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Summary 

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous 

system. Typical characteristics are multifocal inflammatory infiltration, demyelination, 

remyelination, and axonal loss in the microenvironment of brain tissue. The advanced 

MRI (aMRI) sequences and the quantitative measures derived from them can provide 

surrogate measurements on these microstructural changes. The information provided by 

aMRI is abundant, but partially redundant among them. There is a need to assess which 

aMRI or quantitative measures are important to a given task and explore the benefit of 

considering them jointly in studying MS axonal/myelin damage and repair. 

We proposed and validated a novel method based on the convolutional neural 

network and gated attention mechanism (GAMER-MRI) in the application of well-

understood stroke-related and multiple sclerosis-related lesion classification. The 

method gave an attention weight-based importance order of MR contrasts in line with 

clinical understanding. Next, we extended the method to tackle highly intercorrelated 

diffusion measures based on diffusion MRI in the classification of MS lesion and 

perilesional tissue. The correlation of selected measures with patient-level measures 

including the clinical scale of movement disability and the biological measure on the 

degraded axons were statistically significant, and the combinations of them had a 

stronger correlation. Last, we demonstrated the improvement of the method on the 

patient-level classification and a proposed approach to identify the brain regions 

contributing towards the importance of the images through the combination of the 

relevance maps and the corresponding attention weights. 

Along with these developments, we demonstrated that GAMER-MRI was able to 

give us the importance of MR images from the local lesion-level analysis to the global 

patient-level analysis and be a new means to jointly combine the abundant information 

in different kinds of MRI images for a more comprehensive analysis in the future. 
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Chapter 1. Introduction 

1.1 Multiple Sclerosis 

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous 

system, which affects around 2.8 million people worldwide. The mean age of diagnosis 

is 32 years, and female is two- to three-fold more likely affected (Dilokthornsakul et al., 

2016; Walton et al., 2020). The MS hallmark includes multifocal inflammatory infiltration, 

demyelination, remyelination, and axonal loss. The compounding effect of these 

characteristics leads to various symptoms, including muscle weakness, numbness, 

tremor, blurry vision, fatigue, problems with bowel and bladder, speech difficulties, and 

movement disability. Some patients also suffer from mental health issues. MS patients 

are clinically classified as relapsing-remitting (RR), secondary-progressive (SP), or 

primary progressive (PP). Based on clinical metrics and the representation on MRI of 

disease activity, patients can be further categorized as active or non-active (Lublin et al., 

2014). The two patient groups are particularly of interest because they exhibit quite 

opposite patterns in terms of axonal damage and repair. In active RRMS, the 

remyelination and the acute axonal damage, including demyelination, axonal transport 

disturbances, and axonal transections, have been shown increased (Albert et al., 2007; 

Barkhof et al., 2003a; Dziedzic et al., 2010a; Kuhlmann et al., 2002). On the other hand, in 

non-active progressive (naPMS), less acute axonal damage and remyelination, but 

dominated axonal loss have been found (Albert et al., 2007; Barkhof et al., 2003a; Dziedzic 

et al., 2010a; Kuhlmann et al., 2002). Therefore, these two distinctive groups of MS 

patients are suitable for an in-vivo study to disentangle the interplay between axonal 

damage and repair, such as remyelination and axonal reorganization. 
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1.2 MS Pathology 

MS lesions are heterogeneous depending on the position, the tissue structure, the 

cellular composition, the degree of damage, and the level of repairment (Lucchinetti et 

al., 2000; Metz et al., 2014). White matter lesions and grey matter lesions are categorized 

in the position and have different pathologies. In white matter lesions, Blood-Brain-

Barrier damage, significant inflammation, and gliosis can be observed, but not in grey 

matter lesions.  

Neuronal, glial, and synaptic loss can be found in grey matter lesions (Geurts and 

Barkhof, 2008). In addition, Juxtacortical and periventricular lesions (JCL and PVL), for 

example, have distinctive remyelinating abilities and distinct extent of axonal and myelin 

damage in postmortem histopathological (Goldschmidt et al., 2009) and in-vivo PET 

(Poiron, 2018) studies.  

MS lesions can be histopathologically categorized into four categories. Active 

lesions contain a large number of immune cells, including monocytes, macrophages, and 

microglia. Chronic active lesions have a rim of activated microglia/macrophages at the 

lesion boundary and demyelination or axonal loss in the lesion center. Inactive lesions 

are hypocellular and lack of oligodendrocytes, macrophages, and microglia. 

Remyelinating/remyelinated lesions present shorter and thinner myelin sheaths and 

oligodendrocyte progenitor cells, which generate remyelinating oligodendrocytes 

(Duncan et al., 2018; Kuhlmann et al., 2017; Patrikios et al., 2006). The surrounding tissue 

of lesions can also have some degrees of axon/myelin damage (Lieury et al., 2014; Mustafi 

et al., 2019).  

Normal appearing white matter and grey matter (NAWM and NAGM) can also 

show signs of histopathologically identifiable damage, but look normal on conventional 

magnetic resonance imaging sequences (Geurts and Barkhof, 2008; Moll et al., 2011). The 

characteristics include a lesser degree of diffuse myelin and axonal damage and microglia 

clusters, compared with lesions (Granberg et al., 2017; Kutzelnigg et al., 2005; Lassmann, 

2018). Depending on the closeness to white matter lesions, NAWM has different 
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pathologies (Moll et al., 2011). These heterogeneous MS lesions and normal-appearing 

brain tissue can be probed by conventional and advanced magnetic resonance imaging 

sequences (cMRI and aMRI) (Granziera et al., 2021; Rovira et al., 2015; Wattjes et al., 2015).  

 

1.3 MRI 

Magnetic Resonance Imaging (MRI) plays a fundamental role in MS diagnosis, 

prognosis, and disease monitoring on and off therapy (Wattjes et al., 2021). Among cMRI, 

white matter lesions appear hyperintense on the image of the Fluid-Attenuated Inversion 

Recovery (FLAIR) sequence, and grey matter lesions present as black holes on the image 

of the Magnetization Prepared - RApid Gradient Echo (MPRAGE).  

aMRI can further provide metrics sensitive to various axonal components and 

structures (Granziera et al., 2021). Myelin Water Fraction (MWF) derived from Myelin 

Water Imaging quantifies the water locating within myelin layers and gives a surrogate 

measure of integrity of myelin. If there is demyelination, the MWF decreases. MWF is 

obtained by fitting multiple water components to the multi-echo T2 relaxometry as the 

T2 of the compartment for myelin water is around 10-20 ms and the one for the 

intra/extracellular water 50~200ms. The range of fraction is from 0 to 0.3 within brain 

(Laule et al., 2006; Nguyen et al., 2016). Multi-shell diffusion MRI measures the signal 

decay caused by water diffusion within a tissue in various directions subjective to the 

strength of diffusion gradients. This allows estimating different water compartments in 

fractions (e.g., intracellular volume fraction and isotropic volume fraction) by applying 

biophysical microstructural models based on different assumptions on the restricted 

diffusion within tissue. The models are, for example, the Neurite Orientation Dispersion 

and Density Imaging (NODDI) (Zhang et al., 2012), NODDI with the Spherical Mean 

Technique (SMT-NODDI) (Cabeen et al., 2019), and Microstructure Bayesian approach 

(Reisert et al., 2017). These diffusion measures are between 0 and 1. The intracellular 

volume fraction reflects the integrity of the neurites and the isotropic volume fraction 

indicates the movement of the free water. Therefore, in a white matter lesion, the 
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intracellular volume fraction is lower than surrounding normal appearing white matter 

(Novikov et al., 2019). Quantitative Susceptibility Mapping (QSM) estimates the 

magnetic susceptibility profile of tissue from the phase of the MR signal. The interesting 

part of the phase is induced by the local magnetic fields from the susceptibility of 

different molecules, such as diamagnetic myelin and paramagnetic iron content. Through 

the field inversion in addition to other post-processing steps, QSM can differentiate 

myelin and iron content and indicate various phases of myelin degradation. The value 

range within brain is within ±250 ppb. Chronic active MS lesions of a surrounding rim 

due to iron-laden macrophages can be identified on QSM (Deh et al., 2018; Spincemaille 

et al., 2020; Wang and Liu, 2015a). Quantitative T1 relaxometry (qT1) measures the T1 

relaxation time from the excitation state back to thermal equilibrium, which depends on 

the spin-lattice relaxation subject to the tissue composition. Increasing water content 

and/or the less structural microenvironment increases qT1, such as the qT1 of white 

matter around 840 ms and the one cerebral spinal fluid is around 4000 ms (Bojorquez et 

al., 2017). It is, thus, sensitive to myelin, axonal diameter, and brain tissue organization. 

(Bonnier et al., 2014; Canty et al., 2013; Harkins et al., 2016; Kober et al., 2012; Stüber et 

al., 2014). Magnetization Prepared 2 Rapid Gradient Echoes (MP2RAGE) is an 

extension of MPRAGE. MP2RAGE exploits two inversion recoveries and the intrinsic bias 

field correction of the reception 𝐵1 field (𝐵1
−) and the first order bias-field correction of 

the transmit 𝐵1  field (𝐵1
+ ) in order to provide T1 weighted images with an optimal 

contrast between gray matter and white matter. qT1 can be estimated through the two 

inversion recovery images (Marques et al., 2010).  
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These aMRI sequences may jointly provide enlightening in-vivo descriptors of 

axonal damage and repair in MS patients and offer surrogate quantifiable biomarkers 

(Figure 1). However, most in-vivo studies of axonal damage and repair before this project 

utilized either one of mentioned aMRI sequences or a combination of two of them. How 

to jointly and selectively consider the information provided by aMRI and the derived 

quantitative measures to study the interplay between myelin and axonal damage/repair 

motivates this project. 

