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Abstract

In recent years, there has been a push toward the adoption of alternatives to animal-based
approaches for chemical safety assessment. This has led to the development of better human in
vitro models. Within the in3 project, human-induced pluripotent stem cells (iPSCs) were used
in combination with in silico tools for application in mechanistic toxicity testing. Project-wide
data management and bioinformatics workflows were applied for the analysis of the
transcriptomics data to uncover tissue-specific markers of toxicity and stress response
pathways activated in iPSCs models against chemical exposure. In this thesis, first, the utility
of iPSC-derived renal proximal tubule-like (PTL) cells in chemical testing was investigated.
The cells were exposed to cadmium, arsenic, rotenone, tunicamycin, doxorubicin, amiodarone,
and GW788388, and samples were collected at multiple time points. The time points were used
to look at the temporal profile of the differentially expressed genes related to four important
stress responses namely oxidative stress, metal response, p53 signaling pathway, and unfolded
protein response. The results showed that iPSCs could unravel the activation of these stress
responses. Oxidative stress response and metal response-related genes were found to be
activated very early (around 1h-2h after exposure) in response to arsenic and cadmium but in
later hours (around 12h-16h after exposure) in other compounds. Tunicamycin exposure led to
the strongest expression levels of genes associated with unfolded protein response, which were
activated very early (around 2h). Doxorubicin exposure led to the strongest expression levels
of genes associated with the p53 signaling pathway showing activation from around 4h after
exposure. Second, different iPSC models for the brain, blood-brain barrier, kidney, and liver
were used to see their responses to paraquat (PQ) exposure. The pathways like oxidative stress
and unfolded protein response known to be induced in response to PQ were found to be
activated. Genes associated with these pathways showed a concentration-dependent increase
for all the cell models. The brain model was found to be the most sensitive toward PQ based
on the cytotoxicity curves. To investigate the reason for this, the expression level of
transporters of PQ was checked as they are used by PQ to enter the cell. The amino acid
transporters SLC3A2 and SLC7A11 showed high expression levels in the brain models leading
to the high uptake of PQ in cells. In conclusion, these studies showed the potential of human-
iPSCs in future studies for animal-free chemical safety assessment, determining the sensitivity
of multiple models towards a chemical and signifying the applicability of temporal data in
unraveling the evolution of mechanisms.
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1. Introduction

1.1 Ambitions and objectives

Chemical production has increased globally at a faster rate in the previous decade (UN 2015).
This has also pushed the assessment of the safety of these chemicals for the protection of
humans and the environment (Monosson 2005). The safety assessment still relies mostly on
animal testing procedures. But these methods are costly, and time-consuming, raise ethical
concerns, and cannot capture the inter-species differences sufficiently (Knight et al. 2021).
Additionally, the pressure from the EU regulatory bodies to find alternatives to animal testing
leading to the development of 3Rs (stands for Replacement, Reduction, and Refinement)
principles has driven a paradigm shift in the field of chemical safety assessment (Fitzi-Rathgen
2019). Therefore, there is a need to develop alternatives to animal methods like in vitro and in
silico tools which are time and cost-effective, more human-relevant, and useful to study the
mechanisms of toxicity in more detail (Doke and Dhawale 2015). The recent years have seen
significant growth in the development of these approaches (Krewski et al. 2020). The complete
ban on animal tests in the cosmetic industry has also pushed other industries to look for
alternatives to animal testing methods (Fentem et al. 2021). But the development of this animal-
free safety assessment is hampered by the missing link between the quantitative and qualitative
aspects of chemical exposures and mechanistic toxicology; the lack of standardized in vitro
systems; and the lack of integration of in silico and in vitro tools/models (Pistollato et al. 2012;
Price et al. 2020). Many past projects like SEURAT-1 (stands for Safety Evaluation Ultimately
Replacing Animal Testing-1) (http://www.seurat-1.eu) (Kohonen et al. 2013), Tox21
(https://ntp.niehs.nih.gov/whatwestudy/tox21/index.html) (Richard et al. 2021) and EU-
ToxRisk (stands for An Integrated European ‘Flagship’ Programme Driving Mechanism-
based Toxicity Testing and Risk Assessment for the 21st century) (https://www.eu-toxrisk.eu)
(Moné¢ et al. 2020) and ongoing projects like RISK-HUNT3R (stands for Risk assessment of
chemicals integrating the human-centric next-generation testing strategies promoting the 3Rs)
(https://www.risk-hunt3r.eu), ONTOX project (https://ontox-project.eu), PrecisionTox project
(https://precisiontox.org) and PARC project (stands for The European Partnership for the
Assessment of Risks from Chemicals) (https://www.efsa.europa.eu/en/funding-calls/european-
partnership-assessment-risks-chemicals-parc) have focused on different aspects of animal-free
chemical safety assessment. in3 (stands for integrated in vitro and in silico tools)
(https://estiv.org/in3/) project is one of the EU's Marie Sklodowska-Curie Action - Innovative
Training Network (MSCA-ITN) funded projects built upon the knowledge and learning from
these projects and train a new generation of researchers for the animal-free chemical safety
assessment. It has utilized mechanism-based studies for hazard assessment, linking exposure
to hazard, and integrating in vitro data with in silico tools. The main aim of the project was to
apply human-induced pluripotent stem cells (iPSCs) in vitro cell models derived from the same
genetic makeup to mechanistic toxicology assays and integrate them with in silico tools. The
project consists of 15 sub-projects which were assigned to nine in vitro Ph.D. candidates and
six in silico Ph.D. candidates appointed by eleven beneficiaries across Europe.




This thesis is part of the in3 project which focused on project-wide data management and the
development of project-wide bioinformatics analysis workflows to uncover tissue-specific
markers of toxicity and stress response pathways. The specific aim was to apply these
approaches to a) investigate the potential of in vitro iPSCs models in predicting the known and
unknown affected genes and associated mechanism of toxicity pathways due to exposure to
different sets of chemicals b) resolve the temporal alteration of the toxicity pathways activated
due to these chemicals c) see the response of different iPSC cell models against paraquat (PQ)
d) see if such analysis can highlight differences w.r.t sensitivity of these different models
towards PQ.

In the following sections of Chapter 1, the list of publications; an overview of the general
concepts like 3Rs, new approach methodologies (NAMs), Integrated Approaches to Testing
and Assessment (IATAs), and Adverse Outcome Pathway (AOP) to understand the rationale
behind using specific methods within the in3 project; an overview of the specific concepts like
Induced Pluripotent Stem Cells (iPSCs), transcriptomics application in mechanistic studies
using TempO-Seq technology and biological pathways used within in3 project; description on
the application and importance of data management and data analysis workflows developed for
achieving the goals of the project; summary of the case studies demonstrating the application
of bioinformatics workflows to analyze the response of iPSC-derived models on chemical
exposure will be provided. Chapter 2 includes the publication based on the study related to
temporal alterations in human-iPSC-derived renal proximal tubule-like (PTL) cells due to
exposure to cadmium and also a shorter study to investigate the clustering of the related genes
according to temporal profile. Chapter 3 focuses on the study related to temporal alterations in
the stress responses activated in human-iPSC-derived renal PTL cells due to exposure to 6
organic compounds. Chapter 4 includes the publication based on the study of exposure of
multiple human-iPSCs models to paraquat. Finally, Chapter 5 gives the cumulative conclusions
highlighting the importance of the work done during the thesis and its future applicability.

1.2 List of publications

The following publications (with first authorship and shared first authorship) are based on the
case studies which were performed to achieve the specific aims of this thesis as described in
Section 1.1:

e Singh P* Chandrasekaran V*, Hardy B, Wilmes A, Jennings P, Exner T; Temporal
transcriptomic alterations of cadmium exposed human iPSC-derived renal proximal
tubule-like cells. Toxicology in Vitro. (2021) DOI: 10.1016/5.tiv.2021.105229.

e Nunes C*, Singh P* Mazidi Z*, Murphy C*, Bourguignon A, Wellens S,
Chandrasekaran V, Ghosh S, Zana M, Pamies D, Thomas A, Verfaillic C, Culot M,
Dinnyes A, Hardy B, Wilmes A, Jennings P, Grillari R, Grillari J, Zurich M, Exner T;
An in vitro strategy using multiple human induced pluripotent stem cell-derived models



to assess the toxicity of chemicals: A case study on paraquat. Toxicology in Vitro.
(2022) DOI: 10.1016/j.tiv.2022.105333.

e Singh P, Hardy B, Wilmes A, Jennings P, Exner T; Temporal alterations in the stress
responses activated in human iPSC-derived renal proximal tubule-like cells due to
exposure to 6 organic compounds (in preparation)

*shared first authorship

The application of project-wide data management and developed bioinformatics analysis
workflows were utilized by the first authors in the following publications to achieve their study
goals. The support as co-author was provided by customizing the workflows and helping in the
application of the workflows for the different study goals.

e Wellens S, Dehouck L, Chandrasekaran V, Singh P, Azevodo Loiola R, Sevin M,
Exner T, Jennings P, Gosselet F, Culot M; Evaluation of a human iPSC-derived BBB

model for repeated dose toxicity testing with cyclosporine A as a model compound.
Toxicology in Vitro. (2021) DOI: 10.1016/j.tiv.2021.105112.

e Chandrasekaran V, Wellens S, Bourguignon A, Djidrovski I, Fransen L, Ghosh S,
Mazidi Z, Murphy C, Nunes C, Singh P, Zana M, Armstrong L, Dinnyes A, Grillari J,
Grillari R, Leonard M, Verfaillie C, Wilmes A, Zurich M, Exner T, Jennings P, Culot
M; Evaluation of the impact of iPSC differentiation protocols on transcriptomic
signatures (in preparation)

e Mazidi Z, Wieser M, Spinu N, Weidinger A, Kozlov A, Singh P, Vukovic K, Wellens
S, Murphy C, Moralagares L, Reddy Bobbili M, Liendl L, Schosserer M, Diendorfer
A, Bettelheim B, Eilenberg W, Exner T, Culot M, Jennings P, Grillari R, Grillari J;
Cyclosporin A toxicity on endothelial cells differentiated from iPSC cells: assembling
an AOP (in preparation)

1.3 The paradigm shift in toxicology towards non-animal test
methods

This section is focused on the general concepts which are important for risk assessment starting
from the role of the 3Rs principles in the use of alternatives to animal approaches, new
approach methodologies (NAMs) which support the 3Rs principles, and the concept of
Integrated Approaches to Testing and Assessment (IATA) and Adverse Outcome Pathways
(AOPs).



1.3.1 3Rs and their contribution to non-animal test approaches

3Rs stands for Replacement, Reduction, and Refinement and were first proposed in 1960 by
WMS Russell and RL Burch (Russell and Burch 1959). The goal of these principles is to
replace animal methods with alternative non-animal methods, reduce the use of animal tests
wherever possible and refine the existing methods to decrease animal suffering. The objective
is to assure that optimum steps are taken to avoid the stress caused to animals as much as
possible during the experimental tests and to utilize and build alternative non-animal methods
(Hubrecht and Carter 2019). In many countries around the world, these principles serve as both
legal and ethical principles and guide the use of animals in scientific procedures (Maestri 2021).
The European Union (EU) has incorporated the use of the 3Rs as the key concept for the
humane utilization of animals for scientific research in various legislations. These principles
have been very well incorporated into the regulatory testing guidelines for conducting safety
assessments of various types of chemicals used in different types of industries (Tornqvist et al.
2014).

The REACH (Registration, Evaluation, Authorisation, and Restriction of Chemicals) is the
regulation developed in 2007 in the EU. It is aimed at regulating the manufacturing and
utilization of various chemical substances. This regulation requires industries to fulfill the
conditions to ensure the safety of chemicals for both humans and the environment. The
industries need to register the chemicals along with the safety information that they produce,
use, or sell to the European Chemicals Agency (ECHA) (Taylor 2018). REACH also constantly
promotes its objectives to encourage the use of non-animal testing methods as mentioned in
the following statement in its article “This regulation should also promote the development of
alternative methods for the assessment of hazards of substances” (REACH Legislation -
ECHA,2020). To register the chemical under REACH regulations, the industries are not
allowed to conduct any new experiments which involve vertebrate animals without prior
approval from ECHA. In case the industry wants to use the animal approaches, they are obliged
to show that alternative methods were considered for the testing and then ECHA can review
their proposals for deciding if animal approaches are needed or not (ECHA 2020).

These regulations and legislations have put pressure on the industries to reduce the use of
animals for scientific purposes and align with the 3Rs principles (GreenFacts 2022). This has
led to a paradigm shift in the cosmetic industry to completely ban the usage of animal
approaches in the toxicity testing (Rovida and Hartung 2009). EU Cosmetics Regulations
1223/2009 led to the complete ban on testing animals with the finished cosmetic products in
2004 and the raw cosmetic ingredients in 2009. In 2013, there was a complete ban on the
marketing of cosmetic products including the ones manufactured before the regulations were
made which in any form affect human health irrespective of the availability of alternatives for
animal tests (Eixarch et al. 2019). The ban also signifies that the use of non-animal methods is
not just a desire now but a necessity. This is also pushing the potential of the ban in other
industry sectors. The industries are compelled to look for viable alternatives to meet the
obligations led by different regulatory bodies.



1.3.2 New approach methodologies (NAMs)

The use of NAMs is gaining more importance in the modern day approach to toxicology. It
focuses more on a mechanistic understanding of toxicity rather than histopathology which
helps in better prediction and safer by design approaches. A topical Scientific Workshop held
by the European Chemicals Agency (ECHA) in 2016 states new approach methodologies
(NAMs) as methods that include approaches supporting 3Rs for alternatives for animal testing
(e.g., in silico, in chemico, and in vitro methods) as well as in chemical associated hazard and
risk information. Many of these approaches and tools are being developed and used for
chemical testing like cell-based in vitro models (like primary cell culture, immortalized cell
lines, organotypic culture, stem cells, iPSCs, and organoid culture) and computational
modeling approaches. Many new advanced testing tools like high-throughput screening and
high-content technologies (including genomics, proteomics, and metabolomics) are applied to
these NAMs to test the chemicals these days (Cohen Hubal et al. 2010). NAMs have the
potential to become promising alternatives to animal-based methods by reducing time and cost,
offering more higher throughput, and being able to reduce animal usage in the chemical testing
(Madden et al. 2020). Implementing standardization in the NAMs applicability and constant
research demonstrating their usability will further help them in becoming alternatives to animal
testing.

In vitro approaches are capable to gain more insights into the toxicity mechanisms and the cell
types interactions (Ghallab 2013). The continuous advances made in in vitro cell models like
the introduction of telomerase overexpression to immortalize cells leading to the creation of
human cells without viral oncogenes and normal phenotypes; induced pluripotent stem cells
(iPSC) opening the possibility for producing target tissues from any individual etc. have
increased their utilization as alternatives approach. /n vitro alternative approaches established
for eye irritation, skin irritation, acute oral toxicity, and pyrogenicity have now completely
replaced the animal testing methods (Perdomo-Morales et al. 2011; Alépée et al. 2014; Prinsen
etal. 2017). In vitro approaches also help in understanding the mechanisms causing the toxicity
and mode of action. The in vitro methods in combination with the use of advanced omics
technologies offer a broad analysis of the effect of chemicals at the molecular level and point

out to the induction of toxicity pathways that can lead to adverse outcomes (Anadén et al.
2014).

Many in silico approaches are also being developed and integrated with in vitro techniques as
an alternative to animal methods. In silico methods work upon the computational assessment
of toxicity of chemical substances (Madden et al. 2020)s. These methods can organize, analyze,
model, visualize and predict the toxicity of a chemical and utilize the knowledge from the pre-
existing data. The various in silico tools like quantitative structure-activity relationships
(QSARs), read-across, biokinetic model, etc. are being used for toxicology-relevant studies
(Madden et al. 2020). Based on the structure of the chemical, QSAR helps in predictions of
chemical behavior inside a body. Read across approaches utilize the information from the
endpoint of one chemical to predict the endpoint of another similar chemical like common
functional groups in the absence of toxicological data (Punt et al. 2020).
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However, NAMs also have some limitations for example the ability of in vitro models to mimic
the conditions in the cells in a whole organism and to get the accurate extrapolation from in
vivo to in vitro doses (Graudejus et al. 2018). But the efforts are being made in the creation of
systems with interacting cells. For example, to study the communication among different
organs like the liver, pancreas, gastrointestinal tract, brain, and hormone-producing organs
multiple organoids have been joined to do that (Kim et al. 2020).

1.3.3 Integrated approaches to testing and assessment (IATAS)
and adverse outcome pathway (AOP)

IATAs are structured approaches that integrate and weigh different types of pre-existing and
new data extracted from different sources and methods for the hazard identification, hazard
characterization, and/or safety assessment of chemicals to aid regulatory decision-making. It
incorporates many NAMs for data generation, interpretation, and integration (OECD 2021).
The different methods and sources used for this integration include methodological approaches
(physicochemical properties, QSARC(s), read-across, in vivo and in vitro, in chemico) and/or
omics technologies. The process of IATA is divided into three main steps: a) collection of pre-
existing data generated by multiple approaches, b) evaluation of the weight of evidence (WoE)
for this data usability in making a regulatory decision, and c) generation of new data if the
collected data is not enough. IATAs consist of different testing approaches like integrated
testing strategies (ITS), sequential testing strategies (STS), as well as the weight of evidence
(WoE) considerations (OECD, 2014a) (Tollefsen et al. 2014).

Many IATAs use the adverse outcome pathways (AOPs) for assembling the pre-existing and
new data in a structured format. AOPs provide a structured framework for the assembly and
representation of the mechanism-based knowledge (Tollefsen et al. 2014). AOPs hold the
potential in being used for regulatory and scientific applications like the selection of chemicals
for the testing and development of NAMs, evaluation of novel biomarkers, providing the push
for read-across methods, and thus contributing to 3Rs principles (Carusi et al. 2018; Coady et
al. 2019). AOPs start from the chemical/stressor-induced molecular initiating event (MIE) and
progress to the adverse outcome (AO) via a series of intermediate key events (KE) occurring
at different biological levels like cellular, tissue, organ, organism, and population. The key
events are connected using key event relationship (KER) representing the evidence to support
the organization of the KEs in AOP qualitatively or quantitatively. AOPs provide relevance
and reliability biologically for the results from structural data, “omics-based” data, in silico, in
chemico, and in vitro data used in regulatory settings (Vinken 2013; Svingen et al. 2021; OECD
2021). Chemical-induced skin sensitization is one of the first AOP with an application in the
risk assessment of cosmetics ingredients (Macmillan and Chilton 2019; Gautier et al. 2020;
OECD 2014). The Organisation for Economic Co-operation and Development (OECD) has
developed a handbook for AOP development (OECD 2021) in which it gives the standards for
the building of high-quality and structurally similar AOPs, with comparable weight-of-
evidence (WoE) evaluations (Villeneuve et al., 2014a). OECD monitors the utilization of the
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AOP framework to ensure the building of hypothesis-driven hazard assessment tools across all
continents. The integration of AOPs into IATAs has facilitated more drive toward the animal-
free risk assessment (Krewski et al. 2020).

The AOPs are validated by exploring the following things as mentioned in (Meek et al. 2014):
(1) biological concordance, (2) essentiality of Key Events, (3) concordance of empirical
observation (encompasses dose-response and temporal concordance, and beyond), (4)
consistency (among different biological contexts) and (5) analogy (consistency across
chemicals). The results of these steps direct the use of different AOPs for different regulatory
applications (Perkins et al. 2013; Patlewicz et al. 2014; Tollefsen et al. 2014).

The quantitative adverse outcome pathways (QAOPS) have been developed recently to capture
the measurement of the perturbations caused by chemical exposure at different KE levels and
how will that affect AO (Patlewicz et al. 2015; Conolly et al. 2017). The KEs can be measured
to evaluate dose responses using experimental methods. The tipping points of change between
KEs from MIE to AO are derived using the mathematical enabled KERs (Schultz and
Watanabe 2018). Various NAMs like deep learning (DL) and machine learning (ML) models,
in vitro tests, and batteries of in vitro assays, organs-on-a-chip models can contribute to
populating the gqAOPs by giving more information on chemical-induced toxicity (Mahony et
al. 2020).

AOPwiki (https://aopwiki.org) coordinated by OECD is a collaboration of the European
Commission-DG Joint Research Centre (JRC) and the U.S Environmental Protection Agency
(EPA) transparently facilitates the development of AOPs globally. Different AOPs are
connected automatically if they share any KE and various AOPs can be searched via keywords
like AQOP titles and key events. To date, around 400 AOPs and 5017 KEs have been developed
in the AOPwiki (Ramsak et al. 2022).

1.4 Overview of specific concepts used within the in3 project

This section will provide an overview of the specific methods used within the in3 project
starting from introduction to iPSCs utilization as the in vitro tool, transcriptomics importance
in mechanistic studies, TempO-seq technology, and introduction to biological pathways. These
concepts were used for achieving the specific goals of this thesis.

1.4.1 Induced pluripotent stem cells (iPSC):

Over the past years, various human cell line-based in vitro models have been developed for the
chemical safety assessment (Suter-Dick et al. 2015). But many of these cell lines like primary
cell lines have non-typical physiology as they manifest cancerous phenotypes and can
sometimes also lose their differentiated functionalities (Rauch et al. 2014). Also, it is difficult
to collect complex functioning tissues like the brain from such cell lines. iPSCs developed in
2006 by Takahashi and Yamanaka developed a method to reprogram the simple somatic cells
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into stem cells in mice using 4 transcription factors namely Oct3/4, K1f4, Sox2, and c-Myc (Shi
et al. 2017). These reprogrammed cells behaved like pluripotent stem cells and had the ability
to self-renewal, differentiate into any cell type, and commit to a specific cell lineage (Takahashi
and Yamanaka 2006; Suter-Dick et al. 2015; Omole and Fakoya 2018). The use of non-
integrating techniques like self-replicating RNA has further improved the stem cell technology
(Rauch et al. 2014; Hawkins and Kotton 2015; Suter-Dick et al. 2015).

As compared to embryonic stem cells, iPSCs are derived from adult living donors, have less
ethical concerns, allow selection of donors, use a less invasive sample collection approach, are
human-relevant, and can contribute to the patient-specific regenerative medicine (Scott et al.
2013; Hawkins and Kotton 2015). These iPSCs also make the study of diseases and their time-
based evolution much easier by including gene expression relationships (Shi et al. 2017).

The utilization of iPSC cells in toxicity testing is still under development. The protocols used
to differentiate the iPSCs into various target tissues need proper optimization and curation to
help in showing their usage in toxicology studies (Jennings 2015). Often, the cells are derived
in different laboratory setups, from different donors, and cultured in different media making it
difficult to compare them and integrate information at the whole organism level. in3 project
has utilized standardized and high-quality human iPSC cells from the same donors banked by
StemBANCC(Morrison et al. 2015), EbiSC (Steeg et al. 2020), and in3 partners to generate
various cell types. Different cell types namely liver (hepatocytes), kidney (podocytes and
proximal tubule cells), brain (aggregates, neurons, and blood-brain-barrier), lung (conducting
airways and alveolar cells), and endothelial cells (for vasculature and as co-culture partner
cells) were differentiated from human-iPSCs by optimizing the developed differentiation
protocols further. As the iPSCs are not still fully validated cell models representing the whole
organ, in3 partners will also provide data for the further validation of iPSC models by
comparing the responses of different in vitro models representing the same organ to different
chemicals.

1.4.2 Transcriptomics application in mechanistic studies using TempO-Seq
technology

The mechanism-based studies are important for understanding the pathobiology behind the
adverse events caused due to exposure to chemicals. These studies are also useful in making
the decisions in risk assessment (National Research Council (US) Committee on Applications
of Toxicogenomic Technologies to Predictive Toxicology 2007). The mechanisms facilitate
better prediction, the elucidation of the routes of toxicity that points to the cause and
progression of certain diseases, and safer by design methodologies (Houck and Kavlock 2008;
Cui and Paules 2010). These mechanistic approaches utilize transcriptomics which offers non-
biased experimentation and high content data (Jennings et al. 2014).

Transcriptomics is beneficial in such cases as it allows the study of all transcripts or mRNA in

a cell or an organism simultaneously and can be applied in read-across studies, understanding
the mechanism of toxicity as well as finding points of departure (Wilmes et al. 2013; Frohlich
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2017; Joseph 2017). Various stress response pathways can be studied on a cellular level
activated on exposure to xenobiotics using the transcriptomics (Wilmes et al. 2013; Lowe et
al. 2017). Specific transcriptional signatures (oxidative stress, DNA damage, ER stress, metal
response, hypoxia, etc.) are exhibited by these stress responses (Jennings et al. 2013). It allows
the understanding of alteration in gene expression at cellular levels due to stress caused by
chemical exposure (Jennings et al. 2013). The OECD Extended Advisory Group on Molecular
Screening and Toxicogenomics (EAGMST) has also made the Transcriptomic Reporting
Framework (TRF) for increasing the use of transcriptomics data in regulatory studies.
Transcriptomics data has the potential to play an important role in the development of IATAs
even further. They offer further knowledge into the mechanism of actions that can be used to
enrich the AOPs at different biological levels (Garcia-Reyero et al. 2014a, b).

The transcriptomics data obtained from the toxicity studies can be analyzed using
bioinformatics-based statistical approaches. It helps in understanding molecular mechanisms
underlying the toxicity of the chemical by quantitatively assessing and analyzing the
transcriptomics data (Joseph 2017). The biggest statistical challenges found during the analysis
of the transcriptomics data are the limited number of samples and few biological replicates,
which affects the normalization and mean due to sample variability. Various methods have
been developed for differential expression analysis to estimate such variance of genes (Love et
al. 2014a). In the in3 project, the DeSeq2 package was used as a statistical tool for the
differential expression analysis of the transcriptomics data. It offers an advantage by removing
the noise in the data by estimating standard errors for the log fold changes, flagging the
genes/outliers which should not be considered in the downstream analysis and it can be applied
to a limited number of replicates. It also offers a regularized logarithmic transformation for the
visualization of the raw read count data for quality assessment and clustering and principal
component analysis of over dispersed data (Love et al. 2014a).

The traditional transcriptomics techniques are low throughput and costly. The cost of running
the whole genome is still relatively expensive. Besides that, the complexity increases for RNA
sample preparation and post bioinformatics analysis with the number of samples. Due to this,
the study of multiple compound concentrations and/or temporal effects is still in limited
capacity (Wilmes et al. 2011a, 2013). However, the cheaper, high throughput, and targeted
transcriptomic-based methods have brought the cost of sequencing lower, include more target-
specific selection from whole transcriptome sequencing libraries, and help make the way for
better hazard and risk assessment using more mechanistic-based studies (Yeakley et al. 2017,
Limonciel et al. 2018).

One of these cheaper methods is TempO-Seq technology provided by BioSpyder
(http://biospyder.com/), which was used in the in3 project to generate transcriptomics data for
the case studies mentioned in the later chapters. TempO-Seq is an NGS library preparation
method that is based on the hybridization and sequencing of highly specific detector oligos.
The ligated oligos are hybridized on the RNA targets directly without the need for RNA
extraction. It only requires small picograms of total RNA without the preamplification step and
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thus increases the use of the samples (Limonciel et al. 2018; Harrill et al. 2021). TempO-Seq
is advantageous as it doesn’t need the isolation of RNA, is cost-effective due to its targeted
behavior, quantifies specific mRNA targets, and allows sequencing from sample lysates which
leads to the removal of the variation causing factors like library construction in the RNA-
sequencing (Su et al. 2014). Additionally, it requires fewer data storage and allows simplified
bioinformatics workflows application which gives faster and more manageable results. It has
moderate variation, noise, and error in comparison to other methods and has been reported to
be similar to microarray and RNA-sequencing when applied for SEQC/MAQC3 MOA
toxicogenomics data analysis as described in (Bushel et al. 2018). The main limitation of this
method is its targeted focus on the toxicological responses and therefore the data is less useful
for other research not looking at toxicology.

in3 project has used TempO-Seq utilizing the EU-ToxRisk v2.1 panel 3257 genes (3565
probes) which contains the genes curated specifically relevant for the toxicology. This gene set
was created with the help of bioinformatics approaches by using publicly available human
transcriptomics data and scoring each gene based on its interaction with other genes,
transcriptional diversity, and coverage of the biological space (Mav et al. 2018). These genes
fully cover all known and well-annotated biological pathways which accurately predicts the
pathway perturbations after chemical exposure.

1.4.3 Biological pathways

The National Human Genome Research Institute defines a biological pathway as “A series of
interactions among molecules in a cell that leads to a certain product or a change in a cell.
Such a pathway can trigger the assembly of new molecules, such as a fat or protein”. The
most known pathways are related to metabolism activities, regulation of genes, and
transmission of signals.

The information for the development of the biological pathways is derived from the literature
studies based on the experiments performed by scientists on various cells and species. The
extracted information is aggregated into a pathway either manually or by using software tools
using appropriate formats, information standards, statistical values implicating their
significance, and pathway-building tools. These pathways are then topped up with additional
information like species, disease, cell type, etc., and are regularly checked and curated by the
experts in the domain (Viswanathan et al. 2008). They are stored, represented, and accessed by
collecting in pathway libraries/knowledgebases using computational tools. In this thesis, three
pathway libraries were used namely Reactome (https://reactome.org) (Jassal et al. 2020),
Ingenuity Pathway Analysis (IPA) (https://digitalinsights.qiagen.com/products-overview/)
(Krdmer et al. 2014), literature derived pathway library of in3 (developed by Vidya
Chandrasekaran, Vrije Universiteit Amsterdam, details in Chapter 2) and an integrated library
called ConsensusPathDB (http://cpdb.molgen.mpg.de) (Kamburov et al. 2009) which
integrates many important pathway libraries. These pathway libraries help in making the
information available for genes, their regulation, and correlation easily accessible and usable.
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The limitation of these libraries is the non-standardization of the pathway names which also
leads to repetitions in integrated libraries like ConsensusPathDB.

1.5 Data management and analysis workflows application within
in3 project

After describing the background in the previous sections needed for working on the specific
aims of the thesis, this section will give an overview of the data management and analysis
workflows, which will be then applied in the different studies summarized in the next section
and then detailed in the attached publications in chapters 2-4.

The design of the interlinked studies within the in3 project led to the generation of
transcriptomic data using TempO-Seq technology to characterize the newly developed iPSCs
models both under basal and chemical exposure with comparable parameters (time,
concentrations, cell types, etc.). This data was also used to achieve specific objectives like the
evaluation of the iPSC tools for safety assessment including determination of model robustness,
concentration-response, time series analysis, assessment sensitivity and specificity to chemical
exposure, grouping and read-across approaches, and providing mechanistic validation for the
QSARs. Central data management and common workflows for data processing and analysis
were needed for the alignment of the study plans within in3 to allow comparative studies,
collaborative work, and foster re-use of data within and outside the project. The output of this
was a standardized data management and analysis workflow which also allowed customization
according to the objectives of the individual study plans. It made both cell model comparison
on a gene level and identification of similarities and differences in baseline and exposure
scenarios possible.

The reuse of data is very essential for optimizing data-driven research and innovation. This is
most often framed under the FAIR principles (findable, assessable, interoperable, and re-
usable) and named FAIRification of data (Wilkinson et al. 2016). The focus of these principles
is to facilitate the long-term availability and re-use of the data. However, the importance of rich
metadata following domain-relevant community standards cannot be stressed enough, is
extremely relevant also for the sharing inside a project and a starting point for the generation
of integrated analysis workflows. It is very necessary to document the needs for the metadata
in parallel to the data collection to avoid missing and later irretrievable information making the
independent interpretation of the data impossible and the experiments irreproducible. There is
consensus that metadata can be defined as information defining and describing other data and
the ISO/IEC JTC1 SC32 Working Group as a central standardization body has adopted this
definition (Anon 2014). Another more obvious advantage of early and complete metadata
collection is that this information can directly be applied in the development of the integrated
analysis pipeline as well as in hypothesis formulation and interpretation of the results.

A careful metadata collection process was executed following good (meta) data management
standards to guarantee the completeness of information for the analysis of the data in each
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study but also for cross-study analysis to compare cell models and differences in sensitivities.
A metadata template was developed for in3 to provide details on the assays, compounds used,
and exposure scenarios optimized to the specificities of iPSCs testing procedures. The metadata
included information to characterize the cell model, differentiation stage, exposure scenario
including co-stimuli, vehicle, and plate layout as well the detailed standard information like
SMILES, InChl, etc. on the chemicals used for treating the cell systems. The raw read count
data files for all samples were provided by BioClavis (https://www.bioclavis.co.uk) who
performed the TempO-Seq experiments and the quality control. The metadata as well as the
data files were wuploaded to the EdelweissData™ data management system
(SaferWorldbyDesign2020) after multiple cycles of metadata schema curation and validation
distributed among different partners. From the EdelweissData™ data management system, the
data and metadata can be directly inspected, queried, and without the need to first download
the files integrated into custom-made workflows. These workflows could be used to select the
samples of interest and the corresponding controls, filter the data according to quality measures,
and then finally apply it in integrated processing and analysis pipelines.

