	 inherent	 to	 many	 ML	 applications,	 are	 detrimental	 to	 their	

trustworthiness	 and	 thus	 hinder	 implementing	 new	 and	 potentially	 beneficial	

techniques.	In	this	chapter,	I	will	argue	against	beliefs	that	inextricably	link	transparency	

and	trustworthiness.	Drawing	in	particular	on	the	framework	of	the	British	philosopher	

and	 bioethicist	 Onora	 O’Neill,	 I	 aim	 to	 show	 why,	 contrary	 to	 many	 intuitions,	 an	

obsession	with	transparency	can	be	detrimental	to	tackling	more	fundamental	ethical	

issues	–	and	that	hence	transparency	may	not	solve	as	many	challenges	for	clinical	ML	

applications	as	is	usually	assumed.	I	will	conclude	with	a	tentative	suggestion	on	how	to	

move	forward	from	a	practical	point	of	view	as	to	advance	the	trustworthiness	of	ML	for	

clinical	neuroscience.	
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6.1	Introduction	

	
	Mehr	 an	 Information	 und	 Kommunikation	 allein	 erhellt	 die	Welt	
nicht.	Die	Durchsichtigkeit	macht	auch	nicht	hellsichtig.31	
	

Byung-Chul	Han,	Transparenzgesellschaft	(2015b,	p.	68)	
	

Machine	 learning	 (ML)	 constitutes	 the	 backbone	 of	 many	 applications	 of	 Artificial	

Intelligence	 (AI).	 In	 the	 field	 of	 clinical	 neuroscience,	 applying	 ML	 to	 data	 from	

neuroimaging	 promises	 wide-ranging	 possibilities,	 from	 assisting	 clinicians	 in	

diagnostic	 and	 prognostic	 exams	 to	 enabling	 the	 selection	 of	 an	 optimal	

pharmacological	intervention	(Brodersen	et	al.,	2014;	Dwyer	et	al.,	2018;	Huys,	Maia,	&	

Frank,	2016;	Janssen,	Mourao-Miranda,	&	Schnack,	2018;	Webb	et	al.,	2018;	Xiao	et	al.,	

2017).	 Despite	 the	 increasing	 body	 of	 bioethical	 literature	 on	 the	 subject	 of	 ML	 in	

medicine	(Char,	Shah,	&	Magnus,	2018;	Darcy,	Louie,	&	Roberts,	2016;	Vayena,	Blasimme,	

&	Cohen,	 2018),	 ethical	 discussions	 of	ML	with	 regard	 to	 neuroimaging	 data	 remain	

scarce	(Bzdok	&	Meyer-Lindenberg,	2018;	Martinez-Martin,	Dunn,	&	Roberts,	2018).	The	

aim	of	this	chapter	is	to	tackle	this	gap,	focusing	on	the	notion	of	transparency	and	its	

intricate	relation	to	trust.		

If	we	are	to	believe	its	proponents,	transparency	is	key	to	solving	the	ethical	challenges	

of	clinically	applied	ML.	Transparency	is	said	to	drive	algorithmic	fairness	(Abdollahi	&	

Nasraoui,	 2018),	 guarantee	 patients’	 safety	 and	 enable	 informed	 consent	 (Turilli	 &	

Floridi,	2009).	According	to	some,	it	constitutes	“the	first	step	towards	ethical	and	fair	

 

31	Unfortunately,	the	English	translation	by	Erik	Butler	cannot	quite	grasp	the	meaning	of	the	German	
original:	“More	information	and	communication	alone	do	not	illuminate	the	world.	Transparency	also	
does	not	entail	clairvoyance”	(Han,	2015a).	
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ML	 models”	 (Zhou	 &	 Chen,	 2018b).	 Unfortunately,	 the	 very	 design	 of	 many	 ML	

applications	can	preclude	comprehensive	explanations	of	its	inner	workings,	thus	posing	

particular	challenges	to	an	ideal	of	transparency	(Kroll	et	al.,	2017;	Vayena	et	al.,	2018).	

Black	box	algorithms	may	prevent	accurate	predictions	about	future	behaviour,	e.g.	if	

the	program	continuously	updates	its	inherent	models	based	on	newly	available	data.	

To	many,	such	lack	of	scrutability	of	ML	applications	is	of	particular	concern,	as	it	can	

create	 gaps	 in	 responsibility	 for	 potential	 short	 fallings,	 which	 may	 also	 have	 legal	

implications	(Bublitz,	Wolkenstein,	Jox,	&	Friedrich,	2018;	Matthias,	2004).	The	use	of	

poorly	chosen	or	curated	input	data,	for	example,	can	result	in	errant	or	skewed	output	

results,	 contributing	 to	 discriminatory	 or	 otherwise	 harmful	 practices	 (Cohen,	

Amarasingham,	Shah,	Xie,	&	Lo,	2014;	Favaretto,	De	Clercq,	&	Elger,	2019).	However,	if	

the	 black-box	 program	 cannot	 be	 explained	 or	 understood,	 such	 errors	 may	 go	

unnoticed	and	evade	remedy.	Consequently,	attributing	responsibility	to	create	clear,	

“transparent”	 patterns	 of	 accountability	 seems	 crucial	 for	 establishing	 a	 procedure’s	

trustworthiness.	 In	 turn,	 trustworthiness	 may	 determine	 whether	 patients	 and	

physicians	factually	trust	and	thus	embrace	the	clinical	implementation	of	ML	(Schnall,	

Higgins,	Brown,	Carballo-Dieguez,	&	Bakken,	2015).	Hence,	do	we	need	to	crack	open	

the	black	boxes	of	ML	applications	in	order	to	achieve	transparency	and	render	them	

trustworthy?		

Placing	so	much	burden	on	one	scientific	ideal	certainly	warrants	scrutiny.	Similar	to	

the	garments	in	Hans	Christian	Andersen’s	famous	tale,	which	supposedly	expose	the	

viewers’	own	inadequacy,	I	will	show	why	mere	calls	for	transparency	are	too	little	to	

cloak	the	ethical	challenges	posed	by	applied	ML	in	clinical	neuroscience.	Drawing	on	

the	 writings	 of	 the	 philosopher	 and	 bioethicist	 Onora	 O’Neill,	 I	 will	 argue	 that	
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transparency	 is	 not	 an	 all-purpose	 remedy	 for	 fostering	 trustworthiness	 and	 that	 an	

obsession	with	transparency	can	be	detrimental	to	tackling	more	fundamental	issues.	

To	do	so,	I	will	discuss	the	ideal	of	transparency	and	its	relation	to	trust	in	clinical	ML	

procedures	using	neuroimaging	data,	in	order	to	give	a	more	practical	demonstration	of	

an	abstract	debate.	This	example	may	prove	particularly	fruitful	since	both	transparency	

and	neuroimaging	share	a	common	aim:	to	make	things	visible.	Nevertheless,	similar	

points	regarding	trust	and	transparency	could	be	raised	with	regard	to	other	clinical	ML	

applications	as	well.		

The	structure	of	this	chapter	will	be	as	follows:	I	will	first	provide	a	brief	definition	of	

ML	and	offer	some	examples	of	potential	applications	for	clinical	neuroscience.	I	will	

then	 outline	 why	 transparency	 is	 commonly	 thought	 to	 be	 an	 ethically	 important	

epistemic	ideal	and	why	it	is	ascribed	prudential	value	to	foster	public	trust	in	such	new	

technological	developments.	In	a	third	section,	I	will	draw	on	O’Neill’s	philosophy	and	

argue	against	beliefs	that	inextricably	link	transparency	and	trustworthiness.	Finally,	I	

will	conclude	with	a	tentative	suggestion	on	how	to	move	forward	from	an	O’Neillian	

point	of	view	and	advance	trust	in	beneficial	uses	of	ML	in	neurotechnology	by	moving	

toward	a	form	of	“intelligent	openness”	(O'Neill,	2018).		

6.2	Opportunities	for	applied	machine	learning	in	clinical	neuroscience		

The	notion	of	machine	learning	encompasses	many	different	methods	that	constitute	

current	state-of-the-art	applications	of	artificial	intelligence.	An	influential	operational	

definition,	which	I	will	also	use	in	this	chapter,	stems	from	the	computer	scientist	Tom	

Mitchell,	 who	 characterised	 ML	 in	 terms	 of	 experience	 E,	 an	 area	 of	 tasks	 T	 and	

performance	measure	P.	Following	Mitchell,	ML	describes	a	program	“if	its	performance	

at	tasks	in	T,	as	measured	by	P,	improves	with	experience	E"	(Mitchell,	1997).	A	classic	
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application	would	be	recognising	patterns,	for	instance	across	many	different	images.	

ML	demarcates	a	narrower	field	then	the	broader	term	AI	since	the	latter	would	also	

encompass	the	“holy	grail”	of	AI	research:	generalised	AI,	capable	of	any	intellectual	task	

usually	performed	by	humans,	which	for	the	moment	remains	in	the	domain	of	science	

fiction,	 such	 as	 the	 famous	 sentient	 computer	HAL	 9000	 in	 Stanley	Kubrick’s	Space	

Odyssey.	 At	 the	 same	 time,	 ML	 comprises	 a	 multitude	 of	 different	 computational	

approaches	such	as	support	vector	machines	(SVM)	or	artificial	neural	networks	for	deep	

learning	(DL).		

Neuroimaging,	in	turn,	denotes	as	diverse	an	area	as	ML.	Narrowly,	it	can	be	defined	as	

“all	techniques	in	which	actual	images	of	the	brain	are	acquired”	(Kellmeyer,	2017).	Such	

processes	rely	on	vastly	different	acquisition	techniques,	such	as	computed	tomography	

(CT),	magnetic	resonance	imaging	(MRI),	positron	emission	tomography	(PET)	or	maps	

derived	 from	 electroencephalography	 (EEG)	 or	 transcranial	 magnetic	 stimulation	

(TMS).	Within	each	of	these,	many	further	important	distinctions	can	be	made,	e.g.	in	

MRI	between	structural	and	(task-	or	resting	state)	functional	MRI,	between	different	

acquisition	sequences	such	as	spin	echo	or	gradient	echo	and	so	forth.	Comprehensive	

overviews	over	the	different	techniques	are	offered	elsewhere	(Kellmeyer,	2017),	but	it	is	

important	to	note	that	depending	on	the	imaging	modality	it	is	already	the	case	today	

that	 different	 degrees	 of	 computational	 efforts	 and	 human	 agency	 are	 required	 to	

generate	 images,	 rendering	 the	 techniques	 distinctly	 close	 to	 ideals	 of	 mechanical	

objectivity	(Daston	&	Galison,	2007).		

Of	course,	applications	that	combine	the	two	very	diverse	areas	of	ML	and	neuroimaging	

are	 highly	 heterogeneous	 themselves,	 adding	 yet	 another	 layer	 of	 complexity.	

Nevertheless,	some	broad	distinctions	can	be	made	based	on	the	different	purposes	for	
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which	 ML-driven	 neuroimaging	 is	 employed.	 For	 the	 question	 at	 hand,	 the	 most	

fundamental	distinction	appears	to	be	whether	an	application	is	 intended	(primarily)	

for	 research	 or	 for	 clinical	 purposes	 since	 this	 distinction	 shapes	 legal	 and	 ethical	

obligations	involved	in	the	process	and	may	also	determine	the	scope	of	the	application.	

For	 example,	 let	 us	 suppose	 a	 project’s	 only	 aim	 consists	 in	 contributing	 to	 a	 better	

understanding	of	pathologies	underlying	a	certain	disease	or	disorder.	Let	us	 further	

suppose,	 as	 a	 real-life	 example,	 that	 this	 project	 identifies	 different	 subtypes	 of	

schizophrenia	 based	 on	 distinct	 connectivity	 patterns	 by	 using	 ML	 on	 diffusion-

weighted	MRI	scans.	Critics	may	argue	that	such	research	could	ultimately	contribute	

to	 an	 unwarranted	 reification	 of	 psychiatric	 disorders	 (Hyman,	 2010)	 by	 creating	 a	

dubious	classificatory	system	of	supposed	“natural	kinds”	(Bzdok	&	Meyer-Lindenberg,	

2018).	But	within	such	a	research	setting,	patients	would	not	be	wronged	by	the	tentative	

assignment	 to	 newly	 created,	 experimental	 subcategories	 of	 an	 already-diagnosed	

disorder.		

However,	 where	 ML	 is	 applied	 to	 the	 clinic	 directly,	 stakes	 seem	 far	 higher.	 From	

identifying	patients	at	risk	of	psychosis	(Koutsouleris	et	al.,	2015;	Ramyead	et	al.,	2016)	

to	predicting	the	course	of	multiple	sclerosis	(Zhao	et	al.,	2017),	from	prognostic	tests	

for	Alzheimer’s	dementia	(Dallora,	Eivazzadeh,	Mendes,	Berglund,	&	Anderberg,	2017)	

to	 algorithms	 suggesting	 ideal	 psychopharmacologic	 drugs	 for	 Major	 Depressive	

Disorder	 (Chekroud	 et	 al.,	 2016;	Webb	 et	 al.,	 2018),	 future	 patients	will	 certainly	 be	

treated	based	on	recommendations	by	programs	relying	on	ML	and	neuroimaging.	If	left	

unchecked,	this	could	endanger	the	safety	and	well-being	of	patients,	e.g.	if	the	use	of	a	

diagnostic	program	provides	the	wrong	diagnosis	or	misses	a	potentially	life-threatening	

illness,	 leading	 in	turn	to	wrong	or	delayed	treatment.	Potentially,	 recommendations	
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may	also	be	skewed	by	biased	input	data,	reinforcing	direct	or	indirect	discriminatory	

practices	(Favaretto	et	al.,	2019).	Similar	problems	can	arise	with	programs	suggesting	

particular	 treatments.	The	shortcomings	of	 IBM’s	Watson,	 recommending	dangerous	

treatment	strategies	in	oncology,	may	serve	as	a	cautionary	example	here	(Ross,	2018).	

Many	 authors	 have	 thus	 argued	 that	 the	 development	 of	 such	 applications	warrants	

special	 scrutiny	 to	 safeguard	 against	 unjustified	 systematic	 biases,	 to	 ascertain	 the	

clinical	safety	of	their	deployment	and	to	establish	clear	chains	of	responsibility.	Yet,	

given	the	vast	disparities	in	potential	uses	and	methods	of	ML	for	clinical	neuroscience,	

it	 seems	 surprising	 that	 transparency	 is	 often	 treated	 as	 an	 all-purpose	 remedy	 for	

potential	challenges	posed	by	its	implementation.	A	recent	review	of	translational	ML	

for	psychiatric	neuroimaging	for	example	suggested	that	“[f]or	use	in	clinical	support	

systems,	transparency	is	both	necessary	and	sufficient	for	legal	certification	and	patient	

safety”	 (Walter	et	al.,	2019).	 It	 thus	seems	worth	shedding	more	 light	on	this	heavily	

burdened	ideal.		

6.3	The	ideal	of	transparency		

For	a	clear	discussion	of	the	ethical	role	of	transparency,	one	firstly	needs	to	note	that	

the	term	itself	encompasses	two	mutually	exclusive	meanings	(Turilli	&	Floridi,	2009).	

On	 the	 one	 hand,	 in	 computer	 science	 transparency	 commonly	 refers	 to	 a	 process’s	

property	of	being	invisible	to	the	user.	For	example,	if	a	common	text-editing	program	

is	updated	to	make	it	run	faster,	its	external,	visible	user-interface	may	not	change	at	all,	

even	though	the	underlying	computational	processes	may	be	quite	different	in	the	new	

version.	 Still,	 such	 invisible	 change	 in	 the	 program’s	 internals	 would	 be	 called	

“transparent”	(Turilli	&	Floridi,	2009).	On	the	other	hand,	transparency	also	denotes	a	

process’s	 property	 of	 being	 visible,	 often	 in	 the	 combined	 term	 “algorithmic	
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transparency”.	 As	 an	 ideal,	 it	 describes	 programs	 that	 enable	 the	 user	 to	 see	 and	

scrutinise	its	internals,	i.e.	the	underlying	computational	processes	taking	place	(Desai	

&	Kroll,	2017).	 In	 the	ethical	and	 legal	arguments	 that	concern	us	here,	 transparency	

usually	refers	to	the	second	meaning	only,	and	I	will	adhere	to	it	in	the	following.		

Unfortunately,	 clear	 definitions	 of	 transparency	 are	 hard	 to	 come	 by,	 and	 quite	

frequently	transparency	serves	as	“an	empty	signifier	that	can	be	filled	by	very	different	

interpretations”	(Worthy,	2018).	In	a	minimal	definition,	transparency	merely	describes	

“putting	content	 in	 the	public	domain”	 (O’Neill	&	Bardrick,	 2015).	 Such	disclosure	 is	

thought	to	be	commendable	because	it	allows	shedding	light	on	something	otherwise	

hidden,	or	as	the	former	member	of	the	US	supreme	court	Louis	Brandeis	remarked:	

“Sunlight	 is	 said	 to	 be	 the	 best	 of	 disinfectants;	 electric	 light	 the	 most	 efficient	

policeman”	 (Brandeis,	 quoted	 in	 Hansen	 and	 Flyverbom	 (2015)).	 Related	 to	 this	 are	

positions	 which	 define	 transparency	 according	 to	 its	 opposition	 to	 concealment	 as	

“lifting	the	veil	of	secrecy”	((Davis,	1998,	p.	121),	quoted	in	(Meijer,	2009)).	In	political	

contexts,	this	renders	it	often	interchangeable	with	notions	of	openness	and	even	finds	

tangible	expression	in	architecture.	The	glass	dome	of	the	Berlin	Reichstag	building	by	

Sir	Norman	Foster,	promising	an	open,	transparent	government,	may	serve	as	a	prime	

example	 (Worthy,	 2018).	 Where	 transparency	 and	 secrecy	 are	 pitched	 against	 each	

other,	 they	are	often	portrayed	rather	simplistically	as	a	clash	between	good	and	evil	

(Worthy,	2018).	

Depending	 on	 the	 context,	 “transparency”	 is	 then	 adorned	 with	 a	 domain-specific	

epithet,	from	governmental	transparency	(Meijer,	2013)	and	information	transparency	

(Turilli	&	Floridi,	2009)	to	algorithmic	transparency	(Desai	&	Kroll,	2017),	to	name	but	

three	prominent	examples.	Of	course,	the	kind	of	transparency	commonly	invoked	with	
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regard	to	ML	aligns	closely	with	the	last	kind.	However,	as	Albert	Meijer	has	argued,	an	

understanding	 of	 transparency	 rooted	 in	 modern	 discourse	 about	 information	

technology	has	 become	 so	 pervasive	 that	 the	 two	have	 become	 almost	 synonymous:	

“Modern	 transparency	 is	 computer-mediated	 transparency”	 (Meijer,	 2009,	 emphasis	

added).	According	to	Meijer,	three	key	components	characterise	this	particular	form	of	

transparency.	 First,	 it	 is	 unidirectional	 in	 the	 sense	 that	unlike	 in	public	 assemblies,	

where	information	is	mutually	exchanged	between	various	agents,	information	flows	in	

one	direction	only.	Second,	computer-mediated	 transparency	usually	entails	 that	 the	

transferred	 information	 is	 taken	out	of	 its	context,	 i.e.	disconnected	 from	its	original	

theoretical	and	practical	underpinnings.	The	reason	for	this	lies	in	a	third	characteristic,	

namely	that	modern	transparency	is	calculative	and	hence	mostly	requires	quantifiable	

information:	 “computer-mediated	 forms	 of	 transparency	 reflect	 certain	 aspects	 of	

reality,	namely	those	aspects	that	are	being	measured”	(Meijer,	2009).	

A	crucial	reason	why	many	hold	transparency,	understood	as	“visibility	contingent	upon	

observation”	(Brighenti	(2007)	quoted	in	Hansen	and	Flyverbom	(2015)),	 to	be	key	 in	

resolving	ethical	challenges	-	such	as	the	challenges	of	applied	ML	-	lies	in	its	supposed	

function	 of	 enabling	 other	 important	 ethical	 principles.	 Fittingly,	Matteo	Turilli	 and	

Luciano	Floridi	(Turilli	&	Floridi,	2009)	have	dubbed	transparent	access	to	certain	kinds	

of	information	“pro-ethical”,	namely	where	disclosure	of	information	has	an	impact	on	

ethical	 principles.	 In	 the	 particular	 context	 of	 ML,	 transparency	 is	 thought	 to	 help	

establish	accountability	and	promote	fairness,	by	baring	unjustified	biases	resulting	in	

discriminatory	differential	treatment	of	salient	social	classes	(Kroll	et	al.,	2017).	In	doing	

so,	 transparency	 seems	 a	 vital	 condition	 for	 rendering	 clinically	 applied	 machine	

learning	trustworthy.		
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6.4	Trust	and	trustworthiness		

Interest	in	different	forms	of	trust	has	begotten	immense	corpora	of	academic	literature	

throughout	the	past	decades.	Philosophers	and	social	scientists	alike	have	tackled	the	

topic	from	different	angles,	motivated	by	the	fact	that	it	constitutes	a	central,	but	long-

neglected	 phenomenon	 (Baier,	 1986,	 p.	 232f.;	 Luhmann,	 1968,	 p.	 FN1).	 The	 resulting	

definitions	of	 trust	differ	 largely,	and	so	do	 its	classifications,	distinguishing	between	

goodwill	 trust,	 competence	 trust,	 contractual	 trust,	 calculus-based	 trust,	 knowledge-

based	 trust	 and	 identification-based	 trust,	 to	 name	 but	 a	 few	 (Bachmann,	 2001).	 It	

suffices	here	to	look	at	some	of	its	general	properties	that	are	important	to	our	inquiry	

and	 common	 to	 both	 interpersonal	 and	 institutional	 (or	 public)	 trust	 (Townley	 &	

Garfield,	2013).32	Two	overlapping	perspectives	 shape	 the	debate:	 sociologists	 such	as	

Georg	Simmel,	Niklas	Luhmann	and	Barbara	Misztal	are	often	primarily	concerned	with	

the	functions	of	trust	(Luhmann,	1968;	Misztal,	1996;	Möllering,	2001),	while	theorists	

who	take	a	more	philosophical	approach	such	as	Annette	Baier,	Russell	Hardin	or	Onora	

O’Neill	aim	for	definitory	clarifications	(Baier,	1991;	Hardin,	2002;	O'Neill,	2002b).	

Most	accounts	agree,	 from	a	conceptual	point	of	view,	 that	 trust	 takes	 the	 form	of	a	

three-part	relation:	A	trusts	B	regarding	X,	where	X	might	range	from	particular	actions,	

including	speech	acts,	to	general	assumptions	about	B’s	behaviour	or	character	(Baier,	

1986;	Hardin,	2002,	p.	9).	Usually,	A	will	only	place	her	trust	in	B	if	she	believes	B	to	be	

competent	with	regard	to	X	and	also	to	be	committed	 to	X.33	For	example,	I	will	only	

entrust	my	neighbour	with	taking	care	of	my	flowers	while	on	vacation	if	I	take	her	to	

 
32	In	doing	so,	I	will	necessarily	leave	out	many	important	facets	of	trust,	especially	conative	or	emotional	
components,	which	 arguably	 are	 vital	 for	 full-fledged	 forms	 of	 trust.	 Some	 even	 hold	 that	 only	 non-
cognitive	trust	should	be	regarded	as	trust	in	the	fullest	sense	(Becker,	1996).	
33	However,	exceptions	exist,	for	example	parents	placing	trust	in	their	children	as	a	means	of	education,	
even	when	they	are	convinced	that	the	children	will	fall	short	of	their	trust	(McGeer,	2008,	p.	241).	
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be	capable	of	 treating	plants	appropriately	and	am	also	optimistic	about	her	actually	

looking	 after	 them.	At	 the	 same	 time,	 I	might	 not	 trust	 her	 to	 take	 care	 of	my	 pet,	

knowing	that	she	is	highly	averse	to	dogs.	Note	that	this	does	not	presuppose	that	she	

bears	 some	 form	 of	 goodwill	 towards	 me;	 she	 might	 well	 find	 me	 to	 be	 the	 most	

annoying	person	and	still	live	up	to	my	expectations,	e.g.	because	she	cares	about	her	

view	 onto	 my	 balcony	 or	 is	 interested	 in	 friendly	 relations	 to	 her	 neighbours.34	

Analogous	claims	can	be	made	about	trust	in	institutions,	where	the	parties	may	also	

not	act	out	of	emotional	attachment	but	rather	have	an	interest	in	future	interactions	

with	the	trustor.	As	Russell	Hardin	put	it:	“I	trust	you	because	I	think	it	is	in	your	interest	

to	take	my	interests	in	the	relevant	matter	seriously”	(Hardin,	2002,	p.	1).	

While	exact	conceptualisations	of	trust	remain	challenging,	the	phenomenon’s	central	

functions	 seem	 clearer.	 As	 an	 expectation	 in	 specific	 situations	 of	 uncertainty,	 trust	

serves	as	a	means	to	reduce	social	complexity	in	absence	of	certainty	(Luhmann,	1968)	

and	thus	constitutes	“a	solution	for	specific	problems	of	risk"	(Luhmann,	2000,	p.	95).	

After	 all,	 trust	 is	 only	 necessary	 where	 one	 lacks	 comprehensive	 knowledge	 or	 the	

capacity	to	exercise	full	control	and	hence	needs,	to	some	extent,	to	rely	on	the	actions	

of	others.	To	stay	with	the	previous	example,	I	would	not	need	to	trust	my	neighbour	if	

I	could	either	water	my	flowers	myself	or	had	means	to	fully	determine	her	actions.	As	

a	means	to	deal	with	risk,	trusting	itself	remains	a	“risky	engagement”	(Luhmann,	2017)	

and	renders	us	vulnerable	to	the	actions	of	others.	Annette	Baier	even	uses	the	property	

of	 being	open	 to	betrayal	 as	 a	 core	 characteristic	 of	 trust,	 to	distinguish	 it	 e.g.	 from	

reliance	(Baier,	1986,	p.	235).		

 
34	I	am	following	O’Neill	here	(O'Neill,	2002a,	p.	14),	who	disagrees	on	this	point	with	Annette	Baier	(Baier,	
1986,	p.	234f).	
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Clinical	applications	of	ML	for	decision-making	in	medicine	doubtlessly	entail	risks	and	

make	patients	vulnerable	to	failure	on	multiple	levels.	But	is	trust	really	the	correct	way	

of	dealing	with	such	risks?	After	all,	it	is	crucial	not	to	trust	blindly	and	only	place	trust	

in	trustworthy	agents.	“Not	to	trust	rashly	is	the	nerves	and	joints	of	wisdom,”	Cicero	

advised	his	brother	 (Cicero,	 1963,	p.	39).	For	ethical	debates	with	a	view	on	practical	

implementation,	evaluating	 the	 trustworthiness	of	an	agent,	 institution	or	procedure	

may	 thus	 be	more	 pressing	 than	 an	 abstract	 debate	 about	 the	 phenomenon	of	 trust	

(O’Neill,	 2013).	 While	 there	 is	 much	 debate	 about	 properties	 that	 warrant	

trustworthiness,	a	few	points	stand	out	as	uncontroversially	detrimental,	as	they	follow	

from	the	previously	discussed	expectations	of	the	trustees	to	be	capable	and	committed	

to	act	in	our	interest.	We	do	not	want	to	trust	people	with	tasks	they	cannot	possibly	

achieve	 (Baier,	 1991;	 Scanlon,	 1990)	 and	 even	 less	 if	 they	 invite	 our	 trust	 by	 lying	 or	

withholding	critical	 information	 in	a	deceiving	manner	 (O'Neill,	 2002a,	 chapter	6.4).	

Additionally,	we	 expect	 trustees	 to	 act	 on	our	 interests,	 so	 it	 can	undermine	 agents’	

trustworthiness	if	they	have	important	competing	interests	that	are	opposed	to	our	own.	

Importantly,	anyone	abusing	their	power	against	us	would	also	be	very	untrustworthy,	

for	we	certainly	do	not	want	to	increase	this	power	further	by	placing	unjustified	trust	

in	them.		

What	could	this	mean	with	regard	to	clinically	applied	ML?	Many	authors	agree	that	as	

a	 remedy	 for	 achieving	 trustworthiness	 of	 such	 new	 methods	 we	 need	 to	 turn	 to	

transparency.	 The	 assumed	 mechanism	 seems	 to	 be	 that	 transparency	 increases	

knowledge	 about	 a	 procedure	 and	 thus	 renders	 it	 more	 trustworthy	 insofar	 as	 it	

decreases	the	uncertainty	necessarily	involved	in	trusting.	In	their	recent	guidelines,	the	

EU	Commission’s	High	Level	Expert	Group	on	Artificial	 Intelligence	explicitly	names	
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transparency	as	one	of	its	seven	key	requirements	for	trustworthy	AI.	Similarly,	and	with	

particular	regard	to	medical	ML	(MLm),	Vayena	et	al	state	that	a	“lack	of	transparency	

can	preclude	the	mechanistic	 interpretation	of	MLm-based	assessments	and,	 in	turn,	

reduce	 their	 trustworthiness”	 (Vayena	 et	 al.,	 2018).	Certainly,	 trustworthiness	 can	be	

enhanced	in	certain	instances	by	tangible	forms	of	(algorithmic)	transparency.	However,	

it	is	far	from	clear	that	the	relation	between	transparency	and	trust	is	as	straightforward	

as	is	commonly	assumed.		

6.5	The	paradox	relation	of	trust	and	transparency	

Does	 transparency	 beget	 trust	 -	 or	 are	 matters	 more	 complicated?	 The	 British	

philosopher	and	bioethicist	Onora	O’Neill	has	long	addressed	this	question	from	several	

angles.	To	tackle	the	intricacies	of	transparency	of	clinically	applied	ML,	her	framework	

appears	particularly	well	suited	since	she	developed	her	account	in	the	very	context	of	

biomedical	 ethics.	 Three	 of	 her	 works	 stand	 out	 as	 highly	 instructive:	 her	 seminal	

Autonomy	 and	 Trust	 in	 Bioethics,	 the	 BBC	 Reith	 Lectures	 A	 Question	 of	 Trust	 and	

Rethinking	Informed	Consent	in	Bioethics,	co-authored	with	Neil	Manson.	From	these	

three	works,	three	key	ideas	can	be	distilled	that	have	not	yet	been	applied	to	clinical	

ML	but	can	guide	further	discussions	on	its	ethical	dimension.		

First,	 in	 her	 Autonomy	 and	 Trust	 in	 Bioethics,	 O’Neill	 highlights	 that	 factually,	

transparency	does	not	simply	beget	trust.	To	do	so,	she	extensively	discusses	trust	in	the	

so-called	“risk	society”	(O'Neill,	2002a),	referring	to	the	work	of	the	German	sociologist	

Ulrich	Beck	(Beck,	1992).	From	a	sociological	perspective,	risk	societies	are	characterised	

by	increased	public	fears	and	anxieties	about	hidden	risks	of	increasingly	complex	social	

and	technological	practices.	Frequently,	these	“focus	particularly	on	hazards	introduced	

(or	supposedly	introduced)	by	high-tech	medicine”	(O'Neill,	2002a,	p.	8).	Importantly	
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though,	risk	societies	are	not	necessarily	characterised	by	factually	increased	risks	in	all	

areas	of	society.35	In	fact,	risk	societies	are	often	wealthier,	healthier	and	less	secretive	

than	 their	historical	precursors.	 Still,	due	 to	a	 changed	perception	 of	 risks,	people	 in	

these	societies	tend	to	be	more	reluctant	to	placing	trust.	The	medical	domain	provides	

a	particular	striking	example	for	such	erosion	of	trust.	In	the	United	States,	public	trust	

in	the	medical	profession	declined	sharply	 from	73%	reported	 in	 1966	to	34%	in	2012	

(Blendon,	Benson,	&	Hero,	2014).	Yet,	provisions	to	increase	transparency	and	foster	the	

autonomous	 and	 informed	 decision	 making	 of	 patients	 have	 undoubtedly	 greatly	

increased	 since	 the	 60s,	 when	 paternalist	 doctor-patient-relationships	 were	 still	 the	

norm.36	How	may	one	explain	such	observations,	undermining	a	 supposed	close	 link	

between	transparency	and	trust?	One	tentative	explanation	could	be	that	if	people	are	

generally	distrustful	of	technological	advances,	transparency	may	have	limited	influence	

on	such	a	 societal	phenomenon	since	people	may	still	 remain	distrustful	against	any	

transparently	 disclosed	 information.	 O’Neill	 calls	 such	 a	 public	 mood,	 potentially	

diminishing	the	impact	of	transparency	of	trust,	a	“culture	of	suspicion”	(O'Neill,	2002b).	

