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Abstract

The spatial scale of intraspecific genetic connectivity and population structure are important aspects of conservation genetics. How-
ever, for many species these properties are unknown. Here we used genomic data to assess the genetic structure of the small Apollo 
butterfly (Parnassius phoebus Fabricius, 1793; Lepidoptera: Papilionidae) across three nearby valleys in the Central Swiss Alps. 
One of the valleys is currently used for hydropower production with future plans to raise the existing dam wall further. We found no 
significant genetic structure, suggesting a currently high connectivity of this species in our studied region.
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Introduction

The maintenance of genetic diversity is a key target 
of current conservation efforts because such diversity 
is thought to enable species to cope with changing 
environments (DeWoody et al. 2021). Among the 
factors that can reduce genetic diversity are habitat 
fragmentation and global climate change (Pauls et al. 
2013; Schlaepfer et al. 2018). Alpine environments may 
especially be threatened by climate change (Engler et 
al. 2011), the latter often promoting the subdivision of 
locally adapted species (Jordan et al. 2016). The scale at 
which intraspecific gene flow occurs is thus an important 
property of a species with significant implications for 
conservation and management. However, the spatial 
scale of genetic connectivity is often unknown as its 
assessment either requires large-scale mark-recapture 
studies or genomic data (Gagnaire et al. 2015).

Here, we assessed the potential for intraspecific gene 
flow in an alpine butterfly – the small Apollo (Parnassius 
phoebus Fabricius, 1793; Lepidoptera: Papilionidae). 

The species occurs locally in alpine environments from 
Alaska over Russia to the Alps (Todisco et al. 2012). 
Many of its allopatric populations have been described 
as distinct subspecies whose taxonomic status has though 
remained elusive (Weiss and Rigout 2005). For example, 
there is an ongoing debate if P. phoebus from the Alps 
should be named P. sacerdos (International Commission 
on Zoological Nomenclature 2017) or not (Bálint 
2021), where P. sacerdos and Eurasian P. phoebus are 
polyphyletic based on mitochondrial haplotypes (Todisco 
et al. 2012). Given the unresolved taxonomy, we use 
P. phoebus here, which is consistent with the current Swiss 
red list for butterflies (Wermeille et al. 2014). P. phoebus 
subspecies differ often phenotypically from each other but 
intraspecific phenotypic variation also occurs at smaller 
scales. Indeed, a former study on alpine melanism, 
highlighted the adaptive value of increased melanism 
with increased elevation and latitude in P.  phoebus 
(Guppy 1986). Males that were darker on their hindwings 
spent a greater proportion of time in flight at low air 
temperatures and showed increased movement (Guppy 
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1986). Importantly, the global diversity within P. phoebus 
is young, i.e., evolved over the last ~125’000 years, where 
geographically distant populations within a continent 
diverged as recently as 10’000–50’000 years ago (Todisco 
et al. 2012). Like for other species of this genus, P. phoebus 
is thought to have moderate dispersal capabilities, being 
able to fly from some hundred metres to few kilometres 
(Guppy 1986; Brommer and Fred 1999). However, natural 
barriers has been shown to limit intraspecific gene flow in 
other Parnassius species (Keyghobadi et al. 1999), but to 
which degree this is true for P. phoebus is not known.

Parnassius phoebus is a univoltine species and 
in the Alps can be found in humid, often flooded 
habitats with mostly extensive stands of Saxifraga 
aizoides, the primary larval food plant of this species 
(Lepidopterologen Arbeitsgruppe 1987). Habitats include 
relatively flat headwaters and riparian zones of small 
and large watercourses, often with alluvial plains in the 
subalpine and alpine and occasionally the montane zones. 
In the Bernese Alps, the species can be found from 1400 
to 2300 m elevation, occurring both on limestone and 
silicate rock substrates. Imagoes feed on nectar from a 
range of plants, including thistles, Origanum and various 
cushion-forming plants, such as Saxifraga. Eggs are 
generally not directly laid on the host plant, but either on 
dried plants in its vicinity or directly on the soil substrate 
(Lepidopterologen Arbeitsgruppe 1987).

We used nuclear genomic data to assess the potential 
for gene flow among individuals collected from three 
nearby valleys in the Central Swiss Alps (Fig. 1). 
We focused on this region because the Trift valley 
experienced significant past and future anthropogenic 
alterations as a consequence of artificial damming for 
hydropower production (Haeberli et al. 2016; Guillén-
Ludeña et al. 2018). This, together with the impact of 
climate change could thus render P. phoebus locally 
vulnerable, especially if current intraspecific gene flow 
would be limited (Condamine and Sperling 2018).