Access to all the data was provided to all partners within in3 and a standardized workflow was
created in form of the python script implementing the application programming interface (API)
calls to obtain the data based on metadata fields selected by the user interactively. The script
was provided to everyone in form of a Jupyter notebook (https://jupyter.org/) along with
documentation of the steps performed including intermediate results to make the use of the
script simple without the need to install Python or later R. As the first step to use this workflow,
the user must select the study of interest. It is also possible to select more than one study if
needed for cross-study comparisons e.g., gene profiles of the cells treated with the same
chemical. The next step allows the user to filter the data based on the metadata fields such as
compound, cell lines, organ concentration, and exposure time. The last step of the script offers
an option to filter the genes based on statistics of raw read counts across all selected samples.
This is used to remove genes from the raw data, that show extremely low read counts across
all samples. Criteria of this selection are the sum of counts (rowsum), the maximum, mean, and
median value over all samples. These low read count levels with the small number of replicates
used (3 in most cases) can result in high fold changes with seemingly reasonable significance
as expressed in the adjusted p-values even if they are a result of the variance in the measurement
and not of a biological effect. The data can be written to the local disk on the computer before
as well as after the optional filtering step.

An R-based bioinformatics script was created to perform integrated analysis and was provided
as a Jupyter notebook to be able to use the DESeq2 library (Love et al. 2014a). This
standardized script performs several steps, which can also be customized based on specific
questions. More advanced functions for quality control, differential expression analysis, and
interpretation are also added to this script. The script starts with a few methods for the quality
check of the raw read counts for which the generated graphs can be saved as images. The
boxplot functionality from R was used to visualize the raw count distribution for manual
inspection of the sample’s overall quality. Even if the normalization performed later is
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compensation for this in some respect, this gave a chance to decide if it is better to remove the
samples or at least flag them when interpreting the results if they keep them.

The clustering method available as part of the DESeq?2 library (Love et al. 2014a) was also
added to the workflow for the exploratory analysis. The r-log transformation was applied to
the raw data for sample-based normalization steps before clustering to compensate for different
overall number raw read count levels in the different samples (Love et al. 2014). The clustering
here uses a hierarchical approach with default methods set as Euclidean distance with a
complete linkage method. Another way of looking at groups of samples with similar properties
is principal component analysis (PCA). This method looks at the variance in the data and
generates linear combinations of the input variables perpendicular to each other, i.e., the
principal components, to optimally characterize this variance.

After the steps of quality checks on the raw read count data, the next step was the normalization
which uses the median of ratios method (Anders and Huber 2010) recommended for further
processing with the DESeq2 library. Normalization brings the numeric values in the selected
dataset onto one common scale which is important for doing comparative analysis. The median
of ratios method generated normalization factors based on ratios for each gene between the
sample and a pseudo-reference sample created as the geometric mean across all samples. It
considers sequencing depth and RNA composition and is robust concerning avoiding
imbalance caused by samples with extreme expression levels or a large number of differentially
expressed genes (DEGs). It is also suited for gene count comparisons between and within the
group of samples and for differential expression analysis between genes in one sample. The
normalized values are saved in a separate file for additional analysis outside the standard
workflow.

Differential expression (DE) analysis is performed as the final step of the workflow to
determine the genes which are significantly influenced by differentiation protocols or exposure
to various chemicals. The DESeq?2 library was further used to perform differential expression
analysis using the Wald statistical test (Agresti 2006) for significance evaluation. In this way,
different experimental groups (like treated vs untreated) can be compared regarding changes
in gene expression levels. The DESeq () function of the DESeq2 library calculates fold
changes, i.e., relative up and down-regulation compared to the reference group, and p-values
and adjusted p-values, i.e., measures for the statistical significance of the changes, for all
groups defined by the user. A p-value of 0.05 means that there is a 5% percent chance that the
gene is a false positive, i.e., 5% of the genes are identified as significantly differentially
expressed even if the changes could also be explained by random fluctuations (the null
hypothesis) (Burden et al. 2014). The adjusted p-values (also known as false discovery rates)
take care of the fact that the number of false positives will increase if more genes are tested. A
cutoff value of 0.05 means that 5% of the tests (genes) considered significant are accepted as
false positives due to multiple testing (Benjamini and Hochberg 1995; Burden et al. 2014).

The metadata files created for each study include the “Group ID” column to automate the group
definition in the workflow. Group ID was a unique identifier assigned to each group of
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replicates representing the same conditions such as cell model, test compound, and exposure
scenario. To make this grouping used in all DESeq?2 functions, the “design” parameter is set in
the DESeqDataSetFromMatrix () function to point to this column in the metadata file (design
=~ Group. ID). Depending on the study design, the most relevant of these group comparisons
are then automatically written to files. The pairing control columns were added to the metadata
to avoid manual selection of the comparisons. These specify the control group for a treatment
group. The standard workflow uses the “Pairing Control.1” column to identify the control
groups. Some studies also include additional pairing columns, e.g., “Pairing Control.2”, which
can be selected by simple modification of the code. Also, comparisons to the other cell model
are possible besides the negative controls by mentioning the Group IDs one wants to compare
in the “contrast” parameter of the “results” function. The genes can then be further filtered
using log fold changes and adjusted p-values (padj) for choosing the statistically significant
ones.

1.6 Application of bioinformatics workflows to analyze the
response of iPSC-derived models on chemical exposure

The data management and analysis workflows were also utilized to achieve the specific aims
of the thesis as mentioned before in Section 1.1. The main results will be summarized here, and
details will be provided in Chapters 2-4 in the form of reproductions of the corresponding peer-
reviewed publications.

1.6.1 Summary: Utilization of iPSC PTL cells to study cadmium-induced
stress responses

1.6.1.1 Temporal resolution of the stress responses activated due to cadmium

The first study was aimed at a) investigating the utilization of a human-derived iPSC PTL cell
model exposed to cadmium in chemical safety assessment and b) deriving the temporal profiles
of the well-known stress response pathways like Nrf2-mediated oxidative stress and MTF1-
mediated metal response known to be activated on exposure to xenobiotic cadmium. Proximal
tubule cells are the most affected part of the kidney on being exposed to cadmium (Barnett and
Cummings 2018). To study the effects of cadmium on proximal tubules, well-studied and
established models like HK2 and RPTEC/TERTT1 have been used (Wilmes et al. 2011b). But
iPSCs differ from them by being more donor-specific (Jennings 2015; Wilmes and Jennings
2015; Pamies et al. 2018; Murphy et al. 2019).

The iPSCs were differentiated using the protocol described in (Chandrasekaran et al. 2021) and
were exposed to cadmium chloride (non-cytotoxic concentration of 5 uM) and medium
controls. The resulting samples were collected at 1h, 2h, 4h, 6h, 8h, 12h, 20h, 24h, 72h, and
168h. The raw read count data and metadata exposed to cadmium and the corresponding
controls for all the time points in iPSC-derived PTL cells were analyzed for finding the
differentially expressed genes using DESeq2 (Love et al. 2014b). These genes were then
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associated with pathways wusing three pathway libraries namely Reactome
(https://reactome.org) (Jassal et al. 2020), IPA (https://digitalinsights.qiagen.com/products-
overview/) (Krdamer et al. 2014), and literature studies. The pathways derived from all three
sources were scored using the z-score (Kutmon et al. 2015; Wellens et al. 2021). The significant
and overrepresented pathways were selected using the threshold of 1.96. A fitting procedure

was developed in python to represent the temporal profiles of the genes related to the stress
responses. The profiles were modeled using 10 pre-defined functions from the standard SciPy
library (Virtanen et al. 2020).

In total 115 significantly differentially expressed genes were obtained, summing up the number
of differentially expressed genes (passing the cut-offs) at different time points. The heatmap
showed these genes forming three clusters of different behavior. The first cluster contained
genes with a very high expression like metallothioneins (MT) MT1 and MT2, HSPAG6, and
HMOX-1. They attained the maxima between 4h-6h and then reached a plateau slighter lower
than the first maxima with an increase in late hours except for HSPA6 which reached baseline
levels in later hours. The MT genes were related to metal regulatory transcription factor 1
(MTF1) (Sabolic et al. 2010) and HMOX1 to nuclear factor erythroid-2-related factor 2 (Nrf2)
(Okawa et al. 2006; Reichard et al. 2007; Yates et al. 2009) based on literature studies. The
second cluster was formed by genes with early maxima between 4h and 8h, then a drop-down
to baseline levels by 24h and no or little over-expression in later hours. Genes showing this
behavior were GCLM, MAFF, MAFG, etc., and were seen to be associated with the Nrf2
transcription factor. The third cluster contained genes like PCNA and SESN1which showed no
expression or a lot of noise until 24h but higher expression values in the later hours. These
higher expressions were caused due to a decrease in the expression values in the untreated
samples. Most of these genes were associated with the p53 transcription factor.

The pathway analysis performed using z-scores showed different significance values and
results. The transcription factors associated with the differentially expressed genes based on
literature evidence showed the relation of MTF1 to metal response and Nrf2 to oxidative stress.
All these were also seen as the overrepresented pathways based on z-score calculation.
Exploring the same knowledge using Reactome knowledgebase also showed metal response
overrepresented. But there was no specific pathway in Reactome which represented oxidative
stress response. IPA used as another knowledgebase showed pathways representing oxidative
stress as significant but there was no specific pathway for a metal response. Instead, it showed
“SPINK1 General Cancer Pathway” associated with all MTs as overrepresented. The
combination of these pathway libraries along with the transcription factor knowledge derived
from literature studies helped in the identification of important known stress response
pathways.

The results showed that the iPSC PTL cell model can help in the identification of the known
stress responses activated against cadmium exposure. The genes related to Nrf2-mediated
oxidative stress response and MTF1-mediated metal response showed early activation. While
Nrf2-mediated oxidative stress response-related genes came to baseline levels by 24h, the
MTF1-mediated metal response-related genes sustained the response until 168h. The two
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responses showing different behavior could be due to activation of both responses in reducing
the oxidative stress response. Nrf2-mediated oxidative stress started coming down since the
MTF1-mediated metal response is removing the free intracellular cadmium. This could
increase oxidated glutathione and decrease the amount of intracellular free cadmium leading
to genes related to oxidative stress response going down by 24h.

1.6.1.2 Clustering genes according to temporal profiles

In the previous study, the related genes were mapped to the pathways using the pathway
libraries. This study aimed to see if a clustering method can group the related genes based on
their temporal profiles and point to their involvement in a mechanism. First, two known
clustering methods namely hierarchal clustering (Zolfaghari et al. 2019)and Short Time-series
Expression Miner (STEM) clustering tool (Ernst et al. 2005) were used. Besides these, the third
type of clustering was performed based on the two criteria developed to group the gene profiles
modeled using the fitting procedure developed in (Singh et al. 2021). The criterion was: a) tmax
is the time point when the first maximum or the plateau is reached or in cases where there is
no clear maxima point, then the time point when 95% of the maxima height is reached b)
residual which is the amount of the maxima retained at the end of 24h.

The results showed that hierarchal clustering clusters the genes in two groups: first where genes
with similar temporal patterns were assigned to two different clusters and second where the
genes with different temporal patterns were assigned to the same cluster. The reason for that is
due to hierarchal clustering grouping the genes based on the absolute values of log fold changes
and not considering the temporal relationships between genes. STEM even if could assign
genes with similar profiles to the same cluster, also included many different profiles in the
same cluster. The reason for that is due to STEM not able to use its model profiles to distinguish
the noise levels from the significance levels of the gene expression values. This made STEM
group many genes together to the same standard profile. The third method based on the two
criteria applied to the profiles modeled using the fitting procedure showed distinct behavior for
both Nrf2-mediated oxidative stress and MTF1-mediated metal response related genes. Both
started activating early but only genes related to MTF1-mediated metal response sustained the
response until the end of the measurement period. Nrf2-mediated oxidative stress went to
baseline by 24h. The MTF1-mediated metal response related MT genes showed dense clusters
with tmax achieved around 6h and a residual of 60-80% left for all the genes. Nrf2-mediated
oxidative stress related genes were seen to be distributed over a wider area. Most of them had
distinct tmax and different residual percentages at the end of the measurement. This method
could help in defining a distinct pattern of MTF 1-mediated metal response but fails in the case
of Nrf2-mediated oxidative stress. The distribution of the Nrf2-mediated oxidative stress
related genes showed that most of them have different behavior and they overlap with other
genes from other mechanisms. The reason could be a complex pathway like Nrf2-mediated
oxidative stress includes many other mechanisms which have different activation time points.
The MTF1-mediated metal response has most of the genes belonging to one class called MT
and is thus expected to behave similarly.
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Therefore, clustering the related genes together without the use of a knowledgebase was not
possible, especially in the case of a complex pathway like Nrf2-mediated oxidative stress. The
mechanisms activated in response to chemical exposure usually are not independent and
involve many other mechanisms and process happening at the same time or later. Also, many
genes are not specific to one mechanism and can be shared by many other mechanisms which
also influence their activation time and expression levels.

1.6.2 Summary: Utilization of iPSC PTL cells to study six different
chemicals and the induced stress responses

The second study aimed to a) see if iPSC-derived PTL cells can be also utilized to uncover the
well-known pathways affected by other compounds as they did in the previous study and b)
resolve the temporal resolution of these pathways due to exposure to different compounds. The
four stress response pathways p53 signaling pathway, oxidative stress response, metal response
and unfolded protein response known to get activated in response to cellular perturbations due
to chemical exposure (Jennings et al. 2013) were chosen for the study.

The iPSC-derived PTL cells were exposed to multiple compounds namely arsenic (10 uM),
amiodarone (50 pM), doxorubicin (15 pM), GW788388 (1 uM), rotenone (5 nM), and
tunicamycin (300 nM) and the samples were collected at 1, 2, 4, 6, 8, 12, 16, 20 and 24 hours.
The data was analyzed using DESeq?2 (Love et al. 2014a) and the fitting method (Singh 2020)
was applied to model the temporal profiles of genes as done in the previous study.
ConsensusPathDB V35 (http://cpdb.molgen.mpg.de) (Kamburov et al. 2009) was used as the
pathway library to find the mechanisms associated with the DEGs. The z-scores and the
corresponding number of DEGs for each time point per compound were also calculated for
finding the overrepresented pathways.

The results for the stress response activation due to arsenic exposure were compared to the
cadmium from the previous study to find the differences or similarities in the temporal
resolution between metal compounds. The highest number of DEGs and their expression
related to Nrf2 mediated oxidative stress was found due to exposure to arsenic and cadmium
as compared to other compounds. Exposure to both the metals showed early activation of genes
starting from around 1h-2h. The Nrf2-mediated oxidative stress was sustained until 24h in the
case of arsenic but it started going down by 24h in the case of cadmium. The metal response
was also activated in response to both metals in the early hours and was sustained until 24h.
The reason for the sustained response for both metal response and oxidative stress responses
in arsenic could be due to the high level of reactive oxygen species (ROS) produced due to
remaining arsenic left even after full expression of MTs. This leads to oxidative stress
activation until 24h to counterattack the ROS production.

Exposure to amiodarone, rotenone, and doxorubicin led to no or few DEGs activations related
to Nrf2-mediated oxidative stress in the early time points. But a steady increase in the number
of DEGs activation happened in the later hours around 12h. This means that many of the genes
related to Nrf2-mediated oxidative stress for these compounds must have reached their highest
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expression at 24h and therefore, more time points beyond 24h would be needed to show the
full activation of Nrf2-mediated oxidative stress in these compounds. Tunicamycin and
GW788388 showed only 2 and 1 associated DEGs, respectively. The literature studies also
showed the activation of oxidative stress due to these compounds (Carvalho et al. 2009;
Chakraborty et al. 2014; Afsar et al. 2020). The upregulation of the Nrf2-mediated oxidative
stress related genes like MAFF, MAFG, and SQSTM1 and downregulation of SLC2A1 were
found to be common in arsenic, cadmium, amiodarone, rotenone, and doxorubicin.

The MTF1-mediated metal response related genes were activated due to amiodarone exposure
and showed a considerable increase in the expression in the later hours around 12h.
Doxorubicin exposure also showed the related DEGs for metal response in later hours, but they
were downregulated which may mean the involvement of these DEGs in another mechanism.

UPR pathway related genes showed the highest expression levels in the early hours and started
coming to baseline levels by 24h in the case of cadmium and arsenic. Tunicamycin exposure
led to the genes’ early activation and the highest overexpression but went down by 24h. In the
case of amiodarone exposure, the overexpression for the genes was highest around 12h-16h
and went down by 24h. In rotenone, the activation started in the later hours around 16h which
means it needs more time to reach its full activation. Doxorubicin showed the activation of
only one gene ATF3 which was also found to be part of the p53 signaling pathway (Yan and
Boyd 2006) and can therefore not be called a specific gene for this pathway. GW788388 didn’t
show any activation of the genes related to UPR. The upregulation of TRIB3, DDIT3, ASNS,
and PPP1R15A could be seen as the potential biomarkers for the UPR as they are seen in
arsenic, cadmium, amiodarone, rotenone, and tunicamycin. Their direct association with UPR
could also be seen in the literature evidences (Gjymishka et al. 2009; Nicoletti-Carvalho et al.
2010; Rashid et al. 2015; Young et al. 2016).

Doxorubicin exposure led to the highest number of DEGs related to the p53 signaling pathway,
and overexpression as compared to other compounds. The p53 signaling pathway was sustained
in the case of doxorubicin until 24h. In the case of the metal compounds, the response sustained
until 24h for arsenic exposure but went down to baseline levels by 24h for cadmium exposure
like oxidative stress response. In the case of doxorubicin, the activation was early between 2h
and 4h as compared to oxidative stress response (6h or 8h). Amiodarone and rotenone exposure
showed the activation start in later hours around 12h-16h. Tunicamycin exposure led to very
weak activation of a few genes related to p53 and GW788388 didn’t lead to any activation of
the genes related to the p53 signaling pathway. ATF3, GDF15, and RGCC being upregulated
due to arsenic, cadmium, doxorubicin, amiodarone, and rotenone could be potential biomarkers
for the p53 signaling pathway. Their association with the pathway was also found in the
literature (Tsui et al. 2015; Counts and Mufson 2017).

GW788388 exposure showed no activation of genes related to any stress response pathway. It
is a known transforming growth factor-f3 (TGF-P) receptor kinases inhibitor designed to halt
renal fibrosis (Petersen et al. 2008) with no toxic effects reported so far. Only 4 out of the 16
genes activated due to exposure to GW788388 were associated with the pathways leading to
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the renal fibrosis (Petersen et al. 2008). WT1 and TXNIP showed downregulation and
CYP24A1 and SERPINE1 showed upregulation in renal fibrosis due to GW788388 which has
also been reported in literature studies (Qi et al. 2007; Ma and Fogo 2009; Sakairi et al. 2011;
Miller-Hodges and Hohenstein 2012; Hu and Zhang 2018).

The study also found that z-scores should not be used as a sole criterion for choosing the
significantly overrepresented pathways and the gene expression profiles should be used as a
primary source to look more into the derived results. Therefore, the results and discussion were
based on gene expression profiles of the stress responses in this study. The z-scoring showed
few issues in the study. The first issue was seen when the number of genes remained the same,
and the fold changes increased for these genes, but the z-scores dropped down. This was seen
for metal response in cadmium between 4h and 8h. The reason could be the total number of
DEGs across all pathways which influenced the z-score making metal response less important.
The second issue was when the z-score for the Nrf2 pathway was very high in arsenic at 1h
even when there was just 1 DEG expressed for this pathway. This happened due to the low
number of DEGs in total expressing at 1h and thereby increasing the z-score. It should be used
with caution when comparing time points for the relevance of the pathway and specifically
when comparing to other compounds or time points as this can mislead the interpretation. The
third issue is that the z-scores are influenced by the number of total DEGs at a time point due
to chemical exposure and the number of total DEGs belonging to the pathway of interest.
Therefore, oxidative stress was not automatically identified as an overrepresented mechanism
for amiodarone, doxorubicin, and rotenone even if the genes and literature showed the
activation of this pathway.

The study showed that the iPSC PTL cells were able to show major known stress response
activation due to exposure to amiodarone, arsenic, rotenone, tunicamycin and doxorubicin like
it did for cadmium. The temporal resolution was very useful to see the difference in the
timelines of the responses against exposure to different compounds. GW788388 showed no
adversity and stress response until 24h. Both metals cadmium and arsenic showed similar
strong expression of genes related to stress response mechanisms. Tunicamycin showed strong
induction of UPR, and doxorubicin showed strong activation of the p53 signaling pathway.

1.6.3 Summary: Utilization of different iPSC cell models to compare their
response to paraquat

This study was focused on comparing the response of different cell models to paraquat (PQ)
and determining their sensitivity to PQ. PQ is a well-studied herbicide that produces ROS using
redox cycling in mitochondria and induces an oxidative stress response in several organs
(Dinis-Oliveira et al. 2008; Gawarammana and Buckley 2011; Blanco-Ayala et al. 2014).

iPSCs cells were differentiated into different cell types namely brain spheres (BS), neural cells
(NC), brain-like endothelial cells (BLECs), podocytes (PODO), proximal tubular-like cells
(PTL), the endothelial cells (EC), and the hepatocyte-like cells (HLC) using new and developed
protocols by different partner laboratories. The different cells were exposed to different
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concentrations of PQ for 24h with brain spheres exposed also at 48h. The viability assays were
run for deriving the cytotoxicity concentration-dependent curves after the exposure of the
different cells to a wide range of PQ concentrations. The raw read count data and metadata
exposed to PQ and the corresponding controls for all the iPSC cell models were analyzed for
finding the differentially expressed genes using DESeq2 (Love et al. 2014b). These genes were
then associated with pathways using the ConsensusPathDB (http://cpdb.molgen.mpg.de)
(Kamburov et al. 2009) knowledgebase. The default settings i.e., the minimum overlap of 2
genes between the input gene list and a P-value cutoff of 0.01 were used to filter the most
overrepresented pathways. UpSetR package (Conway et al. 2017) in R was used to find the
common pathways shared by different combination sets of models.

The cytotoxicity curves showed the difference in the sensitivity of each model to PQ. Out of
the two brain models, the NC model was found to be the most sensitive whereas the BS model
was less sensitive. EC showed the same range whereas BLECs showed even lesser sensitivity.
For the kidney, PTL was less sensitive as compared to PODO. HLC representing liver was
found to be the least sensitive.

EC model was not considered further for analysis as it had about 64% probes showing very
low read count probes and at least one replicate in every treatment group had no correlation to
other replicates. This high variance among different samples could have led to biased statistics.
So, the rest of the analysis was done using only NC, BS, BLECs, HLC, PTL, and PODO.

The results showed the variance seen in PCA was seen mostly due to differences in cell models
and not due to PQ concentrations. 341 probes were found to be commonly differentially
expressed in NC, BS, BLECs, HLC, PTL, and PODO. No common pathways were found
among all 6 cell models. Nrf2-mediated oxidative stress response which is known to be
activated in response to PQ exposure (Dou et al. 2016) was found to be the common specific
stress response pathway in all models except for BS. However, the associated genes showed a
concentration-dependent increase in expression for all the cell models including BS. Even after
showing the concentration effect, the Nrf2-mediated oxidative stress response was not found
in BS as the expression values of the associated genes were not high enough to cross the
thresholds. UPR showed a concentration-dependent increase in BLECs, NC, PTL, and HLC.
The endoplasmic reticulum (ER) stress pathway which activates UPR has also been linked to
PQ exposure in lung epithelial cells of lungs (Chinta et al. 2008; Omura et al. 2013). BS again
didn’t show this response, but the associated genes showed a concentration-dependent behavior
after 24hrs, and therefore repeated exposure is needed in BS to see this response. ESR-mediated
signaling was found in 4 cell models BS, NC, BLECs, and HLC. It has also been recently
reported in the literature study that the toxicity of PQ in rat neurons leads to estrogen
dysfunction (Moyano et al. 2020).

Like pathways, there were no common genes found in all 6 models. MAFF and PPP1R15A

were found to be common in a combination of all models except for BS. VEGFA, ATF3, and
GDF15 were found to be commonly expressed in a set of combinations of 4 models. Apart
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from the shared genes and pathways, the different cell models also have a few specific genes
and pathways expressed. BS and NC had the top upregulated genes related to the cell cycle and
top downregulated genes related to cytoskeleton and mitosis, respectively. Few and weak stress
response-related gene activation showed that the brain doesn’t have a strong defense
mechanism against PQ and therefore, shows its high sensitivity towards PQ (Kuter et al. 2010).

The genes related to PQ transport and enzymes involved in redox cycling and antioxidant
defense were also looked upon to see if they can help in explaining the sensitivity of organs to
PQ as seen in the cytotoxic curves. The amino acid transporters SLC3A2 and SLC7A11
showed the highest basal expression in BS, NC, and PODO. Antioxidant defense SOD2, SOD3,
GSTA2, and GSTM3 showed the highest basal expression in HLC. The sensitivity to PQ in the
brain was the most and could be explained due to high expression of amino acid transporters
SLC3A2 and SLC7A11 in BS and NC which has also been reported in literature studies by
Wang et al 2021 (under review) (Kuter et al. 2010). The highest resistance of HLC against PQ
could be explained due to the antioxidant defense genes like SOD and GSTs.

The study, therefore, helped in the assessment of chemical toxicity in different iPSC models
in parallel. The known stress responses activated against PQ were found for these cell
models. Also, BS and NC were found to be the most sensitive, and HLC was found to be the
most resistant based on the cytotoxic curves.
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ARTICLE INFO ABSTRACT
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Cadmium is a well-studied environmental pollutant where the kidney and particularly the proximal tubule cells
are especially sensitive as they are exposed to higher concentrations of cadmium than other tissues. Here we
investigated the temporal transcriptomic alterations (TempO-Seq) of human induced pluripotent stem cell
(iPSC)-derived renal proximal tubule-like (PTL) cells exposed to 5 pM cadmium chloride for 1, 2, 4, 8, 12, 16, 20,
24, 72 and 168 h. There was an early activation (within 4 h) of the metal and oxidative stress responses (metal-
responsive transcription factor-1 (MTF1) and nuclear factor erythroid-2-related factor 2 (Nrf2) genes). The Nrf2
response returned to baseline within 24 h. The Activator Protein 1 (AP-1) regulated genes HSPA6 and FOSL-1
followed the Nrf2 time course. While the MTF1 genes also spiked at 4 h, they remained strongly elevated
over the entire exposure period. The data and cell culture model utilised will be useful in further research aimed

at the refinement of safe human exposure limits for cadmium, other metals and their mixtures.

1. Introduction

Nephrotoxicity, i.e., injury to one or more cell types among over 20
different cell types present in the nephron, is a potential manifestation of
exposure to a wide variety of xenobiotics and can lead to acute and
chronic kidney disease (Pfaller and Gstraunthaler, 1998). The most
frequently reported affected part of the nephron to xenobiotic injury is
the proximal tubule epithelium (Barnett and Cummings, 2018). This is
primarily due to the abundant and diverse transport capabilities of these
cells which can result in high cytosolic levels of certain xenobiotics
(George et al., 2017). Cadmium is an example of a proximal tubule
nephrotoxin (Prozialeck and Edwards, 2012) and is used here as a case
study compound to test if induced human Pluripotent Stem Cell (iPSC)-
derived proximal tubule (PTL) cells can be utilised in hazard charac-
terisation studies, at their present stage of development. Existing renal
cell lines including the RPTEC/TERT1 and HK2 cells (Wilmes et al.,
2011) serve well as biological tools representing the proximal tubule to

perform mechanism driven omic studies to understand nephrotoxicity
(Aschauer et al., 2015). However, iPSCs which have the potential to
differentiate into any cell type, are a promising emerging tool to over-
come some of the limitations of traditional cell lines such as donor
specificity (Jennings, 2015; Murphy et al., 2019; Pamies et al., 2018;
Wilmes and Jennings, 2015). This study is part of the Marie Sklodowska-
Curie Action - Innovative Training Network in3, an integrated inter-
disciplinary approach to animal-free nanomaterial and chemical safety
assessment, (https://estiv.org/in3/, grant no. 721975), which had a
focus on the utilisation of iPSC technology for chemical safety assess-
ment. In the present study we utilised a recently described iPSC-PTL
differentiation protocol, which produces proximal tubule like (PTL)
cells, as characterised by epithelial polarisation, responsiveness to
parathyroid hormone, p-glycoprotein activity and megalin (LRP2)-
mediated uptake of albumin (Chandrasekaran et al., 2021).

Cadmium is a common environmental pollutant associated with
several adverse health conditions including renal disease (Satarug and

Abbreviations: iPSC, induced pluripotent stem cell; Nrf2, Nuclear factor erythroid-2-related factor 2; MTF1, Metal-responsive transcription factor-1; AP-1, Acti-
vator Protein 1; PTL, Proximal tubule-like cells; LFC, Log fold change; ER, Endoplasmic Reticulum Stress; IPA, Ingenuity Pathway Analysis; RC, Read count.
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Moore, 2004). Cadmium exposure is mainly through food, via plant
uptake of cadmium in soil, and via smoking (Ismael et al., 2019). On a
cellular and molecular level cadmium, which is not a Fenton metal, is
thought to cause oxidative stress by binding intracellular thiols (Liu
etal., 2009; Prozialeck and Edwards, 2012). Cells can defend themselves
from damage induced by oxidative stress by activating the nuclear factor
erythroid-2-related factor 2 (Nrf2) pathway (Limonciel and Jennings,
2013; Wilmes et al., 2011). In addition to oxidative stress, cadmium can
displace biological metals such as zinc (Funk et al., 1987; Tang et al.,
2014), which can cause aberrant function of a wide variety of proteins.
Here too, cells can mount an adaptive defence by activating the metal
stress response via the metal-responsive transcription factor 1 (MTF1,
also termed MRE-binding transcription factor or metal regulatory tran-
scription factor) (Jennings et al., 2013). This pathway involves the in-
duction of several metallothionein isomers that bind free metals in order
to eliminate them from the cell and body, ultimately via renal clearance.
However, the metallothionein chelation of metals is potentially adverse
at the proximal tubule, as they are taken up into the cytosol via megalin-
mediated endocytosis (Saboli¢ et al., 2010). Thus, the proximal tubule is
exposed twice, once via the original ion and second via MT-metal.

Some studies have explored the temporal effect of compounds
involving organs like kidney and liver (Aguayo-Orozco et al., 2018; Fan
et al.,, 2014) and also several studies have investigated the effect of
cadmium on transcriptional networks but none have extensively
addressed temporal patterns of cadmium exposure. Therefore, the aim of
the current study was twofold: (1) to investigate the utility of iPSC
differentiated into proximal tubules for metal exposure studies, (2) to
resolve the temporal alteration of metal stress and oxidative stress
pathways induced by cadmium.

2. Materials and methods
2.1. Cell culture

2.1.1. iPSC culture

The human iPSC line SBAD2 clone 1, generated using Cytotune 2.0
(Thermofisher) from dermal fibroblasts within the IMI funded Stem-
BANCC project (grant agreement no 115439, http://stembancc.org),
(Morrison et al., 2015) was utilised here. These cells were further
genetically manipulated by Prof. A. Dinnyés laboratory, Biotalentum,
Hungary to contain a Green Fluorescent Protein (GFP) tag downstream
of one allele of the HMOX-1 gene and designated as SBAD2 HMOX1-
eGFP (although, this fluorescent property was not utilised in this
study). SBAD2 HMOX1-eGFP iPSCs were cultured on Geltrex coated
plates (Life Technologies A1413302), in mTeSR1 medium (StemCell
Technologies 05850) and were routinely passaged with EDTA (0.02%
Versene, Lonza BE17-711E) as previously described (Wilmes et al.,
2017).

2.1.2. PTL differentiation

iPSCs were differentiated using the protocol described by (Chan-
drasekaran et al., 2021). In brief, iPSCs were cultured until approxi-
mately 70-80% confluent, washed with PBS and detached by incubating
with accutase for approximately 3-5 min. Cells were resuspended at the
concentration of 2 x 10* / cm? in medium 1 (DMEM: F12 containing a
final concentration of 5 mM glucose, 2 mM glutamax (Thermo fisher
35050038), 5 pg/mL insulin, 5 pg/mL transferrin and 5 ng/mL sodium
selenite (Sigma Aldrich 11884)) supplemented with 3 pM CHIR992021
(abcam 120,190), 1 pM TTNPB and 10 pM Rock inhibitor (abcam
120129). The cells were seeded on 96-well plates (cell carrier ultra)
coated with Geltrex (day 0). After 42 h (day 2), the medium was
refreshed with medium 1, supplemented with 1 pM TTNPB. After 72 h
(day 3), the medium was replaced with medium 2 (consisting of medium
1 plus 10 ng/mL epithelial growth factor (Sigma Aldrich E9644) and 36
ng/mL hydrocortisone (Sigma-Aldrich H0135)), supplemented with 10
ng/mL FGF9 (Thermo Fisher PHG0194). After 120 h (day 5), cells were
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fed with medium 2. From then on, medium 2 was refreshed every 2 to 3
days without additional growth factors. Differentiated cells (PTL) were
used for treatment from day 14 onwards. To maintain long term stability
of the cells, medium 2 was supplemented with 1 pM GW788388 hydrate
(GW?7) (catalogue number: SML0116, 98% purity) from day 14 onwards.