 

Figure 1:The white matter lesion representations of an exemplar MS patient on qualitative and 
quantitative MRI. Upper row from left to right: MP2RAGE, quantitative T1 relaxometry, Myelin Water 
Fraction. Lower row from left to right: FLAIR, NDI from NODDI and QSM. Lesions are indicated by the 
green squares. On MP2RAGE, lesions are hypointense and their centers can evolve like black holes. 
On quantitative T1 relaxometry, lesions are hyperintense because the demyelination and axonal 
damage increase the T1 relaxation time. On MWF, demyelination decreases the water in the myelin 
sheath, so lesions are hypointense. On FLAIR, the same process increases the T2 relaxation time and 
leads to hyperintense lesions. On NDI, the axonal damage and loss reduce the neurite density and thus 
lesions are hypointense. On QSM, lesions have rims formed by the iron-laden macrophages at the 
lesion boundaries, which are paramagnetic. 
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1.4 Deep Learning 

The advancement of deep learning (DL) rendered possible the classification of 

disease patterns in MS patients (Barquero et al., 2020; Eitel et al., 2019; Shoeibi et al., 2021; 

Ye et al., 2020; Yoo et al., 2018; Zhang et al., 2018), prediction of mobile impairment 

(Marzullo et al., 2019; Tousignant et al., 2019) and accurate segmentation of MS lesions 

(Andermatt et al., 2018; Brosch et al., 2016; La Rosa et al., 2020) using MRI. The 

hierarchical structure and nonlinear activation operation of deep learning enable it to 

learn and extract meaningful patterns from raw or minimally pre-processed data (LeCun 

et al., 2015). Among various structures, the convolutional neural network (CNN) is 

suitable for MR images (Lundervold and Lundervold, 2019). The core components are 

the convolutional layer of different stationary kernels and the pooling layer in addition 

to the nonlinear activation. The convolutional layer learns the optimal values for the 

kernels to extract meaningful features (e.g., edges and textures) and its weight sharing 

nature enables it to detect the same kind of edge everywhere in the image. The pooling 

layer applies a summary statistic locally, such as maximum and mean operations, and 

the learned features are therefore invariant to small translations and condensed to lower 

dimensional features (Goodfellow et al., 2016). Through iteratively minimizing the error 

between the prediction and the ground truth of a given task given regularization 

constraints, CNN learns itself the features it deems relevant to the task.  

Attention mechanism, which originated in the field of natural language 

processing, can instruct the NN to attend to useful correlated elements in the text. It was 

modeled by a feedforward NN inside the main part of the NN for translation. The 

feedforward NN considered a sequence of the encoded elements in the input sentence 

and the hidden state of the main NN and generated the probability of each  element to be 

combined with the element to form an expected context vector for further decoding into 

translation (Bahdanau et al., 2015). Since then, various variants of the attention 

mechanism were developed (Lu et al., 2016; Luong et al., 2015; Niu et al., 2021; Vaswani 

et al., 2017; Voita et al., 2020). One of the variants, the gated attention mechanism, was 
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extended to images and found to successfully assign attention weights to non-

overlapping patches from histopathological images containing malignant cancer cells 

(Ilse et al., 2018; Tomczak et al., 2018).  

This data-driven characteristic can complement the use of summary statistics in 

clinical research. Often, the region of interest (ROI) was chosen based on human 

assumptions on the biological process. If the pathological conditions in ROI are complex, 

a summary statistic on certain aspects of the assumed process is calculated, while losing 

some information and considering a partial aspect of the process. In order to gain new 

insights into the damage and repair in MS, it would be imperative to have a deep learning 

tool providing a quantified measurement on the importance of the derived quantitative 

measures, which is relevant to a given task and based on all available information from 

the data. The additional benefits of quantified importance might establish the ground for 

forming a more informative pattern of the pathology.  

 

1.5 Explainability Methods 

The complex hierarchical NN has cast a limitation on how to understand its 

decision process. A plethora of methods has been developed to attempt to explain the 

decision of the NN. They include occlusion (Zeiler and Fergus, 2014), the saliency 

map(Simonyan et al., 2014), integrated gradients (Sundararajan et al., 2017), SHAP 

(Lundberg and Lee, 2017), GradCAM (Selvaraju et al., 2016) and Layer-wise Relevance 

Propagation (LRP) (Bach et al., 2015). Each of them is based on different rationales. The 

occlusion evaluates how much the performance changes when a patch of the image is 

whitened or zeroed. The saliency map considers the gradient of the output with respect 

to the input, i.e., how the small changes in the input image are going to affect the output. 

Integrated gradients is approximated by the sum of the gradients with respect to the 

input image along the straight-line path from a given baseline image to the input image. 

SHAP approximated the Shapley value in game theory with various approaches, 

including kernel-based and linear formulations. It gives a SHAP value to each feature by 
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summing the prediction differences between including and excluding that feature in all 

combinations of the subset of features in the dataset. GradCAM uses the gradients of 

prediction with respect to a convolutional layer to create a map and then upsamples the 

map to the resolution of the input image to reveal important regions. Among them, LRP 

has been shown effective in taking structures of NN into generation of the relevance map 

to explain the decision (Samek et al., 2021, 2017). LRP decomposes and redistributes the 

output score from the NN to the input image layer by layer based on the relative 

contributions of the neurons in two adjacent layers. The layer-by-layer approach can 

adapt different redistribution rules according to the kinds of the layers.  

 

1.6 Contribution 

In this thesis, we present a CNN-based method with gated attention mechanism 

(GAMER-MRI) to address the issue of joint and selective consideration of derived 

quantitative measures to decode the pattern of myelin and axonal damage and repair. 

The method provides attention weights as proxies of importance of input images of 

quantitative measures in a given task.  

In the first work, the validity of attention weights was founded by giving attention 

weight-based important orders of qualitative MR contrasts and quantitative measures in 

line with the clinical understanding in three experiments. The first experiment was the 

classification of acute/subacute ischemic stroke patients vs healthy controls and patients 

with other brain pathology, where a pre-trained model was fine-tuned. The second 

experiment was the patch-based classification of acute ischemic stroke lesions vs healthy 

tissue. The last experiment was the classification of JCL and PVL MS lesions, supported 

by the passed statistical test result of the obtained attention weights.  

In the second publication, we provided the solution when GAMER-MRI was 

applied to the highly correlated inputs. The experiment was conducted on the patch-level 

classification of lesion vs perilesional tissues using diffusion measures from eight 

biophysical microstructural models. The differences between lesions and perilesional 
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tissues, which also had various degrees of damage and repair, are smaller than between 

the lesions and healthy tissues. If GAMER-MRI could classify them with good 

performance, the diffusion measures being selected were highly sensitive.  Due to their 

intercorrelated nature, their attention weights were close to each other. We proposed a 

simple multiplication within the network to enhance the differences in attention weights 

and a selection process based on attention weights. The selected measures averaged 

within and across lesions were shown to be correlated with the patient-level clinical and 

biological measures. The combinations of the selected measures had an even stronger 

correlation. This hinted at the possibility to combine quantitative measures for a more 

informative representation. 

The third work illustrated two important aspects of GAMER-MRI. The first aspect 

was the applicability of GAMER-MRI to the patient-level classification using volumetric 

images of quantitative measures without a pre-trained model given a limited number of 

patients. The classification was performed on MS patients having severe movement 

disability vs mild disability. Second, it proposed an improvement of LRP in conjunction 

with the attention weights to uncover important regions for the classification. The 

experiments were the affected degree of classification performance because of the 

perturbation on the important regions of the quantitative measure maps and the 

correlation with the clinical measure of mobile impairment. The results showed that an 

informative map, which was obtained by linearly combining the attention weights and 

the relevance maps from LRP, unveiled the most important regions in both experiments. 

By considering all these works, we demonstrated the suitability of GAMER-MRI 

in selective and joint consideration of quantitative measures in studying axonal and 

myelin damage/repair from the lesion-level to the patient-level analyses. 
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1.7 Outline 

Based on the concepts in the introduction section, the details of the three 

aforementioned works are presented in Chapter 2 to 4. In Chapter 5, we discuss our work, 

limitations, and possible future work for further improvements and developments. 

 

 

  



 

11 

Chapter 2. GAMER-MRI: Gated-Attention 

MEchanism Ranking of multi-contrast MRI in 

brain pathology 

In the publication of the following section, we presented a deep learning-based method, 

Gated-Attention MEchanism Ranking of multi-contrast Magnetic Resonance Imaging in 

brain pathology (GAMER MRI), to address the issue of selection of the most relevant 

magnetic resonance imaging contrasts for a given pathology. A multitude of novel 

quantitative and semiquantitative MRI techniques have provided new and 

complimentary information about the pathophysiology of neurological diseases. 

However, clinical research and practice are still limited by the time required to acquire 

multiple MR contrasts. The results showed that GAMER-MRI was able to rank the 

relative importance of MR measures in the classification of well-understood ischemic 

stroke lesions and in the classification of multiple sclerosis lesions where the relative 

importance of MR measures was less understood. In addition, the quantified importance 

may in fact help to choose the best combination of MR contrasts for a specific 

classification problem. 

 

Publication.   

The paper was published in the journal NeuroImage: Clinical on the 3rd of December 

2020. 

https://www.sciencedirect.com/science/article/pii/S2213158220303594 

  

https://www.sciencedirect.com/science/article/pii/S2213158220303594
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Abstract 

Introduction: During the last decade, a multitude of novel quantitative and 

semiquantitative MRI techniques have provided new information about the 

pathophysiology of neurological diseases. Yet, selection of the most relevant contrasts 

for a given pathology remains challenging. In this work, we developed and validated a 

method, Gated-Attention MEchanism Ranking of multi-contrast MRI in brain pathology 

(GAMER MRI), to rank the relative importance of MR measures in the classification of 

well-understood ischemic stroke lesions. Subsequently, we applied this method to the 

classification of multiple sclerosis (MS) lesions, where the relative importance of MR 

measures is less understood. 

