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Abstract: Hydrogels of flexibility, strength, and conductivity have demonstrated broad applications
in wearable electronics and soft robotics. However, it is still a challenge to fabricate conductive
hydrogels with high strength massively and economically. Herein, a simple strategy is proposed to
design a strong ionically conductive hydrogel. This ion-conducting hydrogel was obtained under the
synergistic action by salting out the frozen mixture of polyvinyl alcohol (PVA) and graphene oxide
(GO) using a high concentration of sodium chloride solution. The developed hydrogel containing only
5 wt% PVA manifests good tensile stress (65 kPa) and elongation (180%). Meanwhile, the PVA matrix
doped with a small amount of GO formed uniformly porous ion channels after salting out, endowed
the PVA/GO hydrogel with excellent ionic conductivity (up to 3.38 S m−1). Therefore, the fabricated
PVA/GO hydrogel, anticipated for a strain sensor, exhibits good sensitivity (Gauge factor = 2.05
at 100% strain), satisfying working stability (stably cycled for 10 min), and excellent recognition
ability. This facile method to prepare conductive hydrogels displays translational potential in flexible
electronics for engineering applications.

Keywords: polyvinyl alcohol; graphene oxide; conductive hydrogels; strain sensors; salting out

1. Introduction

The wide application of emerging flexible electronic products in smart wearable de-
vices [1–3], biomedicine [4,5], soft robotics [6,7], and other fields [8] has drawn more and
more attention. Traditional flexible electronics are fabricated by assembling stretchable elec-
trode arrays by integrating methods such as microfabrication and transfer printing [9,10].
Another approach is the utilization of conductive materials, such as conducting polymers,
liquid metals, and nanoelectrodes to directly construct stretchable devices [11–13]. Despite
the success of some products, most flexible electronic devices still rely on inorganic elec-
trode materials [14]. Due to the soft and bendable properties of human skin, wearable
electronic devices are subject to various deformations, such as stretching and squeezing.
Biological tissue is soft and contains a lot of water, which many bioelectronic devices are
physically or mechanically unable to match [15,16]. Therefore, developing flexible and
stretchable conductive materials is of practical significance for bioelectronics. In terms of
applications, stretchable conductive materials also need to display good mechanical proper-
ties to enable long-term operational stability [17]. In addition, the biocompatibility of such
materials cannot be ignored as they are in contact with human skin [18–20]. These various
functions cannot be fulfilled by the existing electronic conductors. Therefore, fabricating
such materials identical to human tissue remains a challenge.

Due to the unique 3D polymer network structure of hydrogels, they exhibit similar
water-richness, mechanical properties, and biocompatibility to human tissues [21–23]. Thus,
they are considered ideal materials for human implants and wearable devices [21,24,25].
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However, conventional hydrogels usually lack electrical conductivity, limiting their ap-
plications in human–machine interaction [26]. Unlike traditional hydrogels, conducting
polymer hydrogels have a tissue-like advantage while exhibiting electrical conductivity,
which distinguishes them as the ideal materials for emerging bioelectronic devices [27–29].
In particular, the 3D polymer network inside the ion-conducting hydrogel makes it solid
and provides a channel for ion transport, manifesting excellent ionic conductivity [30].
Graphene oxide (GO) is obtained by oxidizing graphite, and its oxygen functional groups
mainly exist in the form of hydroxyl and epoxy groups, so it exhibits strong hydrophilic-
ity [31,32]. PVA hydrogels have excellent mechanical strength and water retention ability
and can be easily prepared into ionic conductive hydrogels. Therefore, the numerous
hydrophilic functional groups in GO can facilitate its combination with PVA to form a more
complex network structure channel, which is more conducive to the ion transport inside
the hydrogel. Due to the excellent ion transport efficiency, ion-conducting hydrogels have
become ideal candidates for strain sensors [33–35]. Nevertheless, the poor strain capacity
and mechanical strength of hydrogels severely restrain their further applications [36]. How-
ever, it is a challenge to fabricate hydrogels with excellent mechanical strength and high
electrical conductivity simultaneously, as these two properties are usually mutually exclu-
sive [34]. A highly dense cross-linked network can endow hydrogels with high mechanical
properties; however, this inevitably inhibits the mobility of polymer chains and reduces
their electrical conductivity [34]. Recently, the conductivity and toughness of hydrogels
have been increased by adding nanoparticles or forming dual networks [37–39]. However,
the performance improvements of these toughened hydrogels are still limited.