2.2. Sample preparation

Cadmium Chloride (CdCly) was purchased from Sigma Aldrich
(catalogue number 202908, purity 99.99%). Stock solution was made in
deionised water at 20 mM. At day 14 of differentiation, PTL cells were
exposed to medium controls and a non-cytotoxic concentration of 5 pM
cadmium chloride both containing 0.1% DMSO and samples were
collected at 1, 2, 4, 6, 8,12, 16, 20, 24, 72 and 168 h after exposure. The
DMSO was added to allow for internal comparisons with other DMSO
soluble compounds. For samples collected at 72 h and 168 h, PTL cells
were obtained from separate differentiation and were repeatedly
exposed every 24 h from day 14 of differentiation to 5 pM cadmium
chloride in medium 2, supplemented with 1 pM GW788388 hydrate
(Fig. 1A). For sample collection, supernatant was removed, and the cells
were incubated with 100 pL TempO-Seq lysis buffers. The lysates were
frozen at —80 °C.

The samples were sent to BioClavis technologies Ltd. Glasgow for
performing the TempO-Seq experiment using the EU-ToxRisk v2.1 panel
(3565 probes) (Limonciel et al., 2018; Mav et al., 2018) with standard
attenuators including primary processing to derive gene-annotated raw
read counts and quality control. Standard QA/QC tests were performed
on read counts and included in the BioClavis service report (Supporting
information 1). As metrics, the mapped reads in positive RNA controls,
signal: noise ratio and percentage of mapped reads in positive controls,
and average reads/probes are reported. In addition to these, the repli-
cate analysis of positive RNA controls and untreated negative control
samples was performed to check for reproducibility of different samples.

2.3. Data accessibility and sample selection

To guarantee interoperability and reusability across all 17 TempO-
Seq based studies performed in the in3 project, central data manage-
ment which adhered to the FAIR Guiding Principles for scientific data
management and stewardship (Wilkinson et al., 2016) was adopted. The
raw read count data file (data not shown) as provided by BioClavis (after
passing the QA/QC tests) was used for further analysis. This was com-
plemented by metadata to define the cell models, differentiation states
and exposure scenarios in a customized format used for all studies. The
metadata file is using a tabular layout providing information on sample
IDs to unambiguously associate metadata to the read counts (RCs),
compound names and their identifiers, cell models, exposure conditions,
number of biological replicates and other experimental conditions.
Group IDs were used to group biological replicates, which represent the
same experimental conditions with respect to treatment and controls, to
be used later to automate the differential expression analysis. Control
groups for each treatment group were defined directly in the file using
‘Pairing Control ID’ columns listing the group ID of the corresponding
control samples. To allow easy access and sharing of metadata and data
within the in3 project already anticipated in the joint development of
the study designs, all the raw data and related metadata files were
uploaded to an internal instance of the EdelweissData™ management
system (SaferWorldbyDesign, 2020). This system has the advantage to
provide, beside advanced search and browse functionality, an applica-
tion programming interface (API) to allow access directly using different
scripting languages.

A Python workflow was developed to obtain the data and select the
samples by metadata filtering per user-provided criteria. For the tem-
poral analysis, samples exposed to cadmium chloride and the corre-
sponding negative controls were selected with additional filters for iPSC-
derived PTL cells, dose of 5 pM and time points 1, 2, 4, 6, 8, 12, 16, 20,
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Differentiation using small molecules and growth factors
iPSC| as described in Chandrasekaran et al. 2021
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Maintenance in PTL medium + ~ -—---- Exposure to cadmium — 5 uM (every 24 h)
PTL 1uM GW788388 hydrate
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—$¢ — Sample collection within 24 h

8 ® (1h, 2h, 4h, 6h, 8h, 12h, 16h, 20h, 24h)

Fig. 1a. A) Treatment regime: Treatment regime showing the days of exposure to cadmium and the days at which sample was collected. Please note that between 14

and 15 days, the sample collection was done at 1, 2, 4, 6, 12, 16, 20 and 24 h.

24, 72 and 168 h. This resulted in samples from two different in3 study
designs with slightly different differentiation and exposure protocols as
described above, with the first group including samples up to 24 h and
the second with the 72 h and 168 h samples. Probes showing low RCs
across all conditions/samples were removed using the threshold of
“rowsum” (which calculates the total sum of RCs in all samples per
probe) of 1000 per probe across all samples (also available in the DeSeq2
package (Love et al., 2014)) directly in the Python script and specific
files with the selected raw counts and metadata were produced as input
for the next steps.

All data, pre-processed and processed can be found on the MolTox/
VU synology data server at http://gofile.me/4bct7/GKRC36MW4.

2.4. Differential expression analysis

Normalisation and differential expression analysis were performed
using the DESeq2 library (Love et al., 2014) as previously described in
(Limonciel et al., 2018). Sample and treatment group-based quality
control of the raw count data was performed to ensure the good quality
at both sample and probe level before performing any statistical anal-
ysis. Box plots were used first for visualisation of distribution of raw
count data to detect outliers in the samples. Further, clustering and
Principal Component Analysis (PCA) were performed on the r-log
transformed (HBC Training, 2019; Love et al., 2014) normalised RCs (for
moderating variance across means) to see the variance within and be-
tween treatment groups. Standard approaches and parameters as pro-
posed by the DESeq2 library were used for the clustering (hierarchical
clustering method with Euclidean distance and complete linkage (Love
et al., 2014)) and PCA (based on the top 500 genes which show the most
amount of variance). The results were explored to validate that the
replicates cluster together and that the exposure conditions constitute a
major source of variation without any additional batch effects.

The normalisation was performed using median ratio method rec-
ommended for the further processing with the DESeq2 library (Love
et al., 2014). It generates normalisation factors based on ratios for each
probe between the sample and a pseudo-reference sample created as the
geometric mean across all the samples. The normalised RCs were further
used as an input for the differential expression analysis also using the
DESeq2 library for calculating fold changes, p-values, base mean and
adjusted p-values as measures for the statistical significance of the
changes (Jafari and Ansari-Pour, 2019). It was further used to compare
the expression of the treated group to its corresponding untreated
‘control’ group separately for individual time points. An R script for
automating the group comparisons using Group IDs and Control pairing
IDs was developed to output all treated vs untreated comparison sta-
tistics. The default Wald statistics test (Society, 2016) was used for
significance evaluation. Outlier probes (low RCs and zero RCs, extreme
count outlier) were detected by the automatic independent filtering
method in DESeq2 (Love et al., 2014) and their corresponding adjusted
p-values were set to NA. For initial selection of the most significant
differentially expressed probes cut-offs were set to 0.05 for adjusted p-
values and |2| for log2 fold changes (LFCs). Probes were removed if
these criteria were not met at any time point.

2.5. Gene/probe-pathway association based on literature evidence

Toxicology/stress response focussed gene pathway association was

made based on key transcription factors involved for the known stress
responses such as Nrf2, ER stress, metal response, apoptosis, etc. Genes
regulated by these transcription factors are identified through existing
relevant stress response information available in the literature or from
the ChIP-Seq data (data not shown) (Jennings et al., 2013; Limonciel
et al., 2018, 2015; Zgheib et al., 2018). This list was then used to find if
these pathways are activated at any given timepoint by using z-score
calculation (Section 2.7) upon cadmium chloride exposure. Specific
focus was put on the stress response pathways, which are activated in
response to chemical exposure and especially on the MTF1 (metal
response) and Nrf2 (oxidative stress) pathways linked to adverse effects
of cadmium.

2.6. Transcription factor and gene mapping using Reactome and IPA

The literature derived probe-pathway associations were further
explored and compared against the following well known existing
pathway databases and software as follows:

a) Reactome (Jassal et al., 2020)(Reactome, 2020) (version 72, last
accessed Sept, 2020) was used to find pathways associated with the
most highly differentially expressed genes (corresponding to the
differentially expressed probes) identified in the cadmium chloride
samples at each time point. The “Analyse Data” and “Project to
human” options were selected to translate the identifiers from the
TempO-Seq differentially expressed gene list to the equivalent
human identifiers used in the definition of the pathways. The path-
ways at different time points were selected based on their signifi-
cance (as done by Reactome) as well as their relation or equivalence
to the literature-derived pathways in Section 2.5. The full list of
genes associated to these pathways were extracted and then further
used to calculate the z-scores.

Ingenuity Pathway Analysis (IPA, Updated October 2020) (Kramer
etal., 2014)(QIAGEN Ingenuity Pathway Analysis, 2020) was used as
a second, additional knowledge source of gene-pathway associations.
With the default IPA settings, the differentially expressed genes
(corresponding to the differentially expressed probes) with their log
fold change values at each time point were uploaded as an input to
identify the associated pathways. Additionally, the pathway diagram
for the pathways which were significant (based on the IPA ranking)
and also related or equivalent to the literature-derived pathways in
Section 2.5 were selected to get the full set of gene associations by
selecting “Pathway and Tox list”, “Group” and “Complex” node types
to further calculate z-scores. IPA Grow tool was used to expand the
group and complex nodes by one step.

b

=

2.7. Z-Score Calculation

Z-scores were calculated using the approach described in Kutmon
et al. (2015), Wellens et al. (2021). The total number of probes ‘N’ was
taken as the total number of TempO-Seq probes measured and total
number of differentially expressed probes ‘R’ was taken as the total
number of differentially expressed TempO-Seq probes meeting the
criteria of adjusted p-value <0.05 and LFC > |2| at the specified time
point. For literature, the total number of differentially expressed probes
belonging to the chosen pathway ‘r’ was taken as the total number of
differentially expressed TempO-Seq probes (meeting the -criteria
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adjusted p-value <0.05 and LFC > |2|) associated to the chosen tran-
scription factor at the specified time point and total number of probes ‘n’
was taken as the total number of TempO-Seq probes associated to the
chosen transcription factor based on literature review. For Reactome, ‘n’
was taken as the total number of TempO-Seq probes found to be asso-
ciated to the specific pathway in Reactome (the genes which were not
part of TempO-Seq panel were excluded from this list) and ‘r’ was taken
as the total number of differentially expressed TempO-Seq probes out of
R found to be associated to the chosen pathway in Reactome. For IPA, ‘n’
was taken as the total number of the TempO-Seq probes found to be
associated to the specific pathway in IPA (the genes which were not part
of TempO-Seq panel were excluded from this list) and ‘r’ was taken as
the total number of differentially expressed TempO-Seq probes out of R
found to be associated to the pathway of interest in IPA. A z-score > 1.96
was applied as a threshold to find significant and overrepresented
pathways. The following formula was used in the calculation of the z-
score.

2.8. Fit temporal expression levels to profiles modelled by standard
functions

The analysis based on well-established approaches described so far
are targeting the first aim of this study of investigating the utility of iPSC
differentiated into proximal tubular-like cells for metal exposure studies.
Resolving the temporal alteration of pathways, being the second aim of
the studies, is a less developed field and existing approaches like the
STEM (Ernst and Bar-Joseph, 2006) method is mainly concentrating on
clustering the temporal profiles. In contrast, we decided to develop a
new method able to represent the general trend of individual probe
expression profiles. These can then be used, on the one hand, to compare
different probes and, on the other hand, to additionally evaluate the
significance of the changes in the expression levels and reduce noise by
not looking at the time points independently but comparing neigh-
bouring time points.

Modelled profiles of probe expression were generated by fitting a set
of predefined functions. A python script was developed to perform the
fits to all functions in this set for all probes based on the standard scipy
library (Virtanen et al., 2020) (scipy.optimize.curve_fit() and the func-
tions from the scipy.stats package). The functions were selected to
represent profiles of the strongest differentially expressed probes. Profile
fitting is essential to reduce noise caused by the experiment actually not
following one system over time but by the time evolution being
approximated by the use of independent samples for each time-point.
Visual inspection of the profiles, both of the mean normalised RCs and
LFCs, seen in the cadmium chloride samples guided the selection of fit
functions. Most overexpressed probes can be grouped into a small
number of general behaviours:

1. Probes, which show a strong maximum and then a decrease to
baseline level.

2. Probes, which show a maximum and then decrease to a plateau still
significantly above baseline level.

3. Probes, which increase to reach a plateau. This plateau can also be
reached by going through a minimum first.

4. Probes, which show a constant increase until the end of the mea-
surement period (longer measurement times would probably move
these genes into group 3).

Down-regulated probes show the same profiles with the difference
that, for the fold changes, the maximum needs to be substituted for the
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minimum and the increase for the decrease and vice versa. Using this
simple substitution schema, we will refer in the remaining description of
the method to “overexpressed probes" meaning both over-expression
and under-expression to avoid the complication to have to mention
both variants all the time.

The selected functions used for fitting are exactly chosen to represent
these general trends. Maxwell probability and cumulative probability
distributions were used to describe probes, which show a significant
change during one time period but then go back to baseline level and
genes, which reach a plateau in the expression level and stay there until
the maximum analysis time, respectively. However, Maxwell distribu-
tions are not well suited for profiles, where the increase in the values
until the maximum is much faster than the following decrease back to
baseline level. Therefore, we also added the gamma distribution to the
list of fitting functions. Since many probes are not reaching baseline
level after the first maximum, we also tried combinations of Maxwell or
gamma distributions to model the maximum with Maxwell cumulative
probability distributions to describe the increased levels at the end of the
analysis time. Besides the normal parameters of these functions, a
scaling factor in y-direction and a shift in the x-direction were optimised
during the fitting procedure of the Maxwell distributions. For example,
the function used for fitting the Maxwell distribution became:

2 (x— d)ze’(“’d)z/(z"z)
eV e
with a, ¢ (scaling in y) and d (shift in x) being the fit parameters. For
comparison, also a linear fit was used to evaluate if one of the more
complex functions is able to describe the profile significantly better than
this simple profile. This resulted in the following 10 functions:

1) Maxwell probability distribution without shift in x-direction;

2) Maxwell probability distribution with shift in x-direction;

3) Gamma distribution;

4) Maxwell cumulative distribution;

5) Maxwell probability distribution without shift in x-direction
combined with Maxwell cumulative distribution;

6) Gamma distribution combined with Maxwell cumulative
distribution;

7) Maxwell probability distribution with shift in x-direction com-
bined with Maxwell cumulative distribution;

8) two Maxwell probability distributions;

9) one Maxwell and one Gamma distribution and

10) linear function.

Splines and high-degree polynomials were avoided in order to be less
dependent on outliers and noise when comparing sequential time points.
It has to be noted here that not always an optimal fit could be obtained
with these functions and additional functions might have to be added
when results from exposure to other chemicals are analysed using
temporal profiles. However, these functions were able to describe the
most relevant probes for the observed mechanisms and pathways seen
after cadmium chloride exposure and were not influenced by noise in the
data and were not subjected to overfitting as this would have been the
case e.g., for polynomial functions with the same number of parameters.

3. Results

3.1. Quality control of TempO-Seq data and differentially expressed gene
analysis

All standard quality control measures performed by BioClavis Ltd. as
seen in supporting information 1 demonstrated acceptable quality of all
samples well suited for further analysis. The additional quality control
was performed on 2197 probes left after filtering with row sum based on
RCs distributions, clustering and PCA (Supporting information 1)
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confirmed the quality. All probes showed high and similar total RCs and
a similar distribution across all samples with the treated samples
showing some very high expressed probes. The clustering and PCA
showed good similarity between different variables like replicates from
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one treatment scenario, different time points as well as separation be-
tween treated samples and negative control samples.

The normalised RCs and fold changes resulting from differential
expression analysis showed that many probes were influenced as a
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Fig. 1b. Hierarchical clustering of the 115 most
differentially expressed probes. Heatmap pre-
senting the relative expression (LFCs calculated
treated vs time matched controls) of probes in
the iPSC PTL cell model significantly affected on
exposure to cadmium chloride (5 pM concen-
tration) at time points 1, 2, 6, 8, 12, 16, 20, 24,
72 and 168 h. The shade of red colour represents
the positive overexpression and shade of green
colour represents the negative overexpression
log2 fold changes. The clusters formed due to
hierarchal clustering were divided into three
clusters 1, 2a and 2b representing the different
temporal patterns of the significantly expressed
probes. (For interpretation of the references to
colour in this figure legend, the reader is referred
to the web version of this article.)
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response to the treatment with cadmium chloride. To concentrate on the
major changes, strong criteria were applied to select the set of probes
used for further analysis. Based on the automatic independent filtering
in DESeq2, adjusted p-values of the probes having low mean normalised
counts were automatically set to NA (Love et al., 2014). As a result, of a
total of 2197 probes 341 probes at 1 h (mean count per probe <32.54)
and 43 probes at 168 h (mean count per probe <15.65) (data not shown)

MT1E_4328 - normalised counts
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were flagged as outliers. For all other time points, no probes needed to
be removed based on this criterion. Most of these filtered probes were
not significantly differentially expressed at any time point except for
probes ABCB6_26787 (significantly differentially expressed at 6 h and 8
h) and ATF3_499 (significantly differentially expressed from 2 h to 8 h
and at 20 h). Applying cut-offs of adjusted p-values <0.05 and of LFCs)
> |2] thus, resulted in a total of 115 significantly differentially expressed

fold changes Fig. 2a. The temporal expression pro-
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probes, summing up the number of differentially expressed genes
(passing the cut-offs) over all different time points. Fig. 1B presents these
in the form of a heatmap where the expression levels of these probes
across all the time points are shown to highlight and explore the relative
expression of these probes between different time points.

The hierarchical clustering visualised in the form of the heatmap
(using the heatmap.2 function of the gplots library) (Warnes et al., 2016)
showed that these probes can be roughly separated into three clusters
(clusters 1, 2a and 2b), based on both their expression levels and tem-
poral behaviour. Cluster 1 combined all the genes with very high
overexpression levels across all the timepoints. One of the highest
expressed probes in cluster 1 is metallothionein MT1X 4333 with a LFC
0f9.27 + 0.38 at 6 h (resulting from RCs of 3237.73 + 581.44 for treated
samples and 5.18 + 3.89 for negative control samples at that time point).
Here and in the following, standard deviations are given for the mean
values of RCs and standard errors for the LFCs. When it comes to ab-
solute expression levels, MT1G_26225 (142,499.68 + 50,186.02 for
treated samples and 311.14 + 28.47 for negative control samples at 6 h),
MT1M_28215 (34,082.74 + 4947.76 for treated samples and 53.18 +
12.75 for negative control samples at 6 h) and MT2A 4334 (26,034.67
+ 1539.91 for treated samples and 203.21 + 57.95 for negative control
samples at 4 h) were among the highest expressed probes. All profiles
from the cluster 1 showed a strong increase in the initial hours after
exposure reaching a maximum around 4-6 h and then a decrease to a
minimum at 24 h (Fig. 2A). After that, the profiles showed a plateau or
slight increase at later time points (72 h and 168 h). It should be noted
that since the RC expression levels of the metallothionein in the negative
control samples decreased over time, the decrease after the first maxima
was more pronounced in the RCs than in the LFCs (data not shown). This
can result in higher fold change values at the late time points than at the
first maximum even if the RC is lower.

The other two probes of cluster 1 were HMOX1_3041 and
HSPA6_21239. The profiles of HSPA6_21239 are shown in Fig. 2C. The
RCs showed a similar behaviour as the metallothionein in the first hours
but did not stay at a plateau and returned to baseline level at the later
time points. Even with the strong decrease in the RCs, the fold changes
were calculated as being almost constant up to 24 h, which was caused
by decrease of the RCs of the negative control samples paralleling the
RCs in the treated sample. Also, HMOX1_3041 showed high maximum
fold change similar to other metallothioneins which is the reason that it
is grouped with them in Clusterl.

Based on the literature studies, we found that most of the probes in
Cluster 1 correspond to metallothionein encoding genes, which are
clearly related to transcription factor MTF1 and metal stress response
pathway except for HMOX1_ 3041 and HSPA6_21239. The temporal
profile of the RC and LFC of these representative metallothionein genes
are plotted together along with the zinc transporter encoding gene
SLC30A1_20617 (which belongs to cluster 2b due to its lower expression
levels but is also related to transcription factor MTF1) in Fig. 2A. The
other probes associated to MTF1 are depicted in the supporting infor-
mation 2.

Cluster 2b consists of probes like GCLM_ 2615, MAFG_20735,
MAFF_27478 etc. which showed the first maximum at a time between 4
h and 8 h and more variance at later time points. Most of the probes had
reduced expression at later time points (72 h and 168 h) and then stayed
at the base level except for few like NCF2 12973, ZFAND2A 21269
which showed fluctuating pattern both in the treated samples and in the
negative control samples (Fig. 2B). Most of the probes in Cluster 2b are
related to transcription factor Nrf2 and oxidative stress based on the
literature studies and are shown in Fig. 2B. The additional probes
associated to Nrf2 are depicted in supporting information 2.

Cluster 2a included probes like PCNA_4987, SESN1_6261 which
showed very noisy signals in the early time points (until 24 h) and no
significant change compared to the negative control samples. In
contrast, they then showed high log fold changes ranging between 2 and
3 in the later time points (72 h and 168 h), which is the reason they were
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grouped into Cluster 2a (Fig. 2C). However, this was not caused by a
large increase of the expression (RCs) in the treated samples (none of the
proposed fitting functions gives a better agreement with the data than a
linear, almost horizontal function) but instead due to sharp decrease in
the expression in the negative control samples. These probes correspond
to the genes that are related to p53 transcription factor and apoptotic
pathway based on the current version of the gene pathway association
from the literature review (see Fig. 2C). However, other p53 related and
apoptotic pathway related probes like DUSP1_24234 and GDF15_18329
(which are also related to Nrf2 transcription factor and oxidative stress
pathway and belong to cluster 2b) show similar first maxima in 24 h as
seen in probes from cluster 2b but showed the opposite effect as
compared to PCNA_4987, SESN1_6261 with a significant increase of the
expression levels in the negative control samples at the later time points
(72 h and 168 h) resulting in negative LFCs and the under expression
already noticed in Fig. 1B. However, it should be noted, that these later
time points showed very high standard deviations in the RCs of espe-
cially the negative control samples and thus, the fold changes have a
high uncertainty even if this was not fully represented by the standard
errors due to the logarithmic scale. Please note that in Fig. 2 as well as
later in Figs. 3-5, logarithmic x-axes were used for better separating the
early time points until 24 h.

3.2. Pathway enrichment analysis

Pathway enrichment analysis was performed using manually curated
gene-pathway associations based on literature review (as mentioned in
Section 2.5). In total, 11 pathways were curated (data not shown). The
literature derived MTF1 based metal response, Nrf2 mediated oxidative
stress and Activating Transcription Factor 4 (ATF4) mediated Unfolded
Protein Response pathways showed the highest overrepresentation and
significance with respect to z-scores across most of the time points and
are depicted in Fig. 3. The highest overrepresentation (over-
representation is defined as z-score over 1.96) is seen for MTF1
(contributed by 8 differentially expressed genes out of 18) in most of the
time points. On the other hand, maximum numbers of differentially
expressed genes were seen at 6 h for Nrf2 (contributed by 14 differen-
tially expressed genes out of 139 genes) as well as for ATF4 (contributed
by 15 differentially expressed genes out of 137 genes)(Wellens et al.,
2021). Nrf2 and ATF4 pathways were majorly over-represented in all
the early time points between 2 h and 16 h but not in the later time
points.

Gene-pathway association based on literature review were compared
to commonly used pathway enrichment analysis tool such as Reactome
and IPA. The pathways identified using Reactome and IPA as most
relevant for the DEGs in the cadmium chloride samples at 8 h and 168 h
were selected for further analysis and are summarised below. Both these
time points showed the most different and distinct pathways while the
other time points showed some combinations of the pathways identified
at 8 h and 168 h. Please note that the statistics and ranking performed
for the pathways by Reactome and IPA is generated under the assump-
tion that all genes in these knowledge bases are also measured by the
user in their experiment and study. However, since the TempO-Seq
panel used in this study only covered a targeted probe set (3565
probes), we performed a significance test using the z-score based only on
the TempO-Seq gene set as already described above for the literature-
curated gene-pathway association.

In Fig. 4, six important pathways identified by Reactome are pre-
sented with their z-score profile over time. “Metallothioneins bind
metals” (R-HSA-5661231.2) clearly showed up as the most important
pathway across all time points. The z-score is more than 1.96 in all the
time points (contributed by 7 differential expressed genes out of 10
genes). However, this pathway only defined the binding process by the
metallothioneins (as per the definition in Reactome) but did not show
any relation to the associated transcription factor MTF1 as found in the
literature. Another pathway which was found was “MTF1 activates gene
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Fig. 2b. The temporal expression profiles of the differ-
entially expressed (B) Nrf2 mediated oxidative stress
pathway related genes over all the time points. RCs of the
treated (e) and control samples (o) are given in columns 1
(left) and the corresponding LFCs in columns 2 (right).
Values of low significance (adjusted p-value above 0.05)
are represented as smaller symbols. The error bars corre-
spond to the standard deviation and the standard error for
the normalised counts and fold changes, respectively. The
logarithmic scale was used in the x-axis so that the time
points until 24 h can be better separated from each other.
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Fig. 2c. The temporal expression profiles of the differentially expressed (C)
Miscellaneous genes with both normalised RCs and the LFCs over all the time
points. RCs of the treated (e) and control samples (o) are given in columns 1
(left) and the corresponding LFCs in columns 2 (right). Values of low signifi-
cance (adjusted p-value above 0.05) are represented as smaller symbols. The
error bars correspond to the standard deviation and the standard error for the
normalised counts and fold changes, respectively. The logarithmic scale was
used in the x-axis so that the time points until 24 h can be better separated from
each other.
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expression” (R-HSA-5660489.1)” which looked specifically at the tran-
scription factor was then further examined. This pathway had only 2
genes associated, CSRP1 and SNCB, and only the first was available in
the TempO-Seq probe set and had no metallothioneins associated to it.
Using the hierarchy of the Reactome pathways, the two specific path-
ways are grouped together into the subcategory of the pathway
“Response to metal ions” (R-HSA-5660526). R-HSA-5660526 was also
identified using the pathway analysis to be significant. But because the
number of differentially expressed genes does not change as compared
to the metallothioneins specific pathway (R-HSA-5661231.2) and the
number of genes in this combined pathway is larger, it was found to be
on a lower rank and was therefore, not identified to be among the most
important pathways.

Other pathways identified as significant by Reactome (among top 20
in the list) at 8 h were the “ATF4 activates genes in response to endo-
plasmic reticulum stress” (R-HSA-380994) well corresponding to the
genes associated with ATF4 in the manual curated list, “Unfolded pro-
tein response” (R-HSA-381119), “Attenuation phase” (R-HSA-3371568)
and “PPARA activates gene expression” (R-HSA-1989781) which are
depicted with the z scores per time point in Fig. 3. The highest z score for
R-HSA-380994 was seen at 6 h (contributed by 5 differentially expressed
genes out of 16), for R-HSA-381119 at 6 h (contributed by 7 differen-
tially expressed genes out of 43), for R-HSA-3371568 at 4 h (contributed
by 6 differentially expressed genes out of 18) and for R-HSA-1989781
from 4 h to 8 h (contributed by 3 differentially expressed genes out of
61).

We also observed that some pathways identified by Reactome
showed high overlap of the gene set between each other. We discuss here
only one example of heat shock related pathways. These were identified
with high z-scores with large overlap with the unfolded protein
response. Therefore, they do not generate new information and are not
shown here. Also, there were some very general pathways like “Cellular
responses to external stimuli” (R-HSA-8953897) and “Cellular responses
to stress” (R-HSA-2262752) that showed genes overlapping with the
manually curated Nrf2/oxidative stress pathway. However, there were
no more specific pathways assigned to these genes and especially no
relation to the Nrf2 transcription factor was evident from the Reactome
results.

The z-scores per time point of the three most significant pathways
identified by IPA using the DEGs seen at 8 h, are shown in Fig. 5. In
contrast to Reactome, IPA has a dedicated pathway for Nrf2, “NRF2-
mediated Oxidative Stress Response”, with a large overlap 1) with the
genes associated with the literature-based gene-pathway association list
as well as 2) with the “Aldosterone Signalling in Epithelial Cells” as the
fourth most significant IPA pathway. Because of this overlap, the latter is
not included in the figure. Also, “Unfolded protein response” was
identified as highly significant. The highest z-score for “NRF2-mediated
Oxidative Stress Response” was observed at 6 h (contributed by 15
differentially expressed genes out of 126). Finally, the “SPINK1 General
Cancer Pathway” was identified as the most significant pathway at 8 h.
The z-scores were observed to be highest at all time points and 7
differentially expressed genes out of 35. Even if this pathway seems less
important for the effects of cadmium chloride on kidney cells, the gene
list associated with this pathway (data not shown) covers all the met-
allothionein genes and thus, is the only pathway related to metal ion
response in IPA. For “Unfolded protein response” the highest z-score was
seen at 6 h (contributed by 8 differentially expressed genes out of 29).

All data related to gene-pathway association and z-score for litera-
ture annotated, Reactome and IPA pathways can be found on the Mol-
Tox/VU synology data server at http://gofile.me/4bct7/GKRC36MW4.

4. Discussion
This study investigated the temporal transcriptional alterations of

exposure to cadmium in a recently developed iPSC derived PTL (Chan-
drasekaran et al., 2021). Human systemic exposure of cadmium (a non-

36



P. Singh et al.

Toxicology in Vitro 76 (2021) 105229

(i) MTF1 (ii) Nrf2 10 (iii) ATF4
30 8
25 B
6
20 o 0 ©
15 g4 2 4
N N
10 P )
5
0 0
0
— o~ <t OO NVOY o~ o] -l o~ <t WO NOVOT o o] -l o~ < OO NVOY o~ ©
time (h) time (h) time (h)

Fig. 3. Z-score profiles for 3 pathways based on literature evidence: The profiles of (i) MTF1 mediated metal response pathway (ii) Nrf2 mediated oxidative stress
pathway (iii) ATF4 mediated Unfolded Protein Response pathway evaluating the significance of the pathways based on the expression profile across all the time
points. The logarithmic scale was used in the x-axis so that the time points until 24 h can be better separated from each other.
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Fig. 4. Z-score profiles for 6 pathways based on Reactome library: The profiles of the (i) Metallothioneins bind metals (ii) MTF1 activates gene expression (iii) ATF4
activates genes in response to endoplasmic reticulum stress (iv) Attenuation phase (v) PPARA activates gene expression (vi) Unfolded Protein Response (UPR)
evaluating the significance of the pathways based on the expression profile across all the time points. The logarithmic scale was used in the x-axis so that the time
points until 24 h can be better separated from each other.
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biological metal) is primarily through food and water consumption but
also via occupational exposure and exposure to cigarette smoke. Cad-
mium has and extremely long estimated half-life of between 14 and 24
years (Suwazono et al., 2009), reviewed in (EFSA, 2009; Satarug et al.,
2010), accumulating in several tissues in the body particularly in the
kidney and liver with concentrations reported in low to mid pg / g tissue
(Uetani et al., 2006). The European Food and Safety Authority recom-
mend safety limits of cadmium of 1 pg / g creatine corresponding to a
weekly intake of 2.5 pg / kg body weight (EFSA, 2009). Roughly this
would equate to an average plasma concentration safe limit of 5 pg / L.
The concentration tested here is 5 pM cadmium chloride, equivalent to
562 pg cadmium / L medium, and approximately 0.5 pg cadmium load /
1 million cells. Without conducting actual cadmium measurements
within the cells, it is not possible to provide the actual in vitro tissue
concentration. The nominal medium concentration is in the order of 100
times the calculated safe plasma concentration.

The main aim and novelty here was to demonstrate the utility of the
iPSC derived model and to investigate temporal alterations in order to
better delineate the various adaptive responses to a metal response, of
which the expected ones are the Nrf2 oxidative stress response and the
MTF1 metal response.

Adverse effects of cadmium in human renal proximal tubular cells
have been characterised at a cellular and organism level (Satarug and
Moore, 2004; Wilmes et al., 2011) and arise due to oxidative injury and
endogenous metal replacement. Nrf2 (aka NFE2L2), is a member of the
cap “n” collar (CNC) subfamily of bZIP transcription factors activated in
response to oxidative or electrophilic stress (Baird and Dinkova-Kostova,
2011). Nrf2 is regulated by KEAP1, a substrate adaptor for a CUL3 based
E3 ubiquitin ligase complex, which targets Nrf2 for ubiquitination and
268 proteasomal degradation (Cullinan et al., 2004). Cytosolic KEAP1
senses oxidative or electrophilic stress through direct modification of
cysteine thiol residues within the protein, leading to an inhibition of
degradation and an accumulation of Nrf2 which translocate to the nu-
cleus and heterodimerises with members of the small maf protein family
and initiates transcription by binding to antioxidant / electrophilic
response elements (ARE/EpRE) (Itoh et al., 1997). Genes with ARE el-
ements in their promotor region include those involved in glutathione
synthesis and reduction including glutamate-cysteine ligase, catalytic
and modifier subunits (GCLC, GCLM) and glutathione reductase (GSR);
genes involved in reduction processes including heme oxygenase 1
(HMOX1), NAD(P)H dehydrogenase, quinone 1 (NQO1); thioredoxin
reductase 1 (TXNRD1), and sulfiredoxin (SRXN1) (Okawa et al., 2006;
Reichard et al., 2007; Yates et al., 2009). In this study, the Nrf2 regu-
lated genes, GCLM, HMOX1, NQO1, TXNRD1, MAFF and ME1 spiked
within the first 12 h and most returned to baseline by 24 h (Fig. 1 Band
2B). [It is noteworthy that this is more evident by observing at the RCs rather
than the log2 normalised data. We have observed a similar data skewing by
log 2 normalisation of RCs before (Limonciel et al., 2018) and thus,
recommend always carefully interrogating the non-normalised RCs.] We
have previously shown that cadmium exposure induces Nrf2 regulated
genes and proteins in human renal and pulmonary in vitro models
(Aschauer et al., 2015; Forti et al., 2010; Wilmes et al., 2011).