Methods
Sampling

We collected a total of 18 butterflies during summers 
2015–2020. Sampling was conducted in three valleys 
in the Central Swiss Alps (Susten (N=6), Trift (N=8), 
Wenden (N=4), Fig. 1, Suppl. material 1: Table S1). We 
captured all individuals with hand nets and killed them 
with an overdose of ethyl acetate. Full bodies were dried 
for further genetic analyses.

Genetic data processing

We genotyped all individuals using single-end 
restriction-site associated DNA (RAD) sequencing 
with the restriction enzyme PstI. For all individuals 

we extracted the DNA from thorax tissue using the 
Qiagen DNeasy Blood and Tissue kit (Qiagen, Zug, 
Switzerland) following the manufacturer’s protocol. 
Library preparation and sequencing on one Illumina 
HiSeq 4000 lane was outsourced to Floragenex 
(Portland, OR, USA). All genomic data is archived on 
NCBI (BioProject ID: PRJNA814465).

We filtered all obtained genomic data following 
(Lucek et al. 2020), i.e., we only retained reads with an 
intact PstI restriction site, followed by de-multiplexing 
and barcode-trimming with process_radtags from 
Stacks 1.48 (Catchen et al. 2013). Using the FASTX 
toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), we 
then removed reads containing bases with a Phred 
quality score <10 or more than 5% of base pairs with 
quality <30. This approach yielded ~18.5 million high 
quality reads in total for our analysis. Given the lack 
of a Phoebus reference genome, we generated a de 
novo assembly of RAD-tags using all filtered reads for 
all individuals with ustacks 1.48 (Catchen et al. 2013) 
with the following settings: minimum stack size of 
50 reads, a maximum of three base pairs of difference 
for stacks to be merged, excluding loci with unusually 
high coverage to avoid repetitive regions. The initial 
de novo assembly consisted of 11’004 contigs. To 
further identify and remove exogenous contigs from the 
assembly, we compared the assembly against the NCBI 
GenBank nucleotide collection with the blastn function 
from BLAST+ 2.7.1 (Camacho et al. 2009). A total of 40 
or 0.4% of all contigs were of exogenous origin and we 
removed them from the initial assembly.

In a next step, we mapped the reads of each individual 
against our reference assembly with minimap2 2.2 (Li 
2018) and genotyped all specimens with BCFtools 1.10.2 
(Danecek and McCarthy 2017). We filtered the genotypes 
with VCFtools 0.1.16 (Danecek et al. 2011) to remove 
indels, to include only bi-allelic polymorphic sites with 
a minimal depth of six and a minimal genotype quality 
of 20, employing a minor allele frequency filter of 0.03 
and allowing up to 50% of missing data per site. Due to 
high rates of missing data, two specimens were filtered out 
(Suppl. material 1: Table S1). The overall filtering resulted 
in 5157 SNP sites available for our downstream analyses.

Genetic analyses

To test for an individual based genetic structure, we 
first employed a phylogenomic analysis comprising all 
retained specimens. We used RAXML 8.2.11 (Stamatakis 
2014) implementing a generalised time-reversible 
(GTR) model with optimised substitution rates and a 
gamma model of rate heterogeneity. We further applied 
an ascertainment bias correction to account for the fact 
that we only used polymorphic SNP positions with the 
ASC_GTRGAMMA function implemented in RAXML. 
Significance was assessed using 1000 bootstrap replicates 
followed by a thorough maximum likelihood search.

https://alpineentomology.pensoft.net
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We next inferred population structure with 
Admixture 1.3.0, which implements a likelihood 
approach to estimate ancestry (Alexander et al. 2009). 
We ran ADMIXTURE by varying the number of 
assumed populations, i.e., K, from 1 to 5 and performed 
a cross-validation test to determine the optimal value 
of K. In a second step we used a principal component 
(PC) analysis as implemented in GenoDive 3.0.5 
(Meirmans 2020) to visualize the genetic relationship 
among individuals.

Finally, we estimated the overall level of pairwise 
genetic differentiation (FST) among individuals from 
the three valleys (Susten, Trift, Wenden; see Suppl. 
material 1: Table S1) using GenoDive, with 1000 
bootstrap iterations to estimate significance. Because 
genetic differentiation would only occur at few loci 
that experience direct or indirect selection in the case 
of recent divergence (Seehausen et al. 2014), we also 
performed locus-by-locus FST in Genodive analyses 
between Trift individuals and individuals from Susten 
and Wenden combined.