To simultaneously improve the mechanical properties and electrical conductivity of
hydrogels, here, a simple method under the synergistic action by combining freezing and
salting out was employed to prepare polyvinyl alcohol (PVA) hydrogels. This hydrogel
was prepared by ultrasonically degassing an aqueous PVA solution in a mold, freezing
it, and then soaking it in an aqueous NaCl solution overnight. The whole preparation
process is simple and suitable for massive production. Meanwhile, introducing a small
amount of GO (0.15 wt%) can form a more complex PVA/GO network structure through
hydrogen bonding with the PVA chain. Hence the PVA/GO hydrogel containing only
5 wt% PVA exhibits excellent mechanical properties (tensile stress up to 65 kPa) and ionic
conductivity (up to 3.38 S m−1). Thus, an encapsulation of such ion-conducting hydrogel
in stretchable insulating tapes can lead to the successful development of a PVA/GO strain
sensor. The strain sensor can be attached to a finger and respond to the bending action
of the finger in real-time based on the change of relative resistance. Moreover, it displays
good sensitivity (GF = 2.05 at 100% strain) and working stability (stably cycling for 10 min).
Additionally, the PVA/GO strain sensor can also be used as a flexible writing keyboard,
accurately identifying the English letters written on it. This facile and mass-produced
ion-conducting hydrogel can be further developed and applied for smart, flexible, and
energy storage devices [40].

2. Materials and Methods
2.1. Materials

Polyvinyl alcohol (PVA) (Mw = 146,000–186,000, 99+% hydrolyzed; Sigma-Aldrich, St.
Louis, MO, USA), crystalline flake graphite (99.9% metals basis; Aladdin, Shanghai, China),
potassium nitrate (KNO3, AR, 99%; Innochem, Gwinnett County, GA, USA), sulfuric acid
(H2SO4, ca. 96% solution in water; Acros, Shanghai, China), potassium permanganate
(KMnO4, 99+%, ACS reagent; Acros, Shanghai, China), hydrogen peroxide (H2O2, AR,
30 wt% solution in water; Innochem, Shanghai, China), and sodium chloride (NaCl, AR,
99.5%; Innochem, Shanghai, China) were used as received. The used ultrapure water was
prepared by the Millipore system (18.2 MΩ cm).
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2.2. Preparation of GO

The preparation method of GO is based on the previous work [41]. Briefly, in the water
bath agitator, we carefully added 1.5 g of crystalline flake graphite and 1.5 g of KNO3 to
70 mL of concentrated sulfuric acid. We then heated the mixture to 40 ◦C, slowly adding
9.0 g of KMnO4 and stirring at 400 rpm for 6 h. Then, 120 mL of deionized water was
carefully added to the mixture, heated to 60 ◦C and stirred for 30 min. Whereafter, 300 mL
of deionized water was added again. After reacting for 5 min, we slowly dropped a few
drops of H2O2 to reduce the residual KMnO4 and MnO2 until the color of the reaction
solution turned bright yellow. After repeatedly centrifuging the mixture with deionized
water until it became neutral, the mixture was freeze-dried to obtain GO nanosheets.

2.3. Preparation of PVA, GO and Salt Solutions

PVA powder (10 g) was added to deionized water (90 g), and 10 wt% PVA solution
was prepared under vigorous stirring at 95 ◦C. After cooling to room temperature, it was
degassed by sonication for 30 min to obtain a clear PVA solution. GO powder (0.5 g) was
added with deionized water (99.5 g) and dispersed for 5 min in an ultrasonic crusher to
obtain 0.5 wt% GO solution. NaCl powder (117 g) was added to a 1000 mL volumetric
flask, and then the salt was dissolved with deionized water to obtain a NaCl solution (2 M).

2.4. Fabrication of PVA/GO Hydrogels

A total of 5 g PVA solution (10 wt%) and 5 g GO solution (0.5 wt%) were stirred
and mixed first. After ultrasonic degassing for 10 min, the mixture of PVA (5 wt%)/GO
(0.25 wt%) was obtained. The mixture was poured into a mold, and the mold was frozen at
−20 ◦C for 4 h. Then, the mold was immersed in NaCl solution (2 M) for 4 h, and thus the
PVA/GO (0.25 wt%) hydrogel was prepared. In the same way, PVA/GO (0 wt%), PVA/GO
(0.05 wt%), and PVA/GO (0.15 wt%) hydrogels were prepared by adjusting the content of
the GO solution.