MTF1 is primarily involved in protecting the cell from the oxidative
and protein malfunctions induced by free metal ions (Gunther et al.,
2012). MTF1 remains for the most part in the cytoplasm via continuous
nuclear export though the nuclear MTF1 transporter XPO1l. MTF1 is
activated through zinc binding either directly in the case of zinc expo-
sure or through secondary release of zinc from other proteins by metals
such as cadmium (Gunther et al., 2012). Activated MTF1 homodimers
accumulate in the nucleus and target genes with a metal-response
element. The main target genes for MTF1 are the metallothionein fam-
ilies (MT1 and MT2), which act to bind and eliminate excess metal ions
(Sabolic et al., 2010). It is worth noting that metallothionines were first
discovered in the 1950s in the kidney of a horse poisoned with cadmium
(Margoshes, 1957). Other direct targets for MTF1 include zinc trans-
porters (SLC30A1, SLC30A2, SLC39A10), hepatitis A virus cellular
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receptor 1 (HAVCR1, aka KIM1), selenoproteins (SEPW1, SELH) and
thioredoxin reductase 2 (TXNRD2) (Gunther et al., 2012). In the present
study the metal transcription factor response was activated at 1 h and
remained active throughout the experiment. Genes such as MT1E,
MT1F, MT1G, MT1H, MT1M, MT1X, MT2A and SLC30A1 were robustly
induced from 2 h, spiked within the first 12 h, but unlike the Nrf2 genes,
never returned to baseline and remained elevated over the 168 h
exposure, although at a substantially lower level than peak (Fig. 2A). We
have previously identified MTF1 regulated genes, including MT1G,
MT1H, MT1X and SLC30A1 as highly and persistently upregulated in the
renal human cell line RPTEC/TERT1 cells, cultured on microporous
supports and treated for 1, 3 and 14 days with 4 and 11 pM cadmium
chloride (Aschauer et al., 2015).

The HSPAG6 (aka heat shock protein 70 B) response is interesting; it
followed a similar pattern to the Nrf2 genes spiking at 4 h and reducing
to base levels by 24 h. HSPA6 has been observed as deregulated in
several studies using cadmium (Forti et al., 2010; Han et al., 2007;
Hofmann et al., 2014; Wada et al., 2007); however, it has also been
studied in many other stress related contexts. Recent studies point to
HSPA6 as a transcription regulator. Heat shock proteins themselves
were originally characterised by their induction in thermal stress, but
other stressors have also been identified, which may or may not be
related to heat generated by intracellular events. While the exact tran-
scriptional regulation of HSPA6 is not known, some studies have shown
positive and negative regulators and one study identifies an AP-1 site
(Ramirez et al., 2015). This is interesting as AP-1 was first discovered as
a transcription factor that bound to a cis-regulatory element of the MT2A
promoter (Lee et al., 1987). FOSL1 followed the same temporal pattern
and is also thought to be regulated by AP-1 (Young and Colburn, 2006).
Thus, it is possible that some of the metallothionein genes share the
same early regulation as HSPA6 and FOSL1.

The results from this study can be interpreted as follows. The MTF1
pathway is activated within minutes as the intracellular free cadmium
increases. The metal chelating genes and the metal exporting transporter
genes take time to be operational. The Nrf2 genes, which respond to
oxidative stress, spike simultaneously with the metal genes, peaking at
approximately 4 h. Cadmium induced oxidative stress begins to reduce
at this point due to the dual action of the Nrf2 and MTF proteins in
reducing oxidative stress, increasing oxidated glutathione and
decreasing the amount of intracellular free cadmium. Nrf2 activation
thus begins to subside and returns to baseline levels by 24 h. The sam-
pling frequency after the first 24 h is not sufficient to know if there was
an Nrf2 spike on subsequent exposures. However, repeated exposure to
cadmium chloride resulted in a sustained activation of the MTF
pathway.

The ultimate goal in the development of new in vitro and in silico tools
is to improve the health of human populations, eventually entirely
without the use of animal studies. Biological pathway compilations are
an excellent way to condense the knowledge from literature into an
easily accessible resource. Many such tools are now available, including
Reactome and IPA or even comparative tools combining multiple of
these pathway libraries such as CONSENSUSPathDB. However, these are
not necessarily developed with a toxicology or safety focus and are often
suboptimal for finding mechanisms associated with adverse effects.
Therefore, the identified areas of concern are highly dependent on the
pathway library chosen as demonstrated here. Only the Nrf2 pathway
and the associated stress response can be clearly identified when using
IPA. The metallothioneins are associated with the “SPINK1 General
Cancer Pathway” as the only pathway including metal response as one of
its subparts. In contrast, Reactome has a specific metallothioneins
pathway and using the Reactome hierarchy of pathways, this can also be
linked to the transcription factor MTF1. Linking from here to other genes
regulated by MTF1, like specific membrane metal exporters such as
SLC30A1, is then possible but would need analysis beyond pathway
enrichment.

More concerningly, important pathways may also be missing also for
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other adverse / adaptive effects. For example, Nrf2 oxidative response is
not included in Reactome. Tools combining multiple pathway libraries
might reduce this problem, but these could result in outputting many
unrelated and very specific pathways only because they show gene
overlap with the general response pathways of toxicological relevance.
More work has to be performed on multiple compounds to see how the
consensus approach compares to the transcription-factor-based pathway
enrichment used specifically in the in3 project. Looking at multiple time
points or the full temporal profile as done in this study has the advan-
tages, while clearly increasing the needed experimental effort, to 1)
identify all relevant pathways, e.g., the Nrf2 pathway would have been
identified as less relevant if only the 24 h time point would have been
examined, and 2) give evidence on how the cells react to the perturba-
tions in early responses to redress alterations in homeostasis, but often
instead create a new allostatic state. This can further be used to develop
and validate key events of adverse outcome pathways (AOPs) at the
molecular and cellular level and even derive quantitative relationships
between these events. Additionally, the temporal profiling and noise-
reduction using profile fitting helps to increase the confidence in the
observed effects, especially in cases of borderline significance (adjusted
p-values around 0.05 or log2 fold changes below 1) and for genes with
overall low RCs. Regardless, some additional literature curation is still
needed for the transcription factor association.

In summary, the study shows the utility of conducting high temporal
resolution transcriptomic studies. Unravelling the time scale of com-
pound induced alterations is highly informative. We could clearly
delineate an early response (within 6 h) from a sustained response (from
24 to 168 h). In the early response Nrf2 and MTF1 genes were present
along with AP-1 regulated genes HSPA6 and FOSL1. MTF1 was the main
constituent of the sustained response. The new renal model which is a
human iPSC derived PTL performed well and is thus well suited to such
toxicological investigations.
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Supporting Information 1: (i) Bar plots for Treatment groups and Control groups showing raw distribution of
samples and the replicates where T represents the treated samples and C represents the Control samples. It
shows that the sum of total raw read counts per sample and many genes for both the controls and treatments is
more than 10,000 counts, which is specified as minimum values for good quality samples. Also, the distribution
of raw counts is similar between treatment and control, with some genes with high expression levels in the
treatment sample as expected. Combined, this shows that all samples show a quality to be used in the further
analysis and no specific approaches to handle batch effects have to be applied. (ii)The heatmap graph represents
the similarities and dissimilarities between different samples. Standard hierarchal clustering was used with
default Euclidean distance which calculates the distance between the samples (using the DESeq2 library (Love
et al. 2014) with standard parameters). The replicate samples for individual exposure scenarios (control or
treatment) and time points group together signifying changes happening in the cells due to exposure. Interesting
to note is that the 4h 6h, and 8h time points are clustered together showing a significant difference to the 2h, 12h
and later time points, which are forming another cluster whereas 168h and 72h forms another cluster. (iii) The
Principal Component analysis (using the DESeq?2 library (Love et al. 2014) with standard parameters) shows
similar results as the clustering above. T represents the treated samples and the C represents the control samples
and different color represents different time points the samples belong to. The first PC indicates the presence of
three clusters in the sample: 1 h time point and all negative controls from 1h to 24h as first cluster, 4h, 6h and 8h
time points as second cluster and 2h, 20h 24h and 16h time points as seconcluster. The second PC indicates a
possible correlation between groups of negative controls at 168h and 72h to the 168h and 72h time point. The
formation of clusters clearly shows the cell activity and sensitivity to CdClz. Also, no clear outliers are visible,
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which was used as the final criterion of quality control. (iv) QC report by BioClavis compared the samples to
both positive and negative controls before they were processed for sequencing step. The samples passed the cut-
off after or alongside the positive controls showing that the samples quality is enough to proceed with
sequencing. Please note that the figure is a cumulative figure for all the samples from cadmium chloride and
other compounds used in another study (Arsenic, Amiodarone, Doxorubicin, Cyclosporine A, Rotenone,
TTNPB, Tunicamycin and GW788388) as the samples were sent together for the sequencing.
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Supporting Information 2: A) Expression profiles of probes with the normalized read counts (left) and fold
changes (right) belonging to the MTF1 mediated metal response pathway. B) Expression profiles of probes with
the normalized read counts (left) and fold changes (right) belonging to the Nrf2 mediated oxidative stress
response pathway.
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Supporting Information 3: Viability curve showing response to cadmium chloride. SBAD2 HMOX1-eGFP
iPSC were differentiated into PTL and treated with cadmium chloride in a 96-well format from 10 uM to 0.31
uM with 2-fold dilution steps for 168 h with every 24 h repeated dose exposure. The differentiation and
treatment regime were performed as mentioned in the figure 1 schematic representation. At 168 h, the resazurin
assay was performed by incubating resazurin for 1 h. The conversion of resazurin to fluorescent resorufin which
measures the redox potential of the cells was measured at excitation at 540 nm, emission at 590 nm. Values
represent the mean = SD (n=3) of the relative fluorescence units (RFU) for CdCI2 treatments normalized to
RFU of controls (n=3) over different concentrations.
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Abstract

The iPSC-PTL cells can show the well-known pathways induced on exposure to cadmium:
oxidative stress (mediated via the nuclear factor erythroid-2-related factor 2 (Nrf2)) and the
metal stress response (mediated via the metal-responsive transcription factor 1 (MTF1, also
termed MRE-binding transcription factor or metal regulatory transcription factor)) and could
also derive the temporal evolution of these pathways by using the temporal patterns of the
associated genes. The association between the genes and the pathways was made using the
pathway libraries like Reactome, Ingenuity Pathway Analysis (IPA), and literature studies.
Here we investigated if the clustering methods can group the related genes based on their
temporal profiles and point to their association to a common pathway. Hierarchal clustering,
STEM clustering, and fitting procedure were applied to the differentially expressed genes.
Even though the genes showed a similar profile pattern for the metal response but it was not
the same case with oxidative stress. It might be because complex pathways like oxidative stress
include several mechanisms which are depending on each other and are activated at different
time intervals. Therefore, without the use of pathway libraries, the grouping of the profiles of
related genes is difficult and not possible with any clustering method.

Keywords: Hierarchal clustering, STEM clustering, fitting procedure, Pathway libraries.

Abbreviations: iPSC, induced pluripotent stem cell; PTL, proximal tubule like cells; Nrf2,
nuclear factor erythroid-2-related factor 2; MTF1, the metal-responsive transcription factor 1;
IPA, Ingenuity Pathway Analysis; STEM, Short Time-series Expression Miner; MT,
metallothioneins.
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1. Introduction

In the previous study (Singh et al. 2021), it was investigated that the human induced pluripotent
Stem Cell (iPSC)-derived proximal tubule (PTL) cells can be utilized in the chemical study.
The two most important stress responses are oxidative stress (mediated via the nuclear factor
erythroid-2-related factor 2 (Nrf2)) and the metal stress response (mediated via the metal-
responsive transcription factor 1 (MTF1, also termed MRE-binding transcription factor or
metal regulatory transcription factor)) were seen to be activated in iPSC-PTL cells in response
to cadmium chloride exposure. For modeling the temporal profiles of the genes, a fitting
procedure was developed to remove any noise as described in the study before. The temporal
profiles of the genes were grouped based on their association to these stress response pathways
using existing pathway libraries like Reactome, Ingenuity Pathway Analysis (IPA), and
literature evidence studies. Additionally, using these pathway libraries for grouping the
temporal profiles of genes, we were also able to find the time points at which these pathways
were activated and if they sustain or not until the end of the measurement period. We found
that both oxidative stress and metal response related genes activated in the early hours. The
metal response related genes showed a sustained response until 168h as compared to oxidative
stress related genes which came down to baseline levels by 24h. The association between genes
and pathways was done using pathway libraries therefore, the goal of this study here is to find
if the clustering method that can help a) identify related temporal genes and point the
involvement of these related genes toward a common pathway or mechanism without using
existing pathway libraries.

2. Material and Methods

As described in more detail in chapter (Singh et al. 2021), the 115 differentially expressed
(based on the adjusted p-values and log fold change) were obtained. These genes along with
their log fold changes in different time points were used as an input for the clustering techniques
described in the following sections.

2.1 Hierarchal clustering

Clustering is an unsupervised machine learning method that is used to group unlabeled data
into clusters. The algorithm for such a method assigns the most similar entities to a cluster that
are dissimilar to the entities in another cluster (Datacamp 2021). In this study, we started with
the hierarchical clustering method (Zolfaghari et al. 2019) using the agglomerative approach
to cluster the genes. The hierarchical clustering method has been successful in clustering the
genes based on their dose-response behavior (Black et al. 2012) and as well in grouping the
compounds with a similar mode of action (Wink et al. 2018). It is a data-driven approach that
we used to see if the temporal profiles can be compared to find clusters of simultaneously
activated genes. As, the first step, the data frame containing the log fold change values of
significant genes from 1h to 168h was provided as an input to the function dist(). The method
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was set to ‘euclidean’ in the dist() function. This function outputted a distance matrix
containing distances calculated between the different combinations of input genes. Next, the
helust() function was applied to this matrix to perform the clustering. The method in this
function was set to “complete linkage method” (4.0.0. 2020). To generate clusters with
maximal dissimilarity, we chose 5 as the cluster number in the cutree () function after the visual
inspection of the dendrogram tree of the hierarchical clustering.

2.2 STEM clustering

The next method used was Short Time-series Expression Miner (STEM) Clustering tool (Ernst
and Bar-Joseph 2006) to see if the time dependency among successive time points could be
captured which couldn’t be done by hierarchical clustering. STEM is specifically designed for
clustering short time-series data gene expression data (Ernst and Bar-Joseph 2006). It has the
advantage of being able to differentiate between real and random patterns by capturing the
profiles from the dataset, which fit the pre-defined and pre-validated model profiles. STEM
clustering algorithm first selects distinct and representative pre-defined temporal profiles
(known as model profiles too). These profiles correspond to probable profiles of a temporal
expression pattern of input genes. The algorithm maps the input gene’s expression profile to
the most similar model profile based on the correlation coefficient (calculated inside the tool).
The statistical significance of each profile is calculated by computing the enrichment score for
the input genes belonging to this profile (Ernst et al. 2005). The parameter “maximum number
of model profiles” represents the number of pre-defined temporal profiles which could best
represent the input genes’ temporal profiles. Different values (32, 40, and 50) were tried to
select the most representative and distinct profiles (Ernst and Bar-Joseph 2006). After manual
inspection, 32 profiles were chosen for representing the distinct patterns of the input gene list.
The results showed that the input list gene profiles were only assigned a maximum of § distinct
profiles even if the model profiles were more than 32. Therefore, increasing the model profiles
didn’t change the number of model profiles assigned to the input genes profiles. Other
parameters were set to standard/default values.

2.3 Characterization of temporal profiles

A fitting procedure as described in (Singh et al. 2021) was developed to resolve the temporal
patterns of the pathways which couldn’t be done by the other two methods. It concentrates on
comparing the genes as well as reducing noise by comparing neighboring time points instead
of looking at them independently. The modeled profiles used the set of 10 pre-defined functions
(Gamma distribution, Maxwell probability distribution, Maxwell cumulative distribution, etc)
which have been described in more detail in (Singh et al. 2021). This gave 10 fitted profiles for
each gene. They were then manually checked for every gene to choose the one that describes
the temporal profile of the gene best.

The next step was to find the criterion to characterize the resulting gene profiles (obtained from
this fitting procedure) based on their time of activation and their relation to biological
processes/pathways. Four general behaviors could best describe the gene profiles as described
in (Singh et al. 2021): a) Genes showing a strong maximum expression and then dropping to
baseline levels. b) Genes showing a strong maximum expression, dropping to plateau but still
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above baseline levels. ¢) Genes increase in expression and attain a plateau. This plateau could
also be attained by dropping to a minima first. d) Genes showing a constant increase in the
expression values until the last time point. Two criteria were developed to characterize these
profiles based on these gene behavioral pattern.

The first was the time point #,. when the first maximum or the plateau (4;) was reached. For
this, we either chose the maximum (left-hand side of Fig 1first maximum in cases, where the
final plateau is higher) or when 95% of the maximum height of the cumulative function was
reached (right-hand side of Fig 1, being a good approximation for the starting time point of the
plateau. For the second criterion, we normalized the profile on the height of this first maximum
and calculated the percentage of this value (/4.) at the end of the measurement period z..s (24h
for the detailed short-term analysis and 168h for the long-term analysis), called residual in the
following. The latter described the percentage of the first maximum heights remaining at the
end of the analysis period with a value of 0 describing the full return to baseline, between 0
and 100 a remaining but lowered activation, and values above 100 a continuous increase over
the analysis time after a short decrease separating the first maximum from the later time points.

,,,,,,,,,,,,,,,,,,,,,,, h
hl hi

tmax tend tmax tend

Fig 1: Definition of the criteria to characterize temporal profiles: tmax is the time point where the first maximum
is reached. If the profile doesn’t show a clear maximum, tmax gives the time when 95 % of the maximum is reached

to be able to differentiate plateau from constantly increasing profiles. residual = % - 100 describes how much
2

of the signal of the maximum is conserved at the end of the measuring period tend.

The four behaviors described above can then easily be differentiated when plotting the two
criteria in an x-y plot as follows:

e Behavior 4: genes showing their first maximum at the last time point

e Behavior 1: genes showing a residual of approximately 0%

e Behavior 3: genes showing their first maximum before the last time point and a residual
of approximately 100%

e Behavior 2: genes not belonging to any of the other behaviors

Examples of these behaviors and their location in the plot of the residual vs. time point of
maximum are shown in Fig 2 useful for finding similarities in profiles.
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Fig 2: Plot residual vs. time of first maximum tmax using four profiles of different behaviors: ebehavior 1 (profile
for probe HSPAS5 14023) showing a maximum at around 7h and decreases to ground level (residual = 0), @
behavior 2 (profile for MT1E 4328 and profile for GADD45B_28775) showing a plateau after the first maximum
being lower and higher than the first maxima respectively (residual below and above 100%) and ebehavior 3
(profile for MT1F 24226) showing a stable plateau from very early on. For behavior 4, no examples are available
in the analysis of the early 24h and therefore cannot be shown in this figure.

3. Results

We used hierarchical clustering to divide 115 differentially expressed genes into five clusters.
The number of genes assigned to these five clusters is shown as a histogram in Fig 3.
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Fig 3: The histogram shows the number of genes contained in each cluster using hierarchal clustering

The results showed two types of scenarios where a) genes with a similar temporal pattern were
assigned to different clusters and b)genes with different temporal patterns were assigned to the
same cluster.

Cluster 1 showed for example genes SLC30A1 and EGR1 combined into one cluster even if
we would argue that they are quite different in their temporal behavior as shown in Fig 4.
SLC30A1 showed varying expression levels throughout the full-time period while EGR1 only
showed one time point with a more strongly increased expression level (2h) and all others
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being almost constant around a log2 fold change of 1, i.e. a two-fold increase compared to the
ground levels.

Another interesting finding was for metallothioneins (MTs) genes which got divided into two
different clusters. All genes showed very similar profiles with the maximum attained around
4h-6h and then an increased expression until the end time point in Fig 5. Metallothioneins
MTIE, MT1X, MTIF and MT2A, and HMOX1 (with similar expression patterns) were
assigned to cluster 3 and the other three metallothioneins MT1G, MT1H, and MTIM were
assigned to cluster 5 in Fig 4.
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Fig 4. Temporal Profiles of the genes based on hierarchal clustering method.
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Fig 5: Temporal Profiles of the metallothionines genes based on different clusters.

STEM clustering was the next method that was used to cluster the genes. As described more in
detail in the discussion in the study before (Singh et al. 2021), we saw very different behavior
of the cell response in the first 24h compared to the later time point, therefore we only applied
this tool to group the genes based only on the early events (until 24h). Also, STEM is designed
to apply to short time-series data only (up to 8 time points).

Only 71 of the 115 genes showed high expression levels in this early time interval and
therefore, only these were used as input. Out of the 32 model profiles, only 8 of them had genes
assigned to them. The two profiles with the largest numbers of assigned genes (37 and 26,
respectively) as shown in Fig 6 covered almost 90% of the 71 genes on the input list. The other
6 profiles were only assigned to one or two genes.
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Fig 6: The histogram shows the number of genes contained in each cluster using the STEM clustering tool

The results showed two types of scenarios with STEM clustering where a) genes with similar
temporal profiles were assigned to the same cluster and b) genes with different profiles were
assigned to the same cluster. Model Profile 1 (consists of the maximum number of genes
assigned) had all the MTs and HMOXI1 assigned to it. They were all extremely highly
overexpressed and sustained high expression levels until the last measurement (left of Fig
7). However, there were also many other genes that were assigned to the model profiles
defining this cluster. Two such genes were SLC7A11 and PROC. In the figure shown on the
right of Fig 7, these two genes had been placed together along with one of the metallothioneins
(MTI1E) for comparison. They were different concerning their temporal expression, where the
MTIE sustained the high expression level until 24h but the other two genes dropped down to
the baseline levels.
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Fig 7: Temporal Profiles of the genes based on STEM clustering method.

The fitting procedure was used to overcome the limitations of the other two clustering methods
which couldn’t capture the temporal alteration of stress responses. These results have been
taken from the publication (Singh et al. 2021) and shown in Fig 8 and Fig 9 and have been
duplicated here for characterizing the profiles.

The first set of genes with a similar expression pattern were metallothioneins (belonging to the
MTF1-mediated metal response as described (Singh et al. 2021)) showed a strong increase in
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the first few hours after the exposure. They were seen to be associated with MTF1-mediated
metal response. The maximum was reached around 4-6h with a slight decrease in the
expression yet high levels until 24 hours (Fig 8). At the time points 72h and 168h, the profiles
showed a plateau or slight increase.

The other set of genes showing similar expression patterns were GCLM and MAFF. They were
seen to be associated with Nrf2-mediated oxidative stress response as described in (Singh et al.
2021). They showed the first maxima between 4 hours and 8 hours but showed a lot of variance
in the later hours 72h and 168h. But by the end of 24h, their expression levels dropped down
to ground levels (Figure 9). In contrast to this behavior, HMOX1 another important oxidative
stress related gene showed similar temporal profiles as MTs. It activated very early and
maintained high expression levels until the last hour (Figure 9). Another interesting gene was
ME1 which had maxima in the early time points like GCLM but started downregulating by
24h.
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Fig 8: Temporal profiles of MTF1 genes with both normalized RCs and the LFCs over all the time points. RCs
of the treated (*) and control samples (0) are given in columns 1 (left) and the corresponding LFCs in columns 2
(right). Values of low significance (adjusted p-value above 0.05) are represented as smaller symbols. The error
bars correspond to the standard deviation and the standard error for the normalized counts and fold changes,
respectively. The logarithmic scale was used on the x-axis so that the time points until 24h can be better separated
from each other.
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Fig 9: Temporal profiles of Nrf2 genes with both normalized RCs and the LFCs over all the time points. RCs of
the treated (¢) and control samples (©) are given in columns 1 (left) and the corresponding LFCs in columns 2
(right). Values of low significance (adjusted p-value above 0.05) are represented as smaller symbols. The error
bars correspond to the standard deviation and the standard error for the normalized counts and fold changes,
respectively. The logarithmic scale was used on the x-axis so that the time points until 24h can be better separated
from each other.

These similar and related temporal profiles were further characterized as mentioned in (Section
2.4). The characterization represented by the residual vs. time of the first maximum plot as
introduced in Section 2.3 has been shown here for both Nrf2-mediated oxidative stress and
MTF1-mediated metal response. These responses were associated with the many genes which
were seen to be differentially expressed between 1h and 168h (Singh et al 2021).

To highlight the two responses, the corresponding probes are marked. All metallothioneins
(metal response) built a dense cluster with tmax around 6h and a residual between 60 and 80 %
(left-hand side Fig 10). This represented the clear first maximum and the high levels of
overexpression throughout the measurement period. The only exception is MTIF with a
slightly earlier tmax and higher residual. This correlated with the less pronounced maximum for
this probe seen in Fig 9 compared to the other MTs. The transporter gene SLC30A1 (also
assigned to this response) was separated from the rest representing the narrower maximum
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reaching the maximum earlier and then the more significant decrease to around 50 % at the end
of the considered time interval, which was chosen here to be the first 24h.

In contrast, the oxidative stress related genes were distributed in a larger area and overlapped
with almost all other genes except the most distinct profiles with maxima before 2h and/or
residuals of more than 100 % or negative. The diverse behavior of the profiles of the oxidative
stress related genes can be seen on (the right side of Fig 10). They all had one thing in common
to have a distinct maximum in the earlier time points but varying residual ranges. HMOX1
showed a residual of more than 40% whereas genes like TXNRDI and SQSTMI1 showed a
residual of 0%.

MTF1 Nrf2
120 120
100 100
Mllh?A??%
80 MTEA 3316 26225 __ 80 MT2A 4338
X 14TIM2821%y  @rifi 4330 2 ° ° -
T 60 M3 G aog = 60
=1 ¢ =1
kel sLc30a1 20618 o L & k=] Hox1 @ °
a . . a . = o
3 40 4 40 WOEF 374 @FaND2A 21269
cer ., e se F15_18329 @01 26073
20 e Ve . 20 ae i g QY -
. MAFG_2073 E1_16747
0 R S " lewper, o 0 . SQBTM1 vl RD1s7440
» » . .
-20 * . -20 Getm 2615
0 2 8 10 12 0 2 4 6 8 10 12

6
tmax(h) tmax(h)

Fig 10: Residual (percentage of the first maximum heights remaining at the end of the analysis period) vs. time
of first maximum tmax plots highlighting the genes associated with transcription factor MTF1 (left) and Nrf2
(right). To show similarity between these genes, all other of the 115 differentially expressed genes are
represented as smaller spheres.

4. Discussion

This study tried to investigate a clustering method that can help identify the relationship
between similar temporal gene profiles. Clustering is an unsupervised machine learning
algorithm that is used to find meaningful information and patterns from a set of data. It divides
the dataset into a small number of clusters and keeps the similar data points in the same group
and the most dissimilar data points in the different groups (GeeksForGeeks 2021). The
clustering techniques when applied to gene expression data can not only help in identifying the
most interesting expression pattern in the overall data but also removes unnecessary noise from
the data (Oyelade et al. 2016). We wanted to see if the clustering could group similar profiles
with the idea that such similarity would imply a relationship between the genes and that could
point to some mechanism related to these genes.

Hierarchical clustering used in the study clustered genes in a predetermined order called
hierarchy (R-Bloggers 2021). It is one of the most known methods used for clustering. The
agglomerative hierarchical clustering technique used in this study started by considering each
data point as a single cluster. Then, at every step, it clustered the most similar clusters until the
defined number of clusters is formed (Towards data science 2021). Our results showed that the
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hierarchical clustering approach used only the absolute values of the fold changes and cluster-
based on height. But it didn’t take into account their temporal relationship when clustering the
genes.

The results obtained from this clustering showed two types of behavior a) similar temporal
profile genes assigned to different clusters and b) different temporal pattern genes assigned to
the same cluster. It grouped all the MTs into two different clusters even though they all showed
similar expression patterns over time. Whereas SLC30A1 and EGR1 were combined into one
cluster even if their temporal profiles were quite different with varying expression levels
throughout the full-time period.

The behavior can be explained by the fact that the hierarchical clustering is only concentrating
on the absolute values of the changes. It calculates the Euclidean distance between two genes
as the distance between the log2 fold changes at each time point. This results in a separation of
highly differentially expressed genes from the ones which are only slightly influenced. The
division into more clusters is then splitting each of the main groups into smaller ones with more
limited ranges of fold change values. For the pair of MT1G and MT1X, the difference in the
last time points was enough to separate them into two clusters even if the profile for the first
24h is very similar. This could be fixed by looking at the early and late time points. But, this
would then probably lead MTI1E to be grouped into another cluster since the height of the first
maximum is much smaller for this gene. Also, since MT1E had values at 72h and 168h very
similar to MT1X, these two genes were clustered together when the full-time range is
considered. Overall, the large variation of the maximum fold changes for the MTs resulted in
very high Euclidean distances. The fact that they were with HMOX1 the gene showing such
high overexpression leads to the seemingly reasonable cluster. For the genes with the much
smaller overexpression levels, SLC30A1 and EGRI, again the fact that they both had small
expression levels is the reason why they were in the same cluster. The absolute differences at
each time point were on average smaller than for the two groups of MTs despite their different
profiles.

To overcome the limitation of hierarchical clustering which doesn’t use the time dependency
factor among successive time points, we used the STEM clustering method as our second
approach. STEM clustering method clusters genes by mapping them to the pre-defined set of
model profiles (Ernst and Bar-Joseph 2006). It has been known to cluster the short time-series
data.

As compared to the hierarchal clustering, STEM put all the metallothioneins together along
with HMOX1 in one cluster. They were all highly overexpressed and sustained extreme
expression levels throughout the complete period. But genes like SLC7A11 and PROC which
had different temporal patterns were also part of the same cluster. As compared to MTs, they
went down to levels not significantly above ground level and partly even became
underexpressed in the late time point. These were very different biological behaviors
representing a continuous activation in contrast to a very short-lived effect, which will also
differ in their importance for the adversity of the test compound. Therefore, we saw that the
definition of the model profiles is not able to differentiate profiles based on the significance of
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the deviation compared to ground/noise level and, thus, too many genes are grouped to the
same standard profile, extremely reducing the information gain from the clustering.

Therefore, both hierarchical clustering and STEM clustering couldn’t cluster the related genes.
This could be due to the reason that the first one only look at the time points individually and
the second one overstated the importance of noise. The third method called the fitting procedure
method as described in (Singh et al. 2021) was made so that it considers the most important
aspect that the other methods didn’t take into account. This aspect was evaluating the
significance of the changes in the expression levels of genes by taking into account the changes
in the neighboring time points. It described the individual general profile of the genes using the
pre-defined mathematical distribution functions which also removed noise to an extent.

The results in the residual vs tmax plot showed almost all metal response related genes showing
an early activation for all these genes and sustaining the response until the last measurement
time point. They clustered around each other with tmax around 6h and a residual between 60
and 80 %. They didn’t overlap with other differentially expressed genes. Whereas we couldn’t
derive any distinct temporal pattern for the oxidative stress related genes. They were distributed
in a larger area and overlapped with almost all other genes which belonged to other mechanisms
and pathways. They showed common maxima appearing between 4h to 8h but then went back
to baseline or kept some overexpression or underexpression as seen in the results. Also, the
huge number of genes were seen to be clustered closer even if they belonged to different
pathways.