Methods: GAMER MRI was developed based on the gated attention mechanism, 

which computes attention weights (AWs) as proxies of importance of hidden features in 

the classification. In the first two experiments, we used Trace-weighted (Trace), apparent 

diffusion coefficient (ADC), Fluid-Attenuated Inversion Recovery (FLAIR), and T1-

weighted (T1w) images acquired in 904 acute/subacute ischemic stroke patients and in 

6,230 healthy controls and patients with other brain pathologies to assess if GAMER MRI 

could produce clinically meaningful importance orders in two different classification 

scenarios. In the first experiment, GAMER MRI with a pretrained convolutional neural 

network (CNN) was used in conjunction with Trace, ADC, and FLAIR to distinguish 

patients with ischemic stroke from those with other pathologies and healthy controls. In 

the second experiment, GAMER MRI with a patch-based CNN used Trace, ADC, and 

T1w to differentiate acute ischemic stroke lesions from healthy tissue. The last experiment 

explored the performance of patch-based CNN with GAMER MRI in ranking the 

importance of quantitative MRI measures to distinguish two groups of lesions with 

different pathological characteristics and unknown quantitative MR features. Specifically, 

GAMER MRI was applied to assess the relative importance of the myelin water fraction 

(MWF), quantitative susceptibility mapping (QSM), T1 relaxometry map (qT1), and neurite 

density index (NDI) in distinguishing 750 juxtacortical lesions from 242 periventricular 

lesions in 47 MS patients. Pair-wise permutation t-tests were used to evaluate the 

differences between the AWs obtained for each quantitative measure. 
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Results:  In the first experiment, we achieved a mean test AUC of 0.881 and the 

obtained AWs of FLAIR and the sum of AWs of Trace and ADC were 0.11 and 0.89, 

respectively, as expected based on previous knowledge. In the second experiment, we 

achieved a mean test F1 score of 0.895 and a mean AW of Trace=0.49, of ADC=0.28, 

and of T1w=0.23, thereby confirming the findings of the first experiment. In the third 

experiment, MS lesion classification achieved test balanced accuracy=0.777, 

sensitivity=0.739, and specificity=0.814. The mean AWs of T1map, MWF, NDI, and QSM 

were 0.29, 0.26, 0.24, and 0.22 (p < 0.001), respectively. 

Conclusions:  This work demonstrates that the proposed GAMER MRI might be 

a useful method to assess the relative importance of MRI measures in neurological 

diseases with focal pathology. Moreover, the obtained AWs may in fact help to choose 

the best combination of MR contrasts for a specific classification problem. 

 

Keywords (Maximum 6 words) 

• Deep learning 

• Attention mechanism 

• Relative Importance order 

• Stroke 
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1. Introduction 

        Magnetic resonance imaging (MRI) has proven invaluable for the investigation of the 

pathophysiology of neurological diseases and guiding neurological diagnoses, prognoses, 

and evaluation of therapeutics. In fact, during the last decade, numerous fast MRI 

sequences and quantitative/semiquantitative MRI measures have been developed that 

provide complementary information to disentangle the pathological mechanisms and 

characteristics of brain diseases. In addition, specific biomarkers for diagnosis and 

response to therapy have been identified (Bozzali et al., 2016; González and Schwamm, 

2016; Gupta et al., 2017). However, clinical research and practice are still limited by the 

time required to acquire multiple MR contrasts. It is imperative that these studies be 

conducted in a time frame compatible with patient tolerance, compliance, and in the case 

of clinical practice, the requirements dictated by the healthcare system. Therefore, the 

need to address the selection of the most informative MR contrasts is pivotal to avoid 

uncomfortably lengthy acquisitions, to lower the subsequent possibility of having motion 

artifacts, and to reduce the related cost. 

        Deep learning, especially convolutional neural networks (CNN), has proven 

promising in the segmentation of brain regions or lesions in MR images (Andermatt et al., 

2018; Carass et al., 2017; Commowick et al., 2016; La Rosa et al., 2019; Wachinger et 

al., 2018), classification of brain diseases (Payan and Montana, 2015; Yoo et al., 2018), 

MR reconstruction (Akçakaya et al., 2019; Schlemper et al., 2018), and prediction of 

disease prognosis (Saha et al., 2020; Tousignant et al., 2019). The layer-wise neural 

network (NN) design can identify high-level hidden representations through iterative 

training, which are pivotal for a given classification task. Some of the deep learning 

designs specifically enhance the interpretability of the decision made by the NN, such as 

class activation maps (Selvaraju et al., 2016; Zhou et al., 2016) and Shapley Additive 

exPlanations (Lundberg and Lee, 2017). Nevertheless, these methods either give 

importance to the voxels in images or to post-hoc feature importance. On the contrary, 

the attention mechanism within a NN provides attention weights (AWs) representing the 

importance of specific features. The concept, which originated in the field of natural 

language processing, can instruct the NN to attend to useful correlated elements in the 

text (Bahdanau et al., 2015). One of its variants, the gated attention mechanism, was 
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extended to images and found to successfully assign AWs to non-overlapping patches 

from histopathological images in the classification of malignant cancer cells (Ilse et al., 

2018; Tomczak et al., 2018).  

        In this work, we optimized the gated attention mechanism (Ilse et al., 2018) to 

develop a prototype of a Gated-Attention MEchanism Ranking of multi-contrast MRI in 

brain pathology (GAMER MRI). GAMER MRI specifically ranks the relative importance of 

global multi-contrast features, instead of the importance of local single-contrast patches, 

in the classification of focal lesions. This method was first validated for a clinical 

application where some MR-measure importance is known (e.g., ischemic stroke) and 

was then applied to the classification of specific subtypes of MS lesions, which are known 

to differ in the extent of myelin/axon damage and reparative capacity: this provided knew 

knowledge about which MRI measure – among those sensitive to axon and myelin 

integrity – is most suitable to distinguish lesions with different axon/myelin damage and 

repair in MS. 

 

2. Materials and methods 

2.1. MRI data 

2.1.1. Stroke data 

        A total of 7,134 1.5T and 3T brain MRI studies obtained from a combination of 

inpatient and outpatient scanners at the Mount Sinai Hospital, New York, USA were 

randomly selected as the dataset. These imaging data were accumulated from the Mount 

Sinai BioMedical Engineering and Imaging Institute’s HIPAA compliant Imaging Research 

Warehouse, including data from 10 scanners produced by two manufacturers (GE and 

Siemens Healthineers). The dataset consisted of various clinical acquisitions and 

 TE (ms) TR (ms) FOV (mm3) SR (mm3) TI (ms) 
b values 

(s/mm2) 

FLAIR 94 8000 230x230x160 0.72x0.72x5 2460 -- 

T1w 6.9 2876 179x220x160 0.69x0.69x5 840 -- 

DWI 113.8 7625 240x240x170 1.02x1.02x5 -- 0,1000 

 Table 1. Acquisition parameters of each contrast in the stroke dataset. TE: echo time; TR: repetition 

time; TI: inversion time; FOV: field of view; SR: spatial resolution. 
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included healthy controls, patients with subacute and acute infarct stroke, and patients 

with subacute and acute hemorrhage and mass effect. Among these patients, 904 are 

subacute and acute infarct stroke patients (defined as group 1) and 6,230 are healthy 

controls and other patients (defined as group 2). The 2D axial protocol included 

conventional, isotropically weighted Diffusion Weighted Imaging (DWI), Fluid-Attenuated 

Inversion Recovery (FLAIR), and T1-weighted images (T1w) from the inversion recovery 

pulse sequence. The most important mean acquisition parameters are listed in Table 1. 

Trace-weighted contrast (Trace) and apparent-diffusion coefficient (ADC) were 

reconstructed on the scanner from DWI.   

        Acute infarct stroke has distinctive representations on the acquired contrasts (Fig. 

1). In the acute phase, hyperintensity is seen on Trace while ADC appears hypointense 

(Allen et al., 2012). In the subacute infarct stroke phase, both contrasts develop towards 

pseudo-normality. The segmentation of acute stroke lesions was performed on Trace and 

ADC by an expert radiologist consulting for Siemens Healthineers. 

 

2.1.2. Multiple Sclerosis data 

Figure 1. Examples of Trace, ADC, FLAIR and T1w images in the stroke dataset. The lesion is 

hyperintense on Trace but hypointense on ADC (Allen et al., 2012). On T1w, the lesion is more 

isointense than ADC and is faintly hyperintense on FLAIR. 
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        Forty-seven MS patients (33 relapsing-remitting and 14 progressive, 31 females and 

16 males, age range=43.6±14.4 years) were enrolled in the study approved by the local 

ethics committee of Basel University Hospital. Written consent was obtained prior to the 

MRI acquisition. Patients underwent a multi-parametric protocol on a 3T Siemens 

Healthineers MAGNETOM Prisma MRI system. The 3D protocol included SPACE-based 

FLAIR, Magnetization-Prepared 2 RApid Gradient Echoes (MP2RAGE) (Kober et al., 

2012; Marques et al., 2010), Fast Acquisition with Spiral Trajectory and T2prep sequence 

(FAST-T2) (Nguyen et al., 2016), multi-shell Diffusion Weighted Imaging (mDWI), and 

Multi-Echo Gradient Recalled Echo MRI (ME-GRE) (Wang and Liu, 2015b). The most 

important acquisition parameters are shown in Table 2. 