2.5. Preparation of PVA/GO Strain Sensor

The PVA/GO hydrogel was first designed using molds of specific sizes. It was then
carefully attached to a specific position on a stretchable insulating layer (VHB 4905) with
copper wires. Note here that the PVA/GO hydrogel must be in contact with the copper
wires. Then, another layer of VHB was used to encapsulate to obtain a simple strain sensor.

2.6. Conductivity Measurements

The resistance values of the PVA/GO hydrogels were measured with an LCR me-
ter (TH 2830). Simply, the resistance of PVA/GO hydrogels with different GO contents
(Length × Width × Height = 2 cm × 1.5 cm × 1 cm) was tested using an LCR meter. The
resistivity was then calculated by the following formula:

ρ = RS/L, (1)

where R is the resistance of the samples, and S and L represent the cross-sectional area and
length of the samples, respectively. Therefore, the conductivity (σ) was calculated through
the following formula:

σ = 1/ρ, (2)

2.7. Characterization

Transmission electron microscopy (TEM), high-resolution transmission electron mi-
croscopy (HRTEM), and selected area electron diffraction (SAED) were used to investigate
the microstructures of the GO nanosheets (FEI Tecnai F20). Atomic Force Microscopy
(AFM) imaging (Bruker Dimension ICON) in tapping mode was performed on a sample
of GO (0.1 mg mL−1) on freshly cleaved mica at a resolution of 1024 × 1024 lines and
at a scan rate of 0.5 Hz. The chemical bonds of GO were studied by employing X-ray
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photoelectron spectroscopy (XPS) on an Axis Ultra DLD Kratos AXIS SUPRA spectrometer.
UV-Vis was utilized to investigate the absorption peak of GO. X-ray diffraction (XRD) was
used to characterize the GO, PVA hydrogel, and PVA/GO hydrogel. The XRD patterns
were recorded using a PANalytical-Empyrean X-ray diffractometer equipped with Cu
Kα radiation (λ = 1.54 Å) with scanning at a rate of 4◦ min−1. Raman (Horiba Scientific
LabRAM HR Evolution with a 532 nm excitation wavelength) spectra of GO, PVA hydrogel,
and PVA/GO hydrogels were collected, ranging from 400 to 2400 cm−1. An intelligent
attenuated total reflection Fourier transform infrared spectrometer (ATR-FTIR, Thermo
Fisher Nicolet Is5) was utilized to analyze and identify the functional groups of GO, PVA
hydrogel, and PVA/GO hydrogel ranging from 4000 to 400 cm−1. Thermal gravimetric
analysis (TGA, NETZSCH STA 409 PC) was applied to ascertain the organic–inorganic
content of GO, PVA hydrogel, and PVA/GO hydrogel at a heating rate of 10 ◦C min−1

in air, from room temperature to 800 ◦C. The tensile stress–strain curves of the hydrogel
samples were recorded on an electronic universal material testing machine (Instron 5967) at
a deformation rate of 1 mm min−1. The compression tests were performed at a deformation
rate of 1 mm min−1 at 25 ◦C. An LCR meter (TH 2830) operated by LabView software
collected all relative resistance change signals of the samples.

3. Results and Discussion
3.1. Preparing Illustration of PVA/GO Hydrogel

PVA hydrogels have good mechanical strength and water retention capacity, as well
as good biocompatibility and flexibility for artificial soft tissue applications [42]. Moreover,
the polymer chains are entangled under the impact of high concentrations of salts, thereby
enhancing the physical cross-linking of the polymer chains [43]. Meanwhile, NaCl has also
been proven to impart high ionic conductivity to PVA hydrogels [33]. Therefore, we chose
PVA to design and fabricate an ion-conducting hydrogel with a physically and chemically
cross-linked network. Briefly, inspired by the Hofmeister effect [36,42,44], PVA and GO
solutions in different proportions were rapidly mixed and poured into a mold (Figure 1).
Subsequently, the molded PVA/GO solid ice cubes were obtained after placing the mold
in a −20 ◦C refrigerator for 4 h. Next, a mechanically enhanced ion-conducting hydrogel
PVA/GO was prepared after salting out the formed PVA/GO in a NaCl (2 M) solution at
room temperature for 4 h. On the one hand, the salting-out process would make the PVA
chains entangle to form a mechanically enhanced hydrogel. On the other hand, it would
cause Na+ and Cl− to evenly distribute inside the hydrogel and endow the hydrogel with
excellent ionic conductivity. The porous network structure formed by the connection of
sheets and PVA chains through hydrogen bonds and covalent bonds can further enhance
the strength of the hydrogel and facilitate the transport of ions.
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Figure 1. Schematic illustration of the formation process of PVA/GO ionic conductive hydrogel
under the synergistic action of freezing and salting out.