Therefore, the fitting procedure helped to concentrate on the most important patterns
represented by the genes profiles by considering their time dependency. It also helped in noise-
reduction and helped increase the confidence in the observed effects, especially in cases of
borderline significance (adjusted p-values around 0.05 or log2 fold changes below 1) and for
genes with overall low RCs (Singh et al 2021). Further, profile fitting and optimization of the
criteria used for defining that two profiles are similar (time of max and % of max height are
starting points but need improvement) removed some basic issues of the clustering methods.
But this clustering still could not cluster the temporal profiles belonging to the same pathway.
Even though the genes showed a similar profile pattern for the metal response but it was not
the same case with oxidative stress. It might be because complex pathways like oxidative stress
include several mechanisms which are depending on each other and are activated at different
time intervals. Additionally, many pathways share common genes which makes it even more
difficult to differentiate pathways based on these temporal profiles. The metal response is
grouping only very similar genes with the same function and thus, could also be expected to
behave similarly. Therefore, finding a clustering method to group the profiles of related genes
is difficult and not possible without the use of pathway libraries as done in the previous study.
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Abstract

Stress response pathways are activated in response to perturbations or disturbances in the cells.
These responses prevent the cells from being damaged and help restore or maintain
homeostasis. Cellular homeostasis is very significant for the proper functioning of cellular
mechanisms. In this case study, we have studied the temporal alterations in four stress
responses relevant to toxicology namely oxidative stress-mediated by Nrf2, metal response
mediated by MTF-1, p53 signaling pathway, and unfolded protein response (UPR) in human-
derived iPSC cells. These iPSC cells were exposed to a set of a wide variety of chemicals
namely GW788388 (1 uM), arsenic (10 puM), amiodarone (50 puM), rotenone (5 nM),
tunicamycin (300 nM), and doxorubicin (15 puM) for 1, 2, 6, 8, 12, 16, 20 and 24 hours. All
four stress response pathways showed different temporal patterns and severity in response to
exposure to different compounds. GW788388 showed no activation of any stress response
pathways until 24h. The oxidative stress response pathway was seen to be activated in all other
compounds and was strongly activated in arsenic and remained sustained until 24h. The metal
response was seen to be strongly activated in arsenic and was sustained until 24h like the
oxidative stress pathway. Arsenic also showed the early activation of the p53 signaling pathway
and UPR pathway. p53 pathway was seen to be activated in all compounds except for
tunicamycin with doxorubicin showing the strongest expression. UPR pathway was seen to be
activated in all compounds except for doxorubicin with tunicamycin showing the strongest
expression. In comparison to other compounds, rotenone showed late activation of these
pathways from around 16h. The data shows the utilization of iPSC cell models in elucidating
the stress responses and in deriving their severity due to exposure to different compounds.

Keywords: human-induced pluripotent stem cells, stress response pathways, temporal
resolution, proximal tubule cells, chemical substances

Highlights

e A human iPSC-derived PTL model can be used for toxicity testing

e Oxidative stress mediated by Nrf2, metal response mediated by MTF-1, p53 signaling
pathway, and Unfolded Protein Response pathway show different severity and temporal
patterns in different compounds.

e Metal compounds show the strongest activation of oxidative stress and metal response
pathways.

e Doxorubicin showed the strongest activation of the p53 pathway and tunicamycin
showed the strongest activation of the UPR pathway.

Abbreviations: EMT, Epithelial-to-mesenchymal transition; ER, Endoplasmic reticulum;
LFC, Log2 fold change; MT, Metallothionine; MTF1, Metal regulatory transcription factor 1;
Nrf2, Nuclear factor erythroid-2-related factor 2; ROS, Reactive oxygen species; TF,
Transcription Factor; UPR, Unfolded Protein Response.

61



1. Introduction

Multicellular organisms react to changes in their environment first at the cellular level. Cells
are considered the fundamental units of life and are part of every biological organization in the
body (Cooper and Hausman 2007). Cells have different methods to react to different
perturbations happening around them (Wigner et al. 2021). For example, they react to
metabolic signaling via endogenous growth factors which are necessary for the development
of an organism. Similarly, the cells also respond to different stressors like xenobiotics,
chemical substances, etc. via adaptive stress response pathways (Simmons et al. 2009). The
role of these pathways is to help the cells to repair the damages and maintain or reestablish the
homeostasis (Jennings 2013). The adaptive stress response pathways are therefore defined as
the signal transduction pathways which are activated due to cellular stress and lead to the
activation of cytoprotective genes at the transcriptional level. These genes are the first ones to
be activated in response to the cellular stress (Kiiltz 2005). Under the stress, the enzymatic
transducers such as kinases and hydroxylases are activated, and they covalently modify both
the cell sensors and transcription factors (TF). As a result, the sensor’s activity is blocked which
paves the way to the activation and nuclear translocation of the TF. This translocation then
leads to the upregulation of many target genes. This helps the cells to cope with the stress
(Simmons et al. 2009; Vihervaara et al. 2018).

Many stress response pathways like DNA damage response pathway, oxidative stress pathway,
hypoxia, osmotic stress, heat shock response pathway, Endoplasmic reticulum (ER) stress
including unfolded protein response (UPR), inflammation, metal response pathway, etc are
activated in response to the different types of chemicals (Jennings 2013). In this study, we will
focus on only four of these important stress response pathways: the p53 signaling pathway,
oxidative stress response, metal response, and UPR.

pS3 signaling pathway is one of the major pathways studied in carcinogenicity, aging, and
toxicity and is activated in response to the DNA damaging agents. It safeguards the DNA
integrity and removal of cells that are beyond repair. P53 family along with its family members
is the major transcription factor that mediates this response. On activation in response to stress,
it leads to the transcription of genes which leads to cycle arrest or apoptosis or senescence(Horn
and Vousden 2007; Jennings et al. 2013). Nuclear factor erythroid-2-related factor 2 (Nrf2)
mediated oxidative stress response (Baird and Dinkova-Kostova 2011) is of high importance
in toxicology studies. Oxidative stress responds to a wide variety of toxicants and cellular
reactions which involve the production of reactive oxygen species (ROS) (Simmons et al.
2009). The activation of Nrf2 is mediated via cytosolic KEAP1 which leads to its nuclear
translocation and ultimately the transcript of genes related to glutathione synthesis and
reduction process (Itoh et al. 1997). The metal response is mediated by metal regulatory
transcription factor 1 (MTF1) and is activated in response to certain metals (Lichtlen and
Schaffner 2001). The oxidative and protein malfunction caused due to free metal ions can harm
the cell and the MTF1 is, therefore, activated to protect these cells (Gunther et al. 2012). The
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activated MTF1 leads to activation of the metallothionine (MT) genes which remove the excess
metal ions (Saydam et al. 2002). It has also been seen that in absence of heavy metals too, MTs
can get activated by MTF-1 against oxidative stress (Andrews 2000). UPR is activated against
the disturbances caused in the ER due to the deposition of denatured or misfolded proteins. It
is activated to restore homeostasis and create a balance between the disturbed ER and stress of
the protein folding (Foufelle and Fromenty 2016; Guha et al. 2017). This is also collectively
known as ER stress which can be caused by factors like glucose lack, amino acid scarcity, ROS
production, etc. (Lin and LaVail 2010). Three transcription regulators ATF4, ATF6, and XBP1
are activated which leads to the transcription of genes responsible for protecting ER against
stress (Jennings 2013).

In this case study, we have used a diverse set of chemicals namely, GW788388 (TGF- B3
receptor inhibitor), arsenic (metal toxin), amiodarone (antiarrhythmic drug), rotenone (an
organic pesticide), tunicamycin (antibiotic drug) and doxorubicin (anthracycline drug). These
chemicals are tested on human-induced pluripotent stem cells (iPSC) derived proximal tubule-
like cells (PTL) which were differentiated as described in (Chandrasekaran et al. 2021). This
study was aimed at further testing the iPSC cells in chemical safety assessment using other
types of chemicals as done in the previous case study with cadmium. Additionally, it was also
used to see if different stress response pathways show different temporal patterns and severity
of adversity in different compounds or not.

2. Material and Methods

2.1 iPSC cell Culture

iPSCs were maintained in mTeSR1 medium (StemCell Technologies 05850) on 6-well plates
coated with Geltrex (Life Technologies A1413302) in a humified incubator at 36.7°C
containing 5% COz and sub-cultured with EDTA (0.02% Versene, Lonza BE17-711E) twice
per week. In this study, we employed an iPSC-line (SBAD2 HMOX1-eGFP) that had
previously been tagged with a GFP-reporter for the HMOX1 expression (Snijders et al. 2021).

PTL differentiation

SBAD2 HMOX1-eGFP were differentiated into renal proximal tubular-like cells as previously
described (Chandrasekaran et al. 2021). Briefly, cells were detached with accutase and
centrifuged at 300 g for 5 min. After resuspension in differentiation medium (1:1 mixture of
DMEM/F12 (Thermo Fisher Scientific), 2 mM Glutamax, and ITS (5 pg/mL, 5 pg/mL, 5
ng/mL, Sigma-Aldrich), supplemented with 3 pM CHIR99021 (Sigma-Aldrich), 1 uM TTNPB
(Sigma-Aldrich) and 10 uM Rock inhibitor (abcam) cells were seeded on Geltrex coated 96-
well plates at 35,000 cells per cm?. After 42h, the medium was replaced with a differentiation
medium supplemented with 1 uM TTNPB. After an additional 30h, the medium was replaced
with a proximal tubular medium (1:1 mixture of DMEM/F12 (Thermo Fisher Scientific), 2
mM Glutamax, ITS (5§ pg/mL, 5 pg/mL, 5 ng/mL, Sigma-Aldrich), 10 ng/ml EGF (Sigma-
Aldrich) and 36 ng/ml hydrocortisone (Sigma-Aldrich) supplemented with 10 ng/ml FGF9
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(Thermo Fisher Scientific). FGF9 was removed after 60h and cells were fed with the proximal
tubular medium. Cells were then fed every 2 to 3 days with the proximal tubular medium until
day 14.

2.2 Compound exposure and sample collection

On day 14 of differentiation, iPSC-derived PTL cells were treated with either 0.01%
DMSO (controls) or with the following diverse set of chosen compounds: arsenic (10 uM),
amiodarone (50 uM), doxorubicin (15 uM), GW788388 (1 uM), rotenone (5 nM) and tunica-
-mycin (300nM) over a temporal course (1, 2, 4, 6, 8, 12, 16, 20 and 24 h). Three biological
replicates were used. During compound exposure, cells were imaged for GFP
expression (excitation at 488nm and emission at 510nm) in a High Content Imager (HCI)
Operetta (Perkin Elmer) and the intensity of the GFP signal was determined with the software
Harmony 4.8 (Perkin Elmer). In addition, cells were lysed in TempO-Seq buffer and collected
for TempO-analysis as described before in Singh et al (Singh et al. 2021).

2.3 TempO-Seq experiments

The samples obtained for different compounds for all the time points (1, 2, 4, 6, 8, 12, 16, 20,
and 24 h) were collected and sent to execute TempO-Seq experiments using EU-ToxRisk v2.1
panel (3565 probes) (Mav et al. 2018; Limonciel et al. 2018) with standard attenuators at
the BioClavis technologies Ltd. Glasgow. These samples were measured for the derivation of
the raw read counts and were also checked for standard quality control.

2.4 Data accessibility and sample/gene selection

The raw data and metadata corresponding to the compounds arsenic, amiodarone,
doxorubicin, GW788388, rotenone, and tunicamycin were accessed by making use of the
EdelweissData™ management system (SaferWorldbyDesign2021) using the python script as
described in Singh et al (Singh et al. 2021). The samples for both treatment and corresponding
controls were selected for each of these compounds with additional filters for the iPSC-
derived PTL cells and the time points 1h,2h,4h,6h,8h,12h,16h, 20h, and 24h. This resulted in
54 samples for each compound with three biological replicates each for treatment and control
samples. The low read count probes were removed separately using the row sum threshold as
100 per probe across all samples per compound (including both treatment and control) before
performing differential expression analysis (Love et al. 2014).

2.5 Differential expression analysis

The analysis was performed as described in and available in form of an R script from (Singh
et al. 2021). The data obtained after filtering the low read count probes were visualized, after
r-log transformation (HBC Training 2019, (Love et al. 2014)), using PCA and hierarchical
clustering to see the variance between and among the different treatment and control
groups (Love et al. 2014). The data were then normalized using the standard median-ratio
method and on this normalized data, differential expression analysis was performed for the
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treated group vs the corresponding control group for each compound (Love et al. 2014).
The statistical values base mean log2 Fold Change (LFC), adjusted p-value, p-value, and log
fold change error (IfcSE) were generated for each probe for each time point per
compound. Additional filters were set to identify the most significantly expressed genes: the
adjusted p-value was set to 0.01 and |[LFC| > 2.

2.6 Temporal profiles of genes

Since the different time points are not continuous measures of the same system but from
independent exposure experiments, the fitting method as described in (Singh et al. 2021) was
used in the visualizations to reduce noise and model continuous temporal profile for normalized
read counts of the treated and control groups as well as the resulting fold changes.

2.7 Pathway enrichment analysis

The full list of pathways and their associated genes were downloaded from the
ConsensusPathDB V35 (http://cpdb.molgen.mpg.de) (Kamburov et al. 2009). This list was
then modified to only include the genes represented by one or multiple probes of the
used TempO-Seq panel.

Z-scores were calculated for the pathways to see their overrepresentation over time since the
scores from ConsensusPathDB can’t be used as they are based on the full list of genes which is
not covered by the TempO-Seq panel used in our experiments. A python script was used to
automate the calculation of the z-score per time point per compound for all pathways seen
in the ConsensusPathDB list. Z-scores were then calculated using the formula as described
in (Kutmon et al. 2015; Wellens et al. 2021) for each compound. Time profiles of the z-scores
and the number of DEGs are generated automatically by the script for all pathways and were
selected based on the thresholds for the z-score > 1.96 reached at any time point and the
number of corresponding differentially expressed genes >= 2.

3. Results

3.1 Differential expression analysis and pathway enrichment analysis

Filtering out low expressed probes per each chemical based on the row sum of read counts
(which was set to 100 across all samples per probe as the threshold as described in Section 2.4)
left 2789 probes for arsenic, 2774 probes for amiodarone, 2853 probes for doxorubicin, 2794
probes for GW788388, 2787 probes for rotenone and 2775 probes for tunicamycin out of the
3656 probes available in the TempO-Seq panel. These filtered raw data were first analyzed
using PCA. The PCA plots (see Supporting Information 1) showed good separation of
individual groups for all the compounds except for GW788388. Controls and different
exposure times showed separated clusters with, in most cases, early time points clustering
closer to the control samples than later ones showing the temporal progression of the changes.
Differentially expressed genes (DEGs) were selected based on thresholds for adjusted p-value
< 0.01 and |[LFC| > 2. Amiodarone, arsenic, doxorubicin, and rotenone showed the highest
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number of DEGs (represented by 81, 247, 399, and 93 probes respectively) at the 24h time
point. Tunicamycin showed the highest DEGs (58 probes) at 20h. GW788388 showed very
few DEGs compared to the other compounds with 7 probes being the highest count (at both 4h
and 20h) and a sum of 16 probes differentially expressed at any time point. As a comparison,
cadmium chloride discussed in detail in the previous paper (Singh et al. 2021) showed the
maximum of DEGs at 6h (85 probes) and 126 probes in total over all time points.

Pathway enrichment analysis was performed using ConsensusPathDB (Kamburov et al. 2009)
to avoid bias from the pathway coverage of a specific pathway library. The pathways were
ranked based on the z-score values calculated using the python script as described in Section
2.7 taking into account only the target gene set in the TempO-Seq panel. To identify
significantly overrepresented pathways, thresholds for the maximum z-score > 1.96, i.e., the
highest z-score seen across all the time points, and the associated number of differentially
expressed genes >= 2 were applied. The top 5 pathways are listed in Table 1. The full lists of
pathways that cross the threshold of z-score and the minimum number of DEGs for each
compound are provided in the supplementary data (available on request). Since this study is
focusing on similarities and differences seen during exposure to the set of chemicals in
important toxicity-related biological mechanisms, four pathways representing these biological
mechanisms are also listed in Table 1. The differentially expressed gene list from the cadmium
chloride exposure presented in the previous study (Singh et al. 2021) was also reanalyzed with
ConsensusPathDB to be able to base comparisons on the same set of knowledgebase. Even if
the selected mechanisms are clearly relevant for the adverse effects of the compounds and
sometimes are seen in the highest ranks, many other pathways showed high significance and
are ranked much higher. For example, the first of the selected pathways Nrf2-mediated
oxidative stress (named as the Nrf2 pathway in the pathway library) is listed as rank 242 in the
case of amiodarone exposure. The reason for this is the high number of DEGs resulting in a
high number of selected pathways. Much important information can be extracted from this list
of pathways and the corresponding genes, which can be guiding a full risk assessment of the
compounds. However, doing this full analysis including an evaluation of the relevance of the
suggested pathways for toxicology is out of the scope of this study concentrating on known
stress response pathways.

Arsenic
Rank Pathway Max. Z-score
1 heme degradation (PWY-5874) 32,9
2 Metallothioneins bind metals (R-HSA-5661231) 30,5
3 Response to metal ions (R-HSA-5660526) 27,8
4 Zinc homeostasis (WP3529) 25,7
5 Mineral absorption - Homo sapiens (human) (path: hsa04978) 21,9
43 Photodynamic therapy-induced unfolded protein response (WP3613) 7,7
48 Direct p53 effectors (pS3downstreampathway) 7,2
58 NRF2 pathway (WP2884) 6,6
Cadmium

1 Metallothioneins bind metals (R-HSA-5661231) 40,3

Response to metal ions (R-HSA-5660526) 36,8
3 Zinc homeostasis (WP3529) 34
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4 Mineral absorption - Homo sapiens (human) (path: hsa04978) 25,4
5 Copper homeostasis (WP3286) 18,2
11 Photodynamic therapy-induced unfolded protein response (WP3613) 10,3
16 NRF2 pathway (WP2884) 9
71 Direct p53 effectors (pS3downstreampathway) 52
Amiodarone
1 Metallothioneins bind metals (R-HSA-5661231) 24
2 Celecoxib Pathway, Pharmacokinetics (PA165816736) 22,1
3 Response to metal ions (R-HSA-5660526) 21,9
4 Celecoxib Metabolism Pathway (SMP00644) 21,9
5 Zinc homeostasis (WP3529) 20,2
65 Photodynamic therapy-induced unfolded protein response (WP3613) 8,4
242 NRF2 pathway (WP2884) 3,6
405 Direct p53 effectors (pS3downstreampathway) 2,2
Doxorubicin
1 Direct p53 effectors (pS3downstreampathway) 10,8
2 Validated transcriptional targets of TAp63 isoforms (tap63pathway) 10,7
3 TP53 Regulates Transcription of Cell Cycle Genes (WP3804) 10,1
4 Interleukin-18 signaling (R-HSA-9012546) 9,9
5 p73 transcription factor network (p73pathway) 85
346 Photodynamic therapy-induced unfolded protein response (WP3613) 2,6
411 Metallothioneins bind metals (R-HSA-5661231) 2,3
NA NRF2 pathway (WP2884) NA
Tunicamycin
1 ATF4 activates genes (WP2753) 19,4
2 ATF6 (ATF6-alpha) activates chaperone genes (WP2655) 18
3 Photodynamic therapy-induced unfolded protein response (WP3613) 16,5
4 Transcriptional cascade regulating adipogenesis (WP4211) 14,2
5 asparagine biosynthesis (ASPARAGINE-BIOSYNTHESIS) 12,1
NA NRF2 pathway (WP2884) NA
NA Direct p53 effectors (pS3downstreampathway) NA
NA Metallothioneins bind metals (R-HSA-5661231) NA
Rotenone
1 Vitamin C metabolism (Vitamin C metabolism) 17,1
2 Interleukin-18 signaling (R-HSA-9012546) 16,4
3 Cellular hexose transport (R-HSA-189200) 14,8
4 Vitamin C (ascorbate) metabolism (R-HSA-196836) 14
5 Fructose and mannose metabolism (Fructose and mannose metabolism) 13,6
35 Photodynamic therapy-induced unfolded protein response (WP3613) 6,8
135 Direct p53 effectors (pS3downstreampathway) 4,5
148 Metallothioneins bind metals (R-HSA-5661231) 4,3
239 NRF2 pathway (WP2884) 3,5
GW788388
1 Nevirapine Metabolism Pathway (SMP00642) 26,3
2 Anti-diabetic Drug Nateglinide Pathway, Pharmacokinetics (PA154423659) 249
3 Celecoxib Metabolism Pathway (SMP00644) 22,8
4 Losartan Pathway, Pharmacokinetics (PA164713428) 21,5
5 Fluoxetine Pathway, Pharmacokinetics (PA161749012) 19,2
357 Direct p53 effectors (pS3downstreampathway) 2,3
360 NRF2 pathway (WP2884) 2,1
2155 Metallothioneins bind metals (R-HSA-5661231) -0,1
3090 Photodynamic therapy-induced unfolded protein response (WP3613) -0,1
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Table 1: The top 5 ranked pathways based on the maximum z-score for arsenic, cadmium, amiodarone,
doxorubicin, rotenone, tunicamycin and GW788388 including the list of selected pathways (highlighted in
bold).

The four stress response mechanisms, 1) oxidative stress mediated by the Nrf2, 2) metal
response mediated by MTF1, 3) UPR, and 4) the tumor suppressor p53 signaling pathway are
represented by many entries in CONSENSUSPathDB collected from different pathway
libraries. For example, in the case of doxorubicin, 10 of the 15 first ranks of the z-score sorted
pathway list are related to p53, genotoxicity, or cell death/apoptosis with even more related
pathways in lower ranks. This demonstrates the general importance of the pathway being
covered in all underlying libraries, e.g., “TP53 Regulates Transcription of Cell Cycle Genes”
(WP3804) from WikiPathways (Martens et al. 2018; Slenter et al. 2018) on rank 3 and “p53
signaling pathway - Homo sapiens (human)” (path: hsa04115) from KEGG (Kanehisa et al.
2016) on rank 6. These different representations of the same biological response share a core
of common genes. But many additional genes are added in some pathways representing the
focus of the research group generating these entries, how general or specific a pathway was
meant to be, the evidence used to define gene-pathway relationships, the knowledge at the point
of time, the pathway was created or updated, and how contradicting evidence is treated.
Therefore, conclusions about similarities between compounds extracted from the results will
depend on the chosen pathway to represent the response. To be able to base our further results
on only one pathway per mechanism, we chose the one showing up consistently on high ranks
of multiple components: 1) “Nrf2 pathway” (WikiPathway ID: WP2884, 78 total genes), 2)
“MTF1-mediated metal response” (Reactome ID: R-HAS-5661231, 10 total genes), 3)
“Photodynamic therapy-induced unfolded protein response” (WikiPathway ID: WP3613, 18
total genes) and 4) Direct “p53 effectors” (Pathway Interaction Database:
pS3downstreampathway, 80 total genes). We already showed in the previous publication
(Singh et al. 2021) with the drastic example of “SPINK1 General Cancer Pathway” being a
good representation of metal response that the relevance of pathways should not be judged by
their name only. A milder case is seen here with the UPR pathway being quite specifically
defined but being a better representation of the effects caused by chemical exposure than the
one used in the previous publication.

3.2 Oxidative stress response represented by the Nrf2 pathway

The Nrf2 pathway showed the maximum number of genes differentially expressed for the two
metal compounds arsenic and cadmium. For both, the number of DEGs started increasing
already at 1h. A sustained response until 24h was seen for arsenic exposure whereas the number
of DEGs started decreasing from 8h in the case of cadmium exposure (see Fig 2). Please note
that since the z-score depends on both the DEGs part of the pathway and the total number of
DEGs at the specific time point, we will present both values in the following. The highest
number of DEGs against arsenic exposure were seen at 24h (18 out of 231 DEGs, z-score 5.70),
and for cadmium exposure at 6h (14 out of 81 DEGs, highest z-score 9.02). But the highest z-
score for arsenic 6.61344 was seen at 8h resulting from 13 out of 112 DEGs. Amiodarone,
rotenone, and doxorubicin exposure showed no or few DEGs in the early time points. The
numbers were then steadily increasing in the later time points finally reaching 4, 5, and 8 DEGs
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at 24h, respectively (see also Fig 2). Since the total number of DEGs also increased with time,
the maximum z-scores were found at earlier timepoint (amiodarone: 3.6382 at 6h, 3 out of 21
DEGS; rotenone: 3.52245 at 12h, 3 out of 22 DEGs; tunicamycin: 1.48651 at 6h, 1 out of 11
DEGs; doxorubicin: 0.918559 at 6h, 3 out of 77 DEGs). Tunicamycin and GW788388
exposure showed a maximum of two (HMOX1 3041 and SLC7A11 14100) and one DEG
(SERPINA1 6246), respectively associated with the Nrf2 pathway.
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Fig 2 Overrepresentation profiles for Nrf2 pathway based on ConsensusPathDB for arsenic, cadmium,
amiodarone, doxorubicin, rotenone, and tunicamycin: z-scores are given in the left column, and the corresponding
number of differentially expressed genes in the right column.

Looking at the gene level, MAFF, HMOX1, HSP90AA1, MAFG, NRGI1, NOQI, DNAJBI,
EGR1, HSPA1A, SLC2A1, SLC7A11, and SQSTMI1 were the most commonly occurring
genes overexpressed in response to at least 3 compounds. MAFF was differentially expressed
in response to all compounds except tunicamycin and GW788388. Both probes associated with
this gene, MAFF has the strongest overrepresentation in arsenic (highest LFC of 3.2 and 3.3 at
6h, respectively) and cadmium (highest LFC of 4.3 and 2.7 at 6h, respectively). Most of the
other upregulated genes HSPA1A, DNAJBI, NQOI1, SLC7All, SQSTMI1, HMOXI,
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HSP90AA1, and MAFG seen in three or more compounds also had the highest overexpression
levels for arsenic and cadmium (see Table 2).

An exception is EGR1_ 2068 showing the highest expression value of 2.4 at 8h in amiodarone.
The NRG1 results need to be considered with care since the two available probes showed very
different activity. NRG1 27598 showed the highest overexpression in doxorubicin exposure
with LFC of 5.06 at 24h. But the other probe NRG1 27600 showed no overexpression at all
and the temporal profile looks noisy as compared to the other probe (see Fig 3). Finally,
SLC2A1 14159 showed downregulation for the Nrf2 pathway in all other compounds except
for tunicamycin and cadmium. It showed the highest downregulation of -3.6 at 24h for
doxorubicin exposure. The changes in the controls were almost neglectable compared to the
overexpression levels seen in the metal compounds but made a considerable difference in the
underexpressed genes.
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Fig 3 Temporal profiles of LFCs for the two probes of NRG1 included in the TempO-Seq panel after exposure to
doxorubicin. Values of low significance (adjusted p-value above 0.05) are represented as smaller symbols. The
error bars correspond to the standard error for the fold changes.

Probes Log Fold Changes (LFCs)
Arsenic Cadmium

HSPA1A 3135 4.4 (4h) 5.4 (4h)
DNAJB1_1898 2.0 (4h) 3.4 (4h)
NQO1 26473 3.8 (16h) 2.3 (8h)
NQO1_4668 3.9 (16h) 2.0 (8h)
SLC7A11_14100 5.0 (6h) 3.5 (6h)
SQSTM1_6740 3.0 (20h) 2.3 (6h)
HMOX1_3041 10.6 (8h) 10.4 (8h)
HSP90AA1 3127 2.7 (8h) 3.0 (8h)
MAFG 20735 3.3 (6h) 2.8 (4h)

Table 2: The highest expression values (LFCs) seen for probes associated to Nrf2 pathway in compounds
arsenic and cadmium.

The temporal behavior of the number of DEGs can also be seen in many individual probes.
As an example, we will use the arsenic-cadmium comparison again. While the response of all
the associated genes was sustained or only slightly decreases until 24h in arsenic, the profiles
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of genes in cadmium are going down significantly after the first maximum and in some cases
even to baseline (see Fig 4 ) For example, HMOX1 in the case of cadmium exposure, the
normalized read counts drop from 20,000 to less than 10 % of this maximum (890 counts) by
24h with read counts for controls remaining constant around 20-30.
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Fig 4 Temporal Profiles of Nrf2 pathway related genes: LFCs of the genes expression pattern over time for

arsenic and cadmium are given in the left and right columns, respectively. Values of low significance (adjusted
p-value above 0.05) are represented as smaller symbols. The error bars correspond to the standard error for the
fold changes.
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3.3 Metal response

Metal response and specifically the “MTF1-mediated metal response” pathway from Reactome
(ID: R-HAS-5661231) was identified as the most important pathway according to z-scores for
arsenic, cadmium, and amiodarone. As for oxidative stress, it showed the maximum number of
genes differentially expressed for the metal compounds arsenic and cadmium (see Fig 5). For
both, the number of DEGs started increasing already at 1h and maintained constant high values
from 2h onwards (arsenic: 7 DEGs at 2h to 24 h, highest z-score 30.5283 at 2h; cadmium: up
to 8 DEGs from 4h to 24h, highest z-score 29.3437 at 16h). The profiles of individual genes
showed, as for the Nrf2 pathway, many similarities with the number of DEGs. In arsenic, the
fold changes directly jumped to very high values and then stayed constant while they slightly
decreased after an early first maximum following cadmium exposure (see Fig 6).
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Fig 5 Overrepresentation profiles for MTF1 pathway based on ConsensusPathDB: z-scores are given in the left
column and the corresponding number of differentially expressed genes in the right column.

Amiodarone and doxorubicin showed an increase in the number of DEGs at slightly and much
later hours compared to the metal compounds, respectively (see Fig 5). This difference in the
temporal behavior also becomes obvious when looking at the time point when the highest z-
score is reached with 24.0685 at 8h due to 6 out of 20 DEGs and 2.33096 at 20h due to 3 out
of 292 DEGs for the amiodarone and doxorubicin, respectively. The profile of amiodarone with
the two maxima was caused by the fact that the LFCs of the genes were very close to 2 and fell
all below this cut-off at 12 and 16h (see Fig 6). However, the profiles especially of amiodarone
and cadmium looked very similar not considering the absolute values of the overexpression
levels. In contrast, the increase in the number of DEGs in doxorubicin was not caused by an
increased expression but by many genes showing underexpression (see also Fig 6) and thus,
had to be attributed to a different mode of action. Doxorubicin was therefore seen to be very
different as compared to other compounds.

Rotenone exposure results in only 1 DEG at 8h and 2 at 20h but because of the low overall
number of DEGs, this still results in a maximum z-score of 4.30596. GW788388 and
tunicamycin do not show any DEG at any time point related to this pathway.
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Fig 6 Temporal Profiles of MTF1 pathway related genes: Values of low significance (adjusted p-value above
0.05) are represented as smaller symbols. The error bars correspond to the standard error for the fold changes.

3.4 Unfolded protein response

For the UPR pathway, ASNS 12040, ATF3 409, CALR 943, DDIT3 16736,
PPPIRI5A 14098, and TRIB3 7337 were the most differentially expressed genes activated in
response to our set of chemicals (seen in at least 3 compounds). TRIB3 7337 and
DDIT3 16736 showed the strongest overexpression in arsenic (highest LFC 5.5 at 6h, highest
LFC 4.46 at 6h) and tunicamycin (highest LFC 4.8 at 12h, highest LFC 4.5 at 12h).
PPPIRISA 14098 showed overexpression in all compounds except for tunicamycin,
doxorubicin, and GW788388. The highest expression value was observed in rotenone (highest
LFC of 3.1 at 24h). ASNS 12040 showed the highest expression in arsenic (highest LFC of
4.16 at 6h) and tunicamycin (highest LFC of 3.5 at 12h) and was also seen in amiodarone.
ATF3 409 overexpression was observed in all compounds other than tunicamycin and
GW78388. It showed the highest expression value in doxorubicin (highest LFC of 4.01 at 20h).
Finally, CALR 943 showed the highest expression value in rotenone (highest LFC of 2.9 at
6h) and was also seen in doxorubicin and tunicamycin. The largest number of DEGs at a
specific time point were 7 for cadmium (6h), 8 for tunicamycin (16h), 6 for arsenic (6h and
8h), 4 for amiodarone (24h), 5 for rotenone (24h) and 3 for doxorubicin (20h and 24h).
GW788388 didn’t show any DEG at any time point related to this pathway.
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3.5 P53 signaling pathway

HSPATA 3135, ATF3 499, CASP1 26966, RGCC 16894, GDF15 18329, PMAIP1 5221
and GADDA45A 2569 were the p53 signalling pathway related genes most commonly
influenced by the set of chemicals (at least 3 compounds). GDF15 18329 was differentially
expressed in all compounds other than GW788388. It showed the strongest overexpression in
doxorubicin (highest LFC of 6.4 at 16h) and arsenic (highest LFC 5.5 at 6h). GADD45A 2569
was differentially expressed in all compounds except for cadmium, tunicamycin, and
GW788388. GADD45A 2569 and PMAIP1 5221 showed the highest expression in arsenic
(highest LFC 2.8 at 24h, the highest LFC 3.5 at 8h, respectively) and doxorubicin (highest LFC
3.3 at 20h, the highest LFC 4.3 at 20h, respectively). RGCC 16894 showed the highest
expression in doxorubicin (the highest LFC 4.5 at 24h) and cadmium (the highest LFC 3.5 at
4h). The maximum number of differentially expressed genes for this pathway resulted from
doxorubicin exposure with 21 DEGs at 16h. Arsenic showed the highest number of DEGs at
24h (12 out of 231 total DEGs; z-score 2.84) and maintained a high number of DEGs until 24h.
Cadmium showed the highest number of DEGs at 4h (9 out of 78 total DEGs; z-score 5.29),
which is followed by a strong decrease. Amiodarone and rotenone showed an increase in the
number of DEGs at the later hours with the highest number of DEGs (4 out of 79 total DEGs;
6 out of 89 total DEGs) at 24h. Amiodarone and rotenone had not more than 2 DEGs at any
time point and GW788388 and tunicamycin only showed 1 DEG.