In	an	imaginary	society	of	trust	though,	things	may	be	just	the	opposite.	Due	to	higher	

generalised	trust,	people	may	be	more	prone	to	placing	trust	in	transparently	disclosed	

information	 about	 medical	 technologies.	 In	 other	 words,	 we	 find	 the	 paradox	 that	

effective	 disclosure,	 which	 could	 increase	 a	 procedure’s	 trustworthiness,	 seemingly	

presupposes	trust.37		

 
35	Of	course,	this	is	not	to	deny	the	grave	risks	created	by	modern	societies	in	specific	areas,	e.g.	newly	
introduced	environmental	risks	(Beck,	1992).		
36	It	may	be	worth	recalling	here	that	the	principlist	framework	by	Beauchamp	and	Childress,	stressing	
respect	for	autonomy	as	a	fundamental	principle	of	medical	practice,	was	only	published	in	1979.		
37	Annette	Baier	has	made	a	similar	point,	stressing	that	“trust	[is]	a	response	to	perceived	trustworthiness,	
[…]	but	it	is	equally	true	that	trustworthiness	is,	to	some	degree,	a	response	to	trust.”(Baier,	2013)	
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In	her	Reith	Lectures,	O’Neill	discusses	this	entangled	relation	in	more	detail.	 In	 line	

with	 Meijer’s	 previously	 discussed	 arguments	 about	 modern	 transparency	 being	

computer-mediated,	 also	 for	 O’Neill,	 transparency	 constitutes	 the	 “new	 ideal	 of	 the	

information	age”	(O'Neill,	2002b).	In	political	contexts,	 increasing	transparency	often	

seems	 coextensive	 with	 improving	 structures	 of	 accountability,	 supposedly	 fostering	

trust	 in	public	and	professional	 institutions.	However,	accountability	does	not	aim	at	

establishing	 relations	 of	 trust	 but	 rather	 at	 minimising	 risks,	 ideally	 improving	 a	

trustee’s	trustworthiness.38	However,	mere	transparency	in	the	sense	of	“putting	content	

in	the	public	domain”	(O’Neill	&	Bardrick,	2015)	may	not	increase	trustworthiness,	if	it	

does	 not	 aim	 at	 increasing	 the	 trustor’s	 knowledge,	 e.g.	 because	 it	 is	 accessible	 but	

incomprehensible.	Thus,	while	increased	transparency	may	often	have	beneficial	effects,	

it	is	too	little	for	establishing	a	trustee’s	trustworthiness	(O’Neill	&	Bardrick,	2015).	At	

the	same	time,	focusing	solely	on	transparency	runs	danger	of	marginalizing	other,	more	

basic	obligations	(O'Neill,	2002b).	In	particular,	O’Neill	argues,	these	comprise	the	true	

enemy	of	trust,	which	is	neither	secrecy	nor	a	lack	of	information,	but	wilful	deception.	

In	fact,	such	deception	can	come	in	the	very	guise	of	supposed	transparency,	namely	

when	 agents	 hide	 behind	 a	 rallying	 cry	 of	 transparency	 to	 engage	 in	 information	

dumping,	 burying	 future	 trustors	 under	 a	 heap	 of	 unsorted	 or	 misleading	 data,	

confusing	the	addressee	and	obscuring	the	actually	crucial	information.	Of	course,	this	

is	not	to	say	that	some	forms	of	transparency	may	not	render	a	process	trustworthy.	Full	

and	transparent	disclosure	of	information	can,	in	some	instances	and	particularly	after	

previous	cases	of	deception,	improve	the	trustworthiness	of	agents	and	institutions.	Yet,	

 
38	Of	course,	this	is	not	to	say	that	trust	is	a	mere	matter	of	risk	calculation.	
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O’Neill	argues,	an	obsession	with	transparency	can	also	undermine	trust:	 like	plants,	

trust	does	not	flourish	when	constantly	uprooted	(O'Neill,	2002a).	

In	Rethinking	 Informed	Consent	 in	Bioethics,	O’Neill	 and	Manson	provide	 a	practical	

demonstration	of	these	considerations	and	show	how	effective	disclosure	requires	trust,	

with	specific	regard	to	informed	consent	(Manson	&	O'Neill,	2007).	Following	Willard	

Van	Orman	Quine’s	distinction	of	referential	transparency	and	opacity,	they	stress	that	

informed	consent	is	referentially	opaque	(Quine,	1980).	Their	general	idea	is	that	if	A	

consents	to	B	doing	p,	she	does	thereby	not	consent	to	q,	even	if	the	propositions	q	and	

p	 are	 logically	 equivalent.	 Drawing	 on	 an	 example	 from	 Ruth	 Faden	 and	 Tom	

Beauchamp	 (Faden,	Beauchamp,	&	King,	 1986),	O’Neill	 and	Manson	highlight	 that	 a	

person	may	consent	to	taking	lysergic	acid	diethylamide	as	part	of	a	study.	Yet,	the	same	

person	would	possibly	not	consent	to	the	very	same	procedure	if	she	was	asked	to	take	

LSD	 –	 even	 though,	 of	 course,	 the	 two	 are	 identical.	 On	 a	more	 applied	 level,	 this	

abstract	debate	finds	its	expression	in	the	requirements	of	valid	informed	consent,	which	

entails	 that	 the	 patient	 or	 research	 subject	 actually	 understands	 the	 proposition	 to	

which	she	consents.	Researchers	or	physicians	asking	for	consent	hence	need	to	consider	

the	level	of	knowledge	and	the	beliefs	of	the	consenters,	who	in	turn	may	place	their	

trust	in	them	that	the	information	provided	is	correct,	comprehensive	and	adequately	

understandable.	 In	 other	 words,	 mere	 transparency	 is	 not	 sufficient	 since	 effective	

transference	 of	 information	 requires	 taking	 into	 account	 the	 audience’s	 needs	 and	

interests	to	make	sure	that	the	information	and	its	implications	are	properly	understood.	

To	stay	with	the	example,	putting	LSD’s	technical	name	in	a	consent	sheet	instead	of	

providing	 the	 commonly	 known	 abbreviation	 could	 thus	 very	well	 amount	 to	wilful	
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deception	 -	 as	 could	 the	mere	publication	of	 an	 incomprehensible	 source	 code	 for	 a	

medical	ML	application.		

6.6	Trust	and	transparency	of	applied	ML	for	neuroimaging	

If	 O’Neill	 is	 right	 and	 trust	 is	 required	 for	 effective	 communication,	 it	 will	 prove	

impossible	 to	avoid.	Certainly,	 this	holds	 true	within	medicine,	 inherently	shaped	by	

unknown	and	unknowable	risks.	Accordingly,	many	authors	have	addressed	issues	of	

trust	in	the	medical	domain	in	past	years	and	both	interpersonal	and	public	trust	have	

received	plenty	of	attention	from	medical	ethicists	(Gille,	Smith,	&	Mays,	2015;	O'Neill,	

2002a).	For	example,	Gille	et	al	have	proposed		a	model	of	public	trust	in	medicine	which	

draws	on	Habermas’	Theory	of	Communicative	Action	and	acknowledges	the	centrality	

of	trust	as	a	necessary	condition	between	communicating	parties	(Gille,	Smith,	&	Mays,	

2017).	However,	the	necessity	of	trust	goes	far	beyond	communication,	or	as	Luhmann	

put	it:	“Without	trust,	everyday	life	would	be	impossible;	indeed	one	would	not	even	be	

able	to	get	out	of	bed	in	the	morning”	(Luhmann,	2017,	p.	20).		

It	 should	hence	not	 come	as	 a	 surprise	 if	 new	advances	 in	medical	ML,	whether	 for	

diagnostic,	 therapeutic	 or	 prognostic	 purposes,	will	 require	 trust	 for	 their	 successful	

implementation.	 In	 fact,	 trust	 seems	 necessary	 for	 the	 acceptance	 of	 ML-assisted	

decision	making	not	only	by	patients,	but	also	by	physicians,	nurses	and	other	health	

care	professionals.	However,	as	this	chapter	aimed	to	show,	mere	transparency	cannot	

guarantee	 trustworthiness.	So	what	could	 this	mean	practically	 if	 applications	of	ML	

drawing	on	neuroimaging	data	gain	ground?	As	a	first	step,	acknowledging	that	mere	

unidirectional	disclosure	is	not	a	remedy	for	all	potential	problems	may	create	space	to	

make	more	fundamental	notions	central.	Making	the	source	code	publicly	available	is	

certainly	commendable	in	research	contexts,	but	in	itself	too	little	to	render	a	program	
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trustworthy	for	patients	and	physicians.	Secondly,	this	opening	would	need	to	be	filled	

by	principles	that	are	more	substantial.	In	her	most	recent	book,	O’Neill	sketches	such	

an	alternative	model	which	she	calls	“intelligent	openness”:	“Scientific	communication	

[…]	 requires	 not	 mere	 transparency,	 but	 “intelligent	 openness”	 that	 ensures	 that	

communication	 is	 in	principle	accessible,	 intelligible	and	assessable	 for	all	others,	 so	

fully	open	to	their	check	and	challenge”	(O'Neill,	2018,	p.	51).	

The	recent	EU	guidelines	for	trustworthy	AI	seem	to	provide	a	step	in	this	direction,	as	

they	link	transparency	explicitly	to	communication.	With	specific	regard	to	medical	ML,	

programs	 developed	 to	 be	 understandable	 by	 patients	 and	 physicians	may	 be	much	

better	 suited	 to	 build	 (on)	 trusting	 relationships,	 as	 they	 aim	 at	 successful	

communication.	 For	 example,	 so-called	 Influence	 Style	Explanations,	which	 estimate	

the	 impact	 of	 distinct	 inputs	 on	 a	 given	 output,	 already	 in-use	 for	 non-medical	

recommender	systems,	could	be	 implemented	for	applications	of	medical	ML	as	well	

(Abdollahi	 &	Nasraoui,	 2018).	 In	 clinical	 contexts,	 this	 could	 e.g.	 take	 the	 form	 of	 a	

weighted	 list	 of	 parameters	 taken	 into	 account	 for	 a	 program’s	 suggestion.	 In	

neuroimaging,	understandable	ML	programs	could	further	provide	visualizations,	which	

have	long	been	a	focus	for	examining	and	explaining	ML	(Zhou	&	Chen,	2018a).	Such	

applications	could	e.g.	highlight	visual	aspects	in	the	data	taken	to	be	salient,	such	as	

newly	acquired	white	matter	lesions	for	MS	progress	reports.		

Two	twists	need	to	be	noted	 in	discussions	of	medical	ML	 for	neuroimaging.	First,	a	

debate	 regarding	 the	 transparency	of	ML	may	stress	 that	already	 the	 input	 itself,	 i.e.	

neuroimaging	visualisations,	should	not	be	considered	belief-transparent,	mechanically	

objective	 representations	 of	 the	 outward	 world.	 Given	 the	 underlying	 complex	

interactions	 between	 humans	 and	 machines,	 most	 imaging	 modalities	 cannot	 be	
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ascribed	 the	 same	epistemic	 value	 as	photographs.	As	Adina	Roskies	has	noted	with	

regard	to	fMRI:	“We	do	not	 ‘see	through’	the	visual	properties	of	neuroimages	to	the	

visual	properties	of	their	subjects;	we	do	not	understand	the	causal	and	counterfactual	

relationships	between	the	images	and	the	data	they	represent	to	the	same	extent	that	

we	understand	them	with	photography”	(Roskies,	2007).	Reconsidering	transparency	of	

ML	 applications	 may	 hence	 inadvertently	 revitalise	 existing	 discourses	 about	 the	

epistemic	status	of	neuroimaging	modalities	and	draw	further	attention	to	the	training	

required	for	their	proper	understanding	(Racine,	Bar-Ilan,	&	Illes,	2005).		

Second,	as	Stephen	John	has	argued	with	regard	to	science	communication	and	climate	

change,	 expectations	 of	 transparency	 have	 become	 so	 engrained	 in	 our	 societal	

discourses	 that	 transparency	 can	 be	 seen	 as	 a	 fundamental	 principle	 of	 a	 “folk	

philosophy	of	science”	(John,	2018).		Hence,	while	transparency	may	in	fact	not	beget	

trust,	 an	 open	 denial	 of	 transparency	 could	 damage	 trust	 by	 breaking	 (arguably	

unrealistic)	expectations.	Again,	a	stronger	focus	on	a	more	intelligent	form	of	openness	

oriented	towards	communication	may	offer	a	way	out	of	this	dilemma	by	providing	a	

related,	yet	more	substantial	rallying	cry.		

Doubting	 the	primacy	of	 transparency	will	certainly	prove	challenging.	The	German-

Korean	 philosopher	 Byung-Chul	 Han,	 a	 long-standing	 critic	 of	 the	 “transparency	

society”,	 has	 warned	 against	 possible	 resistance:	 “The	 imperative	 of	 transparency	 is	

suspicious	of	everything	that	does	not	submit	to	visibility”	(Han,	2015b,	p.	24).	Still,	such	

change	 of	 focus	may	 be	 vital	 to	 increasing	 public	 trust	 in	 clinically	 applied	ML.	 As	

Annette	 Baier	 has	 noted,	 “trust	 comes	 in	 webs,	 not	 in	 single	 strands”	 (Baier,	 1991).	

Weaving	such	webs	anew	to	accommodate	for	new	medical	technologies	thus	seems	to	

pose	a	particular	challenge	–	but	one	worth	pursuing.	
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Abstract	

	
Recent	advances	in	machine	learning	(ML)	promise	far-reaching	improvements	across	

medical	care,	not	least	within	psychiatry.	While	to	date	no	psychiatric	application	of	ML	

constitutes	 standard	 clinical	 practice,	 it	 seems	 crucial	 to	 get	 ahead	 of	 these	

developments	and	address	their	ethical	challenges	early	on.	Following	a	short	general	

introduction	concerning	ML	in	psychiatry,	we	do	so	by	focusing	on	schizophrenia	as	a	

paradigmatic	 case.	Based	on	 recent	 research	 employing	ML	 to	 further	 the	diagnosis,	

treatment,	and	prediction	of	schizophrenia,	we	discuss	three	hypothetical	case	studies	

of	ML	applications	with	view	to	their	ethical	dimensions.	Throughout	this	discussion,	

we	follow	the	principlist	framework	by	Tom	Beauchamp	and	James	Childress	to	analyse	

potential	 problems	 in	 detail.	 In	 particular,	 we	 structure	 our	 analysis	 around	 their	

principles	 of	 beneficence,	 non-maleficence,	 respect	 for	 autonomy,	 and	 justice.	 We	

conclude	with	a	call	 for	cautious	optimism	concerning	 the	 implementation	of	ML	 in	

psychiatry	if	close	attention	is	paid	to	the	particular	intricacies	of	psychiatric	disorders	

and	its	success	evaluated	based	on	tangible	clinical	benefit	for	patients.		
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7.1	Introduction	

The	quest	for	objective	measures	of	mental	disorders	has	been	a	long-standing	ambition	

of	psychiatry	(Kapur,	Phillips,	&	Insel,	2012;	Singh	&	Rose,	2009).	Given	the	notorious	

difficulties	of	classifying	mental	disorders	and	the	challenge	of	establishing	psychiatric	

biomarkers,	many	recent	advances	put	their	hope	in	approaches	using	machine	learning	

(ML)	as	a	paradigm-shifting	way	 forward	(Bzdok	&	Meyer-Lindenberg,	2018;	 Janssen,	

Mourao-Miranda,	&	Schnack,	2018;	Shatte,	Hutchinson,	&	Teague,	2019).	By	applying	

ML	on	large-scale	datasets,	it	seems	feasible	to	distinguish	between	healthy	controls	and	

patients	diagnosed	with	major	depressive	disorder	or	 schizophrenia	on	an	 individual	

level	–	although	reported	diagnostic	accuracies	differ	largely	across	studies	(Ebdrup	et	

al.,	2018;	Gao,	Calhoun,	&	Sui,	2018;	Kambeitz	et	al.,	2015).	Furthermore,	ML	techniques	

can	differentiate	successfully	between	subgroups	within	psychiatric	categories	(Drysdale	

et	al.,	2017;	Dwyer	et	al.,	2018)	and	predict	the	success	of	specific	psychopharmacological	

interventions	 for	 single	 subjects	 (Chekroud	 et	 al.,	 2016;	Webb	 et	 al.,	 2018).	 Of	 high	

clinical	 interest	 are	 ML	 applications	 that	 provide	 robust	 probabilistic	 estimates	

regarding	 future	 onset	 of	 psychosis	 (Borgwardt	 et	 al.,	 2013;	 Chung	 et	 al.,	 2018;	

Koutsouleris	 et	 al.,	 2018)	or	 the	 risk	of	 suicide	 (Franklin	 et	 al.,	 2017;	 Just	 et	 al.,	 2017;	

Walsh,	 Ribeiro,	 &	 Franklin,	 2017).	 However,	 to	 allow	 translation	 to	 current	 clinical	

practice,	 further	 multicentre	 imaging	 studies,	 integrating	 clinical	 measures	 and	

multivariate	imaging	data,	are	needed	to	replicate	promising	initial	findings	(Giordano	

&	Borgwardt,	2019).		

Currently,	 there	 is	no	established	ML	application	 in	psychiatric	clinical	practice.	The	

drastic	increase	of	FDA	approvals	for	medical	applications	of	artificial	intelligence	(AI)	

in	 the	 past	 two	 years	 (Topol,	 2019)	 suggests	 that	 some	ML	 programs	 could	 soon	 be	
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integrated	 into	 standard	 clinical	 care,	 improving	 prediction	 and	 early	 detection,	

diagnostic	 certainty	 and	 individual	 treatment	 outcome	 in	 the	 sense	 of	 personalized	

psychiatry	(Perna,	Grassi,	Caldirola,	&	Nemeroff,	2018).	Unfortunately,	the	majority	of	

ML	applications	in	psychiatry	still	lack	in-depth	ethical	analysis.	With	few	exceptions	

discussing	 specific	 case	 studies	 (Martinez-Martin,	 Dunn,	 &	 Roberts,	 2018),	 ethical	

concerns	are	often	voiced	in	a	general	form	(Char,	Shah,	&	Magnus,	2018;	Topol,	2019;	

Vayena,	Blasimme,	&	Cohen,	2018),	thus	necessarily	neglecting	the	particular	intricacies	

of	potential	psychiatric	applications.		

ML	is	an	extremely	broad	term,	covering	many	distinct	computational	approaches	for	

even	 more	 heterogeneous	 real-world	 problems.	 We	 aim	 to	 demonstrate	 that	 any	

categorical	rejection	of	the	use	of	ML	in	psychiatry	would	be	ethically	wrong	given	its	

potential	benefits	but	that	careful	evaluation	is	needed	whether	a	particular	procedure	

improves	 clinical	 care	 or	 merely	 constitutes	 a	 nifty	 computational	 exercise.	 Using	

schizophrenia	as	a	paradigmatic	case,	we	will	first	sketch	some	fundamental	distinctions	

of	different	ML	methods,	before	turning	to	three	(hypothetical)	case	studies.	To	support	

our	 main	 claim,	 we	 will	 discuss	 these	 cases	 following	 the	 principlist	 framework	 of	

Beauchamp	 and	 Childress	 (2013),	 which	 has	 recently	 been	 embraced	 as	 providing	

suitable	principles	for	the	ethical	use	of	AI	as	well	("Ethics	guidelines	for	trustworthy	

AI,"	2019;	Floridi	et	al.,	2018).	

7.2	Machine	learning	in	psychiatry	

The	meaning	of	the	term	‘machine	learning’	is	often	ambiguous.	In	the	present	paper,	

we	use	ML	to	describe	learning	algorithms	which	improve	their	performance	in	a	certain	

task	based	on	prior	computation	(Iniesta,	Stahl,	&	McGuffin,	2016;	Mitchell,	1997).	ML	

in	 this	 sense	 comprises	 a	narrower	 field	 than	AI,	which	 includes	 generalized	AI	 and	
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incidentally	describes	”whatever	hasn't	been	done	yet”	(Hofstadter,	1980).	At	the	same	

time,	ML	itself	entails	many	specific	computational	approaches,	from	deep	learning	(DL)	

using	 artificial	 neural	 networks	 to	 algorithms	 relying	 on	 support	 vector	 machines	

(SVM).	 Across	 the	 many	 different	 methods	 of	 ML,	 a	 common	 distinction	 is	 drawn	

between	three	types:	supervised,	unsupervised	and	reinforced	learning.		

Typical	 tasks	 performed	 by	 supervised	 learning	 are	 problems	 of	 discriminative	

classification	where	 the	ML	algorithm	assigns	a	probability	of	belonging	 to	a	 certain	

category	Y	based	on	feature	X.	To	do	so,	supervised	learning	requires	labelled	training	

data,	matching	the	training	instances	to	labels	such	as	“diseased”	–	“healthy”,	“developed	

psychosis”	 -	 “did	not	develop	psychosis”	or	 “positive	 treatment	outcome”	–	 “negative	

treatment	 outcome”.	 After	 training,	 the	 ML	 algorithm	 can	 then	 assign	 these	 labels	

correctly	 to	 new	 data.	 Unsupervised	 learning,	 on	 the	 other	 hand,	 does	 not	 require	

labelled	 training	 data.	 Instead,	 it	 can	 make	 use	 of	 often	 more	 readily	 available,	

unlabelled	 data,	 such	 as	 whole-genome	 sequences	 or	 cell	 phone	 metadata,	 to	 find	

clusters	within	 these	 data	 points.	 In	 real-life	 settings,	 applications	may	 fall	 between	

these	two	approaches	and	are	described	as	“semi-supervised”	or,	as	recently	suggested	

by	 Yann	 LeCun,	 as	 “self-supervised”	 (LeCun,	 2018),	 complementing	 labelled	 training	

data	 with	 large	 bits	 of	 unlabelled	 data	 (Chapelle,	 Schölkopf,	 &	 Zien,	 2010).	 Finally,	

reinforcement	 learning	denotes	ML	programs	that	optimize	their	 interaction	with	an	

environment	by	 trying	 to	maximize	 reward	over	 time	 (Mnih	 et	 al.,	 2015).	While	 this	

approach,	 inspired	 by	 neuroscientific	 accounts	 of	 learning,	 does	 not	 require	 fully	

labelled	data,	it	needs	some	formalization	of	rewards,	e.g.	winning	an	ATARI	game.		

The	schematic	distinction	of	these	three	general	ML	types	can	also	be	 instructive	 for	

ethical	 debate	 of	 applied	 ML	 in	 psychiatry.	 For	 as	 we	 will	 show,	 differences	 in	
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methodology	do	not	only	have	a	big	impact	on	feasibility	since	labelling	of	data	often	

requires	cost-	and	labour-intensive	efforts	but	may	also	account	for	important	ethical	

implications.	

ML	type	 Required	data	 Typical	Problem	 Exemplary	application	

in	schizophrenia	

Unsupervised	 Unlabelled	training	

data	

Clustering	 Refine	diagnostic	criteria	

(case	1)	

Supervised	 Labelled	training	

data	

Classification		

and	regression	

Improve	diagnostic	

accuracy	(case	2)	

Reinforced	 Labelled	and	

unlabelled	data	

Dynamic		

decision-making	

Suggest	optimal	

treatment	regime	

(case	3)	

Table	7.1:	Supervised,	unsupervised	and	reinforced	ML	

Before	 turning	 to	 the	 potential	 of	 ML	 techniques	 to	 improve	 clinical	 care,	 some	

methodological	limitations	of	psychiatric	ML	need	to	be	mentioned,	recently	stressed	

by	Vieira	et	al.	(2019).	Some	of	these	concerns,	such	as	small	sample	size	or	publication	

bias,	 are	 pervasive	 across	 different	 research	 areas	 and	 neuroscientific	 research	 in	

particular	 (Button	 et	 al.,	 2013;	 Kellmeyer,	 2017;	 Schnack	 &	 Kahn,	 2016).	 Other	

methodological	issues	arise	with	specific	regard	to	ML,	for	example	regarding	failure	to	

rigorously	employ	nested	cross-validation,	testing	the	predictions	of	a	ML	program	on	a	

fully	 independent	 sample	 (Stahl	 &	 Pickles,	 2018).	 In	 addition,	 psychiatry’s	 high-

dimensional	 and	 often	 noisy	 data	 demand	 particular	 consideration	 and	may	 hinder	

adopting	 computational	 strategies	 popular	 in	 other	 medical	 areas.	 While	 DL	 is	

frequently	considered	the	method	of	choice	for	medical	 image	analysis	(Shen,	Wu,	&	

Suk,	2017),	some	recent	results	suggest	that	for	imaging-based	predictions	of	cognitive	
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and	behavioural	measures	classical	kernel	regression	is	at	least	as	successful	as	DL	(He	

et	al.,	 2019;	Mihalik	et	al.,	 2019),	 rendering	a	 linear	and	more	 interpretable	approach	

(Heinrichs	&	Eickhoff,	 2020)	potentially	preferable.	These	methodological	 challenges	

may	 partially	 account	 for	 inconsistent	 results	 across	 different	 studies,	 e.g.	 reporting	

largely	variable	accuracies	for	potential	biomarkers	of	schizophrenia	based	on	ML	and	

neuroimaging	(Kambeitz	et	al.,	2015).		

The	potentially	deepest	challenge	for	 implementing	ML	in	psychiatry	 lies	 in	 its	 long-

embattled	 nosology	 though	 (Kendler,	 2016;	 Kendler,	 Zachar,	 &	 Craver,	 2011;	 Zachar,	

2015),	 calling	 into	 question	 the	 choice	 of	 appropriate	 data	 for	 training.	 Given	 that	

psychiatry	arguably	still	lacks	a	successful	diagnostic	scheme	that	is	valid	and	reliable	

(Barron,	 2019),	 establishing	psychiatric	ML	programs	 relies	on	a	 shaky	ground	 truth.	

This	 problem	 is	 exacerbated	 by	 fundamental	 concerns	 whether	 a	 reductionist	

framework,	considering	psychiatric	disorders	as	mere	brain	diseases	to	be	investigated	

with	neuroimaging	and	genetics,	is	convincing	(Borsboom,	Cramer,	&	Kalis,	2018).	While	

we	 largely	 focus	on	neuroimaging	 studies	 in	our	examples	 for	 the	 sake	of	 simplicity,	

research	should	thus	be	careful	to	not	restrain	their	input	a	priori	to	biological	data	but	

also	include	social	and	idiosyncratic	information	on	individual	patients.	Using	natural	

language	 processing	 (NLP)	 on	 narrative	 electronic	 health	 records	 could	 provide	 a	

starting	point	for	such	an	endeavour	(Rumshisky	et	al.,	2016).	

7.3	Applications	of	ML	for	schizophrenia			

Future	ML	applications	for	patients	with	schizophrenia	may	differ	largely.	For	research	

purposes,	using	unsupervised	 learning	 to	 identify	altered	brain	 structures	 in	patients	

with	schizophrenia	is	common.	In	some	of	these	possible	approaches,	which	have	been	

described	as	data-	or	discovery-oriented	(Huys,	Maia,	&	Frank,	2016;	Krystal	et	al.,	2017),	
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the	algorithm	is	provided	with	neuroimaging	data	of	patients	with	schizophrenia	and	

left	to	find	clusters	(Dwyer	et	al.,	2018;	Schnack,	2017).	Hence,	apart	from	sample	choice,	

little	human	labelling	determines	the	data.	Instead,	the	algorithm	is	left	to	find	clusters	

that	may	or	may	not	map	onto	a	given	hypothesis	and	can,	in	some	cases,	correlate	with	

clinical	data.	Indeed,	given	the	manifold	disputes	over	psychiatric	categorizations,	some	

authors	hope	that	embracing	such	a	data-driven	ML	approach	may	provide	new	insights	

into	neurobiological	mechanisms	of	psychiatric	diseases	(Adams,	Huys,	&	Roiser,	2016;	

Huys	et	al.,	2016;	Madsen,	Krohne,	Cai,	Wang,	&	Chan,	2018;	Skatun	et	al.,	2017).	A	recent	

study	 that	 associated	 neuroanatomically	 distinct	 subtypes	 of	 schizophrenia	 with	

different	illness	duration	and	degrees	of	negative	symptoms	may	serve	as	an	example	for	

this	aspiration	(Dwyer	et	al.,	2018).	

Also	for	diagnostic	purposes,	ML	presents	new	opportunities	for	psychiatry.	Based	on	

specific	changes	in	brain	volume,	several	groups	have	shown	that	ML	can	distinguish	

non-medicated,	first-episode	patients	with	schizophrenia	from	healthy	controls	using	

volumetric	MRI	data	(Chin,	You,	Meng,	Zhou,	&	Sim,	2018;	Gould	et	al.,	2014;	Haijma	et	

al.,	2013;	Lee	et	al.,	2018;	Rozycki	et	al.,	2018;	Xiao	et	al.,	2017).	As	noted,	findings	so	far	

have	been	rather	 inconsistent	and	one	should	avoid	overoptimistic	 interpretations	of	

these	 results	 (Kambeitz	 et	 al.,	 2015;	 Vieira	 et	 al.,	 2019).	 Still,	 it	 seems	 reasonable	 to	

assume	that	in	the	future	some	ML	techniques	could	assist	physicians	in	their	diagnostic	

process.	Such	applications	could	provide	probabilistic	estimates	regarding	one	or	several	

diagnostic	 labels	 such	 as	 schizophrenia,	 based	 on	 overlap	with	 previously	 diagnosed	

patients.	Arguably,	most	such	methods	would	fall	under	the	label	of	supervised	learning	

since	the	training	data	need	to	be	labelled,	consisting	of	a	vector	of	individual	data	such	

as	brain	data	assigned	to	a	category	of	“diseased”	vs	“healthy”	respectively.		
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Finally,	recent	psychiatric	advances	employing	ML	have	seen	a	turn	towards	predicting	

certain	quantifiable	events	beyond	diagnostic	labels,	e.g.	providing	probabilities	for	the	

likelihood	of	an	onset	of	psychosis	(Koutsouleris	et	al.,	2018;	Koutsouleris	et	al.,	2015)	or	

for	the	treatment	success	of	one	certain	drug	(Chekroud	et	al.,	2016;	Webb	et	al.,	2018).	