3.2. Characterization of GO and Preparation of PVA/GO Hydrogels

Before preparing the PVA/GO hydrogel, the structure and composition of the as-
prepared GO were firstly characterized to confirm that the prepared GO with the improved
method was sufficiently exfoliated and oxidized. The transmission electron microscopy
(TEM) images in Figure 2A showed that the as-prepared GO was a fully exfoliated thin layer.
Further high-resolution transmission electron microscopy (HRTEM) images demonstrated
that the as-prepared GO was a thin homogeneous layer (Figure 2B). The corresponding se-
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lected area electron diffraction (SAED) pattern in Figure 2C confirmed that the as-prepared
thin-layer GO was fully oxidized. Therefore, PVA/GO solutions with GO contents of
0%, 0.05%, 0.15%, and 0.25% were prepared by controlling the content of GO added to
the PVA solution. Subsequently, PVA/GO ion-conducting hydrogels incorporating dif-
ferent amounts of GO were fabricated with the synergistic process of freezing-salting out
(Figure 2D).
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Figure 2. Morphology characterization of prepared GO. (A) Transmission electron microscope image
of GO. (B) High-resolution transmission electron microscope images of GO. (C) The corresponding
selected electron diffraction pattern. (D) Digital photos of PVA/GO ionic conductive hydrogels with
different GO contents prepared under the synergistic effect of freezing and salting out.

Herein, atomic force microscopy (AFM) was used to measure the thickness of the GO
(Figure 3A). The measured thickness of GO by AFM was about 1.0 nm, indicating that the
applied GO had a single-layer structure. In addition, X-ray photoelectron spectroscopy
(XPS) was utilized to characterize the chemical bonds of GO. The C1s spectrum of graphene
oxide in Figure 3B manifested the existence of four carbon bonds: C–C/C=C (284.7 eV),
CO (286.7 eV), C=O (287.3 eV), and O–C=O (288.6 eV), suggesting that GO was fully
oxidized [45,46]. In addition, in Figure 3C, the ultraviolet-visible spectrophotometer (UV-
Vis) results showed that GO (0.1 mg mL−1) had a main absorption peak at 230 nm and a
shoulder peak at 300 nm, attributing to the π-π* transition of the C=C bond and the n-π*
transition of the C=O bond, and also indicating that the applied GO was a homogeneous
monolayer [45].
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3.3. Characterization of PVA/GO Hydrogels