 

        From multi-parametric MRIs, quantitative MR maps (qMRs) were further 

reconstructed. Quantitative T1 relaxometry map (qT1) was reconstructed from 

MP2RAGE as in (Kober et al., 2012). Myelin water fraction map (MWF) was reconstructed 

 TE (ms) TR (ms) FOV (mm3) SR (mm3) 
TI 

(ms) 

Additional 

Parameters 

FLAIR 386 5000 256x256x256 1x1x1 1800 -- 

MP2RAG

E 
3 5000 256x256x256 1x1x1 

700, 

2500 
-- 

ME-GRE 

6.7,10.8,1

4.8,18.9, 

22.9,27,31

.1,35.1, 

39.2,43.2 

49 195x240x180 0.75x0.75x3 -- -- 

FAST-T2 0.5 7.5 240x240x160 1.25x1.25x5 -- 

T2prep times 

(ms) 

0 (T2prep turned 

off),7.5,17.5, 

67.5,147.5,307.5 

mDWI 75 4500 256x256x144 1.8x1.8x1.8 -- 

b values (s/mm2) 

0;700;1000; 

2000;3000 

/149 directions in 

total 

 Table 2: Acquisition parameters of each contrast in the MS dataset. TE: echo time; TR: repetition 

time; TI: inversion time; FOV: field of view; SR: spatial resolution.  
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from FAST-T2 as in (Nguyen et al., 2016). Neurite density index (NDI) from the neurite 

orientation dispersion and density imaging model (Zhang et al., 2012) was reconstructed 

from DWI as in (Daducci et al., 2015). Quantitative Susceptibility Map (QSM) was 

reconstructed from ME-GRE as in (Wang and Liu, 2015b). Co-registration between 

images was performed using FMRIB Software Library (FSL) (Jenkinson et al., 2012) and 

FreeSurfer (Fischl et al., 2001), and the obtained transformation matrices were later used 

for finding the correspondence of MS lesions between different qMRs. qMRs were not 

resampled to the same resolution so that the effect of interpolation in the resampling 

would not confound the quantitative values reflective of physical characteristics. MS 

lesions in white matter (WM) show hyperintensities on FLAIR images and in grey matter 

(GM) are blackholes on MP2RAGE images of the uniform contrast in Fig. 2a. WM lesions 

were automatically segmented (La Rosa et al., 2019) and manually corrected by two 

expert raters. Juxtacortical lesions (JCLs) and periventricular lesions (PVLs) were defined 

as WM lesions located within 3 mm of the boundary between (i) WM and GM and (ii) WM 

and ventricles, respectively, in Fig. 2b. The aforementioned boundaries were obtained 

through FreeSurfer processing on  MP2RAGE (Fujimoto et al., 2014). In the end, 750 

JCLs and 242 PVLs were found with a class-imbalance ratio of 1:3. 
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2.1.3.  Study Summary 

        Fig. 3 summarizes the information about the two datasets and the training, validation, 

and test datasets in the following experiments. 

Figure 2. MS lesions and qMRs. In (a), on MP2RAGE, the MS lesion in GM is a black 

hole (red arrow) and on FLAIR, the MS lesion in WM is hyperintense (green arrow). In 

(b), qT1, NDI, MWF and QSM reflective of different aspects of the microenvironment 

illustrate various representations of lesions. 

MP2RAGE 

QSM MWF 

NDI qT1 

FLAIR 

(b) (a) 
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2.2. GAMER MRI 

       The original gated attention mechanism proposed by Ilse et al. (Ilse et al., 2018) 

exploits the hidden representations of single-contrast patches to compute the 

corresponding AWs, which represents the relative importance among the hidden 

representations in the classification. The main theorem behind this rationale is the 

following (Zaheer et al., 2017): 

Theorem 1. A prediction function 𝑓(𝑋) for a set of countable elements 𝑋 is invariant to 

the permutation of the elements in 𝑋, if and only if, for suitable transformations 𝑔  and ℎ, 

𝑓(𝑋) can be decomposed as: 

𝑓(𝑋) = ℎ(∑ 𝑔(𝑥)𝑥∈𝑋 ) (1)  

𝑔(. ) and ℎ(. ) were modeled by a NN. Based on (1), the gated attention mechanism is 

formulated as follows: 

𝒏 = ∑ 𝑎𝑙𝒎𝑙 =  ∑ 𝑔(𝑥)𝑥∈𝑋
𝐿
𝑙=1 (2)  

𝑎𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝒘𝑇(tanh(𝑼𝒎𝑙) ⊙ sigm(𝐕𝒎𝑙))) (3) 

Figure 3. Study summary 



 

23 

where 𝒎𝑙 is the hidden representation of the 𝑙𝑡ℎ instance, 𝑎𝑙 is the AW of the 𝑙𝑡ℎ instance,  

𝑼 and 𝑽 ∈  𝑅𝐾×𝑀  are weights of the fully connected layers (FCs) following the hidden 

representations, sigm stands for the non-linear sigmoid function, ⊙ is the element-wise 

multiplication operator, 𝒘 ∈  𝑅1×𝐾 is the weights of a FC, softmax stands for the softmax 

function. 

        Contrary to the original single-contrast approach to model 𝑔(. ) , GAMER MRI 

adopted the multi-contrast multi-path approach on different MR contrasts and (2) 

becomes: 

∑ 𝑎𝑙𝒎𝑙 = ∑ 𝑎𝑙𝑞𝑙(𝑥𝑙)

𝐿

𝑙=1

 = ∑ 𝑔(𝑥)

𝑥∈𝑋

𝐿

𝑙=1

(4) 

where 𝑞(𝑥) is the encoding function of the NN and Equation (3) remains the same. It is a 

simple variant to extend the meaning of AWs to the assessment of the importance of the 

MR contrasts in studying diseases and the parallel encoding paths enable the MR 

contrasts to be ranked by AWs. The core implementation of the gated attention 

mechanism in the NN was the same as in (Ilse et al., 2018) and formed by an FC followed 

by the hyperbolic tangent function (the attention layer) and an FC followed by the sigmoid 

function (the gate layer). The outputs of the attention layer and the gate layer were 

element-wise multiplied and connected to a one-neuron FC and the softmax function to 

generate the normalized AWs.  The number of neurons in the attention and gate layers 

depends on the experiment.  

       In order to validate our method and rank the importance of MRI features, the following 

three experiments were conducted: 1. volume-based classification of acute/subacute 

ischemic stroke vs other strokes and healthy controls; 2. patch-based classification of 

acute ischemic stroke lesions vs healthy tissue and 3. patch-based classification of JCLs 

vs PVLs in MS patients. 

2.2.1. Pretrained network with GAMER MRI on stroke 

       To assess the performance of GAMER MRI as a ranking method, we combined 

GAMER MRI with the feature extracting compartment of an in-house pretrained NN from 

Siemens Healthineers (Princeton, NJ, USA), for the classification of acute/subacute 
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ischemic stroke vs other patients and healthy controls using volumetric Trace, ADC, and 

FLAIR. The pretrained NN was trained for the same classification and thus learned how 

to encode relevant hidden features from Trace, ADC, and FLAIR. 

 

2.2.1.1. Inputs and preprocessing 

        Trace, ADC, and FLAIR images were considered in this experiment since these 

contrasts were used for training the pretrained network. Subacute and acute infarct stroke 

patients were categorized into group 1, while group 2 included other patients and healthy 

controls. There were 5,002 subjects (group 1:   632 and group 2:  4,370) in the training 

dataset. The validation dataset had 1,061 subjects (group 1:  141 and group 2:  920) and 

1,071 subjects (group 1:  131 and group 2:  940) were in the test dataset. 

 

2.2.1.2. Architecture 

        The combined NN was built with three main compartments, including the feature 

extracting compartment of the pretrained NN, GAMER MRI, and a classifier, as depicted 

in Fig. 4. The feature extracting compartment was, for each contrast, composed of two 

3D convolutional blocks followed by two dense blocks based on the concept of DenseNet 

in (Huang et al., 2017). Each convolutional block consisted of a batch normalization layer, 

leaky ReLU units, and a 3D convolutional layer. In each dense block, there were two 3D 

convolutional blocks with the kernel size of 3x3x3 and 1x1x1. The number of initial 

features was 16 and the growth rate was 2. The hidden feature vectors from all contrasts 

were then concatenated as the input to the following GAMER MRI so that the hidden 

feature vector of each contrast was encoded independently prior to the computation of 

AWs. In the GAMER MRI, the number of neurons each in the attention layer and in the 

gate layer was 400. The classifier was one sigmoid neuron receiving the weighted sum 

of the hidden features and the AWs. The importance of each contrast is represented by 

the AW. 

 

2.2.1.3. Training Strategy 

        The combined NN was trained with a cross-entropy loss function and mini-batches. 

The weighted sampler was used to account for the class imbalance during training. The 

network parameters, including the pretrained layers, were updated by the Adam optimizer 
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with decoupled weight decay (AdamW) (Loshchilov and Hutter, 2019). The evaluation 

metric was the area under the receiver operating characteristic curve (AUC), which was 

the same metric used in training the pretrained network. To avoid overfitting, data 

augmentation was independently performed for each contrast on-the-fly. Since there is 

inherent randomization in the initialization of network parameters and the split of mini-

batches, the assessment of the effect of the random initialization is needed to properly 

describe the behavior of repeatability. The training, validation, and test datasets were kept 

the same during training, but the random seed changed in each repetition in the 

repeatability experiment. The leave-one-out (LOO) experiment on the selection of 

sequences was also conducted to characterize the method from a different perspective, 

namely by measuring the drop in the evaluation metrics reflecting the impact of the 

missing channel.         

 

2.2.2. Patch-based network with GAMER MRI on stroke 

        The second experiment was performed to assess the ability of the GAMER MRI in 

a neural network when it was trained from scratch on the stroke dataset. We hypothesize 

that if GAMER MRI can provide the weights reflective of the current clinical understanding 

Figure 4: The network structure consists of the pretrained feature extraction, the GAMER MRI and 

the classifier. Conv stands for the 3D convolutional block. FC is the fully connected layer. Concat is 

the concatenating layer. ⊙ represents an element-wise multiplication. 
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in the classification of acute infarct stroke lesions versus healthy tissues, it can be used 

in disease studies where the relative importance of MR contrasts is still unknown.  

 

2.2.2.1. Inputs and preprocessing 

        In consideration of the limited number of existing acute infarct stroke lesion masks 

and in order to remove the effects of different scanners, Trace, ADC, and T1w from 101 

acute infarct patients without other pathologies, like hemorrhage, and 237 healthy 

controls were selected from the stroke dataset for the patch-based experiment. T1w was 

registered to b0 of DWI because the right correspondence between contrasts is essential 

to patch sampling. Because acute infarct lesions are of varying sizes, care must be taken 

when choosing the sampled patch size. Too large of a patch size is detrimental to small 

lesions. On the other hand, too small of a patch size would under-represent large lesions. 

Thus, after inspecting a subset of acute infarct stroke images, 24x24 voxels was 

empirically chosen for 2D patches. For healthy controls, the patches were randomly 

upsampled three times within the brains so that the healthy brains would not be under-

represented by a small number of patches. In the end, 3,355 lesion patches and 9,917 

healthy patches were sampled. Patches were divided into training, validation, and test 

datasets according to the ratios: 0.6, 0.3, and 0.1. As a result, there were 7,234 patches 

(2,001 lesion patches and 5,233 healthy patches) in the training dataset; 4,531 patches 

(1,012 lesion patches and 3,519 healthy patches) in the validation dataset; 1,507 patches 

(342 lesion patches and 1,165 healthy patches) in the test dataset. The patches 

containing acute infarct stroke lesions were given the label=1. 