While	the	majority	of	these	approaches	draw	on	supervised	or	unsupervised	ML,	some	

also	 use	 reinforcement	 learning	 to	 derive	 recommendations	 for	 optimal	 dynamic	

treatment	 regimes,	 using	 e.g.	 longitudinal	 data	 from	 so-called	 Sequential	 Multiple	

Assignment	Randomized	Trials	(SMARTs).	For	example,	by	considering	the	treatment	

success	of	specific	antipsychotics	from	the	CATIE	study	(Stroup	et	al.,	2003),	Ertefaie	et	

al.	have	constructed	a	Q-learning	approach	which	optimizes	treatment	outcome	based	

on	a	patient’s	characteristics	 (2016).	Even	more	 to	 the	point,	Koutsouleris	et	al.	have	

shown	that	a	cross-validated	ML	tool	trained	on	diverse	data	from	334	patients	could	

identify	individuals	which	were	more	likely	to	benefit	from	treatment	with	amisulpride	

or	 olanzapine	 than	 with	 haloperidol,	 quetiapine	 or	 ziprasidone	 (2016).	 Such	 studies	

should	 be	 taken	with	 a	 grain	 of	 salt	 though,	 given	 that	 there	 is	 no	 agreement	what	

constitutes	useful	measures	of	treatment	outcomes	in	psychiatry	(Zimmerman	&	Mattia,	

1999;	Zimmerman,	Morgan,	&	Stanton,	2018)	–	a	conundrum	the	 introduction	of	ML	

seems	unlikely	to	solve.		

7.4	Three	cases	and	four	principles	

To	highlight	 the	dissimilarities	between	different	usages,	we	provide	three	schematic	

cases	that	fall	within	the	range	of	possible	applications,	from	research	to	diagnosis	and	

choice	of	treatment	(Tbl.	2).	All	three	cases,	we	hold	it,	touch	upon	important	ethical	

concerns	 that	 can	 be	 discussed	 in	 accordance	 with	 the	 four	 principles	 put	 forth	 by	
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Beauchamp	 and	Childress:	 beneficence,	 non-maleficence,	 respect	 for	 autonomy,	 and	

justice	(Beauchamp	&	Childress,	2013).	

Three	potential	applications	for	ML	in	schizophrenia	
Case	 1:	 R	 is	 presenting	 with	 newly	 developed	 negative	 and	 positive	 symptoms	 at	 a	

university	 psychiatry	 department.	 Based	 on	 a	 clinical	 interview,	 R	 is	 diagnosed	with	

schizophrenia	by	a	psychiatrist.	As	part	of	a	research	program	that	aims	to	distinguish	

amongst	schizophrenia	subtypes,	Z	undergoes	structural	cranial	magnetic	resonance	

imaging	 (MRI)	 scanning	 which	 is	 analysed	 by	 a	 ML	 algorithm	 trained	 to	 find	

commonalities	and	differences	of	brain	volume	in	specific	cortical	areas	across	all	brain	

scans	 acquired	 from	 first-episode	 patients	 with	 schizophrenia	 presenting	 to	 the	

university	hospital.	Based	on	his	brain	scan,	R	is	assigned	to	a	subtype	of	schizophrenia	

with	a	typical	pattern	of	superior-temporal	grey	matter	loss.		

Case	2:	D	is	presenting	at	a	psychiatric	day-clinic	with	mild	psychotic	symptoms	and	is	

diagnosed	with	schizophrenia	after	a	clinical	interview.	Given	her	markedly	depressed	

mood	and	further	reported	symptoms	such	as	insomnia,	psychomotor	retardation	and	

strong	headache,	the	attending	psychiatrist	also	considers	differential	diagnoses	such	

as	a	major	depressive	episode	or	a	space-consuming	intracerebral	process.	To	exclude	

the	 latter,	 the	 attending	 psychiatrist	 refers	 her	 antipsychotic-naïve	 patient	 to	 a	

neuroradiologist	 to	 obtain	 a	 structural	MRI.	After	 segmentation	 of	white-	 and	 grey-

matter,	the	radiological	data	are	fed	to	a	machine	learning	algorithm	which,	based	on	

previous	 training	data	 in	a	comparable	population,	classifies	 the	patient	as	suffering	

from	 schizophrenia	 with	 a	 probability	 of	 70%.	 The	 psychiatrist	 sees	 her	 diagnosis	

confirmed	and	commences	psychopharmacological	treatment.		
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Case	3:	T	is	diagnosed	with	a	first	episode	of	schizophrenia	based	on	a	clinical	interview.	

To	 choose	 the	 most	 effective	 drug	 for	 his	 individual	 situation,	 his	 psychiatrist	

recommends	 a	 newly	 approved	 routine	 employing	 functional	 MRI	 during	 a	 reward-

learning	task.	Based	on	T’s	brain	activity	and	a	plethora	of	other	available	information,	

from	demographic	data	to	his	clinical	records,	the	ML	algorithm	suggests	one	specific	

anti-psychotic	 drug	 as	 ideal	 for	 T’s	 specific	 situation.	 Following	 the	 automated	

recommendation,	the	psychiatrist	prescribes	the	drug	to	her	patient.	

 
Table	2:	Case	Vignettes	

7.3.1	Beneficence		

The	principle	of	beneficence	expresses	an	aspiration	to	further	the	welfare	and	interests	

of	others,	potentially	implying	particular	obligations	of	acting	(Beauchamp	&	Childress,	

2013,	pp.	165-176).	As	our	previous	points	and	cases	indicate,	patients	may	benefit	from	

applied	ML	in	many	different	ways,	both	directly	and	indirectly.		

Direct	

Firstly,	 ML-supported	 diagnostic	 tools	 aim	 at	 improving	 diagnostic	 certainty.	

Techniques	such	as	in	the	case	of	D	(case	2)	may	serve	as	an	automated	second	opinion,	

confirm	a	psychiatrist’s	judgement	and	help	with	unclear	cases.	In	fact,	if	the	algorithm	

is	trained	on	data	of	the	highest	quality,	which	are	e.g.	labelled	independently	by	several	

internationally	leading	and	experienced	psychiatrists,	it	could	provide	patients	with	a	

reliable	diagnosis.	Considering	 the	difficulty	of	establishing	whether	schizophrenia	 is	

accurately	 diagnosed	 and	 given	 the	 considerable	 inter-rater	 disagreement	 among	

experts	(Mokros,	Habermeyer,	&	Kuchenhoff,	2018),	a	diagnostic	algorithm	supporting	

psychiatrists	in	their	decision	making	could	increase	the	likelihood	of	patients	receiving	
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a	 correct	 diagnosis	 and	 hence	 of	 receiving	 an	 adequate	 treatment.	 By	 providing	

prognostic	estimates	concerning	the	future	course	of	a	disorder,	such	as	the	occurrence	

of	psychotic	episodes,	or	the	success	of	specific	treatments,	ML	applications	may	also	

help	to	reduce	extraneous	psychopharmacological	interventions	(Martinez-Martin	et	al.,	

2018)	and	track	the	progression	of	the	disorder.	This	is	the	case	for	T	(case	3),	who	may	

be	spared	an	arduous	trial-and-error	regime	of	medication	by	an	algorithm	suggesting	

one	potentially	ideal	medication	early	on.	Of	course,	the	benefits	of	a	correct	diagnosis	

might	 be	 infringed	 dramatically	 by	 additional	 risks,	 to	which	we	 turn	 later,	 if	 these	

diagnostic	or	predictive	processes	were	to	be	left	unchecked.	However,	at	least	for	now,	

such	a	development	seems	rather	unlikely,	both	technically	and	socially,	in	most	medical	

specialties	(Topol,	2019).	

Indirect	

Beyond	these	immediate	clinical	uses,	patients	may	also	benefit	from	research	projects	

similar	to	our	first	case,	leading	to	more	accurate	diagnostic	categories.	After	all,	most	

current	psychiatric	diagnoses	as	enshrined	in	the	DSM	or	ICD	are	purely	descriptive,	

optimized	 primarily	 for	 validity	 and	 inter-rater	 reliability,	 not	 for	 underlying	

pathophysiology	–	but	this	lack	of	concern	for	etiological	underpinnings	has	long	been	

of	concern	to	many	in	the	field	(Hyman,	2011).	In	contrast,	computational	approaches	

based	 on	 ML	 aspire	 “to	 automatically	 segregate	 brain	 disorders	 into	 natural	 kinds”	

(Bzdok	&	Meyer-Lindenberg,	 2018).	Notwithstanding	 conceptual	 questions	 regarding	

the	nature	of	psychiatric	disorders	(Kendler,	2016;	Zachar,	2015),	ML	may	be	eminently	

suited	to	develop	biologically	more	plausible	diagnostic	categories,	allowing	for	more	

specific	 treatment	 options.	 After	 all,	 concerns	 of	 insufficiently	 grasping	 psychiatric	

complexity	has	long	accompanied	the	development	of	psychiatric	biomarkers	(Singh	&	
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Rose,	 2009).	ML	 drawing	 on	 rich	 data,	 from	 detailed	 biological	 information	 such	 as	

(f)MRI	scans	or	whole	genome	sequences	 to	demographic	data	and	electronic	health	

records,	could	arguably	accommodate	such	complexity.	Still,	the	concern	remains	that	

ML	 applications	 drawing	 on	ML	may	 overtly	 reify	 diagnostic	 categories	 designed	 as	

heuristic	constructs	(Hyman,	2010)	–	and	thus	end	up	harming	patients.	

7.3.2	Non-maleficence	

Abstaining	from	harm	is	a	bedrock	of	clinical	practice	(Smith,	2005).	How	does	ML	in	

psychiatry	fare	with	regard	to	this	crucial	principle?	Firstly,	privacy	concerns	may	come	

to	mind	here	(Vayena	et	al.,	2018).	How	is	sensitive	medical	information	disclosed	to	an	

algorithm	and	how	can	data	created	by	the	algorithm	be	protected	appropriately?	These	

are	essential	questions	but	only	concern	ML	techniques	indirectly,	via	the	data	used	and	

produced	 by	 its	 applications.	 Since	 privacy	 issues	 of	 big	 data	 have	 been	 addressed	

extensively	elsewhere	(Price	&	Cohen,	2019),	we	will	leave	them	aside	here	to	focus	on	

harm	potentially	caused	by	ML	in	psychiatry.	As	in	the	case	of	benefits,	there	are	both	

direct	and	indirect	ways	in	which	its	use	may	harm	patients.		

Direct	

First,	 using	 an	 algorithm	may	 bring	 about	 harm	directly,	 e.g.	when	 the	 diagnosis	 or	

predictions	made	by	the	ML	application	are	erroneous.	Previous	shortcomings	of	health-

related	 ML	 can	 be	 instructive	 here.	 IBM’s	 ML-based	 computer	 system	 Watson,	

advertised	as	a	revolutionary	tool	for	cancer	care,	has	been	shown	to	recommend	unsafe	

treatments	 endangering	 patients’	 safety	 and	 health	 (Ross,	 2018).	 Such	 errors	 are	

particularly	worrying	if	recommendations	of	algorithms	are	readily	accepted	by	medical	

staff,	 as	 in	 T’s	 case,	 or	 if	 the	 process	 would	 become	 fully	 automated.	 Although	 an	

erroneous	algorithm	is	likely	to	affect	more	patients	compared	to	an	individual	mistake	
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made	by	a	physician,	errors	are	far	from	exclusive	to	algorithms	(McLennan	et	al.,	2013)	

and	 these	 concerns	 could	 be	 tackled	 by	 a	 model	 of	 shared	 responsibility	 in	 which	

competent	human	agents	check	the	ML-based	suggestions	(Topol,	2019).	However,	as	

opposed	to	human	physicians,	a	trained	ML	algorithm	may	not	be	flexible	enough	to	

account	 for	contextual	changes	such	as	 the	swift	 rise	of	smartphone	usage	or	altered	

eating	habits.	Given	 the	dependency	of	psychiatric	 conditions	on	contingent	 societal	

contexts,	even	a	tested	and	approved	program	may	thus	require	regular	overhauling	and	

retraining	to	avoid	systematic	misjudgements.		

Indirect	

The	more	intricate	questions	seem	to	arise	from	indirect	effects	of	using	ML	in	patients	

with	schizophrenia.	By	potentially	modifying	the	expectations	of	doctors,	the	result	of	a	

computationally	 assigned	 risk-category	 will	 most	 likely	 influence	 downstream	

diagnostic	and	therapeutic	decision-making.	For	example,	in	mammography	screening	

risk	 stratification	 affects	 the	 detection	 performance	 of	 radiologists:	 a	 known	 BRCA	

mutation	strongly	decreases	the	number	of	missed	visible	breast	cancer	lesions	in	MRI	

scans	(Vreemann	et	al.,	2018).	Timing	the	disclosure	of	ML-based	computations	to	the	

physician	is	thus	crucial:	should	she	have	to	decide	on	one	diagnosis	first	before	being	

confronted	with	the	results	of	ML	diagnostics?	Furthermore,	the	impact	of	incorporating	

ML	 in	 the	clinical	 setting	will	 require	additional	 scrutiny	 regarding	 its	effects	on	 the	

therapeutic	relationship.	How	do	patients	perceive	the	use	of	ML	by	their	physicians	to	

arrive	at	diagnostic	 judgements	or	prognostic	estimates?	Does	 it	 impair	their	trust	 in	

health	care	professionals	and	if	so,	could	it	harm	their	compliance	and	the	therapeutic	

outcome?	 These	 questions	 are	 of	 particular	 importance	 in	 the	 case	 of	 psychiatric	

patients	who	 are	 particularly	 vulnerable	 to	 so-called	 “diagnostic	 overshadowing”,	 i.e.	
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health	care	professionals	falsely	attributing	somatic	symptoms	to	known	mental	health	

issues	(Callard,	Bracken,	David,	&	Sartorius,	2013;	Jones,	Howard,	&	Thornicroft,	2008;	

Shefer,	 Henderson,	 Howard,	 Murray,	 &	 Thornicroft,	 2014).	 These	 challenges	 merit	

ongoing	attention	and	require	accompanying	efforts	of	clinical	ML	implementation	with	

corresponding	empirical	bioethical	research	to	explore	potential	negative	impact.		

7.3.3	Patients’	autonomy	and	clinicians’	judgement	

Respect	 for	 autonomy	 demands	 conveying	 sufficiently	 detailed	 and	 understandable	

information	to	patients	about	planned	medical	procedures	and	asking	for	their	consent	

(Manson	&	O'Neill,	2007).	Such	disclosure	may	be	particularly	challenging	in	cases	of	

applied	ML,	used	by	medical	practitioners	who	may	themselves	not	fully	understand	the	

mathematical	underpinnings	of	an	algorithm.	Does	 the,	 to	 some	extent,	unavoidable	

opacity	of	ML,	commonly	discussed	as	“black	box”-problem,	clash	with	the	requirement	

to	appropriately	inform	patients?	And	should	one	ask	patients	for	their	explicit	consent	

when	using	(existing)	data	before	providing	it	to	the	algorithm	at	all?	After	all,	obtaining	

informed	 consent	 for	 the	 use	 of	 predictive	 analytics	 is	 not	 legally	mandatory	 at	 the	

moment	 (Cohen,	Amarasingham,	Shah,	Xie,	&	Lo,	2014).	One	could	wonder	whether	

discussing	ML	algorithms	with	a	group	as	vulnerable	as	patients	at	risk	of	psychosis	or	

paranoid	symptoms	might	not	exacerbate	 their	 situation	and	cause	severe	additional	

psychological	stress	(Martinez-Martin	et	al.,	2018).	

Questions	of	autonomy	also	stretch	to	the	domain	of	medical	doctors’	discernment	and	

respecting	clinicians’	judgement	is	vital	in	the	context	of	modern	health	care	systems	

(Faden	et	 al.,	 2013).	Much	depends	on	 the	conceptualization	of	 the	 relation	between	

human	expert	and	ML	algorithm.	One	analogy,	recently	proposed	by	Eric	Topol	(Topol,	

2019),	suggests	that	we	conceptualize	the	relation	of	clinician	and	algorithm	similarly	to	
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assisted	driving	and	increasingly	autonomous	cars.	While	the	machine	may	take	over	

some	tasks,	the	drivers	or	physicians	need	to	remain	in	charge	as	a	backup,	checking	the	

machine’s	 output	 by	 comparing	 it	 to	 their	 own	 judgements.	 This	 would	 facilitate	

attributing	degrees	of	responsibility	to	health	care	personnel,	clarifying	important	issues	

of	accountability	and	liability.	It	implies	that	human	agents	need	to	remain	able	to	weigh	

ML	 recommendations	 and	 potentially	 decide	 against	 them.	 Ideally,	 as	 a	 safeguard	

against	bad	 judgements	by	 single	 individuals	one	could	envision	provisions	 in	which	

disagreements	between	physicians	and	ML	application	lead	to	consultations	with	other	

clinicians,	e.g.	during	departmental	meetings,	providing	an	opportunity	to	sharpen	the	

clinical	 skills	 of	 everyone	 involved.	 Furthermore,	 an	 institutional	 framework	may	 be	

needed	 to	 test	 and	 approve	ML	 applications	 in	 a	 similar	 fashion	 as	 pharmaceutical	

products	(Paulus,	Huys,	&	Maia,	2016).	

7.3.4	Fair	allocation	and	systematic	biases	

Finally,	 using	ML	 in	 psychiatry	 also	 raises	 important	 issues	 concerning	 justice,	 from	

financial	 aspects	 to	 systematic	 biases.	Does	 increased	diagnostic	 certainty	 justify	 the	

allocation	of	scarce	financial	means	to	additional	computational	efforts	and	vindicate	

even	highly	expensive	exams	such	as	(f)MRI?	Integrating	the	data	from	examinations	

such	as	MRI	into	psychiatric	routines	may	pose	additional	serious	challenges	for	equal	

treatment	 if	 certain	 patients	 cannot	 undergo	 scanning	 due	 to	 limited	 availability	 or	

contraindications	 such	 as	 claustrophobia.	 Arguably,	 any	 new	 technique	 needs	 to	

establish	 a	measurable	 clinical	 benefit	 over	 a	 conventional	 psychiatric	 assessment	 to	

vindicate	 its	cost	 (Iwabuchi,	Liddle,	&	Palaniyappan,	2013),	or	 show	that	 it	 can	avoid	

costs	elsewhere.	With	regard	to	discerning	different	diagnostic	entities,	research	based	

on	 ML	 could	 also	 lead	 to	 issues	 commonly	 known	 as	 salami	 slicing:	 even	 without	
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understanding	 the	 underlying	 pathophysiological	 mechanisms,	 lobbying	 by	

pharmaceutical	 companies	might	 have	 an	 interest	 to	 split	 psychiatric	 disorders	 into	

many	distinct	categories	to	gain	advantages	in	the	approval	of	new	drugs.	On	the	other	

hand	we	should	not	 forget	 that	 in	many	countries	only	a	very	 limited	amount	of	 the	

overall	 healthcare	budget	 is	 allocated	 to	mental	health	 (World	Health	Organization,	

2018).	More	precise	diagnoses	and	better	 treatments	might	convince	policymakers	 to	

overcome	this	health	disparity,	ultimately	empowering	psychiatric	patients.		

Of	 further	 concern	 are	 systematic	 biases,	 easily	 induced	 by	 poor	 training	 data	 and	

particularly	 worrisome	 in	 diagnostic	 contexts	 (Vayena	 et	 al.,	 2018).	 The	 example	 of	

schizophrenia	 is	 a	 case	 in	 point,	 with	 its	 long-standing	 disproportionate	 number	 of	

diagnoses	 in	 African-Americans	 and	 Latin-Americans,	 arguably	 influenced	 by	

stereotypes,	 the	 clinician’s	 own	 ethnicity	 or	 the	 under-diagnosis	 of	 other	 psychiatric	

diseases	(Schwartz	&	Blankenship,	2014).	ML	trained	on	data	with	these	or	other	biases	

could	 further	purport	and	reify	misconceptions	 (Tandon	&	Tandon,	2018).	 If	 training	

data	 are	 less	 than	 carefully	 curated,	ML	 applications	might	 hence	 not	 constitute	 an	

independent	 diagnostic	 tool	 for	 enhancing	 diagnostic	 accuracy,	 undermining	 the	

endeavour’s	 very	 aim.	 To	 avoid	 perpetuating	 pathophysiologically	misleading	 biases,	

developing	appropriate	supervision	strategies	for	the	ML	algorithm	thus	seems	key	to	a	

successful	clinical	implementation.	Such	supervision	should	(1)	track	which	parameters	

are	 taken	 into	 account	 by	 the	 algorithm	 to	 arrive	 at	 its	 recommendations	 and	 (2)	

compare	the	results	of	algorithms	trained	on	different	databases.	Such	strategies	would	

also	help	to	foster	explicability	which	the	initially	mentioned	AI4people	initiative	rightly	

suggests	as	a	 fifth	principle	 for	ethical	AI	use,	 enabling	 the	other	 four	 (Floridi	 et	al.,	

2018).	The	implementation	of	such	safety	measures	will	be	critical	for	minimizing	biases	
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in	decision	making	but	it	is	not	yet	clear	how	ML	algorithms	will	nonetheless	capitalize	

on	existing	biases	in	the	data.	

7.5	Conclusion	

A	plethora	of	context-specific	ethical	issues	might	arise	in	applied	ML	in	psychiatry	and	

the	treatment	of	schizophrenia.	For	now,	ML	remains	 in	the	domain	of	research	and	

should	be	accompanied	by	exploring	its	ethical	aspects	as	there	is	no	standard	rule	to	

determine	when	 an	 application	 is	 ethically	 permissible	 given	 the	 complexity	 of	 each	

singular	case.	Further,	empowering	psychiatric	patients	can	only	happen	with	the	help	

of	 important	 support	 systems	 such	as	 family,	peer	 and	community	members.	 Still,	 if	

some	 of	 the	 vast	 potential	 benefits	 of	 psychiatric	 ML	 can	 indeed	 lead	 to	 tangible	

improvements	for	patients,	we	believe	it	is	not	only	permissible	but	it	may	in	fact	be	a	

moral	 obligation	 to	 pursue	 them	 further	 and	 aim	 at	 their	 successful	 clinical	

implementation.		
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Abstract		

Background:	The	increasing	implementation	of	programs	supported	by	machine	learning	in	

medical	contexts	will	affect	psychiatry.	 It	 is	crucial	 to	accompany	this	development	with	

careful	 ethical	 considerations	 informed	by	empirical	 research	 involving	experts	 from	 the	

field,	to	identify	existing	problems	and	to	address	them	with	fine-grained	ethical	reflection.		

Methods:	 We	 conducted	 semi-structured	 qualitative	 interviews	 with	 15	 experts	 from	

Germany	and	Switzerland	with	training	in	medicine	and	neuroscience	on	the	assistive	use	

of	machine	learning	in	psychiatry.	We	used	reflexive	thematic	analysis	to	identify	key	ethical	

expectations	and	attitudes	towards	machine	learning	systems.		

Results:	 Experts’	 ethical	 expectations	 towards	 machine	 learning	 in	 psychiatry	 partially	

challenge	orthodoxies	from	the	field.	We	relate	these	challenges	to	three	themes,	namely	(1)	

ethical	challenges	of	machine	learning	research,	(2)	the	role	of	explainability	in	research	and	

clinical	 application,	 and	 (3)	 the	 relation	 of	 patients,	 physicians,	 and	 machine	 learning	

system.	 Participants	 were	 divided	 regarding	 the	 value	 of	 explainability,	 as	 promoted	 by	

recent	guidelines	for	ethical	artificial	intelligence,	and	highlighted	that	explainability	may	

be	used	as	an	ethical	fig	leaf	to	cover	shortfalls	in	data	acquisition.	Experts	recommended	

increased	attention	to	machine	learning	methodology,	and	the	education	of	physicians	as	

first	steps	towards	a	potential	use	of	machine	learning	systems	in	psychiatry.		

Conclusion:	Our	findings	stress	the	need	for	domain-specific	ethical	research,	scrutinizing	

the	use	of	machine	learning	in	different	medical	specialties.	Critical	ethical	research	should	

further	examine	the	value	of	explainability	for	an	ethical	development	of	machine	learning	

systems	and	strive	towards	an	appropriate	framework	to	communicate	ML-based	medical	

predictions.				
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8.1	Introduction	

The	 integration	 of	 diagnostic,	 predictive,	 and	 therapeutic	 tools	 based	 on	 machine	

learning	 (ML)	 into	 clinical	 care	 is	 accelerating	 –	 a	 development	 also	 apparent	 in	

psychiatry.	Beyond	increasingly	popular	direct-to-consumer	apps,	offering	for	instance	

digital	psychotherapy	(Lui,	Marcus,	&	Barry,	2017;	Martinez-Martin	&	Kreitmair,	2018),	

the	 US	 Food	 and	 Drug	 Administration	 (FDA)	 recently	 approved	 the	 first	ML-based	

psychiatric	 tool,	 providing	 diagnostic	 aid	 based	 on	 joint	 inputs	 from	 caregivers	 and	

attending	physicians	(Dattaro,	2021).	Many	further	attempts	to	employ	ML	in	psychiatry	

are	under	way,	covering	a	multitude	of	psychiatric	disorders	and	ranging	from	diagnostic	

and	prognostic	 tools	 to	 the	prediction	of	 treatment	outcomes	 (Chekroud	et	al.,	 2021;	

Chivilgina,	Elger,	&	Jotterand,	2021;	Chivilgina,	Wangmo,	Elger,	Heinrich,	&	Jotterand,	

2020;	Salazar	de	Pablo	et	al.,	2021).	A	broad	debate	about	the	ethical	principles	governing	

the	development	of	ML-based	psychiatric	tools	seems	therefore	more	pressing	then	ever	

(Jacobson	et	al.,	2020;	Starke,	De	Clercq,	Borgwardt,	&	Elger,	2021).		

With	 view	 to	 artificial	 intelligence	 (AI)	 in	 general,	 many	 recent	 guidelines	 have	

attempted	to	spell	out	specific	ethical	principles	that	researchers	and	regulators	should	

respect.	While	different	guidelines	around	the	globe	stress	different	ethical	aspirations,	

there	is	a	substantive	convergence	with	regard	to	a	handful	of	fundamental	principles,	

such	as	transparency,	fairness,	and	non-maleficence	(Jobin,	Ienca,	&	Vayena,	2019).	For	

a	debate	within	the	context	of	European	health	care,	the	influential	ethical	framework	

of	‘AI4people’	seems	particularly	instructive	(Floridi	et	al.,	2018).	It	builds	on	the	four	

principles	of	biomedical	ethics	by	Beauchamp	and	Childress	(Beauchamp	&	Childress,	

2013),	 i.e.	 respect	 for	 autonomy,	 beneficence,	 non-maleficence,	 and	 justice,	

supplementing	them	with	an	additional	fifth	principle	of	explicability.	Within	the	EU,	
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this	framework	has	exerted	particular	influence	as	it	served	as	a	blue-print	for	the	EU	

commission’s	ethical	guidelines	for	trustworthy	AI	("Ethics	guidelines	for	trustworthy	

AI,"	2019).		

Yet,	despite	international	attempts	to	provide	ethical	guidelines	for	the	development	of	

responsible	 or	 trustworthy	 AI	 and	 develop	 a	 suitable	 regulatory	 framework,	 there	

remains	 large	 uncertainty	 whether	 and	 how	 such	 principles	 translate	 into	 practice	

(Floridi,	 2019).	 Since	 regulation	 and	 ethical	 debates	 typically	 lag	 behind	 the	 newest	

technological	developments,	several	models	have	recently	been	suggested	how	ethical	

research	 using	 social	 science	methods	 could	 be	 brough	 up	 to	 speed,	 taking	 place	 in	

parallel	to	developments,	or	how	ethical	considerations	could	be	embedded	in	research	

pipelines	(Jongsma	&	Bredenoord,	2020;	McLennan	et	al.,	2020).	Nevertheless,	as	of	now,	

there	 is	 little	 empirical	 data	 on	 how	 physicians	 and	 researchers	 perceive	 current	

guidelines,	 and	 whether	 their	 own	 ethical	 expectations	 towards	 ML	 systems	 are	 in	

alignment	with	recommended	general	principles.	Yet	research	involving	people	working	

in	 the	 field	 is	 crucial	 to	 improve	 bioethical	 theory	 and	 develop	 appropriate	 policy	

suggestions,	 as	 the	 ‘empirical	 turn’	 in	 bioethics	 has	 stressed	 (Wangmo	 et	 al.,	 2018).	

Notable	 exceptions	 that	 extend	 to	multiple	medical	 specialties	 include,	 for	 instance,	

Nichol	et	al.	who	have	investigated	experts’	ethical	perspectives	on	using	ML	to	predict	

HIV	 risk	 in	 sub-Saharan	Africa	 (Nichol,	 Bendavid,	Mutenherwa,	 Patel,	&	Cho,	 2021),	

whereas	Blease	et	al.	 focused	on	the	views	of	UK	General	Practitioners	 (Blease	et	al.,	

2019),	 and	Tonekaboni	 et	 al.	 examined	expectations	 towards	 explainability	 among	 10	

Canadian	acute	care	specialists	(Tonekaboni,	Joshi,	McCradden,	&	Goldenberg,	2019).		
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Findings	with	specific	view	to	psychiatric	practice	are	even	scarcer	and	current	research	

does	only	provide	qualitative	 reasons	of	 limited	depth,	due	 to	being	based	on	online	

surveys	 with	 comment	 boxed,	 as	 opposed	 to	 (semi-)structured	 interviews.	 A	 recent	

evaluation	of	an	online	survey	among	psychiatrists	in	22	countries	found	a	surprising	

lack	 of	 engagement	 with	 AI	 ethics,	 reporting	 that	 only	 9	 out	 of	 a	 sample	 of	 791	

participants	mentioned	ethical	considerations	when	asked	about	the	impact	of	ML	and	

AI	on	future	psychiatric	practice	(Blease,	Locher,	Leon-Carlyle,	&	Doraiswamy,	2020).	

An	online	 survey	among	Swiss	postgraduate	 students	 in	clinical	psychology,	 some	of	

which	were	intending	to	pursue	a	psychotherapeutic	career,	reported	greater	concern	

with	ethical	questions	(Blease,	Kharko,	Annoni,	Gaab,	&	Locher,	2021).	

Our	study	contributes	to	this	emerging	field	of	research.	It	provides	a	first	insight	into	

the	attitudes	of	academic	experts	whose	work	is	concerned	with	the	use	of	ML	systems	

in	 psychiatry	 by	 eliciting	 their	 explicit	 and	 implicit	 knowledge	 of	 ethical	 challenges	

posed	 by	 such	 systems.	 It	 thereby	 adds	 to	 recent	 qualitative	 research	 interviewing	

experts	 on	 the	 implementation	of	ML	 in	healthcare	 (Cai,	Winter,	 Steiner,	Wilcox,	&	

Terry,	2019;	Morgenstern	et	al.,	2021;	Pumplun,	Fecho,	Wahl,	Peters,	&	Buxmann,	2021),	

however,	with	a	unique	focus	on	ethical	challenges	and	on	ML	applications	in	psychiatry.	

Expert	 interviews	 are	 an	 established	 method	 to	 elicit	 both	 explicit	 and	 implicit	

knowledge	from	people	working	in	the	field	(Döringer,	2021).	In	the	context	of	ethics,	

they	 provide	 a	 tool	 to	 better	 understand	 the	 actual	 challenges	 in	 the	 field,	 enabling	

ethical	reflection	that	pays	close	attention	to	its	context	and	thereby	fill	“blind	spots	in	

AI	ethics”	(Hagendorff,	2021).	In	current	debates	about	medical	ML,	such	close	attention	

seems	all	the	more	necessary	since	prominent	scholars	have	criticized	forms	of	AI	ethics	

that	merely	provide	formulaic	checklists	(Braun,	Bleher,	&	Hummel,	2021)	and	do	not	
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pay	 enough	 attention	 to	 ethically	 relevant,	 yet	 often	 neglected	 aspects	 such	 as	

environmental	cost	or	exploitation	of	labor	(Crawford,	2021).	Investigating	potentially	

problematic	conditions	of	academic	knowledge	and	ML	production	therefore	demands	

qualitative	research	examining	the	actual	ramifications	of	academic	research	in	the	field.	