The color of PVA/GO hydrogel gradually deepened with the increase of GO content
in the aforementioned Figure 2D. Thus, further characterization concerning GO nanosheets,
pure PVA hydrogel, and PVA/GO (0.25 wt%) hydrogel was performed to determine how
the addition of GO and the freezing–salting-out process impacted the formation of the
hydrogel. The XRD pattern of GO in Figure 4A displays a characteristic peak around
10◦, corresponding to the crystal plane (001) of GO. However, the XRD characteristic
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peaks of PVA hydrogel and PVA/GO hydrogel both displayed characteristic peaks of
NaCl, which indicated that a large amount of NaCl entered and fixed in the interior of the
hydrogel during the freezing–salting-out process. However, the characteristic peak of GO
around 10◦ was not observed in the XRD pattern of the PVA/GO hydrogel because the
interaction between PVA and GO led to the intercalation of PVA between the GO sheets.
Further, Raman spectroscopy was used to characterize GO nanosheets, PVA hydrogels,
and PVA/GO hydrogels. The Raman spectrum of the PVA/GO hydrogel in Figure 4B
indicated the presence of the characteristic D and G bands of graphene, confirming the
successful incorporation of GO into the hydrogel. Furthermore, the functional groups
and chemical bonds of GO, PVA, and PVA/GO were analyzed using Fourier transform
infrared spectroscopy (FTIR) (Figure 4C). The light green area was the characteristic peak
of the hydroxyl group of PVA and PVA/GO hydrogels caused by C–O stretching vibration
near 1186.7 cm−1. Additionally, the PVA/GO hydrogel peak was obviously enhanced
here, indicating that PVA and GO were bound to each other. In the light-yellow area,
the FTIR curve of PVA/GO at about 1654.1 cm−1 corresponded to the hydrogen bond
formed between PVA and GO. In contrast, no peaks were observed for PVA hydrogels
here. Furthermore, in the light-gray area, the intermolecular hydrogen bond (stretching
vibration of the hydroxyl group) corresponding to the PVA/GO hydrogel was stronger
than that of the PVA hydrogel near 3261.0 cm−1, indicating that there was an interaction
between PVA and GO. Moreover, thermogravimetric analysis (TGA) was used to analyze
the organic–inorganic content of GO, PVA hydrogels, and PVA/GO hydrogels (Figure 4D).
After heating in air from room temperature to 800 ◦C, the PVA and PVA/GO hydrogels
retained 54.6% and 56.8% of their mass, respectively, suggesting a large amount of ingress
and immobilization occurred during the salting-out process. Na+ and Cl− were inside
the hydrogel, correlating to the XRD pattern results in Figure 4A. The PVA/GO hydrogel
can adsorb more Na+ and Cl− than the PVA hydrogel due to the more complex network
structure formed between PVA and GO.
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3.4. Tensile-Compressive Tests of PVA/GO Hydrogels

The addition of GO led to forming a complex hydrogel network by PVA and GO.
Henceforth, a universal electronic material testing machine was utilized to characterize
the mechanical properties of PVA/GO hydrogels containing different amounts of GO.
Hydrogels of a fixed PVA content (5 wt%), namely pure PVA, PVA/GO (0.05%), PVA/GO
(0.15%), and PVA/GO (0.25%), prepared by the synergy of freezing–salting out in the mold,
all exhibited excellent tensile properties in Figure 5A. With the addition of small amounts
of GO, the hydrogels displayed a decreased maximum tensile length but a rising stress
intensity. GO surfaces have a large number of hydrophilic functional groups, which can
physically and chemically react with the PVA chain. Thereby the formed PVA complex
network can exhibit enhanced mechanical properties. However, the excessive GO could not
be cross-linked with PVA and would be stacked in the matrix network of PVA. Therefore,
once the GO content increased to 0.25%, the PVA/GO hydrogels, on the contrary, displayed
a decreased maximum tensile stress. In addition, a multi-step ductile fracture instead of one
brittle fracture was observed from the tensile curves of the hydrogels. This phenomenon in-
dicated that the prepared PVA/GO hydrogel exhibited excellent toughness. When the PVA
hydrogel was gradually stretched to fracture, the fracture position occurred at both ends of
the hydrogel, and the tear did not rapidly spread along the fracture (Figure 5B). This phe-
nomenon happened because, after the salting out of the NaCl solution, the polymer chains
of the PVA hydrogel were entangled with each other, thus preventing the propagation of
cracks and yielding excellent toughness (Figure 5C). Similarly, if the fabricated PVA/GO
hydrogel was gradually stretched to fracture, the fractures also occurred at both ends of
the hydrogel (Figure 5E). However, after adding GO nanosheets, GO can further interact
with the entangled PVA chains, thereby further enhancing the toughness of the hydrogel
(Figure 5F). Comparable results can be observed in the compressive stress–strain curves of
the hydrogels in Figure 5D. The strain strength of the hydrogel gradually increased as the
GO content in the hydrogel increased from 0 to 0.15%. However, a further increase of the
GO content to 0.25% contrarily yielded a decreased strain strength of the hydrogels.
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3.5. Performances and Applications of the PVA/GO Strain Sensor