Results

The bootstrap approach employed in our RAXML analysis 
found no significant node splits (i.e. >95% bootstrap support), 
suggesting the absence of a detectable differentiation among 
individuals. Similarly, no clustering occurred related to the 
three different valleys (Fig. 2a). The best number of genetic 
clusters as inferred by Admixture was likewise one (K=1), 
where the subsequent model assuming two genetic cluster 
showed no clustering by valleys (Fig. 2c). The two leading 
PC axes accounted for 9.3 and 8.4% of the total variation 
respectively and only here some individuals from the Trift 
valley seemed to be differentiated from the other individuals 
along PC1 (Fig. 2b).

The level of pairwise genetic differentiation among 
valleys was generally low and non-significant (Susten 
vs. Trift: FST = 0.005, p = 0.195; Susten vs. Wenden: 
FST = 0.017, p = 0.143; Trift vs. Wenden: FST = 0.021, 
p  =  0.177). This was similarly true when individuals 
from Susten and Wenden were pooled (FST = 0.006, 
p  =  0.059; Fig. 3). The locus-by-locus analysis for the 

Figure 1. Overview of our sampled sites. A. Map depicting the sampling locations of all collected individuals from the central 
Swiss Alps with the inset depicting the sampling site in Switzerland (see Table S1 for details). Circle colour indicates the different 
valleys. For each individual the respective sample ID is given (see Table S1). Map source: Federal Office of Topography swisstopo; 
B. Example of Parnassius phoebus (individual K13); C–E. Habitat pictures for Wenden, Trift and Susten, respectively.
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same comparison identified only 11 SNPs with an FST 
> 0.20 (Fig. 3), however, none of the associated contigs 
could be mapped to a known gene by BLAST.

Discussion

Using genomic data, we found a lack of genetic structure 
among individuals of the small Apollo Parnassius 
phoebus that could be attributed to the three valleys 
in close proximity, i.e., being 4–8 km apart, which we 
sampled in the central Swiss Alps (Figs 1, 2). Our results 
thus suggest a high connectivity of this species in our 
studied region. Consequently, the valleys, mountain 
ridges, glaciers or other potentially unsuitable habitat 
structures in our studied region (Fig. 1) do not present 
strong barriers to gene flow. This finding contrasts with 

observations in other Parnassius species where such 
geographic structures resulted in fine-scale population 
structure (Brommer and Fred 1999; Keyghobadi et 
al. 1999). While the absence of significant genetic 
differentiation, as estimated by FST, may also highlight 
the statistical limitations given the sample size of our 
study, the individual-based analyses that we applied 
would allow to detect potential fine-scale structure 
(Rieder et al. 2019).

P. phoebus is an evolutionary young species that has 
moreover recolonized the studied area only after the last 
glaciation period (Todisco et al. 2012). Consequently, even 
if local adaptation would have occurred, the respective 
populations may not necessarily have had enough time to 
accumulate genetic differentiation beyond few genomic 
regions that experience selection (Nosil 2012; Seehausen 
et al. 2014). Indeed, our locus-based analysis identified 
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very few sites of accentuated differentiation (Fig. 3). Such 
genomic differentiation at only few target loci may be 
consistent with a potential very early stage of divergence‐
with‐gene‐flow, where further differentiation depends 
on the evolution of barriers to gene flow (Nosil 2012). 
However, the interpretation of such genomic regions has 
to be done with care, as they can also emerge through 
non-adaptive processes including genetic drift (Ravinet 
et al. 2017). Lastly, both the lack of significant genomic 
differentiation and the limited number of loci that 
showed accentuated differentiation could reflect a limited 
resolution given the restricted number of polymorphic 
SNPs available for our analyses and the absence of a 
reference genome.

A high connectivity despite potential natural barriers 
may suggest that P. phoebus could be less affected by 
future anthropogenic modifications in the studied area 
(Haeberli et al. 2016; Guillén-Ludeña et al. 2018). 
However, such modifications will act combined with the 
effects of climate change, which is thought to be a main 
threat for species of the genus Parnassius (Condamine 
and Sperling 2018). Although P. phoebus can likely track 
its climatic niche by shifting its range up the mountains 
until they can go no higher, the species also depends 
on the availability of host plants, which can be equally 
affected by both factors (Condamine and Sperling 
2018). Therefore, from a conservation perspective, it 
would be advisable to broaden the geographic scope of 
our study to identify the scale of potential population 
structure in P.  phoebus across the Alps, ideally with 
denser genomic data. In addition, future anthropogenic 
habitat modifications, as it is planned for the Trift valley 
(Ehrbar et al. 2018), should be accompanied by a genetic 
monitoring for both P. phoebus and its host plant.
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