In	our	study,	we	focused	on	scholars	affiliated	to	psychiatric	departments	in	Switzerland	

and	Germany.	Given	the	interconnected	regulatory	frameworks	and	the	high	number	of	

German	 physicians	 and	 researchers	 in	 Switzerland,	 our	 sample	 offers	 a	 relatively	

homogeneous	sample,	providing	insights	into	the	attitudes	of	experts	from	the	largest	

Western	European	language	community.	Such	homogeneity	seemed	crucial	to	gathering	

context-sensitive	 information	 since	 large	 cultural	 differences	 regarding	 technology	

acceptance	have	been	reported	not	only	between	Europe	and	the	US	or	China	(Bröhl,	

Nelles,	Brandl,	Mertens,	&	Nitsch,	2019)	but	also	across	Western	European	countries	

(Conti,	Cattani,	Di	Nuovo,	&	Di	Nuovo,	2015;	Van	den	Berg,	2012).	Here,	we	focus	on	

what	experts	on	psychiatric	ML	consider	the	most	pressing	ethical	challenges	for	their	

field	if	asked	under	the	condition	of	anonymity,	and	how	they	suggest	solving	them.	

To	our	knowledge,	our	paper	reports	the	first	findings	from	qualitative	expert	interviews	

on	the	ethical	challenges	posed	by	ML	in	the	context	of	psychiatry.	Besides	the	clinical	

and	 research	 community	 from	 this	 specific	 field,	 our	 findings	 are	 also	 of	 interest	 to	

researchers	 working	 on	 the	 ethics	 of	 medical	 AI,	 informing	 the	 lively	 debate	 about	

opaque	ML	 in	medicine	more	 generally	 (Braun	 et	 al.,	 2021;	 Durán	 &	 Jongsma,	 2021;	

London,	2019),	as	well	as	to	tailor	policy	making	for	the	introduction	of	ethically	sound,	

trustworthy	ML	in	the	clinic	(Char,	Abramoff,	&	Feudtner,	2020;	Paulus,	Huys,	&	Maia,	

2016;	Walter	et	al.,	2019).	
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8.2	Methods	

Our	 study	 included	 Swiss	 and	German	 experts	 on	 the	 use	 of	ML	 in	 psychiatry.	Our	

recruiting	 strategy	 was	 two-pronged.	 Participants	 were	 identified	 by	 systematically	

searching	 on	 the	 websites	 of	 psychiatric	 university	 hospitals	 in	 Switzerland	 and	

Germany	for	clinicians	and	researchers	engaging	with	artificial	intelligence	or	machine	

learning.	Within	 our	 narrow	 recruitment	 criteria,	 we	 aimed	 to	 include	 as	 diverse	 a	

sample	 as	 feasible,	 with	 view	 to	 the	 respective	 career	 stage	 and	 gender.	 Potential	

candidates	were	invited	to	participate	in	our	study	via	e-mail	and	received	a	reminder	

after	 a	week	 in	 case	 they	did	not	 reply.	We	only	 invited	 experts	who	held	 at	 least	 a	

doctorate	in	a	relevant	field	

Interviews	 were	 conducted	 between	 April	 2020	 and	 July	 2021	 by	 the	 first	 author,	 a	

physician	(MD)	with	additional	degrees	in	philosophy,	research	and	working	experience	

in	 neuroscience	 and	 psychiatry,	 and	 basic	 knowledge	 of	 programming	 and	ML.	 The	

interviews	formed	part	of	his	PhD	in	bioethics,	which	included	intensive	training	and	

supervision	 in	 qualitative	 data	 collection.	 The	 first	 three	 interviews	 served	 as	 pilot	

interviews,	after	which	a	critical	revision	of	the	interview	guide	by	all	authors	resulted	

in	minor	 changes.	Owing	 to	 the	 constraints	 of	 the	 pandemic,	 interviews	 took	 place	

exclusively	via	phone	(10)	or	online	video	call	 (5),	were	conducted	 in	German	(13)	or	

English	 (2),	depending	on	 the	experts’	preferences,	and	 lasted	25	 to	66	minutes.	The	

interviews	were	transcribed	verbatim	by	the	first	and	second	author.	Quotes	used	within	

this	paper	were	translated	by	GS	and	checked	by	BS	and	EDC.	The	interviewer	knew	

three	of	the	participants	through	prior	research	activities.		
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To	 identify	 important	ethical	 themes	within	 the	 interviews,	we	analyzed	our	data	by	

conducting	 a	 reflexive	 thematic	 analysis	 (Braun	 &	 Clarke,	 2006,	 2019).	We	 assigned	

individual	codes	to	each	segment	of	the	transcripts	of	our	interviews,	with	one	segment	

representing	a	unit	of	meaning,	consisting	of	one	or	more	sentences.	The	coding	was	

conducted	jointly	by	all	authors	for	four	interviews.	Having	agreed	upon	a	coding	tree	

structure,	comprising	themes	and	subthemes,	the	remaining	transcripts	were	coded	by	

the	first	author,	using	MaxQDA	software.	To	monitor	data	saturation,	conceptualized	as	

thematic	redundancy	indicated	by	recurrent	coding,	data	analysis	took	place	in	parallel	

to	data	collection	(Given,	2015).	In	line	with	previous	findings,	we	did	not	find	new	codes	

after	coding	the	11th	interview	(Guest,	Bunce,	&	Johnson,	2006).	

Prior	to	the	pilot	interviews,	we	submitted	a	description	of	our	study	design	including	

the	consent	 sheet	and	 the	 interview	guide	 for	 review	 to	 the	cantonal	 research	ethics	

committee	(Ethikkommission	Nordwest-	und	Zentralschweiz,	EKNZ).	Within	the	Swiss	

legal	 framework,	 the	 ethics	 committee	 judged	 that	 the	 project	 did	 not	 fall	 under	

restrictions	imposed	on	research	with	human	subjects,	as	stated	in	a	certificate	of	non-

objection	 (Req-2019-00920).	 Nevertheless,	 to	 ensure	 high	 ethical	 standards	 of	 our	

bioethical	project,	we	adhered	to	the	following	procedures	(1)	we	asked	participants	for	

their	written	informed	consent	prior	to	their	participation	in	our	study	and	again	orally	

at	the	beginning	of	the	interview,	(2)	we	omitted	identifying	information	such	as	names	

and	places	 in	 the	 transcripts,	 (3)	and	stored	this	de-identified	data	separately	on	our	

secure	university	servers.		

To	 allow	 for	 a	more	 detailed	 analysis	 of	 our	 findings,	 we	 divided	 our	 data	 into	 two	

separate	manuscripts.	Here,	we	focus	on	ethical	concerns	that	relate	to	the	use	of	AI	in	

the	 clinic	 more	 generally,	 whereas	 the	 second	 manuscript	 covers	 themes	 that	 are	
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particular	to	the	practice	of	psychiatry,	such	as	the	definition	of	psychiatric	disorders.	

Questions	 from	 the	 interview	 guide	 that	 are	 relevant	 to	 the	 current	manuscript	 are	

provided	in	Table	1.		

What	would	you	consider	the	biggest	ethical	challenge	for	successfully	implementing	
ML	in	clinical	contexts?	-	What	do	you	think	is	the	best	way	to	address	this	issue?	Do	
you	have	an	example?	

What	specific	expectations	would	you	have	for	the	transparency	of	such	programs?	
Which	 technical	 strategies	 for	making	machine	 learning	more	 transparent	 do	 you	
think	are	most	promising?	Could	you	give	an	example?		

Should	black	box	programs	be	used	for	clinical	purposes?	Why/why	not?	

Do	you	think	trust	is	a	justifiable	way	of	dealing	with	the	risks	of	medical	AI?	Why	/	
why	 not?	 What	 expectations	 would	 you	 have	 for	 a	 program	 to	 be	 considered	
"trustworthy"?	

Table	8.1.	Relevant	questions	from	the	interview	guide	

8.3	Results	

Semi-structured	interviews	were	conducted	with	15	participants	out	of	26	invited	experts	

(57,6%;	2	women	and	13	men).	Three	experts	declined	due	to	time	constraints,	one	did	

not	consider	themself	an	expert,	and	four	did	not	reply.	Having	achieved	data	saturation,	

we	stopped	recruiting	additional	participants.	All	participants	held	at	least	a	doctorate	

and	considered	themselves	experts	on	the	use	of	ML	in	psychiatry	(MD	and/or	PhD),	

covering	 career	 stages	 between	 postdoc	 and	 retired	 professor	 (mean	 years	 since	

doctorate	 14.4a,	 sd	 ±10.8),	 and	 were	 affiliated	 with	 German	 or	 Swiss	 academic	

institutions	pursuing	research	on	psychiatric	diseases.	Ten	participants	were	 licensed	

physicians	 and	 five	 had	 degrees	 in	 psychology	 or	 neuroscience.	 Reflecting	 the	

multidisciplinary	 nature	 of	 the	 research	 field,	 eight	 participants	 reported	 additional	

formal	education	in	mathematics,	physics,	engineering,	and	philosophy.	Given	the	lack	
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of	established	ML	routines	in	psychiatry	and	our	recruitment	strategy	that	focused	on	

research	outputs,	the	interviewed	experts	should	rather	be	considered	to	be	involved	in	

the	development	of	ML	systems	but	also	reflect	the	views	of	potential	users,	as	indicated	

by	their	involvement	in	clinical	contexts.		

Analysis	of	the	interviews	resulted	in	three	major	themes,	namely	1)	ethical	challenges	

of	 machine	 learning	 research,	 (2)	 the	 role	 of	 explainability	 in	 research	 and	 clinical	

application,	and	(3)	the	relation	of	patients,	physicians,	and	machine	learning	system.	

8.3.1.	Ethical	challenges	of	machine	learning	research	

While	only	one	interviewee	was	familiar	with	current	ethics	guidelines	such	as	the	EU	

guidelines	 for	 trustworthy	 AI,	 the	 experts	 exhibited	 great	 awareness	 of	 the	 ethical	

problems	 they	 encounter	 in	 their	work,	 and	 in	 the	development	of	new	ML	models.	

Many	 of	 these	 challenges	 concern	 the	 ramifications	 of	 academic	 research	 itself.	

Continuous	 pressure	 to	 produce	 promising	 results	 and	 publish	 frequently	 in	 high-

ranking	 journals	 were	 reported	 to	 be	 at	 odds	with	methodological	 rigor,	 potentially	

already	at	the	stage	of	collecting	representative	training	data,	 including	non-Western	

contexts	because,	as	one	participant	put	it,	“everyone	wants	to	get	their	paper	out	and	

not	 be	 told:	 go	 to	Malaysia	 and	 collect	 data	 from	 500	more	 people.	 That’s	 difficult,	

expensive,	 and	 complicated,	 and	 that’s	 why	 nobody	 does	 it.”	 (P11)	 Yet,	 as	 several	

participants	stressed,	such	shortfalls	could	lead	to	systematic	bias	if	there	is	no	incentive	

to	 acquire	 training	 data	 that	 fully	 mirror	 a	 phenomenon’s	 complexity.	 Another	

respondent	argued:	

There	are	these	examples	that	algorithms	are	partly	racist	or	so,	simply	because	
of	their	experiences	-	their	lack	of	experiences	-	that	they	have	collected.	Just	like	
a	 human	 being	who	 lives	 in	 a	 small	 white	 village	 and	 has	 reservations	 about	



Chapter	8:	Researchers’	Ethical	Expectations	Towards	Machine	Learning	in	Psychiatry		

 189	

foreigners	 –	 that’s	 just	 how	 a	 machine	 works	 as	 well.	 If	 it’s	 fed	 the	 same	
information	over	and	over	again	and	never	sees	certain	things	(P2).	

In	 consequence,	 all	 participants	 were	 concerned	 with	 questions	 of	 justice	 and	

algorithmic	fairness	resulting	from	training	data	that	lacked	diversity	in	the	recruited	

cohort.	Several	interviewees	named	discrimination	based	on	ethnicity,	gender,	or	socio-

economic	status	as	major	ethical	concern	for	using	ML	in	clinical	contexts;	a	problem	

that	mirrored	existing	bias	in	current	medical	practice.	

Of	 course,	 it	 is	 a	 methodological	 and	 ethical	 challenge	 to	 avoid	 such	
unintentional	bias	or	at	least	make	it	visible.	I	believe	that	this	has	the	potential	
to	cause	real	damage.	Of	course,	 it	 is	also	the	case	that	in	the	current	medical	
system	we	already	have	a	fairly	high	degree	of	bias	and	probably	also	systematic	
bias	for	the	majority	population	and	against	minorities.	But	due	to	the	learning	
aspect	of	AI	algorithms,	this	is	a	real	problem	that	one	must	not	fall	prey	to.	It	
has	to	be	addressed.	(P7)	

Recommended	 strategies	 to	 control	 for	 systematic	 bias	 often	 focused	 on	proper	 and	

independent	external	validation,	i.e.	the	testing	of	a	model	in	an	independent	sample.	

Yet,	some	experts	were	skeptical	of	current	practices	of	external	validation,	namely	if	

performed	by	the	same	experts	who	ran	the	original	experiment.	

It	really	has	to	be	a	clean	external	validation.	And	I	just	have	the	feeling	that	often	
external	validation	studies	[…]	have	not	really	been	carried	out	 independently.	
Most	of	the	time,	they	may	have	been	done	in	the	same	paper,	or	some	predictive	
model	has	been	developed,	and	part	of	 the	data	has	been	omitted	 to	 test	 this	
predictive	model.	But	the	people	who	did	the	statistics	of	course	already	had	this	
external	data	set	when	they	developed	the	model,	and	that’s	why	 I	ask	myself	
whether	they	really	only	tested	the	model	at	the	end	or	whether	they	didn’t	look	
a	 bit	 beforehand	 to	 see	 how	 it	 worked,	 and	 then	 maybe,	 if	 it	 didn’t	 work,	
improved	the	model	a	bit	more.	And	then	it’s	not	really	an	independent	external	
validation.	(P13)	

As	a	result,	studies	reporting	ML-based	results	may	be	biased	and	not	tailored	to	broader	

clinical	practice,	but	only	 to	 the	 specific	 contexts	 from	which	 the	 training	data	were	

obtained.	Drawing	on	the	example	of	IBM	Watson	Oncology	that	was	famously	accused	

of	suggesting	erroneous	cancer	treatments	(Ross,	2018),	one	participant	highlighted	that	
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such	attention	 to	context	 is	 crucial	 if	 a	program	 is	 supposed	 to	be	 incorporated	 into	

clinical	routines.		

The	task	of	the	machine	is	to	minimize	its	cost	function.	That’s	it.	And	the	users	
have	to	understand	that	the	machine	does	not	have	the	context,	or	if	we	need	it,	
if	we	want	to	use	it	clinically	at	some	point,	then	we	need	machines	that	have	
been	 trained	 in	 the	 correct	 context	 or	 can	 switch	 between	 sub-models	 for	
different	concepts	for	different	contexts.	And	that	is	actually	totally	simple	and	
all	machine	learners	know	that,	but	there	is	a	relatively	big	temptation	to	say	‘I	
now	have	a	machine	 that	can	predict	 therapy	response	 for	 schizophrenia,	and	
that	it	might	work	quite	differently	in	Spain,	I’ll	ignore	for	now’.	(P11)	

In	 the	 view	 of	 several	 interviewees,	 this	 problem	 could	 be	 addressed	 through	more	

extensive	and	international	data	sharing	between	different	research	groups.	Yet	again,	

interviewees	 reported	 that	 this	 demand	 seemed	 at	 odds	 with	 pressure	 to	 turn	 your	

research	 group’s	 data	 into	 high-ranking	 publications	 first,	 before	 sharing	 them	with	

anyone	else,	and	that	it	also	contradicted	intuitions	concerning	privacy	protections.		

I	 don’t	 like	my	 data	 to	 be	 shared	 with	 anybody	 if	 I	 don’t	 want	 it	 to	 be,	 and	
definitely	not	(…)	in	a	way	that	can	come	back	to	me.	And	you	know	wit	ML	you	
have	a	problem,	because	once	you	train	data,	naturally	you	probably	can’t	go	back	
and	say:	ok,	this	part	is	based	on	X’s	data.	But	at	some	point,	if	you	pool	the	data	
together,	it	could	come	back	to	you.	(P12)	

In	 consequence,	 several	 experts	were	 skeptical	 concerning	 current	 research	 outputs,	

because	a	small	number	of	experts	in	the	field	that	are	competent	to	scrutinize	results	

in	peer	review	processes,	and	the	complexity	of	the	used	models	could	render	reported	

findings	questionable	in	terms	of	generalizability.			

It’s	not	as	rosy	as	things	seem.	And	I	think	that	will	change	as	the	field	matures,	
but	 at	 the	 moment	 -	 because	 there	 are	 more	 parameters,	 because	 its	 more	
complex,	 because	 people	 don’t	 understand	 it,	 it	 opens	 the	 door	 to	 a	 lot	 of	
ambiguity	 in	a	 lot	of	 things.	And	 it	won’t	be	 solved	by	putting	code	online	or	
something	because	(…)	the	problem	is	happening	earlier	on	in	the	pipeline.	It’s	
that	classical	thing	of	running	a	few	thousand	models	and	then,	when	you	are	
reporting:	two.	(…)	The	same	sort	of	thing	is	happening,	and	it	is	happening	even	
with	external	validation.	So	-	don’t	believe	everything	that	people	say.	(P14)	
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The	reasons	for	this	may	partially	lie	in	the	current	hype	around	Artificial	Intelligence	

that	 favours	 publications	 with	 a	 focus	 on	 machine	 learning	 techniques,	 as	 one	

interviewee	remarked:		

And	 it	 always	 sounds	 so	 great,	 doesn't	 it?	 You	 just	 throw	 around	 terms	 like	
gradient	 boosting	machine	 and	 support	 vector	machine,	 and	 people	 are	 then	
somehow	totally	impressed,	but	that’s	a	bit	of	a	danger.	(…)	It’s	easy	to	publish	a	
paper	when	you’ve	used	such	a	method	because	it’s	trendy	and	because	it	sounds	
so	sophisticated	and	so	modern,	so	whatever,	and	everyone	is	trying	to	get	a	piece	
of	the	pie	for	themselves.	But	for	me,	to	a	large	extent,	I	have	the	feeling	that	it’s	
old	wine	in	new	bottles.	(P13)	

Being	more	optimistic	about	the	promises	of	ML,	one	interviewee	expressed	frustration	

that	at	the	moment,	psychiatry	is	often	left	out	of	large	ML	initiatives,	despite	the	high	

burden	of	disease	and	a	potentially	large	benefit,	both	for	the	individual	patient	and	for	

the	healthcare	system.		

Why	does	so	little	take	place?	(…)	When	I	look	at	the	large	medical	technology	or	
data	initiatives,	(…)	they	all	leave	out	psychiatry.	And	the	reasons	are	always	the	
same:	 it’s	 too	 complicated,	we	 have	 fuzzy	 diagnoses	 in	 psychiatry,	 imaging	 is	
difficult	to	handle	anyway,	and	on	the	other	hand,	I	would	say	that	psychiatric	
diseases	 are	 actually	 the	 ones	 that	 cause	 the	 greatest	 financial	 and	 health	
economic	and	subjective	burden.	(…)	In	fact,	one	has	to	say	that	the	added	value,	
the	gain	in	psychiatry	would	be	particularly	high.	But	obviously	the	least	research	
in	this	direction	is	currently	taking	place	there.	I	find	that	interesting	when	you	
think	about:	why	not?	Are	our	drugs	too	cheap,	are	the	surgical	techniques	that	
depend	 on	 them	 too	 simple?	 I	 don’t	 think	 it’s	 just	 because	 of	 the	 academic	
complexity	 of	 the	 concept	 of	 psychiatric	 diagnosis,	 I	 think	 there	 are	 certainly	
other	reasons	as	well.	(P5)	

	
8.3.2.	The	role	of	explainability	in	research	and	clinical	application	

Questions	concerning	explaining	and	understanding	ML	systems	in	research	and	clinic	

appeared	 to	 be	 a	 topic	 of	 particular	 relevance	 throughout	 the	 interviews.	 Some	

participants	were	very	vocal	in	their	support	for	explainability	and	considered	it	crucial	

to	keep	medical	practice	compatible	with	current	ethical	standards	of	medical	practice.		
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If	I	have	a	black	box	prediction,	the	inside	of	which	is	unknown	to	me,	then	I	can	
only	 accept	 that	 and	 have	 to	 trust	 that	 everything	 went	 well,	 regarding	 the	
intentions	 and	 the	 execution	 of	 the	 validation.	 If	 that	 happens,	 then	 we	 are	
moving	into	a	whole	new	kind	of	medicine,	which	in	my	view	is	not	compatible	
with	the	idea	of	the	patient's	right	to	self-determination.	Within	such	a	medicine,	
we	 become	 objects	 who	 can	 no	 longer	 understand	 where	 certain	
recommendations	come	 from.	And	 that	 is,	 from	my	point	of	 view,	 completely	
contrary	to	the	developments	in	medicine	in	the	last	decades	and	something	that	
I	personally	do	not	strive	for.		(P4)	

As	 minimal	 requirement	 for	 such	 scientific	 scrutiny	 and	 understanding,	 many	

mentioned	transparent	disclosure	of	both	training	data	and	of	the	used	code.		

I	am	absolutely	in	favor	of	publishing	data,	and	also	of	publishing	the	scripts	used	
for	analysis.	Even	if	probably	no	one	takes	the	trouble	to	exactly	understand	the	
script	afterwards.	(P13)	

Some	interview	partners	went	further	though,	demanding	a	form	of	contestability:		

[The	program]	must	allow	itself	to	be	questioned,	it	must	be	able	to	give	answers,	
and	it	must	be	able	to	say	what	it	cannot.	(…)	So,	let's	say	metaphorically:	it	must	
be	capable	of	dialog.	For	the	doctor	anyway,	that's	clear,	but	also	for	the	patient.	
(P3)	

At	the	same	time,	some	interviewees	hinted	at	the	necessity	of	weighing	accuracy	and	

explainability	against	each	other,	and	countered	calls	for	explainability	with	recourse	to	

utilitarian	thought:		

I	think	we	will	come	down	to	more	like	an	accuracy	trade-off.	If	something	is	90%	
[accurate]	and	it	is	not	interpretable,	and	then	you	get	an	interpretable	model,	
and	it’s	like	70%,	then	you	have	got	to	think	about	what	to	use.	So	I	don’t	really	
have	a	big	problem	with	it.	(P14)	

Positions	 that	 doubted	 the	 necessity	 of	 high	 degrees	 of	 explainability	 often	 drew	

comparisons	between	the	lack	of	explainability	of	an	ML	system	and	current	medical	

practice	that	also	often	involves	incomplete	knowledge	on	the	side	of	practitioners	and	

patients,	for	instance	concerning	clinical	chemistry	and	pharmacy.	

Maybe	 it’s	 not	 such	 a	new	 thing	 at	 all	 compared	 to	now.	 I’m	pretty	 sure	 that	
clinical	 chemists	 understand	 clinical	 chemistry,	 but	 a	 lot	 of	 people	 in	 clinical	
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practice	don't	understand	it.	They	might	understand	the	meaning,	but	not	how	
the	values	come	about	(…).	So	maybe	it	is	really	not	that	different	from	what	we	
already	do	in	medicine.	(P1)	

In	the	end,	I	would	say	it's	like	pharmacology.	I	mean,	we’ve	all	learnt	something	
about	the	way	drugs	work.	I	probably	can’t	recite	most	of	them	to	you	now,	but	
you	 have	 a	 rough	 idea	 of	 where	 the	 problems	 are	 and	 how	 it	 works	 and	 can	
therefore	classify	it	well.	But	in	the	end,	you	rely	on	your	experience,	your	clinical	
experience	and	see	what	helps	the	patient:	If	they	come	to	me	with	symptom	X,	I	
prescribe	drug	Y,	and	then	I	have	experience	of	how	that	works.	(P7)	

Yet,	as	argued	by	several	participants,	a	crucial	difference	between	these	examples	and	

ML,	 is	 that	 physicians	 have	 received	 training	 in	 these	 subjects,	 and	 thus	 have,	 in	

principle,	 at	 least	 a	 rough	 idea	 of	 potential	 pitfalls.	 Accordingly,	 many	 experts	

recommended	to	include	education	on	the	fundamentals	of	ML	in	medical	curricula	to	

better	 deal	with	 the	 uncertainty	 associated	with	ML	 systems,	 as	we	 highlight	 in	 the	

following	section.		

In	this	debate	about	explainable	AI,	several	aspects	came	up	that	were	specific	to	the	

context	of	psychiatry.		Notable	were	repeated	remarks	that	the	mechanisms	underlying	

current	 psychotropic	 drugs	 are	 also	 black	 boxes,	 and	 that	 we	 may	 impose	 double	

standards	by	demanding	a	higher	degree	of	explainability	from	ML	systems.		

I	come	from	psychiatry.	We	have	no	idea	how	drugs	work	in	psychiatry.	So:	why	
not?	You	know,	they	are	both	black	boxes,	we	trust	those.	(P14)	

This	aspect	seemed	even	more	decisive	in	the	views	of	many	since,	due	to	these	existing	

therapeutic	black	boxes,	 there	may	be	a	particularly	 large	benefit	of	using	ML-based	

treatment	recommendations	when	it	comes	to	psychotropic	drugs.		

If	you	consider	how	uncertain	a	method	is	compared	to	how	much	you	can	gain	
with	it,	then	the	possible	gain	in	information	in	the	area	of	therapy	response	for	
antidepressants	is	so	great	that	even	the	marginal	increase	in	prediction	accuracy	
is	already	relevant,	because	antidepressants	have	to	be	taken	for	at	least	two	to	
three	weeks	and	many	patients	say	after	10	days,	well,	it	hasn’t	worked	yet,	I	just	
have	 this	dry	mouth	and	beads	of	 sweat	on	my	 forehead	and	have	sexual	 side	
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effects	-	should	I	really	continue	taking	it?	And	the	adherence	falls	in	the	critical	
phase	where	we	 are	 still	waiting	 for	 the	 response,	 in	 this	 -	 this	 is	 currently	 a	
therapeutic	black	box!	The	patient	has	to	wait	3-4	weeks	to	see	if	it	has	worked.	
In	this	phase,	of	course,	an	ML	algorithm	can	help	us	a	lot	and	say:	yes,	the	patient	
should	take	the	trouble	and	definitely	take	the	medication	for	another	week,	and	
if	you	think	about	how	many	depressive	patients	there	are,	how	many	of	them	
are	treated	(…),	I	would	say	that	the	additional	expense	(…)	is	justifiable	given	the	
probability	of	success	and	the	expected	benefit.	(P5)	

Finally,	 one	 interviewee	 applied	 the	 idea	 of	 a	 black	 box	 also	 to	 their	 own	 decision-

making	process,	 drawing	on	 a	metaphorical	 comparison	between	 themselves	 and	 an	

artificial	neural	net:	

When	I	make	a	decision,	I	am	a	neural	network	too,	and	I	may	be	able	to	explain	
to	you	50%	of	my	logical	decisions,	why	I	make	a	decision,	but	then	a	lot	is	also	
unconscious	and	I	decide	based	on	experience,	even	if	it	is	not	accessible	to	me	
or	if	I	am	not	conscious	of	it	myself.	(P2)	

Some	also	questioned	the	role	of	explainability	as	an	ethical	principle	with	view	to	its	

utility	for	end	users.		

Explainability	is	a	tool	for	machine	learning	developers	to	find	out	whether	their	
model	works	or	not.	We	should	not	give	this	to	a	user	so	that	they	have	to	find	
out	whether	some	weights	are	as	we	imagine	them	to	be.	It's	actually	simply	a	
measuring	 instrument	 for	 technically	oriented	machine	 learning	developers	 to	
find	out	whether	it	works.	(P14)	

Instead,	there	was	worry	that	recourse	to	explainability	may	at	times	serve	as	a	smoke	

screen,	to	cover	shortcomings	in	methodology:				

“What	I	mean	is	not	this	stupid	short-circuited	‘then	we	have	to	open	the	black	
box’	 talk	 that	 you	hear	again	and	again.	That's	 a	 substitute	 for	 ‘I	don't	have	a	
proper	 solution,	 and	 it’s	 too	much	effort	on	my	part.	Then	 I'll	 just	map	 some	
weights	out	somewhere.’	That's	just	gross	nonsense.	What	I	need	to	know	as	a	
user,	or	even	as	a	patient,	is	how	did	they	make	this	thing	–	probably	-	work	well.	
And	here	the	question	is:	what	did	I	train	it	on,	so	what	are	the	properties	of	the	
data,	not	of	the	algorithm	or	my	weights	or	something.	That's	not	relevant	to	it	
at	all.	The	relevant	point	is:	what	does	my	training	data	look	like?	(…)	And	that's	
my	problem	-	you	use	explainability	as	a	fig	leaf	because	you	don't	want	to	do	the	
hard,	difficult,	 expensive	 task	of	measuring	proper	populations	and	 testing	on	
those.”	(P11)	
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8.3.3.	The	relation	of	patients,	physicians,	and	machine	learning	systems	

As	a	third	theme,	the	interviewed	experts	articulated	ethical	expectations	concerning	

the	relationship	between	patients,	physicians	and	ML	systems	–	i.e.	problems	that	need	

to	be	addressed	even	if	challenges	concerning	development	and	explainability	were	to	

be	solved	in	the	future.		

As	 with	 any	 interpersonal	 relationship,	 communication	 was	 considered	 key	 for	

interactions	between	physicians	and	patients.	 In	particular,	 there	was	 tangible	worry	

that	 in	 the	 absence	 of	 an	 established	 framework	 to	 communicate	 statistical	 findings	

appropriately,	patients	and	physicians	may	find	their	perceived	scope	of	possible	actions	

narrowed	by	ML-based	predictions.	