 

2.2.2.2. Architecture 

        A patch-based multi-contrast CNN with GAMER MRI (NN2) could be decomposed 

into three compartments as the NN in 2.2.1.2 (Fig. 5). The feature extracting compartment 

included three convolutional blocks for each MR contrast. Each convolutional block 

included a convolutional layer of 128 filters, exponential leaky units, and a batch 

normalization layer. The number of filters was chosen based on the evaluation metrics 

without inspecting the AWs prior to the 100-time repetitions.  The three connected 

convolutional blocks were followed by an FC of 128 neurons encoding the hidden feature 
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vector for each contrast. In the GAMER MRI, the number of neurons in the attention layer 

and in the gate layer were both 64. The classifier was the same as in 2.2.1.2.  

 

2.2.2.3. Training strategy 

        The NN was trained with a weighted cross-entropy loss function to account for the 

effect of class imbalance. The mini-batch size was 128 for both training and evaluation. 

The optimizer was Adam (Kingma and Ba, 2015). The F1 score was chosen as the 

evaluation metric because the correct identification for positive cases, i.e., acute infarct 

stroke, was more important than healthy tissue. To avoid overfitting, data augmentation 

and early stopping were performed.  

To appropriately characterize the performance, in addition to the aforementioned training 

strategy on the different random initializations, the next level of assessment was to split 

training, validation, and test datasets differently in different repetitions to make sure the 

power of the method does not come from the split. 

 

2.2.3. Patch-based network with GAMER MRI on MS lesions 

Figure 5: The network structure is composed of the feature extraction, the GAMER MRI and the 

classifier. Conv stands for a convolutional block of 2D convolutional filters. FC is the fully connected 

layer. Concat is the concatenating layer. ⊙ represents the element-wise multiplication. 
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        The third experiment was the evaluation of the mechanism on the classification of 

JCLs and PVLs from the MS dataset using qMRs, where the relative importance is 

unknown in the clinic. 

 

2.2.3.1. Inputs and preprocessing 

        3D patches close to 5x5x5 mm3 were chosen as samples for training the neural 

network for the following three reasons:  JCLs and PVLs are defined within 3 mm regions, 

the minimal slice thickness of qMRs is 5 mm, and various resolutions. This led to different 

patch sizes for each qMR to avoid confounding the quantitative values by the interpolation 

in the registration. Considering the defined JCLs and PVLs being in the WM, each qMR 

was masked by the WM mask. Lesion patches were divided into training, validation, and 

test datasets following the ratios:  0.6, 0.3, and 0.1. Therefore, there were 648 lesion 

patches (504 JCLs and 144 PVLs) in the training dataset, 256 lesion patches (179 JCLs 

and 77 PVLs) in the validation dataset, and 88 lesion patches (67 JCLs and 21 PVLs) in 

the test dataset. 

 

2.2.3.2. Architecture 

        A patch-based multi-contrast CNN with a GAMER MRI similar to the NN in 2.2.2.2, 

was built (Fig.6). The feature extraction compartment included two convolutional blocks 

followed by an FC, as in 2.2.2.2, for each qMR. The convolutional layer in the 

convolutional block had 32 filters and the FC has 16 neurons encoding the hidden feature 

vector for each qMR. The criterion to choose the number of filters was the same as in 

2.2.2.2. The hidden feature vectors from all qMRs were then concatenated as the input 

to the following GAMER MRI. In GAMER MRI, the number of neurons in the attention 

layer and gate layer were both 32. The classifier was the same as in 2.2.2.2.  

 

2.2.3.3. Training strategy 

        The loss function and the mini-batch size, data augmentation, early stopping, and 

the learning-rate-reduce-plateau scheduler were the same as in 2.2.2.3. The optimizer 

and the evaluation metric were the same as in 2.2.1.3.  

In addition to the characteristics evaluated in the previous two experiments, resampling 

patches prior to the split of datasets was performed. To avoid sampling bias in the patch-
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based classification, randomly resampling patches is pivotal for reproducibility. The pair-

wise one-sided 10,000 permutation t-tests were performed on the obtained orders of AW 

of all repetitions and the multiple comparison problem was tackled by Bonferroni 

correction. 

 

2.3. Data and code availability statement 

        The datasets, provided by the Mount Sinai Hospital and Basel University Hospital, 

used in this study are not publicly available because the IRB of the study limits access to 

the data. The code used for training the models has dependencies on Siemens’ internal 

tooling, infrastructure, and hardware, and its release is therefore not feasible. However, 

the architecture, layer details, and hyperparameters are described in sufficient details in 

the manuscript to support replication with non-proprietary libraries. 

  

Figure 6: The network structure includes feature extraction, GAMER MRI and classifier. Conv 

stands for a convolutional block of 3D convolutional filters. FC is the fully connected layer. Concat 

is the concatenating layer. ⊙ represents the element-wise multiplication. 
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3. Results 

 

3.1. Pretrained network with GAMER MRI on the stroke dataset 

       Validation and test results of the NN in 2.2.1 using three different random seeds for 

the random sampler, which led to different initializations and splits of mini-batches, are 

given in Table 3. In each repetition, the mean AW (mAW) was averaged over the AWs of 

the corrected predicted samples. The reported mean AWs (rmAWs) were the average of 

all mAW across repetitions. 

 

The LOO experiment was conducted twice for each pair combination of Trace, ADC, and  

FLAIR. The drops in validation AUC were averaged across the repetitions and compared 

between combinations in Table 4.  

Pretrained-network with GAMER MRI in stroke 

Dataset Validation Test 

AUC 0.919 0.881 

AWs 
 

Trace+ADC, FLAIR 

(0.890, 0.110) 

Trace+ADC, FLAIR 

(0.886, 0.114) 

 
Table 3: Pretrained network with GAMER MRI on the stroke dataset: Mean validation and test 

results over three repetitions. The mean area under the curve (AUC) is reported to show the 

classification performance and the sum of reported mean attention weights (rmAWs) of Trace 

and ADC and the rmAW of FLAIR are shown to provide the importance ranking of the MRI. 

metrics. 

Leave-one-out Experiment 

Input Contrasts ADC, FLAIR 
 

Trace, FLAIR 
 

Trace, ADC 
 

AUC 0.866 
 

0.914 
 

0.91 
 

Drop in AUC 0.052 
 

0.004 
 

0.008 
 

AWs ADC, FLAIR 

(0.843, 0.157) 

Trace, FLAIR  

(0.866, 0.134) 

Trace, ADC 

(0.505*, 0.495*) 

 
Table 4: The validation result of the leave-one-out experiment. The averaged AUC, the drop 

in performance, and the rmAWs are reported. For the experiment using only Trace and ADC, 

the rmAWs varied greatly in the repetitions. The rmAWs in the first repetition were (Trace, 

ADC)=(0.871, 0.129) and in the second repetition were (0.138, 0.861). 
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3.2. Patch-based network with GAMER MRI on the stroke dataset 

       The NN in 2.2.2 was evaluated 100 times using the same training, validation and 

test datasets with different random initialization of the network and mini-batches. 

Patch-based 

network 

with GAMER 

MRI 

in stroke 

Validation 

Training 

Strategy 
Different Random Initialization Different Split 

F1 score 0.917 0.895 

 Trace ADC T1w Trace ADC T1w 

AWs 
0.5 

±0.043 

0.293 

±0.036 

0.207 

±0.028 

0.49 

±0.049 

0.281 

±0.039 

0.229 

±0.030 

 Trace, ADC 

and T1w 

Trace, 

T1w and 

ADC 

Other 

combinations 

Trace, ADC 

and T1w 

Trace, T1w 

and ADC 

Other 

combinations 

Order in 

Repetitions 
98 2 --- 82 18 --- 

 

Dataset Test 

Training 

Strategy 
Different Random Initialization Different Split 

F1 score 0.885 0.895 

 Trace ADC T1w Trace ADC T1w 

AWs 
0.507 

±0.043 

0.284 

±0.035 

0.208 

±0.028 

0.494 

±0.050 

0.278 

±0.040 

0.228 

±0.029 

 Trace, ADC 

and T1w 

Trace, 

T1w and 

ADC 

Other 

combinations 

Trace, 

ADC and 

T1w 

Trace, 

T1w and 

ADC 

ADC, 

Trace 

and T1w 

Other 

combina

tions 

Order in 

Repetitions 
94 6 --- 80 19 1 --- 

 
Table 5: The validation and test result of the patch-based acute stroke classification. The averaged F1 

score and the rmAWs and the standard deviation of mAWs across 100 repetitions are reported. The order 

in repetitions obtained by 100 repetitions shows the number of the corresponding order of attention. 

weights from the largest to the smallest. 
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Furthermore, the NN was evaluated 100 times using different splits of training, 

validation, and test datasets; respective validation results are reported in Table 5.  

 

      3.3. Patch-based network with GAMER MRI on MS lesions 

The NN in 2.2.3 was trained 100 times on the resampled datasets to ensure reproducibility 

of the method for classification of MS lesions where the important order of sequences is 

unknown. The performance of the repetition experiment on the validation and test 

datasets is reported in Table 6. In Table 7, we report the mean and standard deviation of 

the mean AWs, which are defined as in 3.1. Furthermore, the results of the permutation 

t-test on the obtained order of AWs are reported. 

 

Mean metrics (%) Balanced 

Accuracy 

Sensitivity Specificity F1 score 

Validation dataset 
 

78.34 ±3.09 74.21 ±7.86 82.49 ±5.12 64.66±4.00 

Test dataset 
 

77.65 ±5.49 73.90 ±10.10 81.41 ±8.21 65.09±8.93 

 Table 6: Performance of the patch-based network on MS lesions. The average mean and standard 

deviation of the metrics as a percentage of 100 repetitions are reported. 