To further determine the enhancement of the ionic conductivity of the hydrogels by
the salting-out process, the ionic conductivity of PVA/GO hydrogels with different GO
contents was evaluated. The ionic conductivity of the PVA hydrogel after freezing–salting-
out treatment reached 2.15 S m−1 (Figure 6A). When the GO content was 0.15%, the ionic
conductivity of the PVA/GO hydrogel arrived at 3.38 S m−1. The measured enhancement
of conductivity originated from the interaction between PVA and GO, yielding a formation
of a complex network structure. These network structures can form channels, which
are favorable for the transport of Na+ and Cl−, thus displaying better ionic conductivity.
However, when the GO content was further increased to 0.25%, the electrical conductivity
of the PVA/GO hydrogel, on the contrary, decreased. This decreased conductivity was
due to the deteriorated transport efficiency of ions. Namely, the excessive GO could not be
effectively cross-linked with the PVA chains and stacked in the PVA matrix network, which
would consequently hinder the transport efficiency of Na+ and Cl− within the hydrogel,
thus manifesting a decrease in ionic conductivity.
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Based on the previous analysis, the PVA/GO ion-conducting hydrogels with mechan-
ical and ionic conductivity enhancements formed under the synergistic effect of freeze-
salting precipitation are excellent candidates for applications in wearable devices and soft
robotics. Therefore, a strain sensor can be fabricated simply by packaging the PVA/GO
ion-conducting hydrogel onto a stretchable polyacrylate insulating tape to form a sandwich
structure. When the PVA/GO strain sensor was attached to the wrist in Figure 6B, it
could respond to the bending motion of the wrist in real-time with a relative resistance
change (∆R/R0) signal of about 10%. Likewise, in Figure 6C, the PVA/GO strain sensor
can also monitor the bending motion of the finger in real-time with a ∆R/R0 of about 40%.
Therefore, as shown in Figure 6D, by stretching the PVA/GO strain sensor to 150% strain,
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according to the previous methods [39,47], ∆R/R0 can be obtained by fitting the test data
with the following formula:

∆R/R0 = 0.005ε2 + 1.55ε, (3)

Therefore, the gauge factor (GF) followed the formula:

GF = 0.005ε + 1.55, (4)

when the strain was 100%, its GF arrived at 2.05. In addition, cyclic stability is also an
important factor for the strain sensor. When the PVA/GO strain sensor was cycled for 10
min in Figure 6E, its working stability was still excellent as observed, revealing that the
PVA/GO hydrogel after freezing-salting precipitation treatment had anti-fatigue properties.

Furthermore, this PVA/GO strain sensor can also be used as a flexible writing key-
board. When writing “WUT” on the PVA/GO flexible keyboard in Figure 7A, it can respond
in real-time with different ∆R/R0 signals, suggesting that this strain sensor demonstrated
an accurate recognition function. Additionally, when writing “HELLO”, the PVA/GO
flexible keyboard can also respond accurately in real-time (Figure 7B). In particular, the
∆R/R0 signal of the flexible keyboard exactly displayed the same responses when writing
“L” twice. Thereby, this PVA/GO flexible keyboard can function with excellent stability.
Moreover, we wrote “SENSORS” to further verify the practicality of the PVA/GO flexible
keyboard in Figure 7C, confirming that the PVA/GO flexible keyboard can respond to
stimuli in real-time, stably, and discriminately.
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4. Conclusions

In this study, we demonstrated that introducing Na+ and Cl− into the hydrogel
can fabricate ionically conductive hydrogels of high toughness through the synergistic
effect of freeze-salting during the preparation of PVA/GO hydrogels. The introduced
GO can further react with the PVA chain to form a highly porous 3D network structure.
This introduction can not only improve the mechanical strength of the hydrogel but also
yield a higher ion transport efficiency of Na+ and Cl− in the hydrogel network channel.
Thereby the ionic conductivity of hydrogels can be further improved. Hydrogels are often
difficult to be balanced with excellent mechanical strength and electrical conductivity. The
PVA/GO ion-conducting hydrogels containing only 5 wt% PVA after salting out using
NaCl and freezing exhibited strong toughness, high stress (65 kPa), and excellent electrical
conductivity (up to 3.38 S m−1). Hydrogels with such properties are ideal candidates as
strain sensors. The PVA/GO strain sensor was able to respond in real-time to the wrist
and fingers’ bending motion and exhibited good sensitivity (GF = 2.05) at 100% strain. In
addition, the PVA/GO strain sensor can also be used as a flexible writing keyboard, which
can recognize the English letters written on it in real-time, stably, and accurately. This
engineered, ionically conductive hydrogel has great potential for applications in wearable
devices and soft robotics.
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