3.6 Gene profile of GW788388

GW788388 only showed a maximum of 1 differentially expressed probe associated with any
of the pathways discussed above. CONSENSUSPathDB also didn’t point to any other toxicity
related pathway since all showed only a very low number of DEGs associated with them.
Taking into account what is known about the compound (Petersen et al. 2008), the differential
expression of WT1 17358, TXNIP 28030, CYP24A1 11891, and SERPINE1 6253 (LFC
and normalized count profiles are given in Fig 7) can be associated to renal fibrosis.
WT1 17358 and TXNIP 28030 showed upregulation (highest LFC of 2.1, 3.6 respectively)
while CYP24A1 11891 and SERPINE1 6253, showed downregulation (LFC of -2.9 and -2.1
respectively).
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Fig 7 Temporal profiles of the TGF-f signaling pathway related DEGs on exposure to GW788388: The LFCs in
column 1 (left) and the corresponding RCs of the treated () and control samples (0) are given in column 2 (right).
Values of low significance (adjusted p-value above 0.05) are represented as smaller symbols. The error bars
correspond to the standard deviation and the standard error for the normalized counts and fold changes,
respectively. Interpolation lines were generated via the curve fitting procedure described in the material and
methods
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4. Discussion
4.1 Expression profile of GW788388

GW788388 was designed to be a potent and selective transforming growth factor-p (TGF-)
receptor kinases inhibitor to prevent kidney fibrosis and has shown no toxicity and adverse
events so far (Petersen et al. 2008). Our data also showed that exposure to this compound didn’t
trigger any of the major stress responses discussed in detail below for the other compounds.
Therefore, we will discuss this compound first by looking at the small number of genes, for
which differential expression was seen, but then neglect it in the remaining part of the
discussion since the focus of this paper is on the similarity of responses for toxicology relevant
pathways.

Despite, having important functions like tumor suppression, immune-modulatory, etc., TGF-3
which is an anti-inflammatory cytokine has been linked to causing fibrosis in the injured
kidney. It promotes fibrosis by mediating the epithelial-to-mesenchymal transition
(EMT) (Petersen et al. 2008; Nieto et al. 2016). EMT leads the epithelial cells to transit into
the mesenchymal cells like myofibroblasts thereby disturbing the tubular basement membranes
and enabling the cells to possess a greater ability for migration and invasion and, even if
required during embryogenesis and wound healing, also paves the way to renal fibrogenesis
(Park et al. 2007; Nieto et al. 2016).

Based on the chosen adjusted p-values and LFC thresholds, GW788388 exposure showed only
16 differentially expressed genes. Out of these, 4 genes, WT1, TNXIP, CYP24Al, and
SERPINE], are related to the target pathway TGF-f (Qi et al. 2007; Ma and Fogo 2009; Sakairi
et al. 2011; Miller-Hodges and Hohenstein 2012; Hu and Zhang 2018; Xu et al. 2018). Our
data showed overexpression of the genes WTI1 and TXNIP after longer exposure to
GW788388, which was the result of decreasing read counts of these genes in the control
samples (see Fig 7) and a slight increase in the treated samples. This agreed with what is
known from the literature. Studies have reported that a decrease in the levels of WT1 mRNA
and protein levels in podocytes is due to elevated levels of TGF-B and lead to
glomerulosclerosis, which is a characteristic of renal fibrosis following an increased activation
of the EMT mechanism (Sakairi et al. 2011; Miller-Hodges and Hohenstein 2012). TGF-f3 has
also been shown to negatively regulate the expression of TXNIP (Qi et al. 2007). However, it
has to be noted that the fold changes need to be considered with caution since they can only be
considered significant at the 20h time point according to the adjusted p-values. CYP24A1 and
SERPINE1 showed under expression. Literature studies suggest that SERPINE1 aka PAI-1
and CYP24A1 both are expressed under the influence of the TGF-f signaling pathway and lead
to an increase in EMT-related gene markers (Ma and Fogo 2009; Hu and Zhang 2018; Xu et
al. 2018). Again, the fold changes were a result of changing levels of the genes in the control
samples (see also Fig 7) with the increase speaking for some kind of activation of the TGF-3
signaling pathway in the undisturbed cells, which is inhibited by GW788388.
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Blocking of the TGF-f signaling pathway has not shown any short-term effects and even
lifetime blocking did not cause adverse side effects in mice (Isaka 2018). This explains why
our single-exposure, 24h experiments showed also mainly the wanted effect on genes
associated with EMT following blocking of the TGF-f pathway. However, this does not
exclude the unacceptable toxicity of continuous suppression of TGF-B with its highly
pleiotropic function as cautioned in the review by Isaka (Isaka 2018). The other 12
differentially expressed genes not related to the TGF- pathway were mostly found to be
associated with metabolism pathways. The only exceptions were FSTL3, TF, SERPINA1, and
ALB, which were associated with the pathways “Post-translational protein phosphorylation”
and “Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like
Growth Factor Binding Proteins (IGFBPs)” based on CONSENSUSPathDB. None of the
genes have been directly linked to any adverse effect and, thus, we saw no evidence for toxicity
of GW788388 from the results of our study.

4.2 Oxidative stress and metal response

Oxidative stress is one of the most important mechanisms leading to adverse effects. This
becomes easily obvious, besides the immense amount of scientific literature linking oxidative
stress to the adversity of chemicals, by looking at the AOP-Wiki (https://aopwiki.org) as the

primary source of cumulative information on curated adverse outcome pathways. Using the
search term “oxidative stress” already resulted in 12 key events (KE) having the concept in
their title and being part of 24 adverse outcome pathways (AOPs) (access date 5 August 2021).
Full text search in the KE descriptions resulted even in 30 KE and searching for other synonyms
will give even more results. Oxidative stress response, which is activated to remove excessive
ROS, is mediated by the Nrf2 transcription factor. Nrf2 is responsible for maintaining cell
homeostasis and aids in the expression of antioxidant enzymes encoding genes as well as pro-
oxidant genes (Cullinan et al. 2004; Baird and Dinkova-Kostova 2011).

“Nrf2 pathway” pathway as defined in WikiPathways under entry ID WP2884 (Martens et al.
2021) was identified as an important pathway based on expression levels and the number of
DEGs associated with this pathway in 5 of the studied compounds (arsenic, amiodarone,
rotenone, doxorubicin, and tunicamycin) as well as cadmium chloride reported in the previous
publication (Singh et al. 2021) and used here for comparison. The highest expression levels of
the associated genes were seen inarsenic and cadmium. Similar to cadmium,
the temporal profiles of the differential expressed genes (DEGs) on arsenic exposure showed
very early and extremely high activation levels. Arsenic induces oxidative stress pathways by
forming ROS like superoxide anion (O2e—), hydroxyl radical (*OH), hydrogen peroxide
(H202), singlet oxygen (102), and peroxyl radicals (Flora 2011; Jomova et al. 2011).
Superoxide anions are formed in the arsenic-triggered deformed mitochondria and are
converted to other reactive species. These species are then responsible for the interaction with
various other molecules causing oxidative stress, DNA damage, and signaling pathways (Flora
2011; Jomova et al. 2011). Arsenic activated the p53 pathway to cause DNA damage,
perturbations in the cell cycle, and apoptosis (Yin and Yu 2018).
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However, in arsenic the response was sustained until 24h but all profiles start going to baseline
level by 24h in the case of cadmium exposure (Fig 4). The only exception to this difference in
behavior was HSPA1A, which was going down after the first maximum in both exposure
scenarios. This gene belonged to the heat shock proteins like HSP6A discussed in detail in the
earlier publication (Singh et al. 2021), which were originally characterized by their induction
in thermal stress, but other stressors have also been identified, which may or may not be related
to heat generated by intracellular events. Therefore, this continuous upregulation could be
caused by its involvement in other stress pathways, like UPR (Terrab and Wipf2020) and DNA
repair (Boysen et al. 2019), and only partly related to oxidative stress.

The similarities and differences in the behavior of the two compounds could also be seen in the
number of DEGs associated with the Nrf2 pathway, which kept increasing with time of
exposure to arsenic while it went up to a maximum but then started going down after 8h in the
case of cadmium (see Fig 3). This is translated to z-scores, which showed high significant
overrepresentation of the pathway (significance cutoff for overrepresentation defined by a z-
score >= 1.96) over the complete period for arsenic but started going down from around 12h in
cadmium (see also Fig 3).

As discussed in detail in the previous paper (Singh et al. 2021) “MTF1-mediated metal
response” pathway (R-HAS-5661231) ( “MTF1-mediated metal response ". Reactome, release
79, https://reactome.org/content/detail/R-HSA-5661231 with StableID: R-HAS-5661231 (13
August 2021)) became the most important pathway at later hours during cadmium exposure as
a long-term defense against metal ion. The same holds for arsenic. The response was sustained
at high levels until 24h in response to both compounds as could be seen either by looking at

individual gene profiles in Fig 6 or the z-scores and corresponding number of DEGs in Fig
5. Interesting to note is that also the three organic compounds inducing oxidative stress,
amiodarone, doxorubicin, and rotenone, discussed below also showed the metal response
pathways significantly.

In the previous paper (Singh et al. 2021), we argued that the sustained response of MTF1-
mediated stress response pathway and the increase in metallothionines and metal transporters
in cells reduces the free cadmium levels to a degree low enough to not cause oxidative stress
and, thus, the Nrf2 pathway can return to normal levels. In contrast, the remaining arsenic
levels even after full activation of the metallothionein production are still producing high levels
of oxidative species, to which the cells react by keeping the Nrf2 pathway up during the
complete time. Further investigations are needed to see if higher cadmium levels also lead to
such an overload of the MTF1-mediated stress response pathway and the need for support from
other stress response pathways.

For the two compounds, arsenic and cadmium, and the two pathways Nrf2 and MTF1 discussed
so far, the gene profiles and the profiles of the z-scores resulted in the same conclusions
regarding the similarities and differences of the time evolution of the most important
mechanism of actions. However, issues with the z-score could also already be seen, which
became even more severe for the organic compounds. In the previous paper (Singh et al. 2021),
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the seemingly decrease in the significance of the MTF1-mediated stress response pathway
between 4h and 8h was already discussed. This was exactly the time when the corresponding
genes were reaching their maximum level and also the number of DEGs was not different from
the later time points showing higher z-score. Therefore, the reduction in z-score was not a result
of changes in this pathway but was caused by the other pathways becoming important around
this time, like Nrf2, but was going down to baseline later. Since the total number of DEGs
across all pathways had a strong influence on the z-score, the MTF1-mediated stress response
pathway became less important. While this was desired when comparing different pathways
for one exposure scenario, i.e., one compound at one specific time point, since here the relative
importance was relevant, it was less optimal to follow the behavior of one pathway in multiple
exposure scenarios, either changing the compound, the time point, or the concentration. This
became even more obvious when looking at the z-scores for arsenic exposure. MTF1-mediated
stress response pathway seemed to lose significance after its peak at 2h. However, the number
of DEGs stayed the same and the expression levels of the DEGs even doubled from 2h to 4h.
Therefore, we concluded that this pathway stayed equally important over the complete period
for both arsenic and cadmium in contrast to the Nrf2 pathway in cadmium, which became less
important at later times even if the z-score profile looked very similar to the one of the MTF1
mediated stress response pathway in arsenic.

A second possible issue with z-scores was the high value at 1h in the Nrf2 pathway profile of
arsenic even if the number of DEGs associated with this pathway was only 1. Even if this fitted
into the picture from the analysis of the time series that this pathway was extremely relevant,
judging the relevance of a pathway just from this one-time point and especially when
comparing to other compounds or time points could be misleading. The reason is the very low
number of DEGs in corresponding samples, which led to the high z-scores even with very few
DEGs for a specific pathway. Similar to the conclusion given in the previous paper, that LFCs
are mainly useful to identify interesting genes but that conclusions should be based on or at
least backed up by normalized read counts, the z-scores should be used to identify pathways,
but conclusions need to be based on the number of DEGs or even better analysis of the
corresponding genes since the latter is less influenced by cutoffs used for the fold changes and
p-values. Therefore, we will use gene expression profiles as the primary information to guide
the discussion and only reference z-scores from time to time mainly to demonstrate these issues
even more.

Nrf2 pathway related genes were also seen to be activated in the organic compounds namely
amiodarone, doxorubicin, rotenone, and tunicamycin as presented in Fig 8 in the form of a
heatmap. The biggest difference however was that HMOXI, strongly overexpressed in the
metal compounds, was seen to be weakly expressed in the organic compounds or not at
all. Even if more data is needed to confirm this, the results gave some evidence that the details
of the oxidative stress response are different in metal-containing and organic compounds or
that HMOX1, besides related to oxidative stress, is also relevant for the metal ion response.
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Fig 8 Heatmap representing LFCs of Nrf2 pathway related genes: The shade of red colour represents
overexpression and the shade of green color underexpression.

Amiodarone and doxorubicin showed the highest overrepresentation of the Nrf2 pathway with
a very similar expression pattern of the related genes as the metal compounds. Based on the
study performed by Chakraborty et al.(Chakraborty et al. 2014), the kidney is affected by
amiodarone, which releases iodine triggering the production of ROS and ultimately leading to
oxidative stress. Doxorubicin is also known to target the proximal tubule cells leading to acute
renal failure. It leads to activation of oxidative stress pathway, ROS production, and apoptosis
as a result of inflammation (Carvalho et al. 2009; Abdelmeguid et al. 2010; Afsar et al. 2020).
Especially the high expression levels of MAFF, MAFG, and partly SQSTM1 and some
downregulation of SLC2A1 seemed to be characteristic of the oxidative stress causing
compounds. Larger differences were seen, besides HMOX1 discussed above, for DNAJB1 and
HSP90AAT1 (only differentially expressed in the metal compounds), NQO1 (not differentially
expressed in amiodarone), and SLC7A11 (not differentially expressed in doxorubicin).

One interesting case is NRGI1. One of the probes, NRG1 27598, showed the highest
overexpression seen for Nrf2 pathway related genes for doxorubicin, especially at late hours.
The temporal profile also showed a steady buildup of the signal over time, which increased the
confidence that this signal was associated with a real cellular mechanism. However, the other
probe, NRG1 27600, didn’t show this increase in the signal at the end of the period and
had a quite noisy time profile across all compounds with absolutely no correlation to the other
probe of the same gene. This different behavior of the two probes will need further
investigation in the future.

Tunicamycin showed almost no change in the expression levels of Nrf2 pathway related
genes (see Fig 8). Especially MAFF as a possible biomarker across all the other oxidative
stress-causing compounds discussed above was not influenced and MAFG showed only a slight
increase over baseline. The most overexpressed Nrf2 pathway related genes are NRG1, with
the issues described above, and SLC7A11, which was only seen in the metal compounds but
not the other organic compounds. Therefore, our results suggest that oxidative stress is not a
major response to the adversity of tunicamycin.
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Rotenone being used widely as a pesticide has been banned currently in many countries due to
its toxic character (Heinz et al. 2017). It causes severe oxidative stress due to excessive
production of ROS, glutathione, and malonaldehyde, andby blocking the superoxide
dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in the kidney (Jiang et al.
2017). Despite this strong literature evidence, rotenone showed relatively low deregulation of
the Nrf2 pathway genes in our experiments. Relevant genes were coming up only close to the
maximum exposure times. MAFF, MAFG, HSP90AA1l, HSPA1A, NRGI 27598, and
SQSTMI1 showed significant upregulation and SLC2A1 downregulation in the last 1 to 3 time
points (16h, 20h, and 24h) with most of them steadily increasing/decreasing in this period.
Therefore, by looking at the time profiles, it can be concluded that
rotenone also caused oxidative stress in iPSC-derived kidney cells but that the effect was
starting slower than in the other compounds and the stress response was probably not reaching
its full activation levels in the first 24h. When compared to the metal compounds, which
already showed quite high overexpression or even the highest values for most genes at 2h or
4h, the strong increase in the signals of the organic molecules is, in general, shifted to later
time points. EGR1 in amiodarone started to increase at 4h as one of the earliest signals in any
organic compound, while the other genes showed increased overexpression for this
compound from 6h on. 6h was also the time point when the changes start to occur in
doxorubicin. Finally, an observation in all the organic compounds, already discussed for
rotenone above, was that the highest differential expression levels for many of the Nrf2
pathway related genes were seen at 24h which is the maximum exposure time, which suggests
that the maximum activation of the pathway might be even later, and longer exposure times
would be needed to show the full effect.

As the last point of the discussion of the Nrf2 pathway, we wanted to check if it would have
been possible to automatically identify this stress response as a major mechanism for
amiodarone, rotenone, and doxorubicin just using the z-score measure without any additional
knowledge from literature about the compounds. The z-score temporal profiles are shown
in Fig 2. Compared to the z-scores of the metal compounds also shown in the same
figure, values of the organic compounds were very low with maximum values below 4 for
amiodarone and rotenone and even below 1 for doxorubicin. This would suggest that oxidative
stress was of low importance in doxorubicin since the corresponding response pathway was
not significantly overrepresented (significance limit = 1.96). At 24h, the z-score was negative
for doxorubicin, representing an underrepresentation in our samples, even when the number
of DEGs was higher (doxorubicin: z-score = -0.31 resulting from 8 DEGs) as compared to the
other compounds namely amiodarone and rotenone (z-score=1.63 resulting from 4 DEGs, z-
score=2.08 resulting from 5 DEGs, respectively) at this time point and around 50% and 70 %
of the maximum seen in arsenic and cadmium, respectively. Tunicamycin, where
oxidative stress was less relevant than in doxorubicin, showed very similar low z-scores but
even a higher maximum of around 1.49 at 6h. This could be reasoned by the extreme influence
of the calculated z-scores on the total number of differentially expressed genes compared to
the overall number of measured genes. Doxorubicin showed 399 DEGs at 24h, which
was around 14 % of the total genes covered by the TempO-Seq panel. For pathways like the
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Nrf2 pathway, with which many genes were associated (76 genes of the TempO-Seq panel) but
only a small number was influenced by toxins, this resulted in extremely low z-scores even if
a reasonable number of genes of the pathway were differentially expressed. Therefore, this
pathway was at a low rank in the list of relevant pathways for this compound. This first seemed
to contradict the literature evidence and also our discussion above. However, the large number
of DEGs was a sign that many processes in the cell were adversely affected and multiple
defense mechanisms were activated with the p53 pathway and related mechanisms like DNA
damage, genotoxicity, and apoptosis being on the highest ranks according to z-score. As we
discuss below in the section on the p53 pathway, the experiments can thus correctly identify the
adversity of the compound and its mode of action, in which oxidative stress plays only one of
the many roles. However, it also showed that the z-score might only be useful
to judge importance in one specific exposure scenario, but different scenarios should not be
compared based on absolute values. In any case, detailed analysis should be performed on all
values used as input for the z-score calculation and especially the number of totals and
pathway-specific DEGs. Additionally, a detailed analysis is also needed for pathways of most
importance, also the underlying LFC, and raw data to evaluate what genes, pathways, and
mechanisms are relevant for assessing the risk of chemical compounds.

4.3 Unfolded protein response

Protein misfolding or (partial) unfolding in the ER is an often-seen adverse side effect of drugs
and chemicals. To reduce such ER stress, restore its homeostasis, and also maintain a balance
between the disrupted ER and stress of protein folding, the UPR cell signaling system is
activated (Li et al. 2011; Foufelle and Fromenty 2016; Guha et al. 2017). Many recent studies
have also revealed the importance of the UPR pathway in full-body physiology and in different
disease mechanisms including inflammation, neurodegeneration, and organ toxicity (Cornejo
et al. 2013; Foufelle and Fromenty 2016; Lindholm et al. 2017). Two pathways are included
in CONSENSUSPathDB describing UPR, “Unfolded Protein Response (UPR)” (R-HSA-
381119) as defined by the Reactome Pathway library (Jassal et al. 2020) and “Photodynamic
therapy-induced unfolded protein response” (WP3613) from WikiPathways (Slenter et al.
2018; Martens et al. 2021). It is interesting to note that only four genes
(ATF6, EIF2AK3, ERN1, and HSPAS) from the TempO-Seq panel were shared between the
pathways. This little overlap resulted in very different results for the two pathways
with WP3613 identified as one of the most important pathways in4 out of 6 studied
compounds while R-HSA-381119 was classified as of low significance for all the tested
molecules (a maximum of two genes associated with R-HAS-381119 were found in
rotenone). This showed, as already highlighted in the earlier publication (Singh et al. 2021),
how important the choice of the pathway library is and the advantage of using the
CONSENSUSPathDB which combines multiple of these libraries. However, we also need the
mention the influence of the gene selection in the targeted TempO-Seq panel. Only 6 from the
22 genes associated with R-HSA-381119 are in the panel while there are 17 from the 28 genes
associated with WP3613.
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Fig 9 Heatmap representing LFCs of UPR pathway related genes: The shade of red color represents the
overexpression and the shade of green color under expression.

Based on R-HSA-381119 identified as the relevant UPR pathway for our study, related genes
were overexpressed in the organic compounds amiodarone, rotenone, and tunicamycin as well
as the metal compounds arsenic and cadmium chloride (see Fig 9). Arsenic and cadmium
showed again very high overexpression levels and the many DEGs using our selection
criteria. The list of DEGs also shared 6 genes demonstrating a common mode of action (see Fig
10). Similar to the Nrf2 pathway in cadmium, the signals were going down with longer
exposure for both metal compounds providing evidence that the activation of the MTs is
reducing oxidative as well as ER/unfolded protein stress. This agrees with existing knowledge
that arsenic induces UPR triggering eukaryotic translation initiation factor 2 subunit o
(eIF2a) mediated induction of ATF4 and processing of ATF6 (Weng et al. 2014). ATF4
induction could be directly seen in our data even if the levels only reached the LFC cutoff
criteria at one time point (6h). ER stress can either be directly induced by arsenic as proven by
many studies (Ramadan et al. 2009; Jacobson et al. 2012) or UPR can be induced by the
overproduction of ROS in mitochondria by making the respiratory chain process ill-functioned
(Paul et al. 2008; Vineetha et al. 2015; Foufelle and Fromenty 2016), which then can lead to
misfolding of proteins in the ER (Inagi 2009). The latter process was verified in our data by
the correlation in the activation of the Nrf2 and UPR pathways.
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Tunicamycin showed an even larger number of DEGs associated with this pathway (8 DEGs
at 16h compared to 6 genes for arsenic and 7 genes for cadmium both at the 6h time point) and
similar expression levels. Thus, tunicamycin is the strongest organic introducer of UPR (at
least in the chosen concentrations). Tunicamycin is a drug well-known to induce ER
stress leading to acute renal tubular necrosis by directly attacking the protein glocalization
leading to many unfolded proteins (Guha et al. 2017; Mohammed-Ali et al. 2017). Overlap of
DEGs with the metal compounds as well as the two other organic compounds triggering UPR,
amiodarone, and rotenone, was quite high with at least 3 common genes. This was quite
remarkable since amiodarone had only 4 DEGs and rotenone 5 DEGs associated with this
pathway and therefore showed overlaps of 75% and 60%. Amiodarone is well-known to
induce ER stress in thyroid cells triggering the unfolded protein response (UPR) (Lombardi et
al. 2015) and has also been linked to renal failure due to hypothyroidism by increasing the
glomerular filtration and renal plasma flow levels (Luciani et al. 2009). Exposure to rotenone
was shown to cause ER stress due to ROS formation in the ER. UPR activation can reduce this
stress but prolonged exposure leads to the apoptotic death of neurons to avoid further damage
to other nearby cells (Goswami et al. 2016).

In contrast, doxorubicin only showed overexpression of a single gene, ATF3, of the UPR
pathway over a longer period. ATF3 is also known to play apart in stabilizing the p53
signaling pathway in the event of DNA damage (Yan and Boyd 2006). Therefore, we would
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argue that doxorubicin is not causing ER stress and that the overexpression of this gene is not
related to UPR. This is strengthened by the fact that ATF3 is also of lesser relevance for
tunicamycin, which showed strong UPR but low p53 pathway activation (see below). The
exclusion of doxorubicin from the UPR-causing compounds became even more evident when
looking at the other UPR related gene, TRIB3 was seen to be downregulated due to doxorubicin
exposure while it was upregulated in the rest of the compounds. Taking all discussions so far
and the additional information from the DEG overlap into account, overexpression of TRIB3
and DDIT3 can be looked upon as good biomarkers for UPR in the iPSC-derived PTL model
since they are seen in all compounds with clear links to UPR as reported in the literature but
not in doxorubicin as the only UPR-inactive compound. TRIB3 has been reported in the
literature to be upregulated in response to UPR and ER stress andis involved
in managing many events like the sustainability of the UPR, promotion of homeostasis, etc.
(Nicoletti-Carvalho et al. 2010; Mondal et al. 2016) In the event of stress, one of the ER
stress sensor PERK leads to the translocation of transcription factor ATF4 which in turn
activates DDIT3. The activation of DDIT3 has also been linked to the upregulation of the
TRIB3 (Rashid et al. 2015).

ASNS and PPP1R15A are other candidates even if the expression levels didn’t reach the LFC
threshold in all compounds. PERK was reported to lead, besides DDIT3 activation described
above, to the activation of ASNS, which along with other ER stress response elements form a
responsive sequence to ER stress (Gjymishka et al. 2009). PERK-induced translocation of
ATF4 also leads to the direct activation of PPP1RI15A, which in turn actsin the
proper reestablishment of the protein synthesis disrupted during ER stress (Young et al. 2016).
In contrast, ATF3 can not be used as discussed above and the relationship between CALR and
UPR is not clear from our results since it is seen in 4 UPR-active compounds but show no
differential expression in arsenic.

Besides the similarities described so far, the main difference between the expression profiles
was seen in the activation time of the genes. Similar to the Nrf2 pathway, the genes reached
high activation levels already very early after exposure to the two metal compounds (4h to 6h
time point). As already discussed above, the levels were then decreased over time. Buildup in
tunicamycin and amiodarone was slightly delayed starting at around 6-8h and reaching
maximum overexpression at 12-16h. After that, the levels were decreasing probably due to
metabolic deactivation. Rotenone showed even longer delayed UPR expression levels starting
to rise at 16h and some of them probably did not reach their full activation levels in the first
24h.

4.4 P53 signaling pathway

The p53 transcriptional network is one of the most important responses to stresses that can
disrupt the fidelity of DNA replication and the cell division process (Harris and Levine 2005).
Cellular homeostatic mechanisms that regulate DNA replication, chromosome segregation, and
cell division are affected by the intrinsic and extrinsic stress signals and lead to the activation
of the p53 transcriptional network (Vogelstein et al. 2000). The ability to trigger cell cycle
arrest and ultimately cell death by apoptosis makes the p53 signaling pathway the most
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important preventive cancer factor and tumor suppressor and activation of this pathway speaks
for the adversity of a chemical compound (Chen 2016). As already mentioned above, “Direct
p53 effectors” (pS3downstreampathway) defined in Pathway Interaction Database (Schaefer et
al. 2009) was identified as the most relevant pathway for doxorubicin based on z-scores and
also included most genes relevant for the evaluation of p53 activation caused by chemical
exposure, we will base all following results also for the other compounds on this pathway
definition.

When analyzing the temporal profiles of the p53 pathway-related genes during doxorubicin
exposure, it is interesting to note that the increase started earlier (as early as at the 2h or 4h
time point) than the oxidative stress response (6h or 8h time points or even later) (see Fig 11 in
comparison to Fig 8 above). This is in line with a study reporting the activation of p53 as early
as 6h after exposing H9¢2 cardiomyoblasts to the doxorubicin (Sarddo et al. 2009).

Doxorubicin increases the levels of inflammatory factors TNF-a and interleukin increasing the
renal matrix and glomerular sclerosis in the kidney. However, it has also been shown that it
damages the renal cells indirectly by lipid peroxidation (Liu et al. 2016), which is mediated
by the Nrf2 pathway (Dodson et al. 2019), in glomerular epithelial cells leading to functional
damage in protein and glucose metabolism (Liu et al. 2016). The increase in the levels of p53
protein happens due to an increase in the inflammatory factor TNF-a in response to damage to
DNA (Ladiwala et al. 1999). Activation ofthe p53 gene in response to DNA damage
by doxorubicin has also been seen as one of the early events in cardiotoxicity and may regulate
the oxidative stress (Sardao et al. 2009).

Arsenic, cadmium, amiodarone, and rotenone all also showed the p53 pathway as an important
response to the exposure however in lower ranks according to z-scores with arsenic and
amiodarone with the highest (12) and the lowest (4) number of DEGs associated to the pathway
at any specific time point. The temporal profiles were quite comparable to the ones of Nrf2
pathway related genes providing some evidence of a direct link between oxidative stress and
DNA damage in form of a correlation between the two responses (see Fig 11). Oxidative stress
was, e.g., already reported to be mediating the arsenic-induced, p53-mediated apoptosis (Liu
et al. 2003). It should also be noted that the evidence for cadmium activating the p53 pathways
is much stronger when the conclusions are based on the CONSENSUSPathDB compared to
the transcription-factor-based association used in the previous publication (Singh et al. 2021)
with now 9 related DEGs compared to the 4 reported before. Finally, tunicamycin showed a
weaker but overall consistent activation of p53 genes. This is consistent with reports that
tunicamycin induces ER stress, which triggers UPR to cause the elevation of p53 gene levels
by activating another stress response pathway, NF-kB, and finally resulting in cell death (Lin
et al. 2012). The lower levels seen in our experiment for all but 1 gene not reaching the LFC
threshold for our DEG definition can be seen as a sign that UPR probably with some help from
p53 can counter the toxic effects of tunicamycin under the applied concentrations and the cell
has not relied on more severe defense mechanisms including its death to protect the organ or
organism.

&9



compound LFC

M srsenic M cadmium B amiocdarone M doxorubicin M rotenone Il tunicamycine 25 -
10 -5

o
[=]
om
=

compound

- 4
ATF3_499
CASP1_26966
] GADDA45A_2569

N | GDF15_18329
= ] HSPA1A_3135

PMAIP1_5221

[ RGCC_16894

Fig 11 Heatmap representing LFCs of p53 pathway related genes: The shade of red colour represents the
overexpression and the shade of green color under expression.

Looking at the gene overlap in the expression profiles related to p53 (see Fig 12) reveals that
there was a clear subset of genes relevant for the p53 response to adverse chemicals, a
phenomenon already seen for UPR. From the 79 genes associated with the pathway, a
maximum of 21 were differentially expressed (doxorubicin exposure for 16h, supplementary
data available on request). As expected, more genes were activated by more active chemicals
like doxorubicin and arsenic but the overlap with the DEGs of the less potent chemicals was
almost perfect. Doxorubicin with the largest number of DEGs had an overlap of 11 genes with
arsenic and 5 with cadmium, amiodarone, and rotenone. All these five compounds had 3 genes
in common, ATF3, GDF15, and RGCC, also showing the highest overexpression levels. The
first two also showed an increased expression level in the tunicamycin exposure even if the
levels didn’t reach the LFC threshold as already discussed above. Links to these genes are
already evident in the literature. GDF15 has been seen to be upregulated both at gene and
protein levels by the activated p53 in response to doxorubicin in bladder carcinoma cells (Tsui
et al. 2015). The p53 triggers high expression RGCC in many cancerous cells and has
been involved in the cell cycle process specifically G1/S and G2/M phase transitions (Counts
and Mufson 2017).

However, if these genes can be used as biomarkers for stresses that can disrupt the fidelity of
DNA replication and cell division in the IPSC-derived kidney model cannot be judged since
there is not a negative control compound available for which these genes should not show
any change in the expression.
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represent the number of DEGs found common between different sets of compounds. The dots joined with the
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5. Conclusions

This study validates the usefulness of the combination of the IPSC-derived kidney model
with targeted transcriptomics (TempO-Seq) analysis at multiple time points as a tool for
identifying mechanistic causes for adverse effects of chemicals as proposed in (Singh et al.
2021). Looking at the temporal profiles of genes related to major stress response pathways
demonstrated that adversity not only differs concerning its severity but also in the timeframe
this adversity is seen. Cadmium, for example, showed a very strong oxidative stress response
at early time points but this went down quickly again. In contrast, expression levels of Nrf2
pathway related genes only reached high levels at the longest exposure times for doxorubicin,
known to cause high levels of ROS, and these levels might even go higher if the experiment
would be extended to include longer exposure times. Therefore, without taking the time
parameter into account, i.e., just using one defined exposure time, the full effect would not be
seen for one or both compounds, or activation of the Nrf2 pathway might be completely missed.
For example, when only using the 24h time point as often done in transcriptomics
studies, oxidative stress would be not be identified as a major stress response due to cadmium
exposure.