 

Table 7: The rmAWs, the standard deviation of mAWs and the statistical test on the pair-wise 

comparison. The upper section shows the results of the validation dataset and in the lower 

section are the results of the test dataset. ***: corrected p<0.001 

 Validation 

Contrast AW Statistical test P value Significance 

qT1 0.285 ±0.027 qT1 > MWF 0.0001 *** 

MWF 0.256 ±0.015 MWF > NDI 0.0001 *** 

NDI 0.241 ±0.014 NDI > QSM 0.0001 *** 

QSM 0.218 ±0.022 --- --- --- 

 
 

Test 

Contrast AW Statistical test P value Significance 

qT1 0.284 ±0.030 qT1 > MWF 0.0001 *** 

MWF 0.256 ±0.016 MWF > NDI 0.0001 *** 

NDI 0.241 ±0.021 NDI > QSM 0.0001 *** 

QSM 0.218 ±0.023 --- --- --- 
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4. Discussion 

         We developed a Gated-Attention MEchanism Ranking of multi-contrast MRI in brain 

pathology (GAMER MRI) and demonstrated its ability to rank the relative importance of 

MRI contrasts / qMRs in the three different classification scenarios including the 

differentiation of well-studied infarct strokes and that of less understood MS lesions. 

 

4.1. Pretrained network with GAMER MRI on stroke 

        To accomplish the classification task, the NN should be able to extract unique and 

common information from the input contrasts. We demonstrated in 3.1 that GAMER MRI 

could utilize the unique and common information from each contrast to provide the AW 

as a proxy of the importance of each contrast. The mean AUC in this experiment was 

comparable to the performance of the original pre-trained network in a similar 

classification task. In addition, the mean AUC of validation and test datasets (Table 3) 

indicated that the combination of a pretrained encoder and GAMER MRI well performed. 

Because the AWs of the correctly classified samples formed the correct pattern with the 

hidden features for the classifier to make the right decision, we then proceeded to average 

those AWs to obtain the mAW for each repetition: in fact, considering the AWs of the 

incorrectly classified samples would not have reflected their real importance in the 

identification of stroke lesions. The consistent ratio between the sum of rmAWs of Trace 

and ADC and the rmAW of FLAIR showed that FLAIR was less important compared to 

the other two contrasts in the given classification task. This is in line with the relative 

clinical importance of these contrasts for the diagnosis of acute and subacute infarct 

stroke (González and Schwamm, 2016).  

        We observed an inconsistent ratio between the rmAWs of Trace and that of ADC, 

which is probably due to the strong correlation between the contrasts. Because of the 

known evolvement of the infarct stroke representation from the acute to the subacute 

stage on Trace and ADC, the representations become pseudonormal and similar. This 

leads to a stronger correlation between the information brought by Trace and ADC in 

addition to the intrinsic physical correlation between these two contrasts.  

        In Table 4, the obvious drop in performance of the LOO experiment when Trace was 

excluded indicates that Trace provides more unique information than ADC and FLAIR. 

Indeed, in the two LOO experiments including FLAIR, the rmAWs of FLAIR were smaller 
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suggesting its relative lower importance in this classification, which echoes the result in 

Table 3. In the experiment performed without using FLAIR images, the inconsistent ratio 

of AWs between Trace and ADC bolsters the implication of confounds caused by the 

strong correlation between these two contrasts. One main assumption behind the 

previous interpretation is that the amount of extractable information is the same across 

the LOO experiments. The comparison of the obtained results with the current clinical 

understanding of stroke lesions indicates this assumption is valid. 

       Considering the results in 3.1, we obtained empirical evidence that the proposed 

variant of the attention mechanism can provide AWs representative of the importance of 

non-correlated contrasts. 

 

4.2. Patch-based model with attention mechanism 

     We then aimed to assess whether GAMER MRI combined with a NN, which is trained 

from scratch for the classification of acute infarct stroke, is able to provide AWs 

representative of the known relative importance of MR contrasts in clinical practice.   

The obtained F1 scores on both validation and test datasets (Table 5) indicated 

that the NN combined with GAMER MRI learned information necessary to classify the 

patch containing acute infarct stroke lesions regardless of being trained with different 

random initialization or different split of training, validation, and test datasets. 

        In both repetition experiments, the rmAWs of Trace, ADC, and T1w showed that 

Trace carried more characteristic information than ADC followed by T1w images, which 

is in accord with the clinical understanding that on Trace, acute infarct stroke is 

hyperintense and more obvious than on ADC, and that the light hypointense appearance 

of an acute stroke in T1w images is less evident than the drop in signal often observed in 

ADC maps (González and Schwamm, 2016). In addition, while the number of repetitions 

slightly varied across the different experimental conditions, the importance order of Trace, 

ADC, and T1w remained consistent (Table 5). This demonstrates that the NN was able 

to extract relevant information in the given samples. The order of importance of Trace, 

T1w, and ADC might be a result of the patches having similar information on Trace and 

ADC. As a result, the NN would learn less unique information from ADC leading to its 

lower mAW than the one of Trace.  
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       The consistent results in 3.2 validated the assumption that the AWs obtained with 

GAMER MRI can be used to assess the relative importance of MRI contrasts without the 

restriction on an informative pre-trained NN. Also considering the results in 3.1, which 

demonstrated that GAMER MRI could obtain a clinically meaningful ranking of MRI 

contrasts, the method may be well applicable to neurological diseases that are less 

understood. 

 

4.3. MS patch-based model with attention mechanism 

        In this last scenario, we aimed at assessing if the GAMER MRI could be applied to 

other MRI measures and diseases, where the relative importance of measures is less 

understood. Therefore, we studied whether the GAMER MRI could rank myelin/axonal 

sensitive measures such as qT1, MWF, NDI, and QSM to classify lesions that are known 

to have different myelin and axonal content, such as lesions located near the ventricles 

(PVL:  lower myelin and axonal content) and next to the cortex (JCL: relatively higher 

myelin and axonal content) (Goldschmidt et al., 2009; Tonietto, 2018).  

        For both the validation and the test datasets, the network exhibited a moderate 

performance (Table 6): balanced accuracy was ca 78% - with a specificity that was slightly 

higher than the sensitivity (74% vs 82%), and the F1 score was ca 65%. In this experiment, 

different than in the previous one, we have assessed the network performance by using 

other summary measures than the F1 score: this is essential because the F1 score does 

not consider true negative results, hence it may not equally consider lesions, whose 

characteristics are not completely understood (i.e., JCLs and PVLs). The multiple 

statistical tests on pairwise rmAWs showed that the metric best discriminating PVL vs 

JCL microstructure is qT1 followed by MWF, NDI, and QSM. qT1 quantifies the overall 

microstructural tissue damage within MS lesions (Bonnier et al., 2014), whereas MWF 

and NDI provide specific information about myelin and axonal content (Nguyen et al., 

2016; Zhang et al., 2012). The order of importance reflects the overall difference in 

myelin/axonal content revealed in pathological studies (Goldschmidt et al., 2009), which 

qT1 depicts with the highest sensitivity. Hence, through this experiment, we could 

establish the reliability of GAMER MRI in a context where the relative contribution of MR 

measures to the discrimination of focal pathology is not clear.  
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Compared to the results obtained on the stroke dataset, the smaller differences 

between rmAWs of different qMRs might be caused by the smaller size of MS lesion 

datasets and/or higher similarities between lesion groups. A much larger effect is 

expected if an increased number of samples in datasets is included. Another potential 

underlying cause of this difference is the fact that the applied qMRs have in part redundant 

information. Indeed, the microstructural environment measured by qT1 encompasses the 

myelin content and neuro-axonal integrity measured by MWF and NDI. On the other hand, 

QSM measures both iron deposition and myelin properties since it is sensitive to the 

susceptibility effect due to paramagnetic substances and to the orientation of myelin 

sheaths. Besides, it has to be considered that – different than the contrasts applied in 

stroke (e.g., Trace) – qMRs in the MS experiment could not sharply delineate the 

boundary of MS lesions, hereby reflecting the local variations surrounding the focal 

damage. Despite all this, however, GAMER-MRI still demonstrated a statistically 

significant difference between rmAWs of the qMRs. 

 

4.4. Guideline on GAMER MRI 

        In consideration of the obtained results, we propose to use GAMER MRI as follows: 

1. Train and evaluate the method multiple times to see if there is a strong or 

mild correlation between the resultant AWs of input measures. If there is a 

strong correlation, an ablation study should be performed to remove the 

correlated modality showing a smaller drop in performance. Train and 

evaluate the method on the remaining measures to obtain AWs. 

2. If there is no strong correlation, the importance order based on the mean 

AWs across the repetitions is recommended. 

 

4.5. Conclusion 

        Our work shows that GAMER MRI provides a clinically meaningful order of 

importance for MR-based features in the classification of infarct strokes. In addition, even 

though qMRs in the classification of JCLs and PVLs in MS had redundant information, 

GAMER MRI still managed to reveal a close but significant order of importance. 

Considering this importance order, it may be possible to reduce the number of input MRI 

measures while retaining most of the useful information. 

         The main disadvantage of this method is the need for multiple evaluations since the 

criteria for the so-called strong correlation is based on the AWs, not just on the input 
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contrasts, as shown in the experiments of NN2. Future work will be required to remove 

this constraint. Furthermore, future work should center on combining the proxy 

quantification of the importance of qMRs with the values of qMRs to form meaningfully 

combined patterns for further studies since qMRs characterize different physical 

processes and physiological environments. 
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Chapter 3. GAMER-MRI in Multiple Sclerosis 

identifies the diffusion-based micro-structural 

measures that are most sensitive to focal 

damage: a deep-learning based-analysis and 

clinico-biological validation  

In the following paper, we presented an improvement of GAMER-MRI to select the most 

discriminating, but intercorrelated diffusion-based microstructural measures in the 

classification of MS lesions and perilesional tissue. Diffusion measures of biophysical 

microstructure models derived from diffusion MRI can characterize the microstructural 

environment and probe the demyelination and the axonal injury of MS lesions. However, 

a microenvironment characteristic is measured differently by measures from different 

models due to the different biophysical assumptions. Therefore, how to select the most 

discriminating diffusion measures for a given neurological disorder and how to combine 

the complementary information they might provide are imperative issues to address. The 

results showed that the proposed extension of GAMER-MRI with a selection process can 

select sensitive diffusion measures, whose average over lesions of a patient correlated 

with the patient-level clinical measure of mobile impairment, the Expanded Disability 

Status Scale (EDSS), and the patient-level biological measure of neuron damage, the 

serum level of neurofilament light chain (sNfL). Furthermore, the combination of the 

selected measures had a stronger correlation with EDSS and sNfL than the individual 

measures. This work demonstrates that the proposed method might be useful to select 

the microstructural measures that are most discriminative of focal tissue damage, and 

that may also be combined to a unique contrast to achieve stronger correlations to clinical 

disability and neuroaxonal damage. 
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Abstract 

Conventional magnetic resonance imaging (cMRI) in multiple sclerosis (MS) 

patients provides measures of focal brain damage and activity, which are fundamental for 

disease diagnosis, prognosis, and the evaluation of response to therapy. However, cMRI 

is insensitive to the damage to the micro-environment of the brain tissue and the 

heterogeneity of MS lesions. In contrast, the damaged tissue can be characterized by 

mathematical models on multi-shell diffusion imaging data, which measure different 

compartmental water diffusion.  