Generally,	most	 patients	 but	 also	many	 physicians	 run	 danger	 of	 interpreting	
predictors	too	little	in	terms	of	statistics,	and	therefore	severely	limit	possibilities	
of	how	something	can	develop.	And	that	would	be	a	big	problem.	Because	self-
fulfilling	 prophecies	 are	 a	 big	 problem,	 they	 limit	 the	 scope	 of	 action,	 the	
possibilities	of	action	enormously,	both	on	the	part	of	the	physician	and	on	the	
part	of	the	patient.	There	is	actually	no	real	framework,	no	conceptual	framework	
how	this	information	can	be	used	to	generate	more	possibilities.	(P6)	

Similar	concerns	for	self-determined	actions	also	found	their	expression	with	explicit	

regard	to	patients’	autonomy.	The	dreaded	impact	on	the	relation	between	algorithm,	

physician,	 and	patient,	 as	 a	mere	 shift	 in	hierarchy,	was	 succinctly	 expressed	by	one	

interviewee:	

It	is	crucial	that	the	patient	does	not	end	up	in	a	position	of	powerlessness	as	a	result	
of	any	therapeutic	intervention,	be	it	conversation,	medication	or	algorithm.	This	is	
a	basic	law	in	psychotherapy.	Because	if	that	happens,	then	the	therapy	has	already	
failed.	And	I	see	the	risk	in	these	giant	programs	(…)	that	the	power	imbalance	is	no	
longer	between	psychiatrist	 and	patient,	 but	between	algorithm	and	patient,	 and	
that	is	no	better.	So	autonomy,	the	central	word	in	psychiatry	is	autonomy,	and	that	
also	applies	in	this	context.	(P3)	
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At	the	same	time,	the	interviewed	experts	agreed	that	algorithms	could	play	a	useful	role	

for	clinical	treatments,	and	some	even	argued	that	it	may	be	ethically	questionable	to	

reserve	 specific	 tasks	 for	humans	 even	 if	 an	 algorithm	outperforms	 clinicians	 in	 this	

regard.	 All	 interviewees	 agreed	 that	 ML	 would	 play	 an	 assistive	 role,	 not	 replacing	

physicians,	and	that	the	last	say	should	remain	with	physicians,	also	for	legal	reasons:		

Ultimately,	the	physician	has	to	sign,	and	that	will	remain	the	case	for	a	long	time.	
It	will	not	be	the	algorithm	that	prescribes	the	medication	or	admits	the	patient	
but	the	physician.	(P8)	

Such	 attribution	 of	 responsibility	 was	 taken	 to	 be	 particularly	 important	 in	 light	 of	

potentially	 erroneous	 ML-based	 decisions,	 whether	 resulting	 from	 a	 systematically	

biased	 model	 or	 an	 adversarial	 attack	 with	 purposively	 manipulated	 inputs	 for	 one	

particular	patient.	Concerning	psychiatric	diagnoses,	such	errors	may	for	instance	lead	

to	harmful	stigmatization	that	is	not	open	to	recourse:		

When	I	make	an	unfavorable	diagnosis,	there	is	of	course	always	the	problem	in	
psychiatry	that	we	give	labels,	that	we	stigmatize	in	some	way.	I	think	that	is	a	
general	problem	of	psychiatry,	perhaps	less	of	AI,	but	(…)	if	we	can	then	not	even	
justify	on	what	basis	we	have	made	a	decision....	And	we	are	not	doing	that	at	the	
moment	either,	that	needs	to	be	said	quite	clearly.	But	let's	assume	that	you	use	
(ML)	 for	diagnostic	purposes,	and	you	can't	even	 justify	 it	 in	any	way,	 then	of	
course	it	could	be	stigmatizing.	(P2)	

As	crucial	necessity	to	address	these	problems	interviewees	unanimously	suggested	that	

more	education	on	computer	science	needed	to	be	 integrated	into	medical	curricula.	

While	several	 interviewees	acknowledged	the	problems	of	 further	burdening	medical	

education,	conveying	some	basic	knowledge	was	considered	crucial.	

Doctors	ought	to	gain	an	understanding,	and	I	believe	that	this	would	be	possible	
without	any	problems,	to	address	the	mathematical	dimensions.	This	could	be	
integrated	into	medical	training	without	any	problems.	Therefore,	I	assume	that	
in	10	years	we	ought	to	have	ensured	that	doctors	are	roughly	informed	about	the	
dimensions	 and	 the	 significance	 of	machine	 learning	 and	 its	 susceptibility	 to	
errors.	(P5)	
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However,	 there	were	 perceived	 limits	 of	what	 to	 expect	 from	 additional	 training,	 as	

highlighted	by	the	comparisons	with	training	in	clinical	chemistry	and	pharmacology,	

that	are	merely	meant	to	convey	basic	knowledge	of	the	underlying	techniques.	A	certain	

level	 of	 trust,	 supported	 by	 thorough	 regulatory	 oversight	 and	 certification,	 may	

therefore	remain	inevitable:		

I	 believe	 that	 also	 up	 to	 now,	 people	 have	 trusted	 certain	 methods	 and	 not	
understood	them	in	detail.	I	think	the	basic	approach	is	right,	i.e.	to	say,	ok,	there	
is	a	certain	committee	or	certain	experts	who	 look	at	everything	 in	detail	and	
understand	it	and	then	make	a	recommendation.	And	all	the	other	“half-experts”	
or	users,	they	trust	in	that.	Basically,	I	think	this	is	the	right	approach,	or	the	only	
feasible	approach,	because	it	won’t	be	possible,	if	you	want	to	apply	it,	for	every	
doctor	 to	 become	 a	medical	 informatician.	 That’s	 unrealistic.	 The	 alternative	
would	be	to	say,	no,	it’s	too	complex,	we	can’t	apply	it.	(P1)	

This	was	also	mirrored	in	comments	that	stressed	the	necessity	for	specialization,	due	

to	the	rapidly	evolving	landscape	of	ML:		

We	 currently	 have	 some	 colleagues	 in	 medicine	 working	 on	 the	
applications	of	ML	who	have	immersed	themselves	heroically	and	very	far	
into	the	subject	and	the	current	medical	debate,	the	research	in	this	area,	
is	carried	out	by	colleagues	who	have	a	relatively	good	overview	of	the	state	
of	the	art	of	both	medicine	and	in	this	area	[ML].	[…]	I	believe	that	this	will	
increasingly	 fade	 into	 the	 background	 because	 the	 development	 in	
machine	learning	is	so	rapid	and	outside	of	medicine	that	in	a	few	years	
even	doctors	with	an	affinity	 for	technology	won’t	be	able	to	 follow	the	
topic	and	just	like	now,	when	you	use	medical	devices,	i.e.	products	from	
companies,	you	will	no	 longer	be	 thinking	about	 the	 functioning	of	 the	
device	or	the	algorithm,	[…]	and	doctors	will	rather	remain	experts	on	a	
higher	level	of	abstraction.	(P5)	

In	 a	 nutshell,	 interviewees	 who	 brought	 up	 the	 topic	 of	 doctor-patient-relationship	

pleaded	 for	 a	 more	 conscious	 communication	 and	 a	 careful	 balancing	 of	 power,	

hierarchy,	 and	 responsibility,	 with	 no	 single	 side	 taking	 general	 precedent	 over	 the	

other,	so	that	the	room	of	possible	action	is	increased	by	the	introduction	of	clinical	ML	

systems.			
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If	someone	only	has	a	hammer,	then	everything	becomes	a	nail.	And	that	must	
not	 happen	 with	 artificial	 intelligence.	 If	 I	 have	 a	 great	 computer,	 then	 this	
computer	 isn’t	everything,	but	there	is	still	 the	patient	who	sits	 in	front	of	me	
crying	and	says:	everything	is	shit,	I'm	going	to	kill	myself	now.	That	must	not	be	
played	off	against	each	other.	(P3)	

	

8.4	Discussion	

Our	 findings	 provide	 a	 first	 glimpse	 on	 the	 ethical	 reasoning	 of	 experts	 on	 ML	 in	

psychiatry	in	Germany	and	Switzerland,	to	the	best	of	our	knowledge.	With	view	to	the	

existing	 theoretical	 literature	 from	ethics,	 they	provide	 three	 crucial	 additions.	 First,	

they	highlight	that	even	within	our	small	sample,	both	agreements	and	disagreements	

concerning	 fundamental	 ethical	 principles	 ran	 along	 the	 line	 of	 debates	 that	 enjoy	

prominence	in	the	ethical	literature.	This	demonstrates	that	current	ethical	debates	are	

not	merely	placed	in	the	infamous	philosophical	armchair,	but	mirror	actual	concerns	

of	 people	 in	 the	 field.	 Second,	 our	 findings	 lend	 support	 to	 critical	 voices	 that	 have	

denounced	AI	ethics	for	being	too	focused	on	principles	and	not	being	attentive	enough	

to	the	conditions	of	AI	production.	Third,	the	often	sceptical	attitudes	of	our	experts	can	

be	read	as	a	warning	to	reflect	critically	on	overly	optimistic	statements	in	the	literature	

and	provide	an	exhortation	to	spend	more	attention	to	methodological	scrutiny.	In	the	

following,	we	discuss	all	three	points	with	view	to	our	interviews.		

First,	the	attitudes	of	the	interviewed	experts	mirrored	current	debates	on	the	ethics	of	

medical	ML.	This	was	present	in	both	their	agreements	and	disagreements.	While	the	

majority	of	interviewees	was	not	aware	of	ethical	guidelines	such	as	the	EU	guidelines	

for	trustworthy	AI,	many	of	the	experts’	attitudes	reflect	common	principles	of	medical	

ethics	 and	AI	 ethics,	 such	 as	 concerns	 about	 systematic	 biases,	 privacy	 violations	 or	

respect	for	autonomy.	Concerns	regarding	respect	for	autonomy,	algorithmic	fairness,	
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and	 breaches	 of	 privacy	 are	 largely	 commensurate	 with	 conceptual	 research	 in	 this	

domain	 (Morley	et	 al.,	 2020;	Starke,	De	Clercq,	 et	 al.,	 2021)	 as	are	debates	about	 the	

balancing	of	hierarchy	between	patients,	physicians,	and	ML	systems	(Braun,	Hummel,	

Beck,	&	Dabrock,	2020;	Grote	&	Berens,	2022).	They	also	fit	the	few	empirical	studies	

from	 the	 field	which	 reported	 infringement	of	privacy,	undue	exploitation	of	patient	

data,	and	worries	about	autonomy	as	main	ethical	concerns	Swiss	psychology	students	

had	with	the	use	of	ML	(Blease	et	al.,	2021).	Finding	an	appropriate	balance	between	

physicians,	patients,	and	ML	systems	was	widely	seen	by	our	participants	as	a	way	to	

foster	 the	 acceptance	 of	 specific	 ML	 systems	 at	 the	 bedside	 (Braun	 et	 al.,	 2020).	

Mirroring	common	tropes	of	the	debate,	our	interviewees	also	called	for	considering	ML	

systems	as	intelligent	tools,	not	artificial	colleagues	(Dennett	&	Chalmers,	2019)	and	did	

not	 foresee	 a	 step	 towards	 a	 full	 automation	 in	 the	 near	 future	 (Topol,	 2019),	 yet	

considered	the	use	of	ML	as	potentially	valuable	assistance.	Similarly,	we	found	shared	

concern	with	view	to	responsibility	and	legal	liability,	two	dimensions	that	have	long	

enjoyed	 great	 prominence	 in	 the	 field	 (Bublitz,	Wolkenstein,	 Jox,	 &	 Friedrich,	 2018;	

Matthias,	2004).	However,	with	regard	to	trust,	as	an	attitude	that	partially	relinquishes	

the	monitoring	of	algorithms	(Ferrario	&	Loi,	2021;	Ferrario,	Loi,	&	Viganò,	2020,	2021),	

the	interviewees	represented	a	comprehensive	spectrum	of	opinions.	As	in	the	ethical	

literature	(DeCamp	&	Tilburt,	2019;	Hatherley,	2020;	Metzinger,	2019),	some	voices	were	

entirely	opposed	to	the	notion	of	trust	and	considered	 it	 “completely	contrary	to	the	

developments	 in	 medicine	 in	 the	 last	 decades”	 (P4,	 see	 above).	 	 Others	 strongly	

endorsed	it	as	“the	only	feasible	approach”	(P1,	see	above),	similar	to	proponents	of	trust	

in	medical	AI	(Braun	et	al.,	2021;	Durán	&	Jongsma,	2021;	Ferrario	et	al.,	2021;	Starke,	van	
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den	Brule,	 Elger,	 &	Haselager,	 2021).	 	Our	 study	 therefore	 supports	 the	 relevance	 of	

current	theoretical	debates	on	trust,	also	from	the	view	of	experts	working	in	the	field.		

Second,	our	findings	call	attention	to	ethical	questions	that	seem	to	be	underdeveloped	

in	the	ethical	discourse	so	far.	In	particular,	these	relate	to	questions	of	explainability	

and	of	 self-fulfilling	promises.	While	much	 current	 ethical	 debate	 is	 concerned	with	

explainability	of	ML	models,	treating	it	as	a	mediating	principle	enabling	other	ethical	

principles	(Floridi	et	al.,	2018;	Turilli	&	Floridi,	2009),	others	have	already	noted	that	

there	is	no	uniform	consensus	among	experts	about	the	meaning	of	explainability	(Adadi	

&	Berrada,	2018;	Arbelaez	Ossa	et	al.,	2022),	and	that	expectations	towards	explainability	

vary	across	contexts	(Mittelstadt,	Russell,	&	Wachter,	2019).	This	is	also	confirmed	by	

our	study,	as	are	concerns	about		balancing	explainability	with	accuracy	(London,	2019),	

about	 the	need	of	 contestability	 (Ploug	&	Holm,	 2020)	 and	about	 the	 importance	of	

epistemological	questions	for	an	ethical	use	of	ML	systems	(Grote	&	Berens,	2020).39	Yet,	

there	has	not	yet	been	sufficient	debate	whether	the	ethical	focus	of	explainability	could	

potentially	 yield	 ethically	 detrimental	 results.	 The	 concern	 reported	 here	 that	

explainability	 could	 be	 used	 by	 technical	 experts	 as	 an	 ethical	 fig	 leaf,	 covering	

methodological	shortfalls	by	providing	end-users	with	a	false	sense	of	understanding,	

has	 to	our	knowledge	not	 yet	been	discussed	 elsewhere.	Yet,	 it	 seems	paramount	 to	

reflect	 in	 depth	 on	 this	 problem	 since	 both	 ethical	 literature	 and	 ethical	 guidelines,	

including	the	EU	guidelines	for	trustworthy	AI,	stress	the	importance	of	explainability	

 
39	 Many	 of	 the	 interviewees’	 responses	 seemed	 informed	 by	 the	 assumption	 of	 a	 trade-off	 between	
accuracy	 and	 explainability	 in	 ML	 models.	 This	 assumption,	 prevalent	 early	 in	 the	 current	 wave	 of	
explainable	AI,	is	increasingly	challenged	and	considered	a	fallacy	(Rudin	&	Radin,	2019).	Similarly,	some	
form	of	contestability	is	increasingly	implemented	in	ML	by	virtue	of	counterfactual	reasoning	(Verma,	
Dickerson,	&	Hines,	2020).	These	findings	therefore	further	highlight	the	need	of	continued	education	on	
recent	 developments	 in	 the	 field	 that	 seem	 to	move	 increasingly	 away	 from	 the	 “black	 boxes”	which	
dominate	the	bioethical	literature	(Cearns,	Hahn,	&	Baune,	2019).	
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or,	more	precisely,	of	a	principle	of	explicability,	linking	intelligibility	and	accountability	

("Ethics	 guidelines	 for	 trustworthy	AI,"	 2019;	 Floridi	 et	 al.,	 2018;	Herzog,	 2021).	 	Our	

finding	is	also	in	line	with	those	of	a	very	recent	experimental	study	that	has	shown	how	

certain	forms	of	explainability	can	convey	the	illusion	that	an	algorithm	is	attentive	to	

context	and	ethical	questions	whereas	 in	reality	 it	 is	blind	to	ethical	 incidents	(John-

Mathews,	2022).	Simulating	a	sexist	decision	of	an	AI	 that	denies	a	 loan	to	a	woman	

based	 on	 her	 gender,	 the	 randomized	 study	 showed	 that	 800	 participants	 favoured	

models	with	low	denunciatory	power,	i.e.,	they	placed	higher	trust	in	“explainable”	AI	

systems	where	unfair	decisions	were	not	perceived	negatively	(John-Mathews,	2022).		

Given	 these	 findings,	 further	 conceptual	 and	 empirical	 research	 should	 therefore	

critically	 investigate	 if,	 instead	 of	 providing	 a	 mediating	 principle	 enabling	 ethical	

scrutiny	(Floridi	et	al.,	2018;	Turilli	&	Floridi,	2009),	explainability	is	indeed	misused	as	

“fig	 leaf”	 that	 brings	 about	 ethically	 undesirable	 results.	 While	 efforts	 based	 on	

explainable	AI	will	remain	crucial	to	developers	and	could	potentially	even	contribute	

to	better	deal	with	the	complexity	of	diagnosing	and	treating	mental	disorders	(Roessner	

et	al.,	2021),	it	may	prove	necessary	to	challenge	the	widely	held	belief	that	explainability	

is	key	to	the	acceptance	of	AI	(Chandler,	Foltz,	&	Elvevåg,	2020).	As	Ferrario	and	Loi	

have	recently	highlighted,	explainability	does	not	necessarily	foster	acceptance	and	trust	

in	medical	AI,	and	can	in	fact	only	do	so	in	a	narrowly	limited	number	of	cases	(Ferrario	

&	Loi,	2021).	In	line	with	others,	our	finding	also	highlights	themis	need	to	refocus	the	

view	onto	explainability	and	move	towards	more	user-centred	models	of	explainability	

that	can	provide	meaningful	understanding	for	physicians	and	patients	(Arbelaez	Ossa	

et	al.,	2022;	Mittelstadt	et	al.,	2019)	and	harness	multiple	levels	of	explanation(Vu	et	al.,	

2018).		
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Beyond	issues	with	explainability,	our	findings	also	stress	the	concern	that	ML-based	

predictors	 could	 function	 as	 self-fulfilling	 prophecies,	 particularly	 in	 psychiatric	

contexts.	From	a	sociological	point	of	view,	this	could	be	interpreted	as	a	classic	instance	

of	the	influential	Thomas	theorem,	postulating	that	situations	which	are	defined	as	real,	

are	real	in	their	consequences	(Thomas	&	Thomas,	1928:	572).	Tellingly,	William	Thomas	

and	Dorothy	Swain	Thomas	developed	this	thought	in	the	very	context	of	psychiatry,	

where	paranoid	delusions	may	bring	about	very	real	consequences.	Statistical	outputs	

from	ML	models	should	similarly	be	treated	cautiously,	so	that	they	do	not	bring	about	

the	very	events	they	predict	by	limiting	the	scope	of	interventions	that	is	perceived	as	

possible	 by	 physicians	 and	 patients.	 Education	 about	 the	 principles	 of	 modern	

information-based	diagnostic	theories	will	be	key	to	avoid	such	developments.		

Third,	 our	 findings	 call	 for	 increased	 attention	 to	methodological	 debates	 that	 also	

impact	ethical	considerations.	Our	interviewees	pointed	to	the	broader	ramifications	of	

how	ML	models	are	trained	in	academic	research	to	highlight	ethical	shortfalls.	Many	

reflected	critically	on	the	current	climate	of	hype	and	the	danger	of	a	new	AI	winter,	

brought	 about	 by	 overly	 optimistic	 promises	 and	 a	 lack	 of	 methodological	 rigour	

(Floridi,	 2020).	Methodological	 concern	was	also	 tangible	 in	calls	 for	proper	external	

validation	to	ensure	the	generalizability	of	ML	systems	across	different	demographics	

(Cearns	et	al.,	2019),	and	with	view	to	the	increasing	importance	placed	on	the		diversity	

of	cohort	and	data	in	clinical	research	("Striving	for	Diversity	in	Research	Studies,"	2021).	

Other	 much-discussed	 aspects	 of	 fairness,	 e.g.	 the	 problem	 of	 competing	 fairness	

standards	 (Barocas,	 Hardt,	 &	 Narayanan,	 2017;	 Friedler,	 Scheidegger,	 &	

Venkatasubramanian,	2016),	were	not	raised.	These	findings	suggest	that	more	empirical	

research	 is	 needed	 on	 how	 closely	 current	 studies	 of	 ML	 in	 psychiatry	 adhere	 to	
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established	 reporting	 guidelines	 such	 as	 SPIRIT	 or	 CONSORT	 (Liu,	 Rivera,	 Moher,	

Calvert,	&	Denniston,	2020;	Rivera,	Liu,	Chan,	Denniston,	&	Calvert,	2020).	Debates	on	

policy	 should	 also	 further	 address	 whether	 additional	 incentives	 are	 needed,	 as	

suggested	by	the	experts,	to	foster	the	collection	of	representative	and	context-sensitive	

training	data	and	to	encourage	multi-centered	collaborations	in	the	particular	context	

of	psychiatry.40	Such	policy	debates	should	also	address	the	issue	of	sharing	not	only	

data	 but	 also	 the	 models	 itself,	 for	 which	 clear	 theoretical	 foundations	 need	 to	 be	

established.		

There	are	several	limitations	to	our	study.	As	with	any	qualitative	research,	our	findings	

are	not	generalizable	and	only	reflect	the	attitudes	and	opinions	within	a	limited	sample	

of	 experts	 in	 Germany	 and	 Switzerland.	 Due	 to	 our	 highly	 targeted	 sampling,	 our	

participants	were	not	representative	of	society,	as	highlighted	for	instance	by	the	small	

number	of	female	participants,	reflecting	the	underrepresentation	of	women	in	the	field.	

In	addition,	our	interviews	do	not	reflect	the	views	and	attitudes	of	potentially	larger	

groups	of	stakeholders	that	will	be	affected	by	the	introduction	of	ML	into	psychiatry,	

first	and	foremost	the	affected	patients.	While	ethical	research	interviewing	experts	on	

psychiatric	ML	seemed	most	promising	at	the	moment,	given	the	nascent	stage	of	the	

clinical	ML	employed	in	psychiatry,	more	empirically	informed	research	will	be	crucial,	

accompanying	 the	 implementation	 of	 psychiatric	ML(Jongsma	&	 Bredenoord,	 2020).	

Furthermore,	the	direct	involvement	of	the	interviewer	in	the	research	field	may	have	

shaped	 his	 interaction	with	 participants,	while	 in	 turn	 social	 desirability,	 e.g.,	 being	

critical	of	ML	when	talking	to	a	colleague	from	ethics,	may	have	shaped	answers	to	our	

 
40	 It	 should	be	noted	 that	 there	has	been	much	progress	 in	 the	development	of	 context-sensitive	ML	
recently	 (Elayan,	 Aloqaily,	 &	 Guizani,	 2021;	 Nascimento,	 Alencar,	 Lucena,	 &	 Cowan,	 2018).	 We	 are	
indebted	to	an	anonymous	reviewer	for	pointing	this	out.			
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open	questions.	However,	since	the	aim	of	our	qualitative	study	was	exploratory	rather	

than	striving	for	a	representative	depiction,	we	do	believe	that	these	limitations	do	not	

draw	away	from	the	novelty	of	our	insights.	

8.5	Conclusion	

Our	study	adds	to	the	emerging	corpus	of	empirical	literature	on	the	ethics	of	using	ML	

in	psychiatric	settings.	It	highlights	the	need	for	further	ethical	reflection	concerning	

the	ramifications	of	developing	and	using	ML	models	for	mental	health	to	avoid	that	

predictions	 become	 self-fulfilling	 prophecies,	 and	 to	 ascertain	 that	 promises	 of	

explainability	do	not	serve	as	ethical	fig	leaf.	We	have	pointed	out	that	the	conditions	of	

academic	research	in	the	field	may	require	further	incentives	for	rigorous	methodology,	

that	current	attempts	of	explainability	should	be	questioned	concerning	their	utility	for	

end-users,	and	that	a	careful	balance	needs	to	be	found	to	safeguard	important	features	

of	doctor-patient	 relationships	once	a	ML	model	gets	 involved.	Early	 involvement	of	

ethical	 considerations	 in	 the	 development	 pipeline	 (McLennan	 et	 al.,	 2020)	 seem	

therefore	as	crucial	as	stratified	basic	education	on	computer	science	both	of	physicians	

and	the	public,	in	line	with	the	detailed	recommendations	of	others	(Gauld,	Micoulaud-

Franchi,	&	Dumas,	2021).	This	may	in	turn	also	facilitate	to	not	overstate	the	promises	

of	ML	and	safeguard	the	importance	of	the	interpersonal	interactions	fundamental	to	

medical	practice.	
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Abstract		

 
The	 increasing	 integration	 of	 Machine	 Learning	 (ML)	 techniques	 into	 clinical	 care,	

driven	 in	 particular	 by	 Deep	 Learning	 (DL)	 using	 Artificial	 Neural	 Nets	 (ANNs),	

promises	 to	 reshape	medical	 practice	 on	 various	 levels	 and	 across	multiple	medical	

fields.	 Much	 recent	 literature	 examines	 the	 ethical	 consequences	 of	 employing	 ML	

within	 medical	 and	 psychiatric	 practice	 but	 the	 potential	 impact	 on	 psychiatric	

diagnostic	systems	has	so	far	not	been	well-developed.	In	this	article,	we	aim	to	explore	

the	challenges	that	arise	from	the	recent	use	of	ANNs	for	the	old	problems	of	psychiatric	

nosology.	 To	 enable	 an	 empirically	 supported	 critical	 reflection	 on	 the	 topic,	 we	

conducted	 semi-structured	 qualitative	 interviews	 with	 Swiss	 and	 German	 experts	 in	

computational	psychiatry.	Here,	we	report	our	findings	structured	around	two	themes,	

namely	(1)	the	possibility	of	using	ML	for	defining	or	refining	of	psychiatric	classification,	

and	 (2)	 the	 desirability	 of	 employing	ML	 for	 psychiatric	 nosology.	We	 discuss	 these	

themes	 by	 relating	 them	 to	 recent	 debates	 about	 network	 theory	 for	 psychiatric	

nosology	and	show	why	empirical	 research	 in	 the	 field	should	critically	 reflect	on	 its	

contribution	 to	 psychopathology	 research.	 In	 sum,	 we	 argue	 that	 beyond	 technical,	

regulatory,	 and	 ethical	 challenges,	 philosophical	 reflection	 is	 crucial	 to	 harness	 the	

potential	of	ML	in	psychiatry.		
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9.1	Introduction	

Deep	Learning	(DL)	based	on	Artificial	Neural	Networks	(ANNs)	is	at	the	heart	of	many	

recent	success	stories	in	the	field	of	Machine	Learning	(ML).	Within	psychiatry,	DL	also	

promises	 useful	 tools	 for	 the	 diagnosis	 and	 treatment	 of	 psychiatric	 disorders	

(Durstewitz,	Koppe,	&	Meyer-Lindenberg,	2019;	Jacobson	&	Bhattacharya,	2022;	Quaak,	

van	 de	 Mortel,	 Thomas,	 &	 van	 Wingen,	 2021;	 Walter	 et	 al.,	 2019).	 The	 recent	 first	

approval	of	a	DL-based	program	by	the	US	Food	and	Drug	Administration	to	aid	with	

the	 diagnosis	 of	 autism	 spectrum	 disorder	 in	 young	 children	 bears	 witness	 to	 this	

potential	 (Dattaro,	 2021).	 Beyond	 diagnosis,	 DL-based	 programs	 could	 also	 provide	

complementary	offers	of	digital	psychotherapy	(Lui,	Marcus,	&	Barry,	2017;	Martinez-

Martin	&	Kreitmair,	2018),	predict	individual	treatment	outcomes	(Chekroud	et	al.,	2021)	

or	give	prognostic	estimates,	for	instance	concerning	psychosis	(Salazar	de	Pablo	et	al.,	

2021).	

Responding	 to	 long-standing	 nosological	 debates	 within	 the	 discipline	 and	

dissatisfaction	with	existing	diagnostic	criteria	(Cuthbert	&	Insel,	2013;	Insel	&	Cuthbert,	

2015;	Kendler,	2016),	DL	is	also	increasingly	discussed	as	a	potential	technique	to	arrive	

at	novel	or	refined	psychiatric	classifications	(Brunn,	Diefenbacher,	Courtet,	&	Genieys,	

2020;	 Eitel,	 Schulz,	 Seiler,	 Walter,	 &	 Ritter,	 2021).	 DL-based	 clustering	 promises	 to	

provide	 a	 data-driven	 approach	 that	 can	 subdivide	 groups	 of	 patients	 automatically	

based	on	neurobiological	and	behavioural	data,	finding	novel	modes	of	representation	

(Karim	et	al.,	 2021;	Schulz,	Chapman-Rounds,	Verma,	Bzdok,	&	Georgatzis,	 2020).	 In	

principle,	such	clustering	can	draw	on	many	different	kinds	of	data,	including	functional	

and	structural	neuroimaging	data,	EEG	measurements,	genetic	and	epigenetic	data	as	

well	as	clinical	and	neurocognitive	observations	(Huys,	Maia,	&	Frank,	2016).	To	give	an	
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example	for	a	neuroscience-focused	approach,	harnessing	the	advantages	of	DL,	Chang	

et	al.	recently	reported	to	have	identified	subgroups	of	patients	with	major	psychiatric	

disorders	such	as	bipolar	depression,	major	depressive	disorder,	and	schizophrenia	that	

are	 characterized	 by	 a	 frontal–posterior	 functional	 imbalance	 and	 seem	 to	 respond	

differently	 to	 psychopharmacological	 interventions	 (Chang	 et	 al.,	 2021).	While	 such	

findings	 require	 validation	 and	 replication,	 they	 could	 improve	 existing	 diagnostic	

criteria	and	provide	hypothesis	for	future	research	(Eitel	et	al.,	2021).		

In	parallel	to	the	rise	of	neuroscientific	and	psychiatric	research	endeavours	driven	by	

DL,	there	has	also	been	a	blossoming	of	theoretical	approaches	that	define	psychiatric	

disorders	 in	 terms	 of	 clusters	 or	 networks.	 Such	 approaches	 have	 been	 especially	

prominent	among	nonessentialist	 theories,	 i.e.,	 theories	 that	do	not	espouse	a	mind-

independent	understanding	of	psychiatric	disorders	as	given	natural	kinds.	Among	these	

nonessentialist	approaches,	Denny	Borsboom’s	suggestion	that	mental	disorders	could	

best	 be	 described	 as	 complex	 networks	 of	 causally-linked,	 interconnected	 symptom	

components	 has	 been	 particularly	 influential	 (Borsboom,	 2017).	 Symptom	 network	

theory	promises	to	provide	a	non-reductionist	link	between	biological	and	psychological	

features	of	mental	disorders	(Borsboom,	Cramer,	&	Kalis,	2018)	and	is,	as	highlighted	by	

a	 recent	 review,	 also	 supported	 by	 a	 large	 corpus	 of	 empirical	 results	 (Robinaugh,	

Hoekstra,	Toner,	&	Borsboom,	2020).	Similarly,	Peter	Zachar’s	description	of	psychiatric	

disorders	 as	 “imperfect	 communities”	 represents	 an	 influential	 nonessentialist	

approach,	 describing	 mental	 disorders	 as	 clusters	 of	 symptoms	 that	 are	 historically	

grown	and	reflect	pragmatical	interest	(Zachar,	2014,	pp.	115-136).		

Definitions	 of	 psychiatric	 disorders	 that	 are	 based	 on	 neuroscience	more	 frequently	

represent	essentialist	views,	i.e.,	theories	that	take	reality	to	be	mind-independent	and	
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attempt	 to	 carve	nature	 at	 its	 joints.	 Such	definitions	 are,	 for	 instance,	 rooted	 in	 an	

understanding	of	 psychiatric	 disorders	 as	 brain	disorders	 (Insel	&	Cuthbert,	 2015)	 or	

point	to	harmful	impairment	of	natural	functioning	(Faucher	&	Forest,	2021;	Horwitz	&	

Wakefield,	 2007).	 However,	 it	 is	 crucial	 to	 distinguish	 in	 this	 context	 between	 the	

ontological	 question	what	psychiatric	 disorders	 are,	 and	 the	more	practical	 question	

how	to	classify	them	best,	 for	as	Zachar	has	noted	with	regard	to	the	Diagnostic	and	

Statistical	Manual	of	Mental	Disorders	(DSM),	“a	careful	reading	of	the	introduction	to	

both	the	DSM-IV	and	the	DSM-5	indicates	that	alongside	the	de	facto	essentialism	about	

the	 nature	 of	 psychiatric	 disorders	 there	 is	 also	 a	 de	 facto	 nonessentialism	 about	

classification”	 (Zachar,	 2014,	 p.	 128).	 Distinguishing	 between	 viewpoints	 about	 the	

nature	of	psychiatric	disorders	and	beliefs	about	classificatory	systems,	which	in	turn	

fulfil	 multiple	 functions	 (Reed,	 Correia,	 Esparza,	 Saxena,	 &	 Maj,	 2011),	 is	 therefore	

important	 to	 understand	 how	 neuroscience-based	 essentialist	 views	 can	 be	 seen	 as	

compatible	with	a	dimensional	approach	to	psychiatric	classification,	as	endorsed	in	the	

DSM-5	(Regier,	Kuhl,	&	Kupfer,	2013).	