Regarding the specific chemicals used as reference compounds in this study to compare the
results to existing knowledge, the major outcomes can be summarised as follows:
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1. The gene profiles after exposure to GW788388 did not show any evidence of at least
the short-term toxic effects of this compound. The only signals seen were related to
the TGF-f inhibition being the therapeutic effect and metabolism.

2. Most of the compounds showed oxidative stress leading either to the UPR pathway
or p53 pathway activation or both.

3. The metal compounds showed very similar behavior with the MTF1-mediated stress
response pathway as the major pathway and strong activation of the Nrf2-mediated
oxidative stress response, UPR, and the p53 signaling pathway. However, there are
differences in how successful the MTF1-mediated stress response pathway counters the
adverse effect alone and how long it needs to be supported by the other pathways.

4. Tunicamycin showed a different mode of action compared to the other compounds
for activating UPR without causing oxidative stress response and only weak activation
of p53.

5. Doxorubicin was a very potent p53 activator that masked the molecular initiating event
and other effects like oxidative stress.
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models representing the diverse organs, and increasing the chance to identify toxic compounds. Furthermore,
although we focused on the mechanisms of action of PQ shared by the different models, this strategy would also
allow for organ-specific toxicity testing, by including more cell type-specific probes for TempO-Seq analyses. In
conclusion, we believe this strategy will participate in the further improvement of chemical risk assessment for

human health.

1. Introduction

The need to develop new approach methodologies (NAMs) providing
mechanistic understanding for toxicology testing is now well recog-
nized, and governmental agencies worldwide have been pushing to-
wards the development of human-based assays for human safety
assessment (EUR-Lex, 2010; National Research Council, 2007; Oredsson
et al., 2019; Sewell et al., 2017). For instance, the US Environmental
Protection Agency plans to eliminate animal testing from regulatory
requirements for pesticides and industrial chemicals by 2035 (EPA,
2019). However, the move from animal experimentation to NAMs
highly depends on the ability of the NAMs to mirror human rather than
animal physiology (Herrmann et al., 2019). Since their development, a
little over a decade ago (Takahashi et al., 2007), human induced
pluripotent stem cells (hiPSCs) have represented a potential paradigm
shift across the biological sciences from developmental biology to
regenerative medicine. For the field of toxicology, they have been seen
as a valuable new tool to enable NAMs to achieve the ideals of the 3Rs
through the production of in vitro models with human relevant pheno-
types that can replace animal testing (Steimberg et al., 2020). While they
share capacity for self-renewal and pluripotent potential of embryonic
stem cells (ESCs), their generation from adult somatic cells come with a
range of advantages while avoiding some of the controversies associated
to ESCs (Liu et al., 2017). The relative ease by which hiPSCs can be
generated from cells obtained with minimal discomfort on the part of the
donor, from sources such as blood, skin and even urine (Zhou et al.,
2011), has allowed for the establishment of large cell banks. Stem-
BANCC is one such bank that generated hiPSCs lines from 500 healthy
and diseased individuals, and most of these well described lines are now
widely available for drug and chemical screening (Morrison et al., 2015)
through the European Bank For Induced Pluripotent Stem Cells (EBiSC).

While traditionally, cancer or immortalised cell lines, and to a lesser
extent, primary cells, have been the main cell sources for in vitro
chemical safety assessment, each have their own drawbacks that hiPSCs
can potentially overcome. Human primary cells, that would be the most
adequate cells to use, can be difficult to obtain and are only available in
a limited quantity for a limited time, while undifferentiated hiPSCs can,
in theory, proliferate indefinitely. Immortalised cell lines, once made,
can be continuously available; however, these models often lack some
important biological aspects of their unaltered counterparts leading to
concerns that they may be poor models for healthy human cells and lack
the sensitivity for toxicity testing (Liu et al., 2017). While hiPSCs have
their own challenges, chief among them being the establishment of
robust and repeatable differentiation protocols that produce the desired
cell type, once this is done, they are a renewable source of cells that can
express many important intrinsic phenotypic features often lost in
traditional cell lines. For example, a recently published hiPSC differen-
tiation protocol produces kidney proximal tubular-like cells that,
alongside other characteristic markers, expressed megalin (LRP2), an
apical transporter that plays a key role in reabsorption and is absent in
most available human immortalised cell lines (Chandrasekaran et al.,
2021).

With the establishment of reliable differentiation protocols for more
cell types, and with the emergence of complex culture systems, the
possibility has emerged to use hiPSC-derived cells to model the impact of
toxins on the different cell types/organs from the same human donor. In
this study, we hypothesized that an in vitro multi-organ human iPSC-
derived strategy will allow the reliable assessment of the toxicity of

chemicals. To test this, hiPSCs-derived models of the brain (2D and 3D
mixed-cell cultures), blood-brain barrier (brain capillary endothelial
cells), kidney (podocytes and proximal tubular cells), liver (hepatocyte)
and vasculature (endothelial cells) were generated from two donors,
using published or newly developed protocols, and were exposed to
paraquat (PQ), a widely employed herbicide used as a reference com-
pound chosen for its known toxic effects on a range of tissues across the
body (Cicchetti et al., 2009; Dinis-Oliveira et al., 2008; Gao et al., 2020).
TempO-Seq analysis showed the disruption of “Oxidative stress induced
gene expression via Nrf2 markers”, as expected since oxidative stress is
the well-known PQ mechanism of action, but also of two other pathways
previously demonstrated to be involved in PQ toxicity, “Unfolded pro-
tein response” and “ESR-mediated signaling”, suggesting this strategy as
a future tool for prioritization, screening of chemicals and risk
assessment.

2. Materials and method
2.1. Cell cultures

Human iPSCs used in this study (SBAD3 clone 1 and SBAD2 clone 1)
were generated in the IMI-funded StemBANCC project (http://stem
bancc.org) (Morrison et al., 2015) from purchased primary fibroblasts
of non-diseased donors (Lonza). They were cultured on Matrigel®
Growth Factor Reduced (GFR) (Corning) or Geltrex® (Gibco) in
mTeSR™1 (StemCell Technology) feeder-free medium at 37 °C in a
humidified 5% CO, incubator. Medium was replaced every day and cells
were passaged every 4-5 days using Versene® according to the sup-
plier’s protocol (Thermo Fisher Scientific).

Human iPSCs were differentiated into different cell types to obtain in
vitro models for several tissues/organs. Details on methodologies and
characterization are found in the references given for each model, in
Chandrasekaran et al. (in preparation — for this special issue), as well as
in Table 1. BrainSpheres (BS), a 3D model containing neurons, astro-
cytes and oligodendrocytes, were prepared from neuroprogenitor cells
(NPCs) derived from the SBAD3 clone 1 using a Gibco protocol (Nunes
and Zurich, 2020; Pamies et al., 2017). Neural cells (NC), a 2D model
containing neurons and astrocytes were generated from NPCs derived
from the SBAD2 clone 1 using dual SMAD inhibition protocol (Chambers
et al.,, 2009; Chandrasekaran et al., 2017; Lo Giudice et al., 2019;
Ochalek et al., 2017). The brain-like endothelial cells (BLECs) transwell
model was prepared from the SBAD3 clone 1 (Sevin et al., 2019; Wellens
et al., 2021). The kidney cells, podocytes (PODO) (Murphy et al., 2019;
Rauch et al.,, 2018) and proximal tubular like cells (PTL) (Chan-
drasekaran et al., 2021) were derived from the SBAD2 clone 1 con-
taining a Green Fluorescent Protein (GFP) tag downstream of one allele
of the HMOX-1 gene (SBAD2 clone 1 HMOX1-eGFP, prepared by Prof.
Dinnyes’s laboratory, Biotalentum, Hungary), although this fluorescent
property was not utilised in this study. The endothelial cells (EC)
(Gholami et al., 2021) representing the vascular system and the
hepatocyte-like cells (HLC) (Boon et al., 2020) representing the liver
were derived from SBAD2 clone 1.

2.2. Paraquat exposure
PQ (Sigma-Aldrich, catalogue No 36541, lot #BCBW5264, CAS

#75365-73-0) was dissolved in ultrapure water. The different cell cul-
tures were exposed to PQ for 24 h and BS was also exposed for 48 h, after
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various duration in culture, corresponding to a maturation state defined
by each lab. BS was exposed to PQ at day in vitro (DIV)42, NC at DIV21,
BLECs at DIV8, PODO at DIV12-14, PTL at DIV14, EC at DIV8, and HLC
at DIV40. Concentrations of paraquat are given in figure or figure cap-
tions (Figs. 2, 3 and Table 2). For cytotoxicity testing, 2-9 samples were
run per group, and for TempO-Seq analysis 2-16 samples were run per
group. Exposure of the cell models to PQ was conducted in 6 different
labs, NC at BioTalentum Ltd. (Hungary), BS at University of Lausanne
(Switzerland), PODO and PTL at Vrije Universiteit Amsterdam
(Netherlands), EC at Evercyte GmbH (Austria), HLC at Katholieke Uni-
versiteit Leuven (Belgium) and BLECs at Université d’Artois (France).

(about one-third that of primary

at about 40% of that of primary
hepatocytes).

Albumin secretion was observed
hepatocytes plated for 12 h.

Uptake of albumin by podocyte-

response to PTH; Functional P-
like cells

gp efflux; uptake of labelled

albumin
CYP3A4 activity was observed

Increase levels of cAMP in

Observations

2.3. Cytotoxicity assays

After exposure of the different iPSC-derived cell models to a large
range of PQ concentrations, viability assays were run in order to
establish cytotoxicity concentration-dependent curves.

Parathyroid hormone (PTH)
response assay; Calcein-AM
efflux assay; Albumin
Albumin secretion assay;

uptake assay for megalin
CYP3A4 activity assay

facilitated endocytosis
Albumin uptake assay

Functional Assay

Assay

2.3.1. Resazurin assay

After treatment with PQ, the medium was removed and the cells
were incubated with 44 pM resazurin diluted in cell culture medium for
a duration indicated in Table 2. The fluorescent product resorufin was
measured at 530-560 nm excitation and 590 nm emission using a plate
reader. After subtraction of the background (only resazurin solution),
results of the treated cultures were expressed as percentage of the mean
of the control cultures.

TempO-
ND

(="
R A ]

S
NP
ND
NP
NP
NP
N
NP
NP
NP
X
X

Western-
blot

FACS
1

2.3.2. ATP assay

ATP viability assay was performed using the CellTiter-Glo® 3D Cell
Viability Assay, according to the manufacturer’s protocol (Promega). NC
were lysed with 100 pL CellTiter-Glo® 3D Reagent for 90 min at RT.
Luminescence signal was recorded with a Thermo VarioScan Flash plate
reader (Thermo Fisher Scientific). Results of the treated cultures were
expressed as percentage of the mean of the control cultures.

Immunocytochemistry

2.4. TempO-Seq sample collection

Technique (Ref at protocol DOI)

qPCR

Samples of the different cell systems were treated with PQ at con-
centrations chosen on the basis of the previously established cytotoxicity
curves (final concentrations and time points in Table 2 and indicated in
figure captions). DMSO was added to all samples (final concentration
0.01%) due to the simultaneous testing of water-insoluble chemicals
(results not presented in this manuscript). At the end of exposure, cells
were collected and lysed with 1x TempO-Seq Lysis Buffer in a ratio of
0.25 to 2 million cells/mL. Lysates were frozen at —80 °C and shipped to
BioClavis Technologies Ltd. (Glasgow) on dry ice where the TempO-Seq
assay using the EU-ToxRisk v2.1 panel (3565 probes representing 3257
genes) was conducted with standard attenuators. The service also
included primary processing to derive gene-annotated raw read counts
and quality control, following a previously described procedure
(Limonciel et al., 2018; Mav et al., 2018). Each sample FASTQ file was
aligned against the TempO-Seq transcriptome using the Bowtie aligner
(Li and Durbin, 2009). The output of this analysis generated a table of
counts per gene per sample.

Marker
VEGFR2
VWF
LRP2
TJP3
PTH1R
FBP1
WT1
SYNPO
NPHS1
NPHS2
ALB

AFP
HNF4A
G6PC
PEPCK
SLC10A1
SERPINA1

Proximal tubule-
like cells
Podocytes
Hepatocyte-like
cells

Characterization
Cell Type

Time in
culture
before
exposure
14d
12-14d

42d

2.5. TempO-Seq data analysis and visualization

1. Ghosh et al. (under
revision for this

!, Rauch et al., 2018,
special issue)

2, Murphy et al.,

!, Chandrasekaran
2019

References
et al., 2021

2.5.1. Sample and probe filtering

The raw read count data of the samples provided by BioClavis was
used for differential expression analysis. The raw data and correspond-
ing metadata files were uploaded and maintained on an internal
instance of the EdelweissData™ management system (Safe-
rWorldbyDesign2020) for easier accessibility. All samples exposed to PQ
and the respective controls from the different hiPSC-derived cell models
were extracted using a python workflow as previously described (Singh
et al., 2021).

Kidney
Kidney
Liver

Organ

TL
PODO
HLC

Name

NT: Non tested; x: detected; ND: not detected; NP: not present in the TempO-Seq panel; Superscript number: refers to publication listed under references column.

Table 1 (continued)
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Table 2
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Description of all models used in the study and respective IC50/30/20/10 and PQ concentrations used for TempOSeq. BrainSpheres (BS), Neural Cells (NC), Blood-
Brain Barrier (BBB), Endothelial cells (EC), renal proximal tubular epithelial-like cells (PTL) podocytes (PODO), hepatocytes-like cells (HLC).

Model Organ PQ exposure (h) Cytotoxicity TempOSeq
Assay for assessment Incubation time (h) Concentration (pM) Concentrations (pM)
1C50 1C30 1C20 IC10

BS Brain 24 Resazurin 3 200 161 132 97 -
48 60 51 45 38 1-2.5-5

NC Brain 24 ATP 1 h30 49 31 24 16 0.05-0.1

BLECs BBB 24 Resazurin 2-2 h30 749 654 132 97 50-100-250

EC Vasculature 24 Resazurin 1 h30 114 55 35 17 1.25-2.5-5

PTL Kidney 24 Resazurin 1 561 405 327 237 25-100-300

PODO Kidney 24 Resazurin 2 373 164 97 45 5-50-100

HLC Liver 24 Resazurin 2 - - - - 12.5-25-50-100
48 1093 797 590 376 -

Before downstream analyses (Fig. 1), samples and probes were
quality controlled. The samples were checked as described elsewhere
(Singh et al., 2021) by investigating a) the total number of probe read
counts per sample with a threshold of 50,0000 under which samples
were removed and b) the Pearson’s correlation coefficient among rep-
licates using Morpheus online tool with a threshold of 0.80 under which
samples were removed. Concerning the probes, only the ones with me-
dian of raw read counts higher than 5 across all conditions for each
model were used.

2.5.2. Differential expression analysis

The filtered raw data was analysed for differential expression using
the R based library DESeq2 (Love et al., 2014). Samples underwent an r-
log transformation and posterior unsupervised clustering using standard
DeSeq2 suggested settings to visualize the variance within and between

~

different cell models, as well as between treatment and control groups.
Differential expression analysis was performed using DeSeq2 library
after normalization of read counts using its standard mean-median ratio
method. An automatic script (Singh et al., 2021) was used to generate
the statistical values log2fold changes, adjusted p-values and base
means. To select the most significantly expressed probes in each cell
model for further analyses, thresholds were set at: log2 fold changes > |
0.58| and adjusted p-values <0.05.

2.5.3. Gene-pathway association

ConsensusPathDB (v.34) (http://cpdb.molgen.mpg.de), a web-based
meta-database integrating information from around 30 different pub-
licly available databases including WikiPathway, Reactome and KEGG
(Kamburov et al., 2013), was used to identify enriched pathways in each
cell culture system. The analysis was done using the ConsensusPathDB’s

L
~
Y
m
TempO|[Seq
Sample sorting
Q S:mplle) 1. Sum of raw read counts per sample > 50,000
3 an. pl.'o © 2. Pearson correlation between replicate samples > 80%
filt
ilterin
>g<. 9 Probe sorting: median of raw read counts per probe > 5
w
=
<
2
c
§ 1. Unsupervised clustering
E DESeq2 2. Normalization
3. DE probe analysis - FDR < 0.05 and LFC > |0.58|
G Consensuspathdb
ene- Over-representation analysis (pathways as defined by
Pathyva_y pathway databases):
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Fig. 1. Invitro strategy using multiple hiPSC-derived models to assess the toxicity of chemicals. Workflow used to compare the response of different hiPSC-derived
cell models to PQ acute exposure based on TempOSeq data. The 7 models were differentiated from either SBAD2 or SBAD3 hiPSC lines to represent brain, liver,
kidney, BBB and vasculature and exposed to different concentrations of PQ chosen on the basis of viability curves. Data from TempOSeq was analysed using R
package DSeq2, after filtering and normalization of the raw data. The differentially expressed genes per model were analysed for pathway over-representation with

ConsensusPathDB.
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over-representation analysis (ORA) and the list of the most significantly
differentially expressed genes of each system (taking all concentrations
into account) as an input. HUGO gene nomenclature Committee (HGNC)
symbols were employed as identifiers. ORA compares input gene list to
all the genes associated to each pathway available in the databases. The
default Consensus ORA settings require a minimum overlap of 2 genes
between the input gene list and a given pathway associated gene list
along with a p-value cutoff of 0.01 to define a pathway as over-
represented. ORA p-value calculations are based on the hypergeometric
distribution between the input list and existing pathway list (Kamburov
et al., 2009).

2.5.4. Gene and pathway intersection analysis

To find deregulated genes and pathways shared by the different cell
systems, the lists of differentially expressed genes and enriched path-
ways from each cell model were compared using UpSetR package
(Conway et al., 2017). UpSetR package helps in both visualization and
extraction of the different intersections in a matrix format by assembling
different set size combinations. Mode was set to “intersect” in the
function “make_comb_mat()” and the function “extract_.comb()” was
then used to obtain the intersections. Finally, intersection plots were
created using UpSet() function in the UpSetR package (Conway et al.,
2017).
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3. Results

3.1. Human iPSC-derived organ-specific models exhibit different
sensitivity to paraquat

In order to assess the differential sensitivity of the iPSC-derived cell
models to PQ, and to choose sub-cytotoxic concentrations for subse-
quent experiments to elucidate early pathways of toxicity, the different
iPSC-derived cell culture models were exposed to a wide range of PQ
concentrations for 24 h and/or 48 h, then concentration-dependent
curves for cytotoxicity were established.

The most sensitive model was found to be 2D neural cell cultures
(NC), with an IC50 at 49 pM (Fig. 2 and Table 2). BS, the 3D brain cell
model, was less sensitive to PQ (IC50: 200 uM after 24 h of exposure; 60
uM after 48 h). The toxicity of PQ to endothelial cells (EC) was found in
the same range (IC50: 114 pM), whereas BLECs, used as a model for
blood-brain barrier and later referred to as BBB, exhibited a much higher
IC50 (749 pM). Among the two cell culture models representing kidney,
PTL was less sensitive to PQ than PODO (IC50: 561 pM and 373 pM,
respectively). Finally, the hepatocyte cell-like model (HLC) seemed to be
the least sensitive model out of the seven models tested; however, the
IC50 was determined only at 48 h (1093 pM, cytotoxicity data for HLC
also used in Ghosh et al., submitted to Toxics) (Fig. 2 and Table 2).

The results reveal a differential response of the models to the
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Fig. 2. Models present different sensitivity to PQ exposure. Concentration-dependent curves after 24 h and/or 48 h exposure to PQ: A) BS (0-0,5 mM), B) NC
(0,001-1,5 mM), C) BLECs (0-1 mM), D) EC (0-0,5 mM), E) PTL (0-10 mM), (F) PODO (0-5 mM), G) HLC (0-10 mM; data for 48 h also used in Ghosh et al.,
submitted to Toxics). Results are expressed as % of control cultures a non-linear regression (log (inhibitor) vs response - variable slope (four parameters)) was
performed in order to calculate the inhibitory concentration (IC) using GraphPad Prism®. Means +SD of 2-9 samples obtained in 1-3 independent experiments are

shown. Black line: 24 h, grey line: 48 h.
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cytotoxic effects of PQ, and show that the sensitivity to PQ depend not
only on the organ but also on the specific cell type considered (NC vs BS,
modelling the brain, and PTL vs PODO, modelling the kidney). To
identify toxicity related pathways induced by PQ, transcriptomic anal-
ysis was performed using TempO-Seq as a cost-efficient tool. Each model
was exposed to at least one concentration below cytotoxicity IC10
(Table 2).

3.2. hiPSC-derived models drive sample clustering of TempO-Seq data
after paraquat exposure

All human iPSC-derived models, except EC, exhibited a sum of read
counts per sample above 50,000 counts, and therefore passed our first
sample quality filter. The second filter, namely the Pearson correlation,
led us to the elimination of one replicate of the control group from NC;
two control replicates and one replicate of the 25 pM group from PTL;
one replicate of treated 250 pM group from BBB and one replicate
sample from the 5 pM and from the 100 pM groups from PODO. For HLC
(raw data for HLC also used in Ghosh et al., submitted to Toxics) and BS,
the samples from all groups showed Pearson correlation >0.80 and
therefore were all kept for further analyses. For EC model, very low sums
of probe read counts (5000-12,000) were found for one replicate from
each treatment group and therefore these samples were also extremely
poorly correlated to their corresponding replicates (Pearson correlation
coefficients between 0.09 and 0.22). After removing the low correlated
samples from each cell model, probes with median read counts across all
samples of the model considered <5 were filtered out. This caused the
removal of 1456 probes from NC, 1208 from PTL, 1445 probes from
HLC, 1175 probes from BBB, 1319 probes from PODO and 1517 probes
from BS. For the EC model, 64% of the probes (2097) had to be
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eliminated. Furthermore, although the controls of the EC model passed
the 50’000 counts threshold, for undetermined reasons their read counts
were much lower than in all the other models (Suppl. Fig. 1), causing a
high variance potentially leading to biased normalization and distortion
of the differential expression analysis. Based on these results, the data
form the EC cell model were considered as unreliable, and the EC model
was removed from further analyses.

After these steps of sample and probe filtering, unsupervised PCA of
controls and treated samples for the 6 remaining models (Fig. 3A)
showed four very distinct clusters. One cluster was formed by PODO and
another cluster by HLC samples. A third cluster comprised samples from
both brain models (NC and BS), whereas PTL and BBB samples were
grouped together. On this PCA plot, BS was the only cell model to show
clear separation between treated and control samples; however, the
separation is visible when PCA is performed for each model individually,
with the exception of PODO (Suppl. Fig. 2). It is remarkable that most of
the variance was observed between cell models and less was due to
paraquat treatment, even if the list of probes used did not comprise a lot
of cell type-specific genes.

3.3. Paraquat deregulated several identical pathways in the different
hiPSC-derived models

In total, we found 341 probes differentially expressed across the cell
models and treatment groups upon PQ exposure. A heatmap of the 100
highest log2 FC probes (Fig. 3B), each one crossing the statistical
thresholds in at least one treatment group, with values scaled for each
model between the range — 1 to 1 for better relative comparison among
models, clearly shows concentration-dependent effects of paraquat in
the different models.
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Fig. 3. Clustering of samples and the most deregulated genes after PQ exposure. A) PCA plot of all control and PQ treated samples Each dot represents a sample and
each colour represents a cell model. Neuronal Cells (NC, turquoise, 2 samples), Brainsphere (BS, yellow), Podocytes (PODO, blue), Proximal tubule like cells (PTL,
purple), Hepatocytes like cells (HLC, green) and Blood Brain Barrier (BLECs, pink). B) A heatmap of the 100 highest log2 FC probes (gene symbol_probe ID), each one
crossing the statistical thresholds in at least one treatment group. The relative expression values scaled between —1 (green) and 1 (red).
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To investigate the mechanisms of PQ toxicity shared by the different
models, pathway enrichment analysis using ConsensusPathDB was
performed based on the list of differentially expressed genes (DEG)
derived from each model. In total, 36 pathways were identified in HLC,
110 in PODO, 136 in NC, 134 in BBB, 164 in BS and 278 pathways in
PTL. The number of pathways given here includes all similar pathways
described by different databases aggregated by ConsensusPathDB. Then,
UpSetR package was used to find the intersections of these affected
pathways in different combinations of 2, 3, 4 and 5 cell models. The
pathway intersection graph (Fig. 4) shows that each cell model shared
affected pathways with up to four other cell models (Fig. 4, intersections
between 5 models). Furthermore, PODO and PTL that are both kidney
related cell models shared 18 pathways, whereas BS and NC which are
both brain-related cell models shared 17 pathways. No pathway shared
by all 6 cell models was found with the criteria used in this study.

In the combinations of 5 cell models, “Oxidative stress induced gene
expression via Nrf2” pathway was not found in BS (Table 3). However,
read counts for Heme Oxygenase 1 (HMOX1), NAD(P)H Quinone
Dehydrogenease (NQO1), MAF BZIP Transcription Factor F (MAFF) and
G (MAFG) genes, all belonging to the oxidative stress pathway, show a
concentration-dependent increase for the six models (Fig. 5), including
BS. The other stress pathways found in the combination of 5 models are
“Cellular responses to external stimuli” and “Cellular responses to stress”
(Table 3). Among combinations of 4 cell models, many other stress
pathways were identified, such as “Quercetin and Nf-kB- AP-1 Induced
Cell Apoptosis”, “Photodynamic therapy-induced NFE2L2 (Nrf2) sur-
vival signalling” and “Photodynamic therapy-induced unfolded protein
response”. Concentration-dependent increases were observed for Pro-
tein Phosphatase 1 Regulatory Subunit 15A (PPP1R15A), Activating
Transcription Factor 4 (ATF4), DNA Damage Inducible Transcript 3
(DDIT3) and Asparagine Synthetase (ASNS) genes belonging to the latter
pathway (UPR), even in BS, although this pathway was not identified in
this model (Fig. 5). Only PODO did not show any regulation of these
genes. Finally, more generic pathways such as “Cell cycle”, “Cellular
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responses to external stimuli” and “Generic Transcription Pathway*
(Table 3) were found in several combinations of four models, and “ESR-
mediated signalling” pathway appeared in one of these combinations.

UpSetR package was also used to identify the genes differentially
expressed in the combinations of 2, 3, 4 and 5 cell models in an unbiased
way. The gene intersection graph shows that each cell model shared
affected genes with up to four other cell models (Fig. 6, intersections
between 5 models). No gene shared by all 6 cell models was found with
the criteria used in this study. MAFF and PPP1R15A were found
deregulated in 5 models (Table 4), but not in the same combination
thereof, whereas Vascular Endothelial Growth Factor A (VEGFA), ATF4
and Growth Differentiation Factor 15 (GDF15) were found deregulated
in 4 models. NC and BS, both CNS models, shared 6 deregulated genes
(Table 4): Chromobox 4 (CBX4), Eukaryotic Translation Initiation Factor
1 (EIF1), PPP1R15A, Solute Carrier Family 3 member 2 (SLC3A2), and
VEGFA, that were all upregulated in both models, as well as one
downregulated gene, the tubulin alpha-1B chain (TUBA1B). Finally,
PODO and PTL, models of two different kidney cell types, shared 9
upregulated genes: CD55 Molecule (CD55), Choline Kinase Alpha
(CHKA), Dual Specificity Phosphatase 1 (DUSP1), Enolase 2 (ENO2),
Heat Shock Protein Family A Member 1B (HSPA1B), MAFF, MAFG,
PPP1R15A and VEGFA (Table 4), that were deregulated in the same
direction, except for HSPA1B, downregulated in PODO but upregulated
in PTL (Suppl. Fig. 3).

3.4. Specificity of hiPSC-derived models response to Paraquat

In addition to the cellular responses shared by the different models,
we also interrogated the data for the genes that are specifically
deregulated in each model. The number of deregulated probes (22-190)
per model is given in Table 5. The number of down-regulated genes was
very similar to the number of up-regulated genes in BS, NC and BBB
models, whereas the proportion of up-regulated genes was much higher
for PTL (73% of the deregulated genes), PODO (70%) and HLC (95%)
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Fig. 4. All the models share perturbated pathways with at least 4 other systems. Intersection plot of the potentially affected pathways by PQ exposure shared by 2-5
models. For each model, the pathways were derived using the differentially expressed genes in the ConsensusPathDB for over-representation analysis (ORA).
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Table 3

List of pathways potentially disturbed by PQ exposure in at least 4 different models.

Toxicology in Vitro 81 (2022) 105333

Models

Example

NC + PODO+PTL + HLC + BBB
NC + BS + PODO+PTL + BBB

NC + PODO-+PTL + BBB

NC + BS + PODO+PTL

NC + PTL + HLC + BBB

NC + BS 4+ PODO+BBB

NC + BS + PTL + BBB

BS + PTL + HLC + BBB

PODO+PTL + HLC + BBB

Oxidative stress induced gene expression via Nrf2

Cellular responses to external stimuli;

Cellular responses to stress

Oxidative stress induced gene expression via Nrf2;

Cell cycle;

Cellular responses to external stimuli;

Cellular responses to stress;

Direct p53 effectors;

Generic transcription pathway

Cellular responses to external stimuli;

Cellular responses to stress;

Quercetin and Nf-kB- AP-1 induced cell apoptosis
Oxidative stress induced gene expression via Nrf2
Photodynamic therapy-induced unfolded protein response;
ESR-mediated signaling;

B-WICH complex positively regulates rRNA expression;
Cell cycle checkpoints;

Cellular responses to external stimuli;

Cellular responses to stress;

Epigenetic regulation of gene expression;

Formation of the beta-catenin: TCF transactivating complex;
Mitotic prophase;

Signaling by nuclear receptors;

TCF dependent signaling in response to WNT

Cellular responses to external stimuli;

Cellular responses to stress

NRF2-ARE regulation;

Photodynamic therapy-induced NFE2L2 (Nrf2) survival signaling;
Phytochemical activity on Nrf2 transcriptional activation
Oxidative stress induced gene expression via Nrf2

models (Table 5).

Among the top upregulated genes in BS (Table 5) genes involved in
essential cellular functions were found, such as caveolin 2 (CAV2) and
calpain 1 (CAPN1), but also genes involved in development such as SRY-
BOX Transcription Factor 1 (SOX1), INSM transcriptional repressor 1
(INSM1) and Thyroid hormone receptor beta (THRB). On the other
hand, the most down-regulated genes in BS were associated with cyto-
skeleton, such as Tubulin Alpha 1B chain (TUBA1B) and Cortactin
Binding Protein 2 (CTTNBP2) and cell adhesion (Cadherin (CDHS)). In
the other iPSC-derived model of brain cells, NC, the top 10 up-regulated
genes included 4 genes involved in cellular stress responses, such as
PPP1R15A, GDF15, Growth Arrest And DNA Damage Inducible Alpha
(GADD45A) and MAFF, but also genes implicated in cell adhesion, such
as Cellular Communication Network Factor 1 (CCN1 also called CYR61),
Cellular Communication Network Factor 2 (CCN2 also called Connective
Tissue Growth Factor (CTGF)) and Serpin Family E Member 1 (SER-
PINE1). In the down-regulated genes for this model, we found genes
involved in mitosis (RecQ Mediated Genome Instability 1 (RMI1) and
Centrin 3 (CETN3)), another one potentially mediating apoptosis during
neuronal development (Pleckstrin Homology Like Domain Family A
Member 1 (PHLDA1)) and an essential component of the nuclear pore
complex, nucleoporin 85 (NUP85). In BBB model, most of the top ten up-
regulated genes were associated with stress responses: Tribbles Pseu-
dokinase 3 (TRIB3), DDIT3, CD55 Molecule (CD55), PPARGCIA,
Sequestosome (SQSTM1), and GDF15, whereas among the top ten
downregulated genes, five were histones, and one was a histone chap-
erone (Anti-Silencing Function 1B Histone Chaperone (ASF1B)).

For PTL, the up-regulated genes were all stress genes involved in
oxidative stress and/or inflammation, except FOSL1 that is implicated in
proliferation, differentiation and transformation; and among the
downregulated genes are 2 genes related to detoxification (Epoxide
Hydrolase 2 (EPHX2) and Aldehyde Dehydrogenase 7 Family member
Al (ALDH7A1)), as well as pyruvate dehydrogenase kinase isoenzyme 4
(PDK4), that plays a crucial role in the control of metabolic flexibility
under various physiological. For the other kidney cell type, PODO, 5 of
the top upregulated genes were involved in stress pathways: Matrix

Metallopeptidase 2 (MMP2), Immunoglobulin Mu DNA Binding Protein
2 (IGHMBP2), CD55, MAFG and CREB3 regulatory Factor (CREBRF).
Among the other upregulated genes we found Myelin Protein Zero Like 1
(MPZL1) and Ankyrin Repeat Domain 36 (ANKRD36B) involved in cell
adhesion and cell membrane integrity. The downregulated genes in
PODO include five histones and one histone chaperone, ASF1B, just as
observed for BBB.