In this work, we obtained 12 diffusion measures from eight diffusion models and 

we applied a deep-learning attention-based convolutional neural network (CNN) 

(GAMER-MRI) to select the most discriminating measures in the classification of MS 

lesions and the perilesional tissue by attention weights. Furthermore, we provided clinical 

and biological validation of the chosen metrics - and of their most discriminative 

combinations - by correlating their respective mean values in MS patients with the 

corresponding Expanded Disability Status Scale (EDSS) and the serum level of 

neurofilament light chain (sNfL), which are measures of disability and neuroaxonal 

damage. Our results show that the neurite density index from Neurite Orientation and 

Dispersion Density Imaging (NODDI), the measures of the intra-axonal and isotropic 

compartments from the microstructural Bayesian approach and the measure of the intra-

axonal compartment from the Spherical Mean Technique NODDI were the most 

discriminating (respective attention weights were 0.12, 0.12, 0.15 and 0.13). In addition, 

the combination of the neurite density index from NODDI and the measures for the intra-

axonal and isotropic compartments from the microstructural Bayesian approach exhibited 

a stronger correlation with EDSS and sNfL than the individual measures.  

This work demonstrates that the proposed method might be useful to select the 

microstructural measures that are most discriminative of focal tissue damage, and that 

may also be combined to a unique contrast to achieve stronger correlations to clinical 

disability and neuroaxonal damage.  
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1. Introduction 

        Conventional magnetic resonance imaging (cMRI)  in multiple sclerosis (MS) plays 

a major role in MS diagnosis, prognosis, and the evaluation of patients’ therapeutic 

response (Rovira et al., 2015; Wattjes et al., 2015). However, the heterogeneity of focal 

MS lesions, the pathology in normal-appearing white and grey matter (NAWM and 

NAGM), and the specific damage to myelin and axons are largely overlooked by cMRI. 

Multi-shell diffusion-weighted imaging (mDWI) provides a way to further probe tissue 

damage and repair in MS patients (Lakhani et al., 2020; Schneider et al., 2017). mDWI 

measures signal changes that are related to the diffusion of water molecules within central 

nervous system (CNS) tissue (Lakhani et al., 2020; Novikov et al., 2019), which is 

constrained by the local micro-environment (Novikov et al., 2019). This enables diffusion 

measures of biophysical microstructure models derived from mDWI to decode the 

information specific to different water compartments (e.g. intra-axonal and isotropic 

compartments) within the CNS tissue (Novikov et al., 2019). The intra-axonal 

compartment reflects the integrity of the neurites and the isotropic compartment indicates 

the movement of the free water (Novikov et al., 2019). These two compartments can 

describe the two pathological presentations of MS lesions, demyelination and axonal 

injury, and are commonly modeled by various biophysical microstructure models (Lakhani 

et al., 2020).  

        A micro-environment characteristic is measured differently by the measures from 

different mathematical models due to the different assumptions on the diffusion within the 

tissue. Yet, to our knowledge, the direct comparison of all considered diffusion measures 

on MS lesions and the possibility to combine them do not exist. Therefore, how to select 

the most discriminating diffusion measures for a given neurological disorder and how to 

combine the complementary information they might provide remain to be an open 

question and motivate this study.  

        Convolutional neural network (CNN) in deep learning has proven promising in 

various applications of MR images and is able to encode spatial patterns on the images 

into representative hidden features (Akçakaya et al., 2019; Andermatt et al., 2018; La 

Rosa et al., 2020; Saha et al., 2020; Yoo et al., 2018). In our previous work (Lu et al., 

2021b), we used an attention-based CNN – GAMER MRI – to rank the importance of the 
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input quantitative MRIs in the classification of stroke and MS lesions. Here, we further 

developed the method to select discriminating inter-correlated diffusion measures in the 

classification of MS lesions and perilesional tissue. Compared to the conventional feature 

selection methods, this CNN-based method enables to utilize maximally available spatial 

information of the images and does not need to decide on how to find representative 

values for the samples of each contrast, such as the mean value only within a lesion 

neglecting the perilesional tissue. In addition, the method jointly considers all the 

contrasts, which is a limitation for most of the conventional feature selection methods. 

Furthermore, in this study, we have explored the relationship between the chosen 

measures, or their combinations, with the Expanded Disability Status Scale (EDSS) and 

the neurofilament light chain in the serum (sNfL), which are respectively (i) a clinical 

measure of disability in MS patients and (ii) a biological measure of neuroaxonal damage 

(Barro et al., 2018; Siller et al., 2019). 

 

2. Material and methods 

2.1. MRI data 

        One hundred twenty-three MS patients (84 relapsing-remitting and 39 progressive, 

71 females and 52 males, age range=44.7±14.0, median EDSS=2.5, EDSS range 0.0-

8.0) were enrolled in the study, which was approved by the local Ethics Committee of 

 TE (ms) TR (ms) FOV (mm3) SR (mm3) TI (ms) Additional Parameters 

FLAIR 386 5000 
256x256x25

6 
1x1x1 1800 -- 

MP2RAG

E 
3 5000 

256x256x25

6 
1x1x1 700, 2500 -- 

mDWI 75 4500 
256x256x14

4 

1.8x1.8x1.

8 
-- 

b values (s/mm2) 

0/12 acquisitions and 12 

reverse encoding 

acquisitions; 

700;1000; 

2000;3000 

/137 directions in total 

 Table 1: Acquisition parameters of each contrast in the MS dataset. TE: echo time; TR: repetition time; TI: 

inversion time; FOV: field of view; SR: spatial resolution.  
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Basel University Hospital. All subjects gave written consent prior to the enrollment. MS 

patients underwent a multi-parametric protocol on a 3T whole-body MR system (Siemens 

MAGNETOM Prisma). The protocol included 3D SPACE-based FLAIR, 3D 

Magnetization-Prepared 2 RApid Gradient Echoes (MP2RAGE) (Marques et al., 2010), 

and mDWI (Table1).  

        mDWI was denoised by MRtrix (Cordero-Grande et al., 2019; Tournier et al., 2019). 

The correction of susceptibility-induced distortion with the reversed phase-encoding 

images, eddy currents, and movement was performed by FMRIB Software Library (FSL) 

(Andersson et al., 2003; Andersson and Sotiropoulos, 2016; Jenkinson et al., 2012; Smith 

et al., 2004). The quantitative diffusion measures for the isotropic and intra-axonal 

compartments were reconstructed from the eight open-source biophysical models, 

including Ball and Stick (Behrens et al., 2003), Neurite Orientation and Dispersion Density 

Imaging (NODDI)2(Zhang et al., 2012), NODDI with the Spherical Mean Technique (SMT-

NODDI) (Cabeen et al., 2019), Microstructure Bayesian approach (MB) (Reisert et al., 

2017), Multi-Compartment Microscopic Diffusion Imaging (MCMDI) (Kaden et al., 2016), 

Figure 1: MS lesions on FLAIR and diffusion measures. (A) FLAIR: MS lesions are hyperintense 

and indicated by red dashed boxes. (B) Red: lesions; Green: perilesional white matter tissue. (C) 

The isotropic compartment from MB. (D) The intra-axonal compartment from MB. (E) The neurite 

density index from NODDI. (F) The intra-axonal compartment from SMT-NODDI. (G) The intra-

axonal compartment from MCMDI (H) The intra-axonal compartment from NODDIDA (I) The 

isotropic compartment from Ball and Stick (J) The intra-axonal compartment from Ball and Stick. 

Other models in the analysis see in the Supplementary Figure 1. 
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Neurite Orientation Dispersion and Density Imaging with Diffusivities Assessment 

(NODDIDA) (Jelescu et al., 2015), DIstribution of 3-D Anisotropic MicrOstructural 

eNvironments in Diffusion-compartment imaging (DIAMOND) (Scherrer et al., 2016) and 

microstructure fingerprinting (Rensonnet et al., 2019). The exemplary diffusion measures 

and FLAIR are in Fig. 1. 

        The quantitative diffusion measures of each patient were masked by the brain mask 

to remove non-brain tissue including the ventricle. The brain mask was the binarized 

subcortical segmentation obtained from FreeSurfer (Fischl et al., 2001) on MP2RAGE 

(Fujimoto et al., 2014) and transformed by FSL to align with mDWI. The diffusion 

measures were then subject-wise normalized. Eighty-four patients were randomly 

selected to be used in a 5-fold cross-validation. The other 39/123 patients formed a pure 

test dataset. White matter lesions were automatically segmented using FLAIR and 

MP2RAGE (La Rosa et al., 2020) and manually corrected by two expert raters. The lesion 

segmentations were transformed by FSL to be aligned with mDWI. Lesions of size less 

than three voxels were excluded. The perilesional tissue was defined as white matter 

tissue locating within a three-voxel region around the lesions. Patches of 5x5x5 voxels 

were sampled on lesions and perilesional tissue considering the lesion sizes. To reduce 

the overlapping between lesion and perilesional patches due to their proximity, a 

constraint of at most 20% of a sampled patch being overlapped with another patch was 

applied. The numbers of patches being sampled on each lesion and perilesional tissue 

were proportional to the size of the lesion and the perilesional tissue, respectively. In the 

end, 3,007 lesion patches and 3,624 perilesional patches were sampled in the dataset for 

5-fold cross-validation, and 1,402 lesion patches and 1,665 perilesional patches were 

sampled in the pure test dataset. The 5-fold cross-validation was based on the number 

of patients. Therefore, patches from a patient would not be present both in the training 

and in the validation datasets. 