Surprisingly,	despite	the	individual	prominence	of	each	topic	 in	recent	 literature,	the	

impact	of	ML	techniques	and	in	particular	of	DL	on	psychiatric	nosology	has	so	far	not	

received	much	systematic	consideration.	Many	authors	have	hinted	at	the	potential	of	

DL	for	nosology	(Brunn	et	al.,	2020;	Durstewitz	et	al.,	2019)	and	some	have	called	for	

increased	attention	to	the	conceptualization	of	psychiatric	disorders	in	the	context	of	

AI-based	methods	 (Winter	 et	 al.,	 2021).	 Yet,	 the	 relation	of	 a	DL-based	 clustering	of	

disorder	 subtypes	 to	 the	 competing	 models	 of	 psychiatric	 disorders	 remains	 to	 be	

investigated	in	depth.	An	exception	to	this	is	the	paper	by	Wanja	Wiese	and	Karl	Friston,	

who	have	provided	an	insightful	philosophical	discussion	of	the	transformative	effects	
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of	computational	methods	on	psychiatric	nosology	and	warned	against	an	unintended	

marginalisation	of	subjective	experience		(Wiese	&	Friston,	2021).		

To	gain	a	better	understanding	whether	this	worry	is	shared	by	other	researchers	from	

neuroscience	and	psychiatry	and	in	which	ways	ML	may	have	an	impact	on	psychiatric	

nosology,	it	seems	crucial	to	explore	the	explicit	and	implicit	knowledge	of	scholars	in	

the	 field	 (Döringer,	 2021).	 Reporting	 the	 findings	 from	 semi-structured	 qualitative	

interviews	with	 researchers	 from	Germany	and	Switzerland,	we	present	 the	opinions	

and	attitudes	of	experts	in	computational	psychiatry	with	regard	to	the	impact	of	ML	on	

psychiatric	nosology.	To	our	knowledge,	while	there	have	been	some	qualitative	findings	

investigating	 the	 attitudes	 of	 psychiatrists	 and	 psychologists	 towards	 AI	 methods	

(Blease,	 Kharko,	 Annoni,	 Gaab,	 &	 Locher,	 2021;	 Blease,	 Locher,	 Leon-Carlyle,	 &	

Doraiswamy,	 2020),	 this	 is	 the	 first	 interview-based	 study	 looking	 at	 nosology	 in	

particular.	In	addition,	we	relate	our	findings	to	debates	from	the	philosophy	of	science,	

arguing	for	a	non-reductionist	view	of	mental	disorders	that	allows	for	methodological	

pluralism.	Based	on	these	considerations,	we	point	to	further	lines	of	research	that	seem	

warranted.	

9.2	Methods	

We	recruited	Swiss	and	German	experts	on	the	use	of	ML	 in	psychiatry.	Participants	

were	 identified	 by	 systematically	 searching	 on	 the	websites	 of	 psychiatric	 university	

hospitals	 in	 Switzerland	 and	 Germany	 for	 clinicians	 and	 researchers	 engaging	 with	

artificial	intelligence	or	machine	learning.	Within	our	narrow	recruitment	criteria,	we	

aimed	to	include	as	diverse	a	sample	as	feasible,	with	view	to	the	respective	career	stages	

and	gender.	Once	identified,	we	invited	experts	to	participate	in	our	study	via	e-mail	

and	sent	a	reminder	after	a	week	in	case	we	did	not	receive	a	response.	We	limited	the	
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field	of	experts	to	scholars	who	held	at	least	a	doctorate	in	a	relevant	field,	i.e.,	medicine,	

neuroscience,	or	computer	science.		

The	interviews	took	place	between	April	2020	and	July	2021	and	were	conducted	by	the	

first	author,	a	German	physician	(MD)	with	an	additional	degree	in	philosophy,	research	

and	 working	 experience	 in	 neuroscience	 and	 psychiatry,	 and	 basic	 knowledge	 of	

programming	 and	 ML.	 The	 interviews	 formed	 part	 of	 his	 PhD	 in	 bioethics,	 which	

included	intensive	training	and	supervision	in	qualitative	data	collection.	To	fine-tune	

the	 interview	 guide	 and	 review	 the	 interview	 quality,	 the	 first	 three	 interviews	with	

experts	 served	 as	 pilots.	 Based	 on	 their	 transcripts,	 EDC	 revised	 the	 interview	 guide	

critically,	resulting	in	minor	changes.		

Due	to	the	constraints	of	the	pandemic,	 interviews	were	conducted	via	phone	(10)	or	

online	 video	 call	 (5),	 in	 German	 (13)	 or	 English	 (2),	 depending	 on	 the	 participants’	

individual	preferences.	Interviews	lasted	between	25	and	66	minutes.	All	interviews	were	

transcribed	verbatim	by	the	first	author,	with	help	from	a	medical	master	student	(see	

acknowledgments).	All	quotes	used	for	the	purpose	of	this	paper	were	translated	by	GS	

and	checked	by	EDC.	The	interviewer	was	familiar	with	three	of	the	participants	prior	

to	conducting	the	interviews,	owing	to	earlier	research	activities.		

To	 identify	 important	 themes	 relating	 to	 psychiatric	 nosology,	we	 analysed	 the	 data	

from	 our	 sample	 using	 reflexive	 thematic	 analysis	 (Braun	 &	 Clarke,	 2006,	 2019).	

Individual	codes	were	given	to	each	segment	of	each	transcribed	 interview,	with	one	

segment	representing	a	unit	of	meaning,	consisting	of	one	or	more	sentences.	Initially,	

the	authors	conducted	the	coding	jointly	for	the	first	 four	 interviews,	supported	by	a	

master	 student	 (see	 acknowledgments).	 After	 agreeing	 on	 a	 coding	 tree	 structure,	
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comprising	themes	and	subthemes,	the	remaining	transcripts	were	coded	by	the	first	

author,	using	MaxQDA	software.	This	data	analysis	accompanied	the	data	collection,	

also	to	monitor	data	saturation,	conceptualized	as	thematic	redundancy	 indicated	by	

recurrent	coding	(Given,	2015).		

A	 full	description	of	our	study	design,	 including	 the	 informed	consent	sheet	and	the	

interview	guide,	was	submitted	for	review	to	the	responsible	research	ethics	committee	

(Ethikkommission	Nordwest-	und	Zentralschweiz,	EKNZ),	prior	to	any	data	acquisition.	

The	ethics	committee	determined	that	our	project	did	not	fall	under	restrictions	that	

the	 Swiss	 legal	 framework	 imposes	 on	 research	 with	 human	 subjects	 and	 issued	 a	

statement	 of	 non-objection	 (Req-2019-00920).	 Notwithstanding	 this	 decision,	 we	

adhered	 to	 high	 ethical	 standards,	 by	 obtaining	 informed	 consent	 and	 by	 ensuring	

confidentiality	and	data	security:	(1)	Prior	to	their	participation	in	our	study,	we	asked	

participants	for	their	written	informed	consent,	and	confirmed	this	again	orally	at	the	

beginning	of	the	interview.	(2)	Furthermore,	we	omitted	identifying	information	such	

as	 names	 and	 places	 already	 at	 the	 stage	 of	 transcribing,	 (3)	 and	 stored	 the	 data	

separately	from	identifying	data	on	our	university	servers	in	Switzerland.		

A	detailed	analysis	of	our	main	findings	concerning	the	ethical	dimension	of	using	ML	

in	psychiatry	is	provided	elsewhere	(Starke,	Schmidt,	De	Clercq,	&	Elger,	2022).	In	this	

manuscript,	we	focus	on	the	impact	of	ML	on	psychiatric	nosology,	allowing	for	a	more	

in-depth	conceptual	reflection.	Questions	from	the	interview	guide	that	are	relevant	to	

the	current	manuscript	are	provided	in	Table	9.1.		
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- For	which	applications	of	machine	learning	do	you	see	the	greatest	potential	
in	future	psychiatry?		

- For	which	particular	clinical	objectives?	
- For	which	psychiatric	disorders?	
- Are	there,	in	your	opinion,	challenges	of	using	medical	machine	learning	that	

are	specific	to	psychiatry?	
- As	you	know,	some	authors	argue	that	machine	learning,	and	Deep	Learning	

in	particular,	promise	a	way	to	divide	psychiatric	disorders	objectively	into	
natural	types	and	thus	solve	the	old	problems	of	psychiatric	nosology.	Where	
would	you	stand	on	this?	

- How	should	one	best	deal	with	cases	of	impaired	judgement,	for	example	
when	it	comes	to	a	potential	program	to	recommend	a	particular	
antipsychotic	medication	during	a	psychotic	episode?	

Table	9.1:	Relevant	questions	from	the	interview	guide	

	

9.3	Results	

Semi-structured	interviews	were	conducted	with	15	participants	out	of	26	invited	experts	

(57,6%;	2	women	and	13	men).	Three	experts	declined	due	to	time	constraints,	one	did	

not	 consider	 themself	 an	 expert,	 and	 four	 did	 not	 reply.	 We	 stopped	 recruiting	

additional	participants	after	reaching	saturation	on	the	main	themes	of	our	study,	i.e.,	

once	 participants	 reiterated	 ideas	 that	 had	 already	 been	 present	 in	 similar	 form	 in	

previously	conducted	interviews	(Saunders	et	al.,	2018).	All	participants	held	at	least	a	

doctorate	 (MD	 and/or	 PhD),	 covering	 career	 stages	 between	 postdoc	 and	 retired	

professor	(mean	years	since	doctorate	14.4a,	sd	±10.8)	and	were	affiliated	with	German	

or	 Swiss	 academic	 institutions	 pursuing	 research	 on	 psychiatric	 disease.	 Ten	

participants	were	licensed	physicians,	five	had	degrees	in	psychology	or	neuroscience,	

and	eight	participants	 reported	additional	multidisciplinary	 training	 in	mathematics,	

physics,	engineering,	and	philosophy.	Analysing	our	interviews	with	particular	focus	on	

nosology,	we	related	our	findings	to	two	large	themes,	namely	(1)	the	possibility	of	using	

ML	for	defining	psychiatric	classifications,	and	(2)	the	desirability	of	employing	ML	to	

design	psychiatric	classificatory	systems.	
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9.3.1	On	the	possibility	of	using	ML	for	defining	psychiatric	classifications	

With	view	to	psychiatric	classification,	the	desire	to	improve	current	systems	was	shared	

unanimously	among	the	interviewees.	However,	participants’	views	on	the	possibility	of	

using	ML	for	this	purpose	diverged.	Some	participants	embraced	an	optimist	outlook,	

hoping	for	new	classifications	through	the	use	of	DL	on	large	data	samples	comprising	

biological	and	behavioural	data	as	well	as	self-reported	symptoms:		

“I	think	that	if	we	manage	to	put	together	large	amounts	of	data,	which	you	can	
do	with	these	[neural]	networks,	that	we	will	then	also	have	another	possibility	
to	 find	groups,	 subgroups	 in	psychiatry,	or	perhaps	new	 forms	of	groupings.	 I	
believe	 that	 this	 requires	 a	 lot	 of	 data	 that	 we	 do	 not	 yet	 have	 formatted	
accordingly	(...),	but	in	principle	I	think	it	is	possible,	yes.”		(P2)	
	

Also	others	considered	ML	as	particularly	useful	for	psychiatric	nosology	since	it	could	

contribute	to	mapping	different	features	of	psychiatric	disorders	in	a	higher	dimensional	

space,	 taking	 into	 account	 the	 complex	 and	 contingent	 forms	 of	 mental	 disorders,	

shaped	by	history,	culture,	and	language.	Some	participants	were	therefore	optimistic	

concerning	ML,	if	it	incorporated	a	turn	towards	a	dimensional	diagnostic	system.	

“I	 think	 we	 would	 have	 to	 find	 a	 dimensional	 system	 to	 describe	 psychiatric	
illnesses	in	the	best	possible	way,	similar	to	the	way	we	describe	personality.	[…]	
Instead	of	 dividing	people	 somehow	 into	diagnostic	 classes,	 one	 could	 simply	
describe	them	with	a	profile	on	these	different	dimensions.	And	if	you	then	have	
to	decide	somehow	whether	you	should	treat	someone	with	antidepressants	or	
something,	 then	 you	 could	 also	 define	 a	 cut-off	 on	 the	 dimension	 of	
depressiveness.”	(P13).	

	
The	 majority	 of	 interviewees	 however	 regarded	 ML	 for	 nosological	 purposes	 more	

sceptically.	Some	experts	insisted	that	if	we	were	to	aim	at	new	classifications,	we	would	

need	 to	 move	 beyond	 mapping	 symptoms	 to	 specific	 biomarkers,	 and	 turn	 to	 the	

underlying	mechanisms	instead,	rooted	in	neurobiology.				

“So,	if	you	try	to	do	that	at	the	level	of	symptoms,	I	think	it’s	hopeless.	Because	
you	know	only	too	well	that	with	prominent	examples,	–	that	a	certain	symptom	
can	be	caused	by	completely	different	neurological	mechanisms.	And	that’s	why	
a	parcellation	or	a	delimitation	of	diseases	can	generally,	in	my	view,	not	be	done	
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on	the	symptom	level,	but	always	only	on	the	level	of	mechanisms	and	causes.	All	
our	claims	are	not	at	the	level	of	data,	but	at	the	level	of	possible	mechanisms	
that	can	explain	the	data	we	have	observed.”	(P4)	
	

At	the	same	time,	other	sceptics	frequently	pointed	to	the	lack	of	success	in	identifying	

univocal	 associations	 between	 neurobiological	 data	 and	 psychiatric	 disorders	 in	

research	so	far,	even	after	decades	searching	for	psychiatric	biomarkers.	

“I	 am	 very	 suspicious,	 having	worked	 in	 the	 field	 for	 quite	 a	 few	 years,	 as	 to	
whether	 it	 will	 really	 be	 possible	 –	 whether	 [machine	 learning]	 will	 prove	 so	
helpful	to	arrive	at	diagnostic	classifications.	That	isn’t	possible	at	the	moment	
because	 there	 are	 no	 unequivocal	 correlations,	 for	 example,	 between	 certain	
brain-structural	changes	and	a	diagnosis	of	some	kind.	You	do	not	have	this	for	a	
single	disorder	in	psychiatry.	You	can’t	say,	for	example,	frontal	lobe	grey	matter	
reduction	means	someone	suffers	from	depression.	No:	they	might	suffer	from	
depression,	 or	 maybe	 schizophrenia	 and	 so	 on.	 There	 are	 no	 unequivocal	
correlations.”	(P1)	

Some	interviewees	stressed	the	additional	difficulty	of	arriving	at	suitable	ML	models,	

in	 light	of	 the	 fact	 that	 current	psychiatric	diagnostic	 classifications	are	not	built	on	

biological	observations	but	on	the	reported	phenomenological	symptoms	of	patients.		

“I	mean,	in	psychiatry	in	general	it	is	also	a	methodological	problem.	Because,	as	
I	 said,	 the	 classifications	are	phenomenological,	 they	have	nothing	 to	do	with	
neurobiology,	 I	 think	 we	 still	 know	 far	 too	 little	 about	 it.	 And	 this	 whole	
psychiatric	 classification	 system	 has	 to	 do	 with	 that.	 That	 would	 have	 to	 be	
fundamentally	questioned	 if	we	were	to	 imagine	a	greater	significance	 for	AI.”	
(P7)	
	

One	interviewee	reasoned	that	our	current	classificatory	approaches	are	reflected	in	the	

training	data	to	a	degree	that	makes	it	impossible	to	arrive	at	a	new	classificatory	system.		

“That’s	where	the	dragon	bites	its	own	tail.	[…].	At	the	end	of	the	day,	we	feed	our	
algorithms	with	pre-assumptions	and	pre-allocations.	[…]	And	machine	learning,	
which	 forms	 certain	 substructures	 through	 deep	 learning,	 so	 to	 speak,	 must	
always	be	mapped	to	 the	outcome	at	 the	end	of	 the	day,	otherwise	 it	can’t	be	
used.	[…]	This	is	why	we	will	fail	to	introduce	new	psychiatric	dimensions	now.	
At	the	end	of	the	day,	[Deep	Learning]	may	provide	us	with	hypotheses,	make	us	
reconsider	certain	labels	and,	in	particular,	reconsider	the	response	to	medication	
in	 the	 context	 of	 our	 diagnosis.	 But	 I	 don’t	 think	machine	 learning	 itself	will	
miraculously	give	us	any	true	entities.”	(P5)	
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9.3.2	On	the	desirability	of	using	ML	for	defining	psychiatric	classifications	

The	second	recurring	theme	was	whether	it	would	be	desirable	to	use	ML	to	arrive	at	

novel	 psychiatric	 classifications.	 Optimist	 stances	 emphasized	 the	 methodological	

benefits	 of	 a	 ML-based	 classificatory	 system,	 allowing	 for	 hypothesis-free	 or	 more	

objective	 approaches,	 whereas	 others	 delineated	 conditions	 which	 such	 approaches	

should	respect.		

In	 the	 view	 of	 optimists,	 ML	 could	 enable	 new	 ideas	 and	 move	 beyond	 existing	

hypotheses:		

I	have	always	been	of	the	opinion,	even	before	ML	existed,	that	we	need	much	more	
hypothesis-free	 thinking	and	not	 these	prefabricated	pigeonholes	 that	we	have	 in	
psychiatry.	And	that,	in	my	opinion,	is	one	of	the	great	possibilities	of	such	methods,	
that	 one	 can	 really	 recognise	 completely	 new	 associations,	 and	 perhaps	 also	
connections	of	 symptoms,	patterns	of	brain	 changes,	patterns	of	 other	 endocrine	
changes,	patterns	of	causes,	and	thereby	generate	new	causal	ideas.”	(P15)	
	

As	 a	 potential	 result	 of	 such	 hypothesis-free	 methods,	 several	 scholars	 named	 the	

ambition	of	moving	beyond	subjective	symptoms	and	gaining	a	more	objective	model	

of	psychiatric	disorders	through	an	automated	approach.			

“Especially	 in	psychiatry	 there	 is	 the	problem	that	many	symptoms	are	subjective	
and	retrospective.	This	already	plays	a	big	and	problematic	role	in	clinical	care	but	
also	 in	 assessments.	 Because	 many	 things	 a	 patient	 says	 cannot	 be	 objectively	
affirmed	or	denied.	It	would	be	interesting	if	there	were	possibilities	to	have	more	
objective	access	to	the	inner	world	of	the	patient.	That	would	be	of	great	importance	
for	the	patient.”	(P8)	
	

More	sceptical	voices	mentioned	the	danger	that	defining	psychiatric	disorders	based	

on	ML	models	 could	 imply	 ignoring	 the	history	of	psychiatry	and	may	contribute	 to	

impoverishing	the	discipline	as	such.		

“What	is	not	good	is	to	postulate,	as	some	authors	do,	and	say:	in	5	years	we	will	have	
reached	the	point	with	computing	power	that	we	can	simply	put	this	19th	century	
thinking,	 schizophrenia,	bipolar	 etc.,	 in	 the	museum,	and	 that'	 s	 it.	 I	 think	 that’s	
wrong.	And	not	because	of	the	terms.	You	can	abolish	the	terms	if	you	like.	I	can	also	
do	psychiatry	without	the	schizophrenia	term,	no	problem.		But	behind	the	concept	
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of	schizophrenia	there	is	a	very	rich	tradition	of	thought.	Key	words:	Jaspers,	Kurt	
Schneider...	If	all	that	were	to	be	stirred	away	because	it	is	old,	I	would	consider	that	
a	substantial	loss	for	the	discipline.”	(P3)	

	
Another	objection	to	a	ML-based	nosology	was	raised	by	several	experts	who	tied	the	

desirability	 of	 a	 refined	 classificatory	 system	 to	 its	 clinical	 usefulness,	 providing	 a	

prognosis	or	predict	therapeutic	response	for	individual	patients.		

“You	can	determine	a	 lot	after	you	have	talked	to	the	person	for	two	minutes,	
because	everything	may	already	be	clear.	Or	if	you	just	see	him	walking	down	the	
corridor.	 This	means	 that	 it	 is	 certainly	 not	 so	much	 a	 question	 of	 finding	 a	
diagnosis	and	classification,	but	rather	the	important	thing	is	to	give	a	prognosis	
or	a	therapy	response.	I	think	these	are	the	important	areas	of	application.”	(P7)	

	

On	a	related	note,	several	clinicians	also	called	for	a	focus	on	the	subjective	perspective	

of	the	individual	patient	when	asked	about	the	desirability	of	a	ML-based	classificatory	

system.		

“I	am	convinced	that	the	diagnosis	itself	is	not	relevant.	It’s	about	how	the	person	
is	doing,	can	I	make	them	feel	better?	I	don’t	need	the	diagnosis	for	that	if	I	have	
a	 treatment	 right	 away.	 Diagnosis	 is	 just	 a	 vessel	 to	 get	 to	 treatment.	 If	 the	
biomarker	says	this	person	has	depression,	but	the	person	laughs,	can	sleep	well	
and	 says	 “I	 am	not	depressed”,	 then	he	 is	 not	 depressed.	 I.e.,	 the	diagnosis	 is	
always	in	the	eye	of	the	beholder	–	what	the	psychiatrist	defines,	what	the	patient	
feels.”	(P9)	

	
Another	 participant	 embedded	 their	 scepticism	 in	 a	 historical	 context,	 linking	 the	

history	 of	 different	 ML	 techniques	 and	 the	 history	 of	 modern	 biologically	 oriented	

psychopathology.	 Reflecting	 on	 long-standing	 failures	 to	 provide	 a	 biologically	

grounded	 classification	 of	 psychiatric	 disorders,	 they	 were	 convinced,	 that	 although	

helpful,	ML	could	not	resolve	the	problem	of	nosology	and	that	investing	too	much	hope	

in	such	a	project	might	even	be	harmful,	by	leading	to	another	AI	winter.		

“If	Kraepelin	had	had	Deep	Learning,	he	would	have	been	using	that	to	classify	
the	patients.	But	he	couldn’t.	So	he	just	classified	them	with	his	sorting	cards	and	
everything.	And	then,	you	know,	k-means	and	clustering	algorithms	came	up	in	
1958.	It	was	the	first	–	one	of	the	first	introductions	of	the	techniques.	And	then	
by	 the	 1960s	 and	 1970s	 they	were	 already	using	 it	 for	psychiatry.	But	 it	hasn’t	
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worked.	 And	 you	 know,	 it’s	 just	 an	 overstatement	 that	 it	 will	 solve	 all	 the	
problems	 and	 define	 objective	 groups.	 We	 have	 been	 going	 after	 that	 for	 a	
hundred	and	something	years,	and	it	hasn’t	happened	yet.	It	certainly	may	help.	
I	am	not	denying	that.	 […]	But	saying	that	Deep	Learning	 is	going	to	solve	all	
these	problems	is	exactly	like	what	happened	in	the	1960s,	and	then	the	first	AI	
winter	came	after	that,	because	the	claims	were	so	ridiculously	inflated.”	(P14)	

	

Finally,	on	a	more	clinical	level,	several	experts	reported	concern	that	moving	towards	

an	ML-based	classificatory,	diagnostic	system	may	also	alter	clinical	symptoms.	Given	

that	the	themes	of	delusions	often	mirror	aspects	of	a	particular	age,	these	clinicians	

reasoned	that	such	a	shift	would	likely	also	result	in	an	increase	of	ML-related	delusions.		

“Paranoid	experiences,	delusions	often	reflect	the	times,	the	zeitgeist.	In	the	past,	
delusions	were	often	caused	by	religion.	Since	religion	no	longer	plays	such	a	role,	
at	some	point	this	idea	of	being	bugged	came	up,	or	of	being	irradiated	by	rays,	
and	now	the	delusional	contents	are	changing	more	and	more	in	the	direction	of	
the	computer.”	(P1)	

	
“We	very	often	see	psychotic	patients	whose	delusions	have	a	lot	to	do	with	this	
topos,	i.e.	computers,	artificial	intelligence,	who’s	listening	to	me,	is	there	a	CIA	
guy	sitting	around	the	corner	and	so	on.	And	I	could	imagine	that	for	this	group	
of	 patients,	 for	 chronically	 psychotic	 people,	 it	 would	 […]	 become	 an	 issue	 if	
psychiatry	 were	 to	 become	 more	 and	 more	 algorithmised	 and	 mechanised.	
Because	that	would	somehow	strengthen	their	suspicions,	which	they	have	due	
to	their	illness.	In	concrete	terms,	if	I'm	sitting	here	at	my	desk	and	the	patient	is	
sitting	opposite	of	me	and	I	have	10	computers	on	the	table	that	are	constantly	
printing	out	something	and	beeping,	then	you	don’t	have	to	be	schizophrenic	to	
become	a	bit	suspicious.”	(P3)	
	
	

	
9.4	Discussion	

The	present	study	aimed	to	explore	experts’	attitudes	on	the	role	of	ML	for	psychiatric	

nosology.	 To	 our	 knowledge,	 this	 is	 the	 first	 study	 that	 reports	 the	 viewpoints	 of	

researchers	 in	 the	 field	 on	 this	 topic.	 With	 regard	 to	 both	 the	 possibility	 and	 the	

desirability	of	using	ML	to	define	mental	disorders	and	refine	classificatory	system,	we	

found	optimist	and	sceptical	stances.	In	the	following,	we	draw	on	our	findings	to	argue	

in	 favour	 of	 a	 methodologically	 pluralist,	 non-reductive	 approach	 to	 psychiatric	
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disorders.	In	particular,	we	highlight	how	engaging	with	conceptual	theories	such	as	the	

network	theory	of	mental	disorders	could	help	to	advance	research	in	the	field	and	we	

show	how	the	reflexive	impact	of	ML-based	diagnostics	on	patients’	symptoms	described	

by	our	interviewees	further	supports	a	non-reductionist	approach	if	seen	in	the	light	of	

Hacking’s	notion	of	human	kinds.		

Concerning	the	possibility	of	employing	ML	methods	to	solve	problems	of	psychiatric	

nosology,	we	found	conflicting	voices	among	our	interviewees.	Optimist	stances	were	

embraced	by	few	scholars,	pointing	out	potential	benefits	of	using	hypothesis-free,	data-

driven	approaches.	Yet,	despite	interviewing	only	experts	pursuing	research	in	the	very	

field,	the	majority	of	interviewees	questioned	such	promises	on	a	methodological	basis.	

They	 stressed	 that	 available	 data	 already	 mirror	 current	 nosological	 assumptions,	

leading	 to	 feedback	 effects	 that	 prevent	 advancing	 beyond	 current	 conceptual	

frameworks.	 They	 also	 referenced	 the	 historically	 poor	 track	 record	 of	 searching	 for	

clinically	useful	biomarkers	 in	psychiatry	as	well	as	our	 incomplete	understanding	of	

causal	connections	between	neurobiology	and	mental	phenomena,	between	mind	and	

brain.		

This	polyphony	of	our	interviewees’	positions	constitutes	one	of	the	main	findings	of	

our	 study.	 The	 diverse	 stances	 mirror	 longstanding	 scholarly	 debates,	 for	 instance	

whether	research	in	psychiatry	should	be	data-driven	or	theory-driven	(Huys	et	al.,	2016;	

Itani	&	Rossignol,	2020)	or	how	to	bridge	the	gap	between	neurobiological	mechanisms	

and	phenomenological	symptoms	(Borsboom	et	al.,	2018).	The	variety	of	positions	also	

seemed	to	reflect	fundamental	metaphysical	disagreement	about	the	nature	of	mental	

disorders.	Many	of	our	interviewees	seemed	to	implicitly	endorse	an	understanding	of	

psychiatric	 disorders	 as	 brain	 disorders	 that	 can	 and	 should	 be	 objectified,	 whereas	
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others	 highlighted	 the	 limits	 of	 DL,	 stressing	 phenomenological	 and	 historically	

contingent	 aspects	 of	 mental	 disorders.	 Wiese	 and	 Friston	 (2021)	 have	 recently	

highlighted	how	research	in	computational	psychiatry,	while	in	theory	metaphysically	

neutral,	often	tends	to	place	its	focus	on	brain	function	(Friston,	Stephan,	Montague,	&	

Dolan,	2014;	Montague,	Dolan,	Friston,	&	Dayan,	2012;	Stephan	&	Mathys,	2014)	and	less	

on	genetic	mechanisms	(Rødevand	et	al.,	2021)	or	clinical	predictors	(Koutsouleris	et	al.,	

2021).	Our	sample	seems	therefore	quite	reflective	of	the	nosological	debates	that	have	

vexed	psychiatry	since	its	inception	(Aftab	&	Ryznar,	2021),	and	to	mirror	questions	how	

to	conceptualise	the	relation	between	neurobiology	and	mental	phenomena	that	remain	

unsolved	for	biological	psychiatry	(Walter,	2013).		

While	this	result	is	already	interesting	in	itself	as	an	overview	of	current	attitudes	and	

opinions	 in	 the	 field,	we	believe	 that	 our	 findings	 can	 also	 inform	 the	 philosophical	

debate	on	using	machine	 learning	 for	psychiatric	nosology.	 In	particular,	 the	various	

perspectives	raised	by	the	interviewed	experts	highlight	the	multi-faceted	and	complex	

way	 in	which	mental	 disorders	 present	 themselves,	 ranging	 from	 the	 biological	 and	

chemical	 to	 the	 social	 and	 phenomenological.	 If	 some	 form	 of	 unsupervised	 ML	 is	

supposed	to	advance	research	towards	a	more	complete	account	of	mental	disorders,	it	

would	therefore	need	to	integrate	these	varying	levels	of	explanations.	A	helpful	model	

for	 thinking	about	 the	 integration	of	 such	 levels	has	been	proposed	by	Lena	Kästner	

(2018)	in	the	context	of	mechanistic	explanations:	Instead	of	conceptualizing	different	

levels	of	an	explanation	in	a	hierarchical	or	layered	manner,	it	may	prove	beneficial	to	

our	scientific	understanding	of	complex	phenomena	if	we	assume	a	dimensional	view	of	

explanatory	 levels	 (Kästner,	 2018).	 Such	 dimensions	 can	 account	 for	 the	 diverging	
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epistemic	perspectives	 of	 the	 involved	 research	domains	 and	preserve	 the	 respective	

richness	of	their	descriptions,	allowing	for	complementary	and	pluralist	accounts	(ibid.).		

Appreciating	 and	 integrating	 diverging	 epistemic	 perspectives,	 as	 presented	 in	 this	

paper,	 seems	 also	 very	 well-suited	 for	 the	 analysis	 and	 conceptualisation	 of	 mental	

disorders:	 It	 helps	 to	 avoid	 forms	 of	 reductionism	 that	 promise	 overly	 simplistic	

explanations	 of	 psychiatric	 disorders	 but	 do	 not	 appreciate	 the	 complexity	 of	 the	

phenomenon.	For	as	Ludwik	Fleck	provokingly	admonished	in	his	 1927	Some	Specific	

Features	of	the	Medical	Way	of	Thinking,	“the	worse	the	physician	the	‘more	logical’	his	

therapy”	(Fleck,	1986,	p.	42).	The	worry	expressed	here,	that	in	medical	practice	overly	

simple	explanations	are	hardly	a	sign	of	an	experienced	clinician,	resonates	well	with	the	

opinions	of	the	interviewed	experts	that	put	the	benefit	to	the	patient	front	and	center.	