The model for hepatocytes, HLC, showed 6 of its top ten upregulated
genes associated with oxidative stress and/or inflammation, namely the
rate limiting enzyme of glutathione synthesis, Glutamate-Cysteine
Ligase Modifier Subunit (GCLM), HMOX1, C-X-C Motif Chemokine
Ligand 8 (CXCL8), GDF15, TRIB3 and MAFF. Besides, Ras Association
Domain Family Member 1 (RASSF) involved in cell cycle and Aldo-Keto
Reductase Family 1 member 1 (AKR1B10) were also upregulated. The
only downregulated gene found with the criteria applied was a type of
collagen (COL12A1).

Finally, basal expression of selected genes related to PQ transport,
and enzymes involved in redox cycling and anti-oxidant defence were
extracted from the TempO-Seq data in order to investigate their poten-
tial contribution to the sensitivity of the various models to PQ. The basal
expression of Solute Carrier Family 3 Member 2 (SLC3A2) and Solute
Carrier Family 7 Member 11 (SLC7A11), two amino acid transporters,
was higher in BS, NC and PODO than in the other models (Fig. 7). The
expression of the NAD(P)H-cytochrome P450 oxidoreductase (POR),
involved in the redox cycling of the PQ ion, was highest in HLC than in
the other models, but also robustly expressed in BS, NC and PTL. Su-
peroxide dismutases (SOD2 and SOD3) and glutathione S-transferases
(GSTA2 and GSTM3), involved in anti-oxidant defence, showed a much
higher basal expression in HLC than in all the other models, even being
absent from some of them, whereas SOD 1 was more expressed in BS, NC
and PTL than in HLC.

4. Discussion

The development of new human-based assays for human safety
assessment, highly encouraged by various authorities (EUR-Lex, 2010;
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Fig. 5. PQ exposure induces upregulation of genes involved in the oxidative stress pathways Nrf2 and UPR (A-D) normalized read counts for HMOX1, NQO1, MAFG
and MAFF probes (gene symbol_probe ID) involved in the “oxidative stress induced gene expression via Nrf2” pathway from BioCarta database; (E-H) normalized
read counts for ATF4, PPP1R15A, DDIT3 and ASNS probes (gene symbol_probe ID) involved in “photodynamic therapy-induced unfolded protein response” pathway
described in the Wikipathways database. Average normalized read counts +SD are shown.
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Fig. 6. All the models share differentially expressed genes with at least 4 other systems. Intersection plot of the PQ-induced DEG shared by 2-5 models using UpSetR

pack. For each model, the DEG list was obtain with the DSeq2 Package.

Table 4

List of the DEGs shared by at least 4 models or by modeled organ (brain and kidney).

Organ Intersections Gene symbol_probe ID
NC + PODO-+PTL + HLC + BBB MAFF_27478
NC + BS + PODO+PTL + HLC PPP1R15A_14098
NC + BS + PODO+PTL PPP1R15A_14098; VEGFA_28053
NC + PODO+PTL + HLC PPP1R15A_14098; MAFF_27478;
NC + PTL + HLC + BBB ATF4_500; GDF15_18329; MAFF_27478
Brain NC + BS CBX4_16907; EIF1_2074; PPP1R15A_14098; SLC3A2_20164; TUBA1B_7399; VEGFA_28053
Kidney PODO-+PTL CD55_28297; CHKA_14315; DUSP1_24234; ENO2_13140; HSPA1B_3136; MAFF_27478; MAFG_20735; PPP1R15A_14098;

VEGFA_28053

National Research Council, 2007; Oredsson et al., 2019; Sewell et al.,
2017), has been made easier by the development of standardized ways
to derive hiPSC from somatic cells and by the description of new
methods for their differentiation into various cell types (Chandrasekaran
et al., 2021; Murphy et al., 2019; Pamies et al., 2017). This raises the
possibility to test for specific organ toxicity within the same genetic
background to more fully assess the potential hazard of a chemical. Here
we propose an in vitro multi-organ strategy with hiPSCs-derived models
to assess the toxicity of chemicals though TempO-Seq analysis. We
believe that a multi-organ approach associated with high throughput
omics technology would improve the efficiency and reliability of
chemical toxicity screening.

To test this approach, PQ, a herbicide widely employed with recog-
nized toxic effects in many different organs, such as lung, kidney, central
nervous system and liver (Delirrad et al., 2015; Gawarammana and
Buckley, 2011; Saravu et al., 2013; Sittipunt, 2005), was used as a
reference compound. The cytotoxic sensitivity to PQ we observed in this
study was not the same for the different hiPSCs-derived models, with
liver and kidney models being less sensitive than brain models. This is in
line with a report showing that in rats, repeated, systemic low doses of

11

PQ are much better tolerated by peripheral organs than by brain, and
suggesting this to be due to easier induction of adaptive mechanisms
(Kuter et al., 2010). Furthermore, this observation suggests that the
application of the diverse differentiation protocols was successful. The
differential sensitivity observed might be explained by the higher basal
expression of amino acid transporters, such as Solute Carrier Family 3
Member 2 (SLC3A2) and Solute Carrier Family 7 Member 11 (SLC7A11),
shown by TempO-Seq analysis in the most sensitive models. Indeed,
amino acid transporters have been suggested to be used by PQ to enter
cells (for review, see Wang et al., 2021), their stronger expression might
thus potentially lead to a higher cellular uptake of PQ. The highest level
of genes coding for enzymes involved in anti-oxidant defence, such as
SODs and GSTs, observed in HLC, might also explain the relatively
highest resistance of this model to PQ, even so NAD(P)H-cytochrome
P450 oxidoreductase (POR), engaged in ion redox cycling of PQ was a
bit more expressed in HLC. However, other genes related to transport,
redox cycling and anti-oxidant defence important for PQ mode of action
and cellular response were unfortunately not available in the chosen
TempO-Seq panel and more experiments are needed to fully characterize
the causes of the differential sensitivity to PQ observed among the
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Table 5
List of the 10 most upregulated and downregulated genes after exposure to the highest concentration of PQ for each model.
Model Downregulated Upregulated Total DEG
Gene symbol_probe ID LFC Number (% of total) Gene symbol_probe ID LFC Number (% of total)
BS SPC25_6704 -3.0 55 (56) CAV2_15304 2.5 43 (44) 98
TOMM20_11983 -2.3 CAPN1_957 2.4
CIB1_16624 -2.3 SPAG7_6692 1.8
CTTNBP2_13527 —-2.2 TOMM34_7272 1.7
FBX011_2372 -1.8 THRB_24158 1.4
TRIM2_7343 —-1.4 SOX1_27894 1.4
TUBA1B_7399 —-1.4 CSRNP1_22653 1.3
NDUFA4_14125 -1.4 INSM1_21254 1.2
CDH8_19001 -1.3 TFAP2A_7039 1.2
HIST1H2BG_2953 -1.3 HIF1A_2945 1.2
NC SGK2_10628 —6.1 30 (47) CYR61_24505 6.3 34 (53) 64
EDNRA 25237 -5.1 PLK1_5203 3.6
IF1441._19848 -3.0 EX0SC5_27191 3.4
TCF4_.15698 —-2.6 SERPINE1 6253 2.7
FKBP14_2430 —-2.2 CTGF_17007 2.3
NUP85_4781 -2.1 MAFF_27478 2.3
MYBL1_22509 -2.0 SLC3A2_20164 2.2
RMI1_15666 -2.0 GADD45A 2569 2.1
CETN3_27006 -1.8 GDF15_18329 1.9
PHLDA1_12880 -1.7 PPP1R15A_14098 1.9
BBB NT5DC2_4737 —-2.6 43 (54) GDF15_18329 1.9 36 (46) 79
NCAM1_23834 -1.3 SPP1_6720 1.5
HMMR_3040 -1.2 SQSTM1_6740 1.5
HIST1H3H_2957 -1.0 PPARGC1A_12225 1.4
HIST1H2BG_2953 -1.0 CD55_1141 1.3
PSRC1_5548 -1.0 ASNS_12040 1.3
HIST2H2AA4_2963 -1.0 DDIT3_16736 1.2
HIST1H2BM_2956 -1.0 TRIB3_7337 1.2
HIST1H1E_ 14544 -1.0 CXCL2_28232 1.2
ASF1B_26041 -1.0 HSD17B11_3115 1.1
PTL CXCL14_22017 —-2.2 51 (27) GDF15_18329 6.8 139 (73) 190
CSF3R_25969 -1.8 DDIT3_16736 4.2
PRR15L_5469 -1.7 NMRAL2P_81336 3.9
EPHX2_18456 -1.7 TRIB3_7337 3.8
CASP1_26966 -1.6 CHAC1_1279 3.4
GBP1.19263 -1.6 FOSL1_2463 3.2
DEPTOR _26568 -1.5 ATF3_499 3.1
ALDH7A1_227 -1.5 GADDA45A 2569 2.9
CAPS_ 26136 -1.5 MAFF_27478 2.8
PDK4_28868 -1.4 IL1A 22714 2.8
PODO ASF1B_26041 -2.5 24 (30) USP32P2_28186 2.2 55 (70) 79
MYBL2_4391 -2.1 MPZL1_4249 2.1
HIST1H2BH_2954 -1.6 ANKRD36B_290 1.8
HIST1H2BB_ 12129 —-1.4 MMP2 4213 1.8
HIST1H2BN_11971 —-1.4 DMRTA1_14819 1.7
NFYB_16601 -1.3 NEAT1_81333 1.7
MEST 4122 -1.2 IGHMBP2_3275 1.5
HIST1H2BI 11969 -1.2 CD55_28297 1.5
IGFBP7_26667 -1.2 MAFG_20735 1.2
HIST2H2AA4_2963 -1.1 CREBRF_19339 1.1
HLC COL12A1_1461 -1.7 105 FOSL1_2463 2.7 21 (95) 22
HMOX1_3041 2.5
AKR1B10.19908 1.8
MAFF_27478 1.7
GDF15_18329 1.7
CXCL8_14324 1.6
ZNF165_26222 1.6
TRIB3_7337 1.5
GCLM_25908 1.5
RASSF1_28369 1.5

DEG: differentially expressed genes; LFC: log2 fold change.

various cell models. Both brain models also differ in their sensitivity to
PQ. This may be explained by the cell composition and the type of
cultures. The most sensitive model, NC, is a 2D model comprising neu-
rons and a few astrocyte progenitors, whereas BS exhibit a higher
astrocyte to neuron ratio, comprise oligodendrocytes and form 3D
structures, possibly explaining its slightly highest resistance to paraquat.

PQ is known to produce high levels of reactive oxygen species (ROS)
through mitochondrial redox cycling, and the induction of oxidative
stress is one of its better described mechanisms of action in different
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organs (Blanco-Ayala et al., 2014; Dinis-Oliveira et al., 2008; Gawar-
ammana and Buckley, 2011). In our study, one of the three pathways
deregulated by PQ in five cell models, identified by enrichment analysis
using ConsensusPathDB, was “Oxidative stress induced gene expression
via Nrf2 markers”. Keapl/Nrf2 activation functions mainly as an anti-
oxidant mechanism helping cells to cope with oxidative stress and has
been previously associated with PQ-induced injury (Dou et al., 2016;
Kheiripour et al., 2021). Nrf2 transactivation induces the transcription
of genes with upstream antioxidant response elements (ARE) to
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Fig. 7. Heatmap of TempO-Seq normalized read counts data for selected genes involved in PQ transport, redox cycling and anti-oxidant defence. White to red
intensity represents O (white) to highest normalized read counts (red) of the TempO-Seq probe in the displayed data set. Annotations represent the gene symbol and
Tempo-Seq probe ID. Non-normalized values are printed to allow for a quantitative comparison between genes.

counteract oxidative stress, including glutathione- reduction,
—synthesis, and -recycling along with other reducing enzymes (Bugno
etal., 2015; Wang et al., 2020). HMOX and NQO1 are such prototypical
Nrf2 response genes (Hichor et al., 2017; Xu et al., 2017), and were
induced in all the hiPSCs-derived cell systems exposed to PQ in this
study. Indeed, although the thresholds were not reached to significantly
activate this pathway for BS after acute exposure, we observed a
concentration-dependent increase in the expression of the associated
genes, and the pathway itself was impacted after 1 week of repeated
exposure to PQ (Nunes et al., 2021, unpublished observation).
Endoplasmic reticulum (ER), the site of synthesis and folding of
proteins, maintains a strict quality control targeting incorrectly folded
proteins for proteasomal degradation (Smith et al., 2011). Upon accu-
mulation of protein-folding alterations occurring during ER stress, cells
activate a series of complementary adaptive mechanisms, the unfolded
protein response (UPR), primarily serving to return normal ER function,
and failure to adapt to ER stress may result in apoptosis triggered by UPR
(Hetz, 2012; Lin and LaVail, 2010). Perturbations in ER calcium, high
ROS production, depletion of oxidised glutathione and proteotoxicity all
have the potential to activate the UPR. Indeed, disturbance of ER and
UPR have been described in human lung epithelial cells after PQ expo-
sure (Chinta et al., 2008; Omura et al., 2013). Furthermore, recently
UPR was reported after PQ treatment in primary cultures of human
CD34+ derived dendritic cells, but not in macrophages (Fransen and
Leonard, 2021). In the present study, the UPR pathway was highlighted
in four out of the six models. As for the oxidative stress pathway, a
repeated exposure to PQ was necessary to detect the UPR using Con-
sensusPathBD in BrainSpheres (Nunes et al., 2021, unpublished obser-
vation), although a clear concentration-dependent increase was
observed in the expression of several genes involved in this pathway,
such as ATF4, PPP1R15A and DDIT3, already after 24 h of exposure. The
second model, for which ConsensusPathDB did not highlight UPR, the
podocyte model (PODO), showed only a slight modification of
PPP1R15A, suggesting no or only very weak activation of UPR-PERK
branch, contrary to the observation made in the other kidney cell
type, PTL. Further studies are needed to determine whether PQ activates
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UPR through the induction of ER stress, as described in lung epithelial
cells, or directly through the induction of ROS, since an interaction
between UPR and oxidative stress has been described (Kupsco and
Schlenk, 2015), involving the phosphorylated form of elF2a, ATF4,
CHOP (transcription factor C/EBP homologous protein, also called
DDIT3) and PPP1R15A (Harding et al., 2009; Hetz, 2012; Pavitt and
Ron, 2012; Tabara et al., 2018). Altogether, our results show that even
though we used a minimum overlap of two genes between the input gene
list and a given pathway associated gene list to define a pathway as
overrepresented, our strategy using several hiPSC-derived models, with
various cell type or organ specificities, allowed to detect the main
mechanisms of action of PQ.

Another pathway revealed after PQ exposure in four cell culture
systems, including both brain models (NC and BS), BLECs and HLC, was
“ESR-mediated signaling”. This is interesting given that estrogenic
dysfunction has recently been identified to be involved in toxicity
induced by PQ on rat primary hippocampal neurons in vitro (Moyano
et al., 2020a, 2020b) and that estradiol has been shown to protect a
neuronal line from PQ toxicity (Gélinas et al., 2004). It is therefore
remarkable to note that our strategy not only retrieved the main, known
mechanisms of action of PQ, but also a recently proposed one that
clearly deserves further studies.

Most of the top ten upregulated genes per model were involved in
stress responses, in particular oxidative stress and inflammation for four
hiPSC-derived models out of the six tested. The two brain models, NC
and BS, however behaved differently, exhibiting genes involved in
development, such as OX1 and INSM1 that promote generation and
expansion of neuronal progenitor cells, and the thyroid receptor that is
also important in the development and maintenance of brain structures.
The lower proportion of genes involved in stress responses among the
top upregulated genes in brain models suggest that brain cells have the
weakest self-defence capacity against toxins or can less easily induce
their adaptative mechanisms than peripheral organs (Kuter et al., 2010).
These results show that although stress pathways shared by most of the
models have been identified, each model seemed to also react in a
specific way to paraquat. This is remarkable since in this study we used a
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restricted number of probes, that were not specifically designed for cell
type-specific discrimination.

Finally, VEGFA was induced by PQ in four of the models. VEGFA, a
prototypical HIF1 alpha gene, primarily induced as a response to hyp-
oxia, is mainly known for its activities related to angiogenesis, vascular
permeability and vascular survival (Ferrara, 2004). There is a growing
body of evidence, however, that VEGFA fulfils additional less ‘tradi-
tional’ functions in multiple organs during development, as well as
homeostatic functions in fully developed organs (for review, see (Licht
and Keshet, 2013)). Our results showing the upregulation of VEGFA
shared by both brain models and both kidney models are perfectly in line
with the current knowledge on the importance of VEGFA for these two
organs. VEGFA, mainly expressed in astrocytes and neurons is upregu-
lated in all brain cell types upon severe hypoxia (Jin et al., 2000). It is
also expressed in glomerular podocytes, where it is critical for the
establishment and maintenance of glomerular filtration (Eremina et al.,
2003), and ample evidence supports important roles for this growth
factor in the maintenance of tubulointerstitial integrity and the response
to acute kidney injury (Doi et al., 2010; Schrijvers et al., 2004). The
upregulation of VEGFA in brain and kidney models after exposure to PQ,
again shows that the hiPSCs-derived models used in this study are
reproducing the organ patho-physiology, and furthermore suggests this
growth factor as marker of chemical injury.

Some limitations of the study should be stated. The cell models uti-
lised here although from the same donors were cultured, differentiated
and treated separately. Our systems and the majority of in vitro models in
general represent a reductionist approach and does not fully reflect the
physiology of a whole organism due to the lack of connections and
communications between them through blood flow, endocrine and
nervous systems. This could possibly be better recapitulated in the
future by using organ-on-a-chip models and/or by the application of in
silico modelling. Furthermore, the iPSCs-derived models used in this
study, beside their great advantages, come also with some limitations.
For example, although the BS model is multicellular and highly complex
it does not (at this point in development) possess microglia, precluding
the development of the full neuroinflammatory cascade. The HLC are
not completely mature hepatocytes and lack cooperation with Kupfer
cells, and the kidney model PODO lacks fenestrated endothelial cells and
glomerular basement membrane to form a full glomerular model. These
limitations can be overcome in the near future by co-culturing cells with
their missing partners. Finally, in order to overcome the multiple dif-
ferences linked to cell culture conditions that could impact the true
comparisons of the effects of PQ in the different models, the distribution
kinetics of PQ has to be established for each model, to correlate the
observed toxic effects to the effective concentrations reaching the cells
and not to the nominal concentrations used. This will allow a better
comparison of the effects of chemicals on the various models.

5. Conclusions

Our strategy, taking advantage of the iPSC technology, allowed to
determine the known and less known mechanisms of PQ toxicity with
TempO-Seq analysis, using a cost-effective panel of probes specific for
toxicity testing. The main advantages of this strategy are to assess
chemical toxicity on cell types from multiple organs in parallel, exclu-
sively in human cells, eliminating interspecies bias and allowing a better
evaluation of the differential sensitivity of the models representing the
diverse organs. To apply this approach to the general assessment of
chemical toxicity, the strategy presented herein could be further
improved by adding hiPSC-derived models for other organs, such as the
heart and the lungs, and by standardization of procedures to reach a
higher level of harmonization between the different laboratories.
Furthermore, organ-specific toxicity testing could be reached by adding
organ-specific genes to our set of TempO-Seq probes.

Given the present results showing the differential sensitivity of the
various human models to PQ, we believe this strategy will contribute to

14

Toxicology in Vitro 81 (2022) 105333

the further improvement of chemical risk assessment for human health,
providing the above cited improvements combined with the evaluation
of the distribution kinetics of the chemicals, as a key step for the in vitro
to in vivo extrapolation (IVIVE) (Punt et al., 2020), absolutely required
for regulatory decision-making.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tiv.2022.105333.
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4. Conclusions and future work

Recent years have seen the development of many human cell-based tests and other non-animal
methods in the chemical safety assessment (Burden et al. 2015; Singh et al. 2018). While their
effective implementation is on its way, it is also clear that no single method or approach is or
even should be a one-to-one replacement for animal-based standardized testing guidelines
(Madden et al. 2014; Sakuratani et al. 2018). The researchers have therefore started developing
approaches that integrate various non-animal tools to not only pace up the transition to more
innovative strategies but also become less dependent on animals, cheaper and more human
relevant (Meigs et al. 2018; 2019).

The in3 project as described earlier has focused on integrating in vitro methodologies with in
silico tools using iPSC technology for mechanistic toxicity testing. All the study designs and
plans for the in vitro-based experiments were discussed within the complete consortium of in3
to be able to align them so that the data can be reused within the project. This also led to many
collaborative research studies like cell model comparisons based on the controls and PQ as
mentioned in Section 1.2. For achieving the maximum benefit out of the harmonized study
designs and make the reuse of data as easy as possible, this thesis focused on coordinating the
partners’ in vitro data collection, standardization, accessibility, and hosting on an optimized
database and on the development of project-wide bioinformatics analysis workflows to uncover
tissue specific markers of toxicity and stress response pathways. The central data management
was applied and common bioinformatics based workflows for data processing and analysis
were developed for proper evaluation within the project to foster the re-use of data within and
outside the project. A careful metadata collection process was executed to guarantee the
completeness of information for the analysis of the data in each study and for cross-study
analysis. The metadata as well as the corresponding raw data files were uploaded to the
EdelweissData™ data management system (SaferWorldbyDesign2020) as described in Section
1.5. A standard workflow accessing the application programming interface (API) was
developed to provide and share data hosted on the data management system with everyone in
the project. A bioinformatics workflow was also integrated for further processing and analysis
of the data in a standardized way as described in Section 1.5. These workflows were provided
to all the partners to help them in the evaluation of the iPSC cell models and their application
to safety assessment, including determination of model robustness and specificity and
elucidating the mechanisms related to toxicity. This common strategy led to the analysis in a
collaborative and standardized manner. The standardized strategy also helped partners in
utilizing this data in the grouping, read-across approaches, and providing mechanistic
validation for the QSARs. Overall, this led to around 10 publications so far (both published
and in preparation) within the project using the data sharing infrastructure and the
bioinformatics workflows and/or extending the latter.

The above discussed workflows created as the first part of this thesis were also utilized to
achieve the specific aims as mentioned in Section 1.1 which focused on the utilization of iPSCs
in toxicity testing, usage of temporal data to resolve mechanisms patterns, and comparing the
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cell models’ responses to PQ. The work done in this thesis is an important step towards being
able to use iPSCs in standardized testing for risk assessment and regulations.

The first aim was to utilize an iPSC-derived PTL cell model in chemical toxicity testing. The
targeted transcriptomics (TempO-Seq) data and pathway libraries allowed the identification of
stress responses caused in PTL cells on being exposed to cadmium, arsenic, amiodarone,
doxorubicin, rotenone, tunicamycin, and GW788388. Different stress responses were
identified in a time-dependent way, showing how they progress differently over time depending
on the exposure to chemicals. The pathway libraries helped translate the differential expressed
genes (DEGs) pattern (derived from the transcriptomics data analysis) to the risk-relevant stress
response mechanisms. The combination of the two pathway libraries (Reactome
(https://reactome.org) (Jassal et al. 2020) and Ingenuity Pathway Analysis (IPA)
(https://digitalinsights.qiagen.com/products-overview/) (Krdmer et al. 2014) and the

transcription factor associations curated from literature (by Vidya Chandrasekaran, Vrije
Universiteit Amsterdam) showed the association of the DEGs activated due to cadmium
exposure to two known major stress responses: Nrf2-mediated oxidative stress response and
MTF1-mediated metal stress response (Andrews 2000; Chen and Shaikh 2009). The integrated
pathway library ConsensusPathDB V35 (http://cpdb.molgen.mpg.de) (Kamburov et al. 2009)
showed known stress responses like UPR, Nrf2- mediated oxidative stress response, MTF1-
mediated metal response, and p53 signaling pathway related to the DEGs activated in different
degrees and time points in response to tunicamycin, arsenic, rotenone, doxorubicin, and
amiodarone(Carvalho et al. 2009; Gjymishka et al. 2009; Nicoletti-Carvalho et al. 2010;
Chakraborty et al. 2014; Rashid et al. 2015; Tsui et al. 2015; Young et al. 2016; Counts and
Mufson 2017; Afsar et al. 2020). GW788388 was the only compound that showed no DEGs
activated related to stress response based on the cut-offs set for both on LFCs and adjusted p-
value. But even without the use of the cut-offs, no concentration-based responses were seen for
the stress response related genes in GW788388.

The second aim was to evaluate the advantages of using temporal gene expression data. The
temporal sequence of the mechanisms was analyzed based on the associated gene profiles due
to exposure to different chemicals. The MTF1-mediated stress response related genes for both
the arsenic and cadmium showed an early activation of the genes and a sustained response until
the last measured time point. There was also an early activation of Nrf2-mediated oxidative
stress related genes for both the compounds. But, in cadmium, the expression started going to
the baseline levels by 24h and in arsenic, the response was sustained until 24h. This difference
in the exposure to metal compounds would not have been possible to see if only one single
time point would have been used. Additionally, a single time point is not always enough to see
all responses. In the case of exposure to cadmium, the Nrf2- mediated oxidative stress response
would have never been identified if only the 24h time point would have been chosen as often
done in transcriptomics studies. The use of different time points before 24h showed that the
genes related to this pathway reached the highest expression very early but didn’t sustain the
expression until 24h. In contrast, the Nrf2- mediated oxidative stress response started reaching
the highest level only at the longest exposure time points in the case of doxorubicin. Thus,
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whatever single time point would have been chosen, this important pathway would have been
missed in the one or other chemical exposure scenario.

The profile fitting method as described in Chapter 2.1 was developed exclusively to apply in
the case studies from Chapters 2 and 3 to reduce the influence of noise and, in this way, better
identify similar profiles. The functions used in the fitting procedure producing the best profiles
to describe the expression pattern were chosen manually for each gene. However, automating
the step of choosing the best temporal profile for the gene will be useful for the easy application
of this method on the broader set of time resolution data by future researchers.

The conclusion of the results addressing the first two aims which were achieved for the case
studies from Chapter 2 and Chapter 3 is that the temporal-based studies utilizing iPSC models
and targeted transcriptomics technology help unravel the time-based evolution of the responses
induced due to chemical exposure. The targeted transcriptomics data used in TempO-Seq was
useful to find the expression pattern of the most important genes and their associated responses
known to be activated against the chemical exposure of all the compounds used. In future
applications of this approach, the addition of the full genome information would benefit in
exploring the expression pattern of the genes which were not present in this targeted gene list.
The targeted gene set can miss novel transcripts which might be important in different activities
happening in the associated mechanisms. Additionally, these novel transcripts may play an
important role in the induction of other connected responses in cells as well.

The third aim was to analyze the activation of stress responses in different IPSC-derived
models namely proximal tubule-like cells (PTL), podocytes (PODO), brain-like endothelial
cells (BLECs), brain spheres (BS), neuronal cells (NC), and hepatocyte-like cell (HLC) after
being exposed to PQ. TempO-Seq analysis using selection criteria (cut-offs) based on the
maximum fold changes showed the induction of Nrf2-mediated oxidative stress response,
which is known to be affected by PQ (Dinis-Oliveira et al. 2008; Gawarammana and Buckley
2011; Blanco-Ayala et al. 2014), in all the models except for BS. But the associated genes like
HMOX1 and NQOI1 showed a concentration-dependent increase for all the six models, even
for BS, but with different sensitivities. PTL showed the highest expression levels of the genes
associated with the oxidative stress response. UPR also known to be induced on PQ exposure
(Chinta et al. 2008; Omura et al. 2013) was activated in all models except for BS and PODO.
Like oxidative stress, BS showed a concentration-dependent increase, but the genes and the
associated pathway didn’t cross the cut-offs. In contrast, the UPR-related genes like PPP1R15A
did not show the concentration-dependent increase in PODO and very weak expression in
general suggesting that this mechanism is not or less important in PODO.

This case study was based on the re-use of the data generated as part of studies performed by
other in3 partners, which means that the experiments done for each cell model were performed
based on different study goals and not exclusively for this case study. Therefore, even if the
same cut-offs were used to choose the DEGs and associated responses across all cell models,
the comparison of absolute values of expression levels should be done with care as the
concentrations chosen for these models are not harmonized. For the future application of this
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approach, the full concentration-response curves would be needed requiring more than 3
concentrations and a broader concentration range that can show the response until saturation
levels are reached. Also, the distribution kinetics of PQ must be established for each model, to
harmonize the concentrations better, and correlate the observed toxic effects to the effective
concentrations reaching the cells and not to the nominal concentrations used here. Additionally,
temporal information along with the different concentrations can be also used to analyze
responses of different cell models based on both the time and concentration.

The fourth aim was to explore the high sensitivity of the brain towards PQ which was seen
while analyzing the results addressing the third aim. To evaluate the sensitivity of these models
towards PQ, a wide range of PQ concentrations for 24h and/or 48h were used to expose these
different cell models and establish the cytotoxicity curves. The brain was found to be the most
sensitive model to PQ based on these curves. To investigate this finding, the expression level
of PQ transporters was looked upon. SLC3A2 and SLC7A11, are two amino acid transporters
that are used by PQ to enter cells for review, see Wang et al., 2021) (Kuter et al. 2010). showed
high expression levels in both the models BS and NC representing the brain which might be
the reason for the higher uptake of PQ by these cells.

The conclusion of the results addressing aims three and four for the case study from Chapter 4
is that this strategy can be applied to evaluate the toxicity of a chemical in different human-
derived cell types simultaneously. This is also helpful in the assessment of differential
sensitivity of cell models representing different organs. The future application of this approach
in chemical toxicity assessment can also be supplemented with iPSC models for other organs
like the heart and lungs.

One limiting factor in the studies was the usage of a very limited number of replicates. It is
very necessary to have more than 3 replicates for a group (treatment or control) in the
experimental setup to avoid losing data. In the PQ case study, the EC cell model was removed
due to dissimilarity among replicates from the same treatment group as mentioned in detail in
Chapter 4. The results were not interpretable as the statistics with 3 replicates were biased due
to huge variance and impossibile with just 2 replicates. The only solution would have been to
repeat the experiments for the EC model which was not possible within the timeframe of the
project.

The work done in this thesis can be integrated into future applications with additional further
developments or modifications as mentioned below:

1. The cell models can be further improved to represent the corresponding organs more
closely. The BS model is multicellular and highly complex and does not (at this point
in development) possess microglia, precluding the development of the full
neuroinflammatory cascade. The HLC is not completely mature hepatocytes and lacks
cooperation with Kupfer cells, and the kidney model PODO lacks fenestrated
endothelial cells and a glomerular basement membrane to form a full glomerular model.
Co-culturing cells with their missing partners in the future can be one possible solution
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to this issue. Also, these cell models which are in vitro represent a reductionist
approach, and the physiology of a whole organism is not fully replicated due to the lack
of connections and communications between them through blood flow, endocrine and
nervous systems. In the future, the use of organ-on-a-chip models and/or the application
and integration of in silico modeling can recapitulate it better.

. The time points used for the first 24h in the cadmium study helped look at the first
exposure and the first 24h. However, for looking at long(er)-term effects and multi-
dosing, a similar resolution as in the first 24h would be needed. In the cadmium study,
there were only two time points after 24h used in the study presented here to interpolate
the profile to include the long-term effects of cadmium exposure to PTL cells. The cells
were repeatedly exposed after every 24h. However, the behavior of genes in the first
24h was very different as compared to 72h and 168h. For example, Nrf2 related genes
came to baseline levels by 24h and did not show any activation at 72h and 168h. Genes
like PCNA and SESN1 showed no signal until 24h but showed higher expression levels
at 72h and 168h. This higher expression was not caused due to the increase in the raw
counts of treated samples but due to the decrease in the read counts of the control
samples. The course of the mechanism over time between 24h and 72h as well as
between 72h and 168h was not identifiable due to no time points in between these two
ranges. Also, for genes like MAFF and MAFG which came to baseline levels by 24h
and didn’t show any activation at 72h and 168h, there is a chance to miss important
information if the addition of cadmium after 24h causes another maximum as seen
before 24h. Therefore, this would need more investigations including more time points
between 24h and 168h to better understand the effect of multi-dosing and analyze long-
term effects.

a) The pathway libraries like ConsensusPathDB integrates information from all
pathway libraries into one large library. This leads to repetitions of many pathways for
example in the case of doxorubicin, 10 pathways showed relation to the p53 signaling
pathway, genotoxicity, or cell death/apoptosis. Some common sets of genes were
shared by these different representations. But many additional genes were added to
some pathways highlighting the area focused by the research group generating these
entries, the generality or specificness of a pathway, and the knowledge at the point of
time. But this can further be improved by subgrouping the related pathways coming
from different pathway libraries in a nested manner under one common name
representing the pathway of interest.

b) The pathway libraries need to be made more toxicology relevant for their broader
application in risk assessment. The transcriptomic information related to exposed cells
can help to do that. For example, genes, which never show up in any exposure scenario,
could be removed from a tox-optimized pathway. Also, using the temporal resolution
information related to risk assessment can be advantageous. For example, the temporal
resolution might help to better structure biological pathways to represent the temporal
relationships of the involved genes, proteins, etc. Adding more data might make it
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possible to group or divide the genes related to a pathway based on the time points of
their occurrence when comparing responses due to different chemicals.
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