These	positions	are	also	in	line	with	the	comprehensive	literature	criticising	psychiatric	

practice	for	its	focus	on	assigning	labels	(Brinkmann,	2017;	Callard,	Bracken,	David,	&	

Sartorius,	 2013)	 and	with	positions	 that	 favour	more	pragmatic	definitions	of	mental	

disorders	(Kendler,	Zachar,	&	Craver,	2011;	Zachar,	2014).	

One	 proposed	 and	 much-discussed	 system	 of	 mental	 disorders	 that	 offers	 a	 non-

reductionist	view,	accommodating	different	dimensions	of	explanations,	is	the	symptom	

network	 theory	 (Borsboom,	 2017;	 Borsboom	 et	 al.,	 2018;	 Oude	 Maatman,	 2020).	 As	

mentioned	 in	 the	 introduction,	 this	 theory	 takes	causally	connected	symptoms	as	 its	

focal	point,	satisfying	the	call	by	practitioners	to	focus	on	clinically	relevant	features.	At	

the	same	time,	it	allows	for	appreciating	biological	as	much	as	social	determinants	of	

mental	disorders	by	situating	them	in	a	complex	network	that	can	be	described	from	

different	 epistemic	 perspectives.	 Engaging	 with	 these	 philosophical	 debates	 will	

therefore	also	prove	useful	to	empirical	researchers,	as	it	provides	a	framework	for	the	
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integration	of	empirical	research	from	different	research	domains,	to	make	use	of	the	

“growing	body	of	empirical	research	and	move	the	field	toward	its	fundamental	aims	of	

explaining,	predicting,	and	controlling	psychopathology”	(Haslbeck,	Ryan,	Robinaugh,	

Waldorp,	&	Borsboom,	2021).		

Machine	 learning,	and	deep	 learning	 in	particular,	 should	 therefore	not	be	 seen	as	a	

remedy	in	itself	to	the	challenges	of	nosology,	but	rather	as	a	computational	tool	that	

my	 support	 scientific	 progress	 by	 allowing	 an	 improved	 modelling	 of	 complexity,	

integrating	vast	amounts	of	different	data	types	that	represent	different	dimensions	of	a	

phenomenon.	In	this	context,	at	least	three	caveats	though	seem	crucial.		

First,	a	diagnostic	system	based	on	ML	should	not	be	mistaken	to	provide	an	objective	

“view	 from	 nowhere”,	 to	 borrow	 Nagel’s	 phrase	 (1986).	 On	 the	 one	 hand,	 any	

computational	model	will	be	shaped	by	the	type	of	data	selected	for	its	training,	and	by	

the	context	of	their	acquisition,	as	repeatedly	stressed	by	our	interviewees.	In	addition,	

insofar	as	computational	psychiatry	draws	on	a	concept	of	miscomputation,	it	employs	

a	value-laden	and	perspectival	notion	of	normalcy	for	its	explanations	(Colombo,	2021).	

Also	 with	 the	 support	 of	 ML,	 it	 will	 therefore	 remain	 crucial	 to	 be	 mindful	 of	 the	

epistemic	perspectives	informing	classificatory	systems	in	psychiatry.		

A	 second	caveat	concerns	 the	 limited	possibility	of	arriving	at	 causal	 structures	with	

deep	learning	techniques.	While	DL	may	provide	researchers	with	new	hypotheses	or	

inspiration	through	its	ability	to	detect	correlations	in	large	datasets	(Davies	et	al.,	2021),	

it	usually	does	not	provide	causal	scientific	explanations,	with	very	few	exceptions	such	

as	explicit	causal	modelling	(Parascandolo,	Kilbertus,	Rojas-Carulla,	&	Schölkopf,	2018).	

This	constitutes	an	important	difference	to	symptom	network	theory,	which	demands	
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causal	links	between	different	nodes	in	the	symptom	network	(Borsboom,	2017).	Deep	

neural	network	models	therefore	only	provide	one	step	in	the	generation	of	scientific	

knowledge,	offering	“first	steps	to	determining	which	causal	mechanisms	or	dependency	

relations	 should	 be	 explored	 further”	 (Sullivan,	 2022),	 or	 as	 P15	 put	 it:	 first	 steps	 to	

“recognise	 completely	 new	 associations,	 and	 perhaps	 also	 connections	 of	 symptoms,	

patterns	of	brain	changes,	patterns	of	other	endocrine	changes,	patterns	of	causes,	and	

thereby	generate	new	causal	ideas.”	

A	third	caveat	is	that	also	with	the	use	of	ML,	psychiatric	classificatory	systems	will	not	

carve	nature	at	its	joints	but	will	remain	dynamic	and	open	to	change.	Evidence	for	this	

claim	can	be	found	in	the	anecdotal	clinical	reports	of	psychotic	symptoms	being	shaped	

by	the	real	or	feared	integration	of	ML	into	psychiatry	that	came	up	repeatedly	in	many	

of	 our	 interviews,	 despite	 not	 corresponding	 to	 any	 item	 in	 our	 interview	 guide.	

Assuming	that	these	reports	are	not	isolated	concerns,	this	unintended	impact	of	ML	on	

psychiatric	 diagnostic	 seems	 to	 fit	 well	with	what	 Ian	Hacking	 has	 described	 as	 the	

looping	effect	of	human	kinds	where	human	classifications	and	their	social	environment	

are	causally	intertwined	through	feedback	mechanisms	(Hacking,	1999).		

Hacking’s	work	on	natural	and	human	kinds	has	informed	the	past	decades	of	debate	in	

psychiatric	 research.	 In	Hacking’s	view,	natural	kinds	are	 supposed	 to	offer	a	unique	

taxonomy	 “that	 represents	 nature	 as	 it	 is,	 and	 reflects	 the	 network	 of	 causal	 laws”	

(Hacking,	 1991,	 p.	 111),	 whereas	 human	 kinds	 are	 the	 subject	 of	 the	 social	 sciences,	

providing	“classifications	that	could	be	used	to	formulate	general	truths	about	people”	

(Hacking,	1996,	p.	352).	While	the	debate	about	this	distinction’s	conceptual	bearings	is	

vast	and	controversial	(Bird	&	Tobin,	2008;	Cooper,	2004;	Craver,	2009;	Tsou,	2007;	Van	

Riel,	2016),	some	authors	have	also	used	it	to	design	empirical	research,	investigating	for	
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instance	 the	 way	 in	 which	 young	 adolescents	 interact	 and	 transform	 psychiatric	

concepts	(Lindholm	&	Wickström,	2020).	Here,	our	point	is	much	more	modest	though:	

If	the	use	of	an	ML-based	diagnostic	regime	does	indeed	shape	the	symptom	of	patients,	

and	if	said	symptoms	are	used	as	training	data	to	the	diagnostic	model,	this	would	imply	

the	 need	 to	 regularly	 update	 the	 classificatory	 model.	 This	 observation	 alone	 may	

therefore	be	seen	as	a	reason	to	not	harbour	a	machine-learning	based	“aspiration	to	

automatically	segregate	brain	disorders	into	natural	kinds”	(Bzdok	&	Meyer-Lindenberg,	

2018).		

Our	study	has	several	limitations.	Since	our	purposive	sampling	was	highly	targeted	on	

a	specific	research	field	within	psychiatry	in	Germany	and	Switzerland,	our	results	are	

not	representative,	neither	for	psychiatry	in	general	nor	for	other	cultural	contexts.	As	

is	the	case	for	all	qualitative	research,	our	results	are	therefore	not	generalizable.	For	

this	reason	and	to	safeguard	the	anonymity	of	our	participants,	we	can	therefore	not	

provide	insights	into	quantifiable	relations	between,	e.g.,	the	experts’	years	of	experience	

or	their	success	in	publishing,	but	believe	that	such	inquiry	would	constitute	a	valuable	

route	for	future	research.	In	addition,	the	close	involvement	of	the	interviewer	in	the	

field	as	well	as	his	medical	background	may	have	influenced	his	interactions	with	the	

interviewees.	Yet,	 since	our	 study	aimed	at	 exploring	different	 facets	of	 an	emerging	

research	field,	not	at	representative	descriptions,	we	believe	that	these	limitations	do	

not	diminish	the	value	of	our	findings.	

9.5	Conclusion	

This	study	provides	the	first	qualitative	insights	into	the	impact	of	ML	on	psychiatric	

nosology.	 It	 highlights	 how	ML	 and	 DL	 in	 particular	 does	 seemingly	 not	 provide	 a	

solution	 to	 problems	 of	 defining	 psychiatric	 disorders	 but	 instead	 mirrors	 existing	
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disagreements.	 Our	 findings	 should	 therefore	 be	 read	 as	 an	 exhortation	 to	 scholars	

working	 in	 the	 field	 of	 computational	 psychiatry	 to	 engage	 more	 deeply	 with	

philosophical	 debates	 and	 bridge	 the	 gaps	 between	 research	 employing	DL	 and	 the	

philosophy	 of	 mind.	 Doing	 so	 may	 support	 the	 development	 of	 non-reductionist	

research	programs	 that	 appreciate	 the	 complexity	of	mental	disorders	by	 integrating	

empirical	findings	from	different	research	domains.		
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10.1	Introduction		

We	 are	 very	 grateful	 that	 Christophe	 Gauld,	 Jean-Arthur	 Micoulaud-Franchi	 and	

Guillaume	Dumas	have	added	their	valuable	comment	to	our	article	(Starke,	De	Clercq,	

Borgwardt,	 &	 Elger,	 2021).	 We	 fully	 agree	 with	 their	 response,	 highlighting	 the	

importance	 of	 an	 appropriate	 framework	 for	 educating	 young	 psychiatrists	 (Gauld,	

Micoulaud-Franchi,	&	Dumas,	2021).	Indeed,	basic	knowledge	about	the	fundamentals	

of	computer	science,	cognitive	neuroscience,	computational	psychiatry,	clinical	practice	

as	 well	 as	 ethics	 seems	 crucial	 for	 a	 successful	 and	 responsible	 implementation	 of	

machine	learning	(ML)	in	psychiatry.	Similarly,	we	fully	concur	with	them	and	others	

(Grote	&	Berens,	2020)	that	developing	an	appropriate	epistemological	framework	will	

be	crucial	to	advance	the	ethical	debates	surrounding	AI	in	healthcare.		

Still,	expanding	on	the	useful	practical	guide	Dr	Gauld	and	his	colleagues	have	provided	

to	 develop	 a	 curriculum	 fit	 for	 educational	 purposes,	we	would	 like	 to	 draw	 further	

attention	to	the	persistent	importance	of	teaching	history	of	psychiatry.	While	this	is	no	

new	demand	(Shorter,	2008),	it	may	not	have	received	enough	attention	in	the	context	

of	 psychiatric	 ML	 yet.	 Of	 course,	 we	 are	 aware	 that	 curricula	 run	 danger	 of	 being	

overburdened	in	the	context	of	ML,	and	agree	with	Gauld	et	al.	(2021)	and	McCoy	et	al.	

(2020)	that	training	should	focus	on	fundamental	concepts.	However,	education	about	

the	 historical	 development	 and	 employment	 of	 psychiatric	 classifications	 should	 be	

considered	part	of	these	fundamental	issues	and	will	remain	crucial	to	counter	potential	

ethical,	clinical	and	conceptual	pitfalls	of	ML	in	psychiatry.	Once	more,	the	example	of	

schizophrenia	seems	particularly	well	suited	to	highlight	these	challenges.		
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10.2	From	the	history	of	schizophrenia	to	machine	learning	

With	view	to	ethical	questions,	education	about	the	historical	ramifications	surrounding	

the	development	of	particular	classificatory	concepts	helps	to	elucidate	the	fact	that	they	

are	human	made.	When	developing	and	using	diagnostic	ML	tools	in	psychiatry,	this	

may	 help	 to	 stress	 their	 historical	 contingence	 as	 heuristic	 concepts,	 countering	

tendencies	to	reify	the	categories	which	a	particular	system	has	been	trained	to	classify	

(Hyman,	2010).	Furthermore,	attention	to	historical	atrocities	and	gross	abuse	of	power	

in	psychiatry,	e.g.	during	the	Nazi	era,	can	serve	as	a	cautionary	tale	in	educative	settings,	

raising	 awareness	 for	 ethical	 pitfalls	 today	 (Strous,	 2007).	 In	 fact,	 some	 old	 ethical	

problems	 of	 psychiatry	 may	 return	 under	 new	 guise	 with	 ML-based	 systems.	 For	

example,	it	has	been	argued	that	in	the	US	during	the	1960s	and	1970s,	the	diagnosis	of	

schizophrenia	was	disproportionately	applied	 to	African-Americans	connected	 to	 the	

civil	rights	movement,	on	account	of	their	alleged	aggressive	behaviour	(Metzl,	2009).	

Given	that	even	today	there	remain	significant	disparities	between	ethnic	groups	with	

regard	 to	 the	diagnosis	 of	 schizophrenia	 (Gara,	 Minsky,	 Silverstein,	 Miskimen,	 &	

Strakowski,	 2019),	 educative	 curricula	 should	 draw	 attention	 to	 such	 historical	

injustices,	 fostering	 particular	 attention	 to	 discrimination	 and	 biases	 potentially	

ingrained	in	ML-based	systems.		

For	the	current	clinical	practice	of	psychiatry,	obtaining	an	historically	informed	view	

seems	highly	beneficial	as	well.	In	particular,	historical	education	may	promote	clinical	

qualities	that	critics	fear	could	fade	into	the	background	with	the	introduction	of	ML	

systems.	For	example,	looking	closely	at	the	original	conditions	under	which	a	specific	

concept	was	introduced	may	inspire	close	attention	to	clinical	context.	Again,	the	case	

of	 schizophrenia	 can	 serve	 to	 illustrate	 this.	 The	 term	 “schizophrenia”	was	 famously	
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coined	 by	 the	 Swiss	 psychiatrist	 Eugen	 Bleuler	 in	 1908,	 arguably	 in	 rejection	 of	 a	

Kraepelinian	nosology	based	on	prognosis	 (Maatz	&	Hoff,	 2014).	 In	 turn,	Bleuler	has	

been	read	as	an	early	proponent	of	a	bio-psycho-social	model	of	disease,	aiming	for	an	

understanding	 of	 the	 disorder	 that	 integrates	 the	 underlying	 neurobiology	 with	

individual	psychological	 and	 social	 aspects	 (Maatz,	Hoff,	&	Angst,	 2015).	 In	 a	 similar	

vein,	recent	research	has	highlighted	the	irreducible	and	subjective	psychological	nature	

of	Bleuler’s	so-called	first-rank	symptoms,	stressing	the	 importance	of	the	 individual,	

lived	experiences	of	patients	for	his	psychopathology	(Moscarelli,	2020).	With	regard	to	

ML	systems,	teaching	about	the	historical	origins	of	the	concept	of	schizophrenia	may	

thus	serve	to	avoid	an	overly	simplified	view	of	the	disorder	and	stress	their	cumulative	

nature.	In	other	words,	recent	advances	in	ML	notwithstanding,	psychiatry	will	need	to	

keep	paying	close	attention	to	the	social	conditions	of	disorders	as	well	as	the	individual	

phenomenological	perspectives	of	patients.		

Finally,	with	view	to	conceptual	questions,	attention	to	the	history	of	psychiatric	theory	

will	 also	 remain	 fundamental	 to	 the	 development	 and	 improvement	 of	 diagnostic	

categories.	 We	 fully	 agree	 with	 Dr	 Gauld	 and	 his	 colleagues	 that	 an	 appropriate	

framework	of	medical	epistemology	requires	a	“to-ing	and	fro-ing”	between	philosophy	

and	science.	However,	 in	line	with	contemporary	philosophy	of	science,	we	also	hold	

that	 this	 process	 needs	 to	 retain	 attention	 to	 historical	 detail,	 in	 the	 sense	 of	 an	

integrated	 history	 and	 philosophy	 of	 science	 (Chang	 2008).	 Kenneth	 Kendler	 has	

sketched	 the	 consequences	 of	 such	 an	 historical	 approach	 with	 regard	 to	 the	

classification	of	schizophrenia,	driven	by	a	process	of	“epistemic	 iterations”	(Kendler,	

2009).	Attempts	 to	 redefine	psychiatric	classification	based	on	ML	may	 thus	need	 to	

reflect	 upon	 their	 own	 historically	 contingent	 role	 in	 this	 evolutive	 process,	 so	 that	
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psychiatric	nosology	may	mature	“historically	from	top-down	essentialist	views	of	our	

categories	 to	 bottom-up	 empirically	 defined	 entities	 that	 reflect	 with	 increasingly	

accuracy	the	world	as	we	can	best	understand	it.“	(Kendler,	2009)	
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11.1	Filling	the	gaps:	what	this	thesis	adds	to	current	debates		

This	 thesis	 set	out	 to	 investigate	whether	we	can	 trust	medical	ML,	and	 if	 so,	under	

which	conditions.	While	its	cumulative	structure	implies	that	the	individual	chapters	

necessarily	form	independent	scholarly	contributions,	taken	together,	their	main	claims	

and	findings	form	a	mosaic	answer	to	the	research	question.		

This	 thesis	argues	why	 trust	can	serve	as	a	meaningful	concept	 in	bioethical	debates	

about	 medical	 ML	 and	 introduces	 a	 multidimensional	 model	 of	 trust	 (chapter	 3).	

Highlighting	 the	 frequent	problem	of	unknown	causality	and	missing	gold	standards	

when	modelling	medical	 phenomena,	 the	 thesis	 suggests	 approaches	 to	 algorithmic	

fairness	 and	 understanding	 medical	 ML	 that	 aim	 to	 circumvent	 these	 underlying	

challenges,	supporting	two	key	conditions	of	trustworthiness	(chapters	4	&	5).	It	also	

embraces	 a	 concept	 of	 intelligent	 openness,	 taking	 communicative	 conditions	 into	

account	 to	 foster	 trust	 in	 medical	 ML	 (chapter	 6).	 Turning	 to	 ML	 applications	 in	

psychiatry,	 the	 findings	 of	 our	 interview	 study	 point	 to	 the	 necessity	 of	 reflecting	

critically	 on	 explainability	 as	 a	means	 to	 achieve	 trustworthy	ML	 and	 call	 for	 closer	

attention	 to	 ML	 methodology	 (chapter	 8).	 In	 addition,	 analysis	 of	 our	 qualitative	

findings	with	 regard	 to	 the	definition	of	mental	disorders	 stresses	why	philosophical	

reflection	is	crucial	to	harness	the	potential	of	ML	in	psychiatry	(chapter	9).	Looking	at	

the	specific	example	of	schizophrenia,	the	thesis	finally	spells	out	key	ethical	challenges	

which	 trustworthy	 ML	 needs	 to	 address	 in	 the	 context	 of	 clinical	 psychiatry	 and	

advocates	for	the	continued	importance	of	historical	education	(chapters	7	&	10).		

This	 final	chapter	of	 the	thesis	brings	these	different	strains	of	 thought	together	and	

shows	what	 they	 add	 to	 current	 bioethical	 debates	 about	medical	 AI.	 Following	 the	

research	question,	I	first	examine	the	implication	of	our	findings	for	the	debate	about	
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trust	 in	 medical	 ML	 (10.2),	 before	 turning	 to	 questions	 of	 trustworthiness	 (10.3).	 I	

complement	 these	arguments	with	a	methodological	plea	 for	a	greater	 integration	of	

history	 into	 bioethical	 inquiry	 (10.4),	 and	 sketch	 limitations	 of	 my	 work	 as	 well	 as	

implications	for	future	research	(10.5).	The	chapter	concludes	with	a	call	for	improved	

training	of	all	neural	nets	involved,	both	artificial	and	human	(10.6).		

11.2	Towards	a	new	model	of	trust	in	medical	ML	

I	 started	my	 investigation	with	 the	 question	whether	 trust	 constitutes	 a	meaningful	

concept	to	address	ethical	challenges	posed	by	black-box	medical	ML.	In	my	answer,	I	

diverged	from	more	widely	held	positions	that	argue	against	trust,	on	conceptual	and	

normative	grounds	(Bryson,	2018;	DeCamp	&	Tilburt,	2019;	Hatherley,	2020;	Metzinger,	

2019;	Ryan,	2020).	Instead,	I	have	shown	in	the	more	conceptual	papers	how	trust	does	

indeed	seem	a	defensible	stance	 if	 (a)	one	respects	the	term’s	 factual	use	 in	ordinary	

language	 and	 (b)	 does	 not	 construe	 a	 notion	 of	 trust	 that	 presupposes	 an	

insurmountable	difference	between	non-human	and	human	actors	(Latour,	1994,	p.	46).	

Since	our	paper	on	the	topic	was	submitted	and	published	(Starke,	van	den	Brule,	Elger,	

&	Haselager,	2021),	various	voices	in	bioethics	have	defended	trust	in	medical	ML,	from	

slightly	 different	 angles	 (Braun,	 Bleher,	 &	 Hummel,	 2021;	 Durán	 &	 Jongsma,	 2021;	

Ferrario,	 Loi,	 &	 Viganò,	 2021).	 It	 therefore	 seems	 imperative	 to	 distinguish	 our	 own	

approach	from	these	three	groups	of	authors.	First,	Braun	et	al.	(2021)	have	advocated	

an	understanding	of	trust	as	a	“leap	of	faith”	and	criticised	“formulaic	approaches”	based	

on	their	position	“that	a	rigid	set	of	principles	and	regulation	will	suffice	to	govern	AI	

threatens	 to	 be	 an	 oversimplification”	 (ibid.).	 Such	 criticism	 is	 certainly	 warranted,	

especially	 if	 ethical	 regulatory	 frameworks	 only	 appeal	 to	 abstract	 general	 ethical	

demands	such	as	fairness	or	transparency,	that	need	to	be	spelled	out	in	detail	for	any	
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particular	 application.	 Yet,	 while	 the	 paper	 also	 provides	 many	 other	 important	

suggestions,	e.g.,	 the	systematic	 involvement	of	relevant	stakeholders,	 it	 largely	skips	

over	the	technical	details	of	opaque	ML,	robustness,	or	accuracy.	In	addition,	while	also	

our	 own	 model	 requires	 agents	 to	 take	 a	 decision	 after	 evaluating	 its	 different	

dimensions,	rephrasing	trust	as	a	binary	leap	of	faith	may	inhibit	a	finer	grained	ethical	

analysis	of	our	interaction	with	opaque	ML	systems.		

In	comparison,	a	detailed	ethical	analysis	 is	exactly	one	of	 the	greatest	 strengths	 the	

model	of	trust	by	Andrea	Ferrario	and	colleagues	has	to	offer	(Ferrario,	Loi,	&	Viganò,	

2020;	 Ferrario	 et	 al.,	 2021).	 In	 their	 understanding,	 trust	 comes	 in	 three	 incremental	

layers,	 namely	 simple,	 reflective,	 and	 paradigmatic	 trust	 (ibid.).	 They	 delineate	 that	

simple	 trust	 describes	 the	 non-cognitive	 attitude	 of	 a	 trustor	 to	 rely	 on	 a	 trustee	 to	

perform	a	specific	action,	“without	intentionally	generating	and/or	processing	further	

information	 about	 Y’s	 capabilities	 to	 achieve	 G”	 (Ferrario	 et	 al.,	 2020,	 p.	 530).	 In	

consequence,	 any	 properties	 of	 the	 trustee	 that	 justify	 trust,	 i.e.,	 properties	 of	

trustworthiness,	only	play	a	role	at	the	two	higher	levels	of	trust.	Both	forms,	reflective	

and	 paradigmatic	 trust,	 require	 that	 the	 trustor	 holds	 beliefs	 about	 the	 trustee	 that	

vindicate	a	trusting	relationship.	The	difference	between	the	two	is	merely	the	degree	of	

certainty	 with	 which	 such	 beliefs	 are	 held,	 and	 that	 the	 trustor	 is	 willing	 to	 forego	

control	of	the	trustee	in	the	case	of	paradigmatic	trust	(Ferrario	et	al.,	2020,	p.	532).	The	

account	of	Ferrario	and	colleagues	seems	a	compelling	description	to	describe	human-

AI-interactions.	 It	 also	 shares	 with	 our	 model	 a	 notion	 of	 degrees,	 mirroring	 the	

complexity	and	variability	of	actual	medical	ML	applications.	However,	it	may	provide	

only	limited	guidance	for	ethical	analysis	since	its	inclusion	of	a	trust	form	that	is	defined	
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independently	of	trustworthiness	may	move	the	latter	to	the	background.41	In	a	response	

to	Annette	Baier,	Onora	O’Neill	has	stressed	the	ethical	danger	of	such	approaches:	

Attitudes	of	trust	can	indeed	diverge	from,	or	disregard	questions	about	trustworthiness,	

often	at	great	cost	to	those	who	place	their	trust	poorly.	I	am	concerned	with	the	practical	

demands	of	trust,	so	think	that	it	matters	that	it	be	placed	in	the	trustworthy	and	denied	

to	the	untrustworthy,	and	that	we	need	therefore	to	grasp	the	importance	of	placing	trust	

in	the	trustworthy.	(O’Neill,	2013,	p.	238)	

The	 stance	 by	 Juan	 Durán	 and	 Karin	 Jongsma	 avoids	 this	 problem	 by	 grounding	

trustworthiness	 in	 a	 notion	 of	 computational	 reliabilism	 (Durán	 &	 Jongsma,	 2021).	

Drawing	on	the	prior	work	of	one	of	the	authors	(Durán	&	Formanek,	2018),	they	provide	

a	 list	 of	 reliability	 indicators	 that,	 in	 their	 opinion,	 render	 black-box	 algorithms	

trustworthy,	namely	“verification	and	validation	methods,	robustness	analysis,	a	history	

of	 (un)successful	 implementations,	 and	 expert	 knowledge”	 (Durán	 &	 Jongsma,	 2021,	

p.	4).	 In	 many	 ways,	 the	 approach	 of	 Durán	 and	 Jongsma	 is	 close	 to	 the	 position	

defended	in	this	thesis.	Similar	to	the	arguments	advanced	in	the	sixth	chapter	of	this	

thesis, the	authors	hold	that	“transparency	is	a	methodology	that	does	not	offer	sufficient	

reasons	to	believe	that	we	can	reliably	trust	black	box	algorithms.	At	best,	transparency	

contributes	 to	building	trust	 in	the	algorithms	and	their	outcomes,	but	 it	would	be	a	

mistake	to	consider	it	as	a	solution	to	overcome	opacity	altogether”	(Durán	&	Jongsma,	

2021,	p.	2;	emphasis	in	original).	At	the	same	time,	computational	reliabilism	runs	into	

the	very	problems	criticised	by	Braun	et	al.	(2021),	insofar	as	it	also	only	provides	a	rather	

formulaic	list	of	items	that	can	hardly	ever	do	full	justice	to	the	complexity	of	assessing	

 
41	In	a	different	paper,	the	authors	have	recently	embraced	a	warning	by	Jacovi,	Marasović,	Miller,	and	
Goldberg	(2021)	though,	stressing	that	unwarranted	trust	is	ethically	unacceptable	and	should	be	avoided	
(Ferrario	&	Loi,	2021).	
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a	system’s	trustworthiness.	In	consequence,	Thomas	Grote	has	already	pointed	out	that	

the	 model	 lacks	 information	 that	 is	 crucial	 for	 individual	 decision	 making	 such	 as	

uncertainty	estimates	(Grote,	2021).		

In	comparison,	our	model	accommodates	the	benefits	of	all	three	rivalling	attempts.	It	

offers	 a	 multi-dimensional	 space	 of	 analysis	 that	 allows	 for	 a	 fine-grained	 ethical	

investigation	 of	 trustworthiness	 along	 its	 three	 axes.42	 At	 the	 same	 time,	 these	

dimensions	are	sufficiently	accommodating	to	not	provide	a	mere	formulaic	approach	

that	 lends	 itself	 to	 simplification.	 It	 further	 includes	 technical	 measures	 in	 its	

dimensions	of	reliability	and	competence	that	can	go	beyond	the	list	of	computational	

reliabilism	 and	 accommodate,	 for	 instance,	 probability	 distributions	 of	 a	 model’s	

uncertainty.	Finally,	similarly	to	the	model	by	Ferrario	and	colleagues,	it	can	also	help	

to	 conceptualise	 different	 degrees	 of	 trust,	 depending	 on	 the	 different	 aspects	 of	

trustworthiness.	This	seems	all	the	more	important	in	light	of	O’Neill’s	admonishment	

that	trustworthiness,	not	trust	should	be	at	the	centre	of	bioethical	inquiry.	

11.3	Fostering	the	trustworthiness	of	medical	ML43	

While	I	have	refuted	conceptual	arguments	raised	by	the	sceptics	of	trust	based	on	a	

dichotomy	of	human	and	non-human	agents,	there	is	much	merit	 in	their	normative	

warnings:	employing	the	complex	concept	of	trust	in	the	context	of	ML	should	not	be	

misused	 to	 encourage	 users	 into	 accepting	 ML-based	 appliances	 that	 are	 not	

trustworthy	 (DeCamp	 &	 Tilburt,	 2019;	 Hatherley,	 2020).	 Given	 that	 trustworthiness	

 
42	Similarly	to	the	argument	advanced	in	chapter	5,	there	is	a	remarkable	parallel	here	between	ML	and	
psychopathology,	where	the	last	decade	has	also	seen	a	gradual	move	to	dimensional	instead	of	binary	
systems	for	classifying	psychiatric	disorders		(Appelbaum,	2017).		
43 For	 a	 largely	 expanded	discussion	of	 these	 thoughts	please	 refer	 to:	 Starke,	G.,	&	 Ienca,	M.	 (2022):	
Misplaced	 trust	 and	 ill-placed	 distrust:	 How	 not	 to	 engage	 with	medical	 AI.	Cambridge	Quarterly	 of	
Healthcare	Ethics	(in	print).		
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seems	key	to	bioethical	deliberations,	it	comes	as	little	surprise	that	the	larger	part	of	

this	dissertation	addressed	the	second	part	of	its	research	question,	namely,	under	which	

conditions	we	can	trust	opaque	medical	ML.	So	how	do	the	different	suggestions	of	this	

thesis	contribute	towards	a	bigger	picture	of	trustworthy	medical	ML?		

The	EU	guidelines	for	trustworthy	AI	provide	an	excellent	starting	point	to	this	question.	

As	mentioned	in	the	introduction,	similarly	to	Beauchamp	and	Childress	(2019),	the	EU	

Commission’s	High-Level	Expert	Group	suggested	 four	ethical	principles,	namely	 the	

established	principles	of	respect	for	human	autonomy,	prevention	of	harm,	and	fairness,	

complemented	 by	 a	 principle	 of	 explicability	 ("Ethics	 guidelines	 for	 trustworthy	AI,"	

2019).	Since	this	thesis	investigates	opaque	ML	models,	it	is	little	wonder	that	of	these	

four,	explicability	–	a	principle	combining	the	epistemic	question	of	intelligibility	with	

the	normative	question	of	accountability	–	takes	centre	stage	in	several	chapters.	Like	

other	defenders	of	trust	(Braun	et	al.,	2021;	Durán	&	Jongsma,	2021),	I	take	it	for	given	

that	ML	opacity	can,	at	least	for	now,	not	simply	be	circumvented	by	technical	methods	

from	XAI	but	that	some	form	of	understanding	remains	an	important	desideratum	of	

trustworthy	ML	models.44	To	gain	a	systematic	view	on	trustworthy	AI	that	goes	beyond	

ethics	 checklists,	 it	 therefore	 seems	 crucial	 to	 relate	other	 ethical	desiderata	 such	as	

fairness	to	the	question	of	explainability	in	a	systematic	way.45		

 
44	For	discussions	whether	there	is	also	a	legal	right	to	explainability	under	the	EU	General	Data	Protection	
Regulation	 (GDPR),	 see	 Crabtree,	 Urquhart,	 and	 Chen	 (2019);	 Edwards	 and	 Veale	 (2017);	 Wachter,	
Mittelstadt,	and	Floridi	(2017).	
45	On	 the	disambiguities	of	 the	 term	 “explainability”	 in	 the	context	of	ML	see	 for	 instance	Adadi	and	
Berrada	(2018)	and	Vilone	and	Longo	(2020,	2021)	as	well	as	our	own	work	on	the	question	(Arbelaez	Ossa	
et	al.,	2022).	
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A	 recent	model	 of	 trust	 in	AI	 suggested	 by	Alon	 Jacovi	 and	 colleagues	 (2021)	 seems	

instructive	for	this	task,	and	complements	our	own	dimensional	model,	distinguishing	

between	reliability,	competence	and	intentions,	with	a	further	distinction.	In	contrast	

to	the	three	models	discussed	above,	the	authors	do	not	focus	on	the	context	of	medicine	

but	make	a	helpful	distinction	between	two	different	ways	of	bringing	about	trust	in	AI,	

namely	an	intrinsic	and	extrinsic	way	(ibid).46	Reformulating	the	considerations	of	Jacovi	

et	al.	with	view	to	trustworthiness	allows	to	sort	the	topics	discussed	in	this	thesis	more	

systematically	(see	fig.	11.1).		

Fig.	11.1:	Two	kinds	of	ML	trustworthiness,	based	on	the	model	by	Jacovi	et	al.	(2021)		

On	 the	 one	 hand,	 trustworthiness	 can	 rely	 on	 internal	 factors,	 namely	 when	 the	

reasoning	process	of	the	ML	model	is	explainable,	whether	ex-ante	or	ex-post,	and	aligns	

with	human	reasoning	(Jacovi	et	al.,	2021).	Here,	the	insights	of	chapter	five	and	six	can	

complement	their	view.	If	indeed	a	model	gains	trustworthiness	through	its	alignment	

 
46	While	the	authors	do	not	reference	the	paper,	their	account	seems	closely	related	to	a	distinction	Mark	
Coeckelbergh	has	proposed	 in	 the	 context	of	 robotics,	between	direct	 and	 indirect	 trust	 (2012).	 For	 a	
critical	discussion	of	the	model	by	Jacovi	et	al.	see	also	Ferrario	and	Loi	(2021).	
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with	human	 reasoning,	 as	 seems	plausible	 following	 recent	 simulation-based	 surveys	

(Alam	&	Mueller,	2021;	Diprose	et	al.,	2020),	a	model’s	perceived	internal	trustworthiness	

may	not	only	be	fostered	by	technical	explainability	but	could	also	be	supported	by	other	

approaches	that	focus	on	understanding,	as	argued	in	chapter	five.	In	addition,	as	argued	

in	 chapter	 six,	 attempts	 to	 increase	 a	 model’s	 trustworthiness	 require	 not	 mere	

disclosure	but	 successful	 communication	–	which	 in	 turn,	 as	 I	have	 stressed	with	an	

example	 from	 Onora	 O’Neill,	 presupposes	 a	 trusting	 relationship	 itself	 (Manson	 &	

O'Neill,	2007).	The	call	to	focus	on	communication	was	also	shared	by	the	interviewed	

experts,	as	presented	in	chapters	eight	and	nine,	who	presented	the	need	to	carefully	

use	 and	 confer	 information	 in	 psychiatric	 contexts	 that	may	 turn	 into	 self-fulfilling	

prophecies	 and	 could	 affect	 the	 symptoms	 a	 patient	 exhibits.	 By	 heeding	 O’Neill’s	

advice,	we	may	also	avoid	dangers	of	using	explainability	as	a	cover	for	poorly	trained	

models	since	an	explainable	model	would	need	to	be	designed	to	foster	understanding	

on	the	side	of	its	user	and	could	not	provide	a	mere	“fig	leaf”.	

On	 the	 other	 hand,	 extrinsic	 trustworthiness	 relies	 on	 observations	 not	 of	 the	 inner	

workings	of	an	opaque	algorithm,	but	of	its	behaviour	in	a	specific	context	(Jacovi	et	al.,	

2021).	 Accepting	 the	 black-box	 nature	 of	 the	 model,	 this	 type	 of	 trustworthiness	 is	

supported	by	methodological	rigour	in	the	evaluation	process,	and	potentially	by	proper	

regulation.	 Our	 plea	 for	 an	 outcome-oriented	 evaluation	 of	 algorithmic	 fairness	 in	

chapter	four	as	well	the	practical	demands	from	respecting	the	principles	of	biomedical	

ethics	 in	 the	context	of	ML	 for	diagnosing,	predicting,	and	 treating	 schizophrenia	 in	

chapter	seven	do	equally	fall	into	the	domain	of	such	external	trustworthiness.		

As	 has	 become	 clear	 throughout	 this	 thesis,	 the	medical	 domain,	 and	 psychiatry	 in	

particular,	 provide	 particular	 challenges	 to	 ML	 modelling	 insofar	 as	 they	 are	
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characterised	by	a	dual	black	box:	The	much-discussed	opacity	of	ML	is	conjoined	with	

potentially	 equally	 opaque	 black	 boxes,	 such	 as	 historically	 and	 socially	 contingent	

definitions	 of	 disorders	 and	 diseases,	 or	 unknown	 mechanism	 underlying	 medical	

interventions	(Adamson	&	Welch,	2019;	Holzinger,	Langs,	Denk,	Zatloukal,	&	Müller,	

2019).	These	problems	relate	to	topics	that	can	only	be	addressed	appropriately	by	also	

drawing	on	empirical	investigation	as	well	as	on	the	history	and	philosophy	of	science	

and	medicine.	

11.4	Integrating	history	into	integrated	empirical	bioethics		

From	 its	 outset,	 the	 thesis	 has	 espoused	 a	 methodological	 approach	 of	 integrated	

empirical	bioethics,	as	described	in	detail	in	chapter	two.	This	approach	is	particularly	

visible	 in	 the	chapters	 that	draw	on	qualitative	 interviews	with	experts	 commanding	

specific	domain	knowledge	on	applications	of	ML	in	psychiatry.	The	empirical	research	

presented	here	is	integrated,	beyond	a	strict	dichotomy	of	values	and	facts,	in	at	least	

three	ways.	The	first	concerns	the	position	of	the	interviewees,	who	had	often	received	

interdisciplinary	 training,	 including	 philosophy	 in	 five	 instances.	 Given	 that	 experts	

were	 thus	 informed	 and	 influenced	 by	 debates	 in	 ethics,	 the	 attitudes	 and	 opinions	

reported	should	not	be	considered	as	mere	facts	but	are	inherently	value	laden.	Second,	

reflecting	on	my	own	positionality	as	 researcher	with	dual	education	and	knowledge	

from	both	fields,	my	interaction	with	the	interviewees	was	also	influenced	by	my	own	

ethical	 attitudes	 and	 opinions.	 Third,	 such	 interaction	 between	 the	 empirical	 and	

normative	 was	 already	 present,	 to	 some	 extent,	 in	 the	 design	 of	 the	 project	 itself,	

providing	a	qualitative	empirical	methodology,	but	one	that	was	normatively	laden	due	

to	the	questions	and	concepts	used	in	the	interview	guide.	The	thesis	therefore	adhered	
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to	 its	 intended	 methodology.	 However,	 the	 question	 remains	 in	 which	 ways	 the	

empirical	findings	presented	here	can	inform	bioethical	debate.		

Kon	(2009)	distinguishes	between	four	different	roles	of	empirical	research	in	bioethics,	

namely	(1)	to	provide	a	“lay	of	the	land”,	investigating	the	status	quo	and	its	practices	

and	beliefs,	(2)	to	compare	such	status	quo	with	ideal	(normative)	theory,	(3)	to	improve	

existing	practices,	and	(4)	to	change	and	improve	ethical	theory.	In	its	empirically	driven	

chapters	eight	and	nine,	the	thesis	addresses	aspects	of	all	four	roles.	Investigating	the	

opinions	of	experts	on	ML	in	psychiatry,	it	provides	the	first	“lay	of	the	land”,	reporting	

the	views	and	attitudes	of	researchers’	on	questions	of	ethics	(chapter	8)	and	psychiatric	

nosology	(chapter	9).	Chapter	eight	also	allows	for	a	comparison	of	the	status	quo	in	

research	 with	 an	 ideal	 normative	 theory,	 in	 particular	 with	 view	 to	 the	 principle	 of	

explicability	that	is	commonly	accepted	as	fundamental	in	AI	ethics,	yet	may	be	misused	

in	practice.	Pointing	to	this	reported	discrepancy,	this	chapter	further	aims	to	improve	

(research)	 practices,	 demanding	more	 attention	 to	methodological	 rigour,	 as	 do	 our	

empirical	 findings	 on	 ML’s	 impact	 on	 nosology,	 demanding	 closer	 attention	 to	 the	

conceptualization	of	mental	disorders	when	pursuing	ML-based	research	in	the	field.	

Finally,	while	the	empirical	chapters	themselves	do	not	propose	specific	amendments	to	

normative	 theories,	 read	 in	 the	 greater	 context	 of	 this	 thesis,	 they	 do	 support	 the	

arguments	 advanced	 in	 chapters	 five	 and	 six,	 calling	 for	 a	 focus	 on	 effective	

communication,	aimed	at	understanding	and	trustworthiness.		

As	 argued	with	 view	 to	 schizophrenia	 in	 chapter	 ten,	 critical	 reflection	 informed	 by	

history	remains	crucial	to	both	education	and	research	in	ethics.	An	integrated	approach	

to	bioethics	will	therefore	need	to	go	beyond	the	empirical	social	sciences	and	integrate	

historical	 reflection	 as	 well	 to	 achieve	 ethical	 reflection	 that	 is	 attentive	 to	 context.	
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While	our	contribution	has	already	highlighted	why	this	is	the	case	with	regard	to	the	

history	of	psychiatry,	there	are	many	further	pertinent	examples	from	the	field	of	AI.	

The	 scholar	Kate	Crawford	has	 recently	highlighted	 the	 importance	of	history	 in	 the	

context	of	algorithmic	bias	(Crawford,	2021).	The	database	ImageNet,	spearheaded	by	

Stanford	 professor	 Fei-Fei	 Li	 since	 2009	 and	 widely	 used	 for	 the	 training	 of	 ANNs,	

provides	millions	of	annotated	images	that	have	been	manually	labelled	by	workers	on	

platforms	such	as	Amazon	Mechanical	Turk	(ibid.).	While	criticism	has	often	focused	

on	 the	 fact	 that	 ImageNet	 includes	 predominantly	 images	 of	White	 people	 (Zou	 &	

Schiebinger,	2018),	there	are	also	less	apparent	problems	hidden	in	its	taxonomy	of	21	

841	hierarchical	categories	(Crawford	&	Paglen,	2021).	To	understand	why	an	AI	trained	

with	ImageNet	classifies	certain	people	as	“crazy”,	 “ape-man”,	or	“hooker”	(Crawford,	

2021,	 p.	 109),	 one	 needs	 to	 look	 at	 its	 history.	 ImageNet	 derived	 its	 classificatory	

taxonomy	from	the	WordNet	database	from	the	1980s,	which	in	turn	draws	on	sources	

from	the	1960s,	providing	a	hierarchical	list	of	classificatory	terms	(ibid.,	p.	98)	–	some	

of	 which	 are	 highly	 problematic	 in	 nature.	 For	 instance,	 with	 regard	 to	 sexual	

orientation,	part	of	the	classification	is	derived,	through	various	stages,	from	the	way	in	

which	books	on	LGBTQ	themes	were	sorted	in	the	US	Library	of	Congress	until	1972,	

falling	 under	 the	 category	 “Abnormal	 Sexual	 Relations,	 Including	 Sexual	 Crimes”	

(Crawford	&	Paglen,	2021).		

As	this	example	highlights,	understanding	the	history	of	a	program	and	its	training	data	

is	therefore	vital	to	understanding	its	current	problems	–	and	to	fixing	them.	However,	

as	stressed	in	this	thesis,	historical	understanding	alone	is	also	not	sufficient.	Critical	

epistemological	and	normative	reasoning	from	philosophy,	empirical	insights	from	the	

social	 science,	e.g.,	 into	a	novel	 technology’s	 real-life	effects,	as	well	as	 the	necessary	
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domain	 knowledge	 concerning	 the	 object	 of	 investigation,	 such	 as	 medicine	 and	

computer	science	 in	the	context	of	this	thesis,	are	equally	required	to	provide	a	 fully	

integrated	approach	to	empirical	bioethics	(see	fig.	11.2).47			

	

Fig.	11.2	Integrating	integrated	empirical	bioethics		

11.5	Limitations	and	implications	for	future	research	

There	are	several	limitations	to	this	thesis,	comprising	both	its	theoretical	angle	and	its	

empirical	 methods.	 First,	 the	 dissertation	 is	 limited	 insofar	 as	 its	 conceptual	 prong	

reflects	a	Western-European	context.	While	critics	have	long	raised	concerns	about	the	

eurocentrism	of	Kantian	philosophy	(Mignolo,	2002;	Zanotti,	2021)	and	of	the	principlist	

framework	of	Beauchamp	and	Childress	(Bach,	2021;	Behrens,	2017),	some	authors	have	

also	asked	whether	explicability	as	the	new	principle	of	AI	ethics	is	applicable	in	non-

Western	contexts	(Carman	&	Rosman,	2021).	Further	research	should	therefore	discuss	

 
47	Notably,	similar	methodological	debates	as	in	empirical	bioethics,	about	to	how	to	relate	the	abstract	
and	 the	 concrete	 to	 each	 other,	 have	 long	 riddled	 history	 and	 philosophy	 of	 science	 as	well.	 See	 for	
instance	 (Chang,	2011;	Herring,	 Jones,	Kiprijanov,	&	Sellers,	 2019;	Mauskopf	&	Schmaltz,	 2011;	 Sauer	&	
Scholl,	2016).		
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whether	the	models	and	modes	of	trustworthiness	presented	here	require	adaptation	in	

non-Western	contexts.		

Second,	the	majority	of	medical	applications	of	ML	discussed	in	this	dissertation	are	not	

yet	implemented	at	the	bedside,	let	alone	form	part	of	established	clinical	routines.	For	

example,	 Canvas	Dx,	 the	 first	ML-based	 program	 for	 psychiatric	 use,	 received	 FDA-

approval	only	in	June	2021	(Schuman,	2021).	This	limits	the	results	of	the	thesis	in	two	

directions:	 Conceptually,	 my	 discussions	 of	 medical	 ML	 applications,	 e.g.,	 for	

schizophrenia,	necessarily	drew	on	examples	that	are	still	in	the	state	of	research,	while	

empirically,	not	one	of	the	interviewees	was	able	to	report	about	practical	experience	

with	implementing	ML	at	the	bedside.	It	is	thus	crucial	that	future	research	examines	

and	accompanies	 the	 introduction	of	 clinical	ML	applications	with	critical	bioethical	

investigation	–	e.g.,	if	it	assigns,	as	Canvas	Dx	does,	the	potentially	stigmatising	label	of	

diagnosis	of	autism	spectrum	disorder	to	toddlers	and	young	children.	At	the	same	time,	

explorative	bioethical	inquiry	seems	crucial	even	at	this	early	stage	of	developments,	to	

promote	what	has	been	called	 “ethics	parallel	 research”,	 anticipating	and	proactively	

guiding	technological	developments	(Jongsma	&	Bredenoord,	2020),	and	to	enable	the	

embedding	of	ethics	in	the	very	development	of	clinical	ML	models	(McLennan	et	al.,	

2020).		

Third,	 an	 apparent	 limitation	 of	 the	 empirical	 prong	 of	 this	 thesis	 is	 its	 lack	 of	

generalisability,	based	on	its	small	sample	comprising	only	Swiss	and	German	experts	

on	 psychiatric	 ML.	 Here,	 the	 research	 may	 have	 benefitted	 from	 including	 other	

professions	 as	 well,	 and	 originally,	 this	 is	 also	 what	 I	 set	 out	 to	 do,	 comparing	

psychiatrists	 with	 computer	 scientists.	 However,	 this	 strategy	 ran	 into	 two	 major	

obstacles:	First,	my	recruitment	efforts	coincided	exactly	with	the	COVID-19	pandemic,	
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providing	a	major	obstacle	to	recruit	experts	caught	between	the	challenges	of	lockdown	

such	as	home	schooling	and	additional	clinical	duties	to	carve	out	time	for	a	qualitative	

interview	by	phone.	Second,	I	soon	discovered	that	the	majority	of	people	working	in	

the	field	commanded	an	interdisciplinary	training,	as	described	in	chapters	eight	and	

nine,	so	that	no	clear-cut	distinction	between	different	backgrounds	would	have	been	

possible.	Going	beyond	the	rather	small	subfield	of	psychiatric	ML,	it	may	prove	useful	

though	if	future	research	would	explore	the	different	educational	worlds	of	computer	

scientists	and	physicians	in	greater	depths.		

Fourth,	 due	 to	 the	 focus	of	 this	 thesis	 on	ML	applications	 in	psychiatry,	 its	 findings	

should	 not	 be	 transferred	 uncritically	 to	 other	 medical	 fields.	 Explainability,	 for	

instance,	may	have	different	requirements	in	the	context	of	a	neurobiological	ML	model	

in	 psychiatry	 than	 explainable	 machine	 learning	 employed	 for	 image	 analysis	 in	

radiology,	 and	 successfully	 establishing	 relationships	 of	 warranted	 trust	 in	 the	

interaction	 of	 physicians,	 patients,	 and	 ML	 systems	 may	 also	 have	 very	 different	

demands	in	psychiatry	than	in,	e.g.,	ophthalmology.	While	such	differences	may	also	be	

of	 relevance	 elsewhere,	 psychiatry	 still	 occupies	 a	 special	 place	 compared	 to	 other	

medical	field	since	nowhere	else,	the	very	status	as	medical	discipline	is	contested,	or	

the	question	whether	it	treats	illness	and	disease	at	all	(Double,	2019).	Further	research	

should	therefore	dedicate	particular	attention	to	the	particularities	of	individual	medical	

specialties	and	not	draw	hastily	on	our	findings	from	psychiatry.	

Fifth,	 and	 finally,	 the	 centrality	with	which	 explainability	 featured	 as	 a	 topic	 in	 this	

dissertation	was	initially	unintended	and	may	have	therefore	been	insufficiently	covered	

in	the	interview	guide	(see	appendix).	Building	on	the	findings	of	this	dissertation	as	

well	as	on	other	mostly	conceptual	research	(Adadi	&	Berrada,	2018;	Markus,	Kors,	&	
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Rijnbeek,	 2021;	 McCoy	 et	 al.,	 2020;	 Shin,	 2020;	 Tonekaboni,	 Joshi,	 McCradden,	 &	

Goldenberg,	2019;	Vilone	&	Longo,	2021),	further	empirical	research	is	therefore	urgently	

needed	to	examine	the	bioethical	demands	of	explainability	in	medical	ML.	Only	with	

such	an	empirically	grounded	understanding	of	the	communicative	needs	of	physicians	

and	patients	may	we	hope	to	achieve	ML-based	systems	that	are	deserving	of	trust.		

11.6	Conclusion	

This	thesis	has	argued	that	we	can	trust	medical	ML	models,	employed	for	instance	in	

psychiatry,	 if	 they	 fulfil	 certain	 conditions	 of	 extrinsic	 and	 intrinsic	 trustworthiness.	

However,	the	actual	impact	of	opaque	ML	algorithms	on	clinical	practice	will	not	only	

depend	 on	 their	 technical	 realisation	 but	 also	 on	 their	 acceptance	 by	 medical	

professionals	–	i.e.,	whether	these	systems	are	treated	as	competitors	or	as	collaborators	

(Grote	&	Berens,	2022).	As	this	thesis	has	highlighted,	both	paths	are	lined	with	ethical	

pitfalls.		

Simply	shunning	ML	from	clinical	use	would	not	sufficiently	harness	its	potential	for	the	

improvement	of	current	clinical	practices	and	would	ignore	a	valuable	opportunity	to	

advance	research	in	which	AI	conspires	with	human	creativity	and	intuition,	as	has	been	

the	case	in	mathematics	(Davies	et	al.,	2021;	Stump,	2021).	Doing	so	without	good	reason,	

e.g.,	 based	 on	 an	 unfounded	 general	 scepticism	 towards	 novel	 technologies,	 would	

therefore	 contradict	 the	 principle	 of	 beneficence.	 At	 the	 same	 time,	 overreliance	 on	

medical	ML	could	prove	harmful	to	patients,	contradicting	the	fundamental	Hippocratic	

duty	of	physicians	to	do	no	harm.	Such	harm	seems	particularly	likely	if	unwarranted	

trust	 is	 expedited	 to	 what	 the	 artist	 and	 author	 Hito	 Steyerl	 has	 called	 “artificial	

stupidity”:	 automated	 processes	 that	 reflect	 and	 reinforce	 moral	 and	 intellectual	

shortfalls	of	society	(Steyerl	&	Crawford,	2017).	
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As	 I	 have	 argued,	 to	 avoid	 falling	 prey	 to	 either	 danger	 demands	 extended	 teaching	

efforts:	 in	 clinical	 contexts	 to	 medical	 students,	 in	 academic	 contexts	 to	 engineers,	

computer	 scientists,	 and	 ethicists,	 and	 the	 fostering	 of	 collaborative	 practices	 across	

disciplines	to	promote	joint	reflection	(Gauld,	Micoulaud-Franchi,	&	Dumas,	2021).	In	

sum,	 this	 thesis	 should	 therefore	be	 read	as	an	exhortation	 for	proper	 training	of	 all	

neural	 nets	 involved,	 both	 artificial	 and	 human:	 the	 most	 trustworthy	 medical	 ML	

system	will	 be	 of	 little	 benefit	 to	 patients	 unless	 it	 rests	 in	 the	 hands	 of	 an	 equally	

competent	and	trustworthy	user.		
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Appendix	1:	COREQ	Checklist	

Based	on	the	SRQR	guidelines		
	
	 	 	 Page	No		
Title	 	 	 	
	 1.	 Concise	description	of	the	nature	and	topic	of	the	

study	identifying	the	study	as	qualitative	or	
indicating	the	approach	(e.g.	ethnography,	
grounded	theory)	or	data	collection	methods	(e.g.	
interview,	focus	group)	is	recommended.	

176	

Abstract	 	 	 	
	 2.	 Summary	of	the	key	elements	of	the	study	using	

the	abstract	format	of	the	intended	publication;	
typically	includes	background,	purpose,	methods,	
results	and	conclusions.	

177	

Introduction	 	 	 	
Problem	
formulation	

3.		 Description	and	significance	of	the	problem	/	
phenomenon	studied:	review	of	relevant	theory	
and	empirical	work;	problem	statement.	

178-180	

Purpose	or	
research	question	

4.		 Purpose	of	the	study	and	specific	objectives	or	
questions.	

180-181	

Methods	 	 	 	
Qualitative	
approach	and	
research	
paradigm	

5.		 Qualitative	approach	(e.g.	ethnography,	grounded	
theory,	case	study,	phenomenology,	narrative	
research)	and	guiding	theory	if	appropriate;	
identifying	the	research	paradigm	(e.g.	
postpositivist,	constructivist	/	interpretivist)	is	also	
recommended;	rationale.	The	rationale	should	
briefly	discuss	the	justification	for	choosing	that	
theory,	approach,	method	or	technique	rather	than	
other	options	available;	the	assumptions	and	
limitations	implicit	in	those	choices	and	how	those	
choices	influence	study	conclusions	and	
transferability.	As	appropriate	the	rationale	for	
several	items	might	be	discussed	together.	

181-182	

Researcher	
characteristics	
and	reflexivity	

6.		 Researchers'	characteristics	that	may	influence	the	
research,	including	personal	attributes,	
qualifications	/	experience,	relationship	with	
participants,	assumptions	and	/	or	presuppositions;	
potential	or	actual	interaction	between	researchers'	
characteristics	and	the	research	questions,	
approach,	methods,	results	and	/	or	transferability.	

181-182	

Context	 7.		 Setting	/	site	and	salient	contextual	factors;	
rationale.	

181-182	

Sampling	strategy	 8.		 How	and	why	research	participants,	documents,	or	
events	were	selected;	criteria	for	deciding	when	no	
further	sampling	was	necessary	(e.g.	sampling	
saturation);	rationale.	

180-181	

Ethical	issues	
pertaining	to	
human	subjects	

9.		 Documentation	of	approval	by	an	appropriate	
ethics	review	board	and	participant	consent,	or	

182	
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explanation	for	lack	thereof;	other	confidentiality	
and	data	security	issues.	

Data	collection	
methods	

10.		 Types	of	data	collected;	details	of	data	collection	
procedures	including	(as	appropriate)	start	and	
stop	dates	of	data	collection	and	analysis,	iterative	
process,	triangulation	of	sources	/	methods,	and	
modification	of	procedures	in	response	to	evolving	
study	findings;	rationale.	

181	

Data	collection	
instruments	and	
technologies	

11.		 Description	of	instruments	(e.g.	interview	guides,	
questionnaires)	and	devices	(e.g.	audio	recorders)	
used	for	data	collection;	if	/	how	the	instruments(s)	
changed	over	the	course	of	the	study.	

181,	183	

Units	of	study	 12.		 Number	and	relevant	characteristics	of	
participants,	documents,	or	events	included	in	the	
study;	level	of	participation	(could	be	reported	in	
results).	

183-184	

Data	processing	 13.		 Methods	for	processing	data	prior	to	and	during	
analysis,	including	transcription,	data	entry,	data	
management	and	security,	verification	of	data	
integrity,	data	coding,	and	anonymisation	/	
deidentification	of	excerpts.	

182	

Data	analysis	 14.		 Process	by	which	inferences,	themes,	etc.	were	
identified	and	developed,	including	the	researchers	
involved	in	data	analysis;	usually	references	a	
specific	paradigm	or	approach;	rationale.	

182	

Techniques	to	
enhance	
trustworthiness	

15.		 Techniques	to	enhance	trustworthiness	and	
credibility	of	data	analysis	(e.g.	member	checking,	
audit	trail,	triangulation);	rationale.	

182-183	

Results/findings	 	 	 	
Syntheses	and	
interpretation	

16.		 Main	findings	(e.g.	interpretations,	inferences,	and	
themes);	might	include	development	of	a	theory	or	
model,	or	integration	with	prior	research	or	theory.	

183-193	

Links	to	empirical	
data	

17.		 Evidence	(e.g.	quotes,	field	notes,	text	excerpts,	
photographs)	to	substantiate	analytic	findings.	

185-193	

Discussion	 	 	 	
Integration	with	
prior	work,	
implications,	
transferability	
and	
contribution(s)	to	
the	field	

18.		 Short	summary	of	main	findings;	explanation	of	
how	findings	and	conclusions	connect	to,	support,	
elaborate	on,	or	challenge	conclusions	of	earlier	
scholarship;	discussion	of	scope	of	application	/	
generalizability;	identification	of	unique	
contributions(s)	to	scholarship	in	a	discipline	or	
field.	

193-198	

Limitations	 19.		 Trustworthiness	and	limitations	of	findings.	 197-198	
Other	 	 	 	
Conflicts	of	
interest	

20.		 Potential	sources	of	influence	of	perceived	
influence	on	study	conduct	and	conclusions;	how	
these	were	managed.	

182,	198	

Funding	 21.		 Sources	of	funding	and	other	support;	role	of	
funders	in	data	collection,	interpretation	and	
reporting.	

176	

	



Appendices	

 269	

Appendix	2:	Interview	guide	

Part	1:	Expert’s	work	on	ML	and	its	potential	for	clinical	use	
	

1. Which	role	do	AI	and	machine	learning	play	for	your	work?	
- In	the	clinic?	In	research?		
- Which	methods	and	data	do	you	use?	
- Are	any	of	these	methods	already	used	in	clinical	practice?		 	

	
2. For	 which	 applications	 of	 machine	 learning	 do	 you	 see	 the	 greatest	 potential	 in	 future	

psychiatry?		
- For	 which	 clinical	 objective	 (diagnostic,	 prognostic,	 therapeutic/response	

prediction)?		
- For	which	psychiatric	disorders	or	symptoms?	
- In	 what	 time	 frame	 could	 you	 imagine	 that	 these	 applications	 are	 ready	 to	 be	

implemented	in	patient	care?	
	
Part	2:	Ethics	of	medical	ML	
3. What	do	you	consider	the	biggest	ethical	challenge	for	successfully	implementing	ML	in	

clinical	contexts?	
- Why?	
- How	would	you	address	this	issue?	
- Do	you	have	an	example?	

	
4. A	frequently	discussed	problem	is	that	of	so-called	black-box	programs,	for	example	in	the	

form	of	ANNs,	so	programs	that	may	be	inaccessible	to	human	understanding	in	principle.	
In	your	opinion,	should	such	black-box	programs	be	used	for	clinical	purposes?		

- Why/why	not?	
- If	yes:	What	should	doctors	and	patients	know	about	such	programs?	
- Should	the	information	be	stratified	for	different	groups	of	users?	Why/why	not?	
- Do	 you	 see	 specific	 barriers	 to	 effective	 communication	 between	 the	 groups	

involved,	and	if	so,	how	do	you	think	these	could	be	addressed?		
	
5. The	EU's	expert	group	on	artificial	intelligence	famously	put	its	ethical	guidelines	for	AI	

under	the	heading	of	"trustworthy	AI".	Do	you	think	trust	is	a	justifiable	way	of	dealing	
with	the	risks	of	medical	AI?	

- Why	/	why	not?		
- In	a	clinical	context,	when	would	you	consider	a	program	"trustworthy"?	
- Do	you	think	the	EU	Commission	guidelines	are	useful?		
- Do	you	feel	that	the	guidelines	have	had	or	are	having	an	impact	on	your	research	

area?	If	so,	in	what	way?	
	
6. As	 part	 of	 trustworthiness,	 one	 commonly	 finds	 calls	 for	 transparency.	 What	 specific	

expectations	would	you	have	for	the	transparency	of	such	programmes?	
- To	whom	should	this	information	be	disclosed?		
- Which	technical	strategies	for	making	machine	learning	more	transparent	do	you	

think	are	the	most	promising?	Could	you	give	an	example?		
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Part	3:	Specific	questions	of	psychiatry	
7. Are	there,	in	your	opinion,	any	particular	ethical	problems	for	using	ML	in	psychiatry?		

- (If	no	answer:)	How	would	you	suggest	to	deal	with	cases	of	impaired	judgement?	
E.g.,	a	ML	program	that	can	recommend	the	most	suitable	antipsychotic	medication	
during	a	psychotic	episode?	

	
8. As	you	know,	some	authors	argue	that	machine	learning,	and	Deep	Learning	in	particular,	

promise	 a	 way	 to	 finally	 define	 psychiatric	 disorders	 as	 natural	 kinds	 and	 solve	 the	 old	
problems	of	psychiatric	nosology.	Where	would	you	stand	on	this?		

	
9. Is	there	any	other	topic	that	seems	central	to	you	which	we	have	not	yet	covered?	
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Appendix	3:	Jurisdictional	inquiry	
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