2.2. GAMER MRI 

        GAMER MRI was previously developed and validated as a method to obtain 

attention weights and the relative importance in a classification task of given input 

contrasts (Lu et al., 2021b).  As we previously reported, the neural network consisted of 

three parts for feature extraction, gated attention mechanism (Ilse et al., 2018), and 
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classification (Lu et al., 2021b). The feature extraction part included three convolutional 

blocks for each contrast. Each convolutional block was composed of a layer of 16 

convolutional filters and exponential leaky units followed by batch normalization. The 

kernel size of the convolutional filter was 3x3x3, and padding was applied correspondingly 

to maintain the patch size. After the last convolutional block, a 16-neuron fully connected 

layer (FCL) received the flattened vector of 125 elements and encoded the hidden feature 

of 16 elements. The gated attention mechanism was formed by an attention layer 

containing an eight-neuron FCL followed by the tanh function and a gate layer having an 

eight-neuron FCL followed by the sigmoid function. The outputs of tanh and sigmoid were 

element-wise multiplied. From the element-wise product, in the original implementation 

for not-highly-correlated input contrasts, the attention weights were obtained by a 

following one-neuron FCL and the softmax function (Lu et al., 2021b). However, this 

design was not effective for highly correlated inputs, i.e., diffusion measures in this work. 

The information content of measures is similar and thus, the difference in the obtained 

attention weights was small. 

        For the purpose of this study, we multiplied the outputs from the element-wise 

multiplication by 2. This enhanced the difference between the encoded features of the 

correlated diffusion measures during training because the exponential transformation in 

the softmax function could not properly reflect the difference of the small values and 

negative values. For example, 0.01 is 10 times larger than 0.001, but they become 1.01 

and 1.001 after the exponential transformation. This leads to 0.502 and 0.498 as attention 

weights after the softmax function. The enhanced output was then connected to a one-

neuron FCL followed by the softmax function to generate the normalized attention weights. 

The weighted sum of the hidden features and the corresponding attention weights formed 
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a combined hidden feature for the classifier. The classifier was one sigmoid neuron. The 

network structure is in Fig. 2. 

        The weighted sampler was used to account for the class imbalance, and the batch 

size was 256. The loss function was cross-entropy loss. The evaluation metric was the 

area under the receiver operating characteristic curve (AUC). The optimizer was AdamW 

(Loshchilov and Hutter, 2019) with the learning rate=5e-5 and the weight decay=1e-2. To 

avoid overfitting, data augmentation and a learning-rate scheduler were performed. On-

the-fly data augmentation included random flipping in the left-right directions and 

Gaussian noise with zero mean and unit standard deviation. The scheduler was the 

learning-rate-reduce-plateau scheduler with a patience of 15 epochs.  

2.3. Selection of contrasts 

        An intrinsic strong correlation between the quantitative diffusion measures can lead 

to instability of the obtained attention weights and the ranked order, compared to the 

result in (Lu et al., 2021b). Therefore, to avoid determination solely based on the attention 

weights, the selection of discriminating measures was an iteration process. It started from 

the measure whose attention weight was dominant in the validation datasets in all the 

Figure. 2: GAMER-MRI. (A) The neural network. Conv stands for the convolutional block. FC is a fully 

connected layer.  (B) Attention block. ⊙ represents an element-wise multiplication. 
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cross-validation folds. If no measure was selected, the measures whose attention weights 

were ranked 1st or 2nd in all the folds were considered. If no measures were selected, 

the attention weights ranked 1st or 2nd and 3rd in all the folds were considered. The 

selection stopped when the sum of their attention weights was over 0.5, which meant that 

the selected measures were more important than 50% of the input diffusion measures in 

differentiating the lesion and perilesional tissue.  

        To assess which selected subject-wise normalized quantitative diffusion measures, 

or combination of those measures was best correlated with patients’ EDSS as well as NfL 

in the pure test dataset, we first averaged the diffusion measures within each lesion and 

then over lesions within each patient. In 31/39 patients of the test dataset, we quantified 

sNfL. Then, we performed Spearman’s correlation coefficient with two-sided 20,000 

permutation tests. The Benjamin-Hochberg procedure(Benjamini and Hochberg, 1995) 

was performed to control the false discovery rate (FDR) with the threshold of 0.05. The 

flowchart is shown in Fig. 3.  

 

3. Results 

3.1 Lesion classification 

        In Table 2, we report the average performance of GAMER MRI using all the diffusion 

measures on the (i) validation dataset over five-fold cross-validation and (ii) on the pure 

test dataset.  

        The diffusion measures selected by using the validation datasets were the neurite 

density index (NDI) from NODDI, the intra-axonal and isotropic compartment from MB 

Figure. 3: Flowchart for using GAMER-MRI to select the most discriminating subject-wise normalized 

diffusion measures and correlating the combinations of selected diffusion measures with the Expanded 

Disability Status Scale and the serum level of neurofilament light chain. 
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(Intra-MB and Iso-MB), and the intra-axonal compartment from SMT-NODDI (Intra-SMT) 

Mean metrics (%) 
 

AUC 
Balanced 

Accuracy 
Sensitivity Specificity F1 score 

Validation dataset 90.67±0.009 83.26 ±1.35 81.09 ±2.44 85.44 ±2.03 81.62±1.67 

Test dataset 91.01±0.003 83.42 ±0.12 83.39 ±0.67 83.45 ±0.82 82.14±0.11 

      

Selected Measures NDI Intra-MB Iso-MB Intra-SMT  

Attention Weights 0.121±0.014 0.117±0.014 0.145±0.007 0.131±0.015  

 Table 2: Performance of the patch-based network on MS lesions and the selected diffusion measures 

on 5-fold cross-validation (first row, average mean and standard deviation are reported) and pure 

testing set (second row). Balanced Accuracy is defined as the average of sensitivity and specificity in 

each fold. F1 score is defined as the harmonic mean of precision and recall. 

Table 3: Spearman’s correlation of selected normalized diffusion measures, or their combinations and 

EDSS. The significance is controlled by FDR with a threshold of 0.05. Only the combinations of 

significance are reported. 

Lesion Load ρ P-value Significance 

Number of Lesions 0.13 0.41 -- 

Lesion Volume 0.25 0.12 -- 

    

Normalized Diffusion Measures    

NDI -0.38 0.017 * 

Intra-SMT -0.31 0.057 -- 

Intra-MB -0.40 0.013 * 

Iso-MB 0.09 0.58 -- 

Intra-MB + Iso-MB -0.39 0.014 * 

Intra-MB + NDI -0.43 0.007 * 

Intra-SMT+NDI -0.37 0.023 * 

Intra-SMT + Intra-MB -0.40 0.012 * 

Intra-MB + Iso-MB + NDI -0.45 0.004 * 

Intra-MB + Iso-MB + Intra-SMT -0.42 0.007 * 

Intra-MB + Intra-SMT + NDI -0.42 0.009 * 

Intra-MB + Iso-MB + NDI + Intra-SMT -0.41 0.009 * 
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in Fig. 1. Their average attention weights of the corrected predicted samples are also 

reported in Table 2.  

 

3.2 Spearman’s correlation 

3.2.1 Correlation with EDSS 

The Spearman’s correlation coefficients (ρ) and the corresponding original p-values 

of the selected normalized diffusion measures, or their statistically significant 
combinations and EDSS are reported in Table 3. The Spearman’s correlation coefficients 
(ρ) of the conventional lesion load metrics are also reported. The number of potential 
combinations of four selected diffusion measures is 15, and there are two tests in the 
lesion load analysis. This led to in total 17 statistical tests. The significance controlled by 
FDR is indicated by *. The scatter plot of the combination having the strongest correlation 
is in Fig. 4A and an exemplary image of the combination is in Fig. 4B.    

3.2.2 Correlation with sNfL 

The Spearman’s correlation coefficients (ρ) and the corresponding original p-values 

are reported in Table 4. One patient had a relatively high sNfL level of 160 μg/mL, 
compared to the mean sNfL level of 8.9 μg/mL of the rest of the 30 patients. After this 
patient’s data were excluded, the significance in Table 4 did not change, but the 
correlation was stronger. For illustration purpose, the scatter plot of the combination 

Figure 4: (A): Scatter plot and a regression line of EDSS and the combinations of normalized Intra-MB, Iso-

MB and NDI, which has strongest correlation. (B): An exemplary image of the combined contrast. 
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having the strongest correlation (Fig. 5A) does not contain this outlier patient. An 
exemplary image of the combination is in Fig. 5B.  

Figure 5: (A): Scatter plot and a regression line of the combinations of normalized Intra-MB and Iso-

MB, which showed the strongest correlation with sNfL. (B): An exemplary image of the combined 

contrast. 

Table 4: Spearman’s correlation of selected normalized diffusion measures, or their combinations 

and sNfL. The significance is controlled by FDR with a threshold of 0.05. Only the combinations of 

significance are reported. 

Lesion Load 
 

ρ P-value Significance 

Number of Lesions 0.48 0.006 * 

Lesion Volume 0.45 0.01 * 

    

Normalized Diffusion Measures    

NDI -0.37 0.04 -- 

Intra-SMT -0.27 0.14 -- 

Intra-MB -0.42 0.02 * 

Iso-MB 0.1 0.59 -- 

Intra-MB + Iso-MB -0.51 0.004 * 

Intra-MB + NDI -0.43 0.02 * 

Intra-MB + Iso-MB + NDI -0.48 0.007 * 

Intra-MB + Iso-MB + Intra-SMT -0.45 0.01 * 

Intra-MB + Iso-MB + NDI + Intra-SMT -0.44 0.02 * 
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4 Discussion 

        Our work provided evidence that a modified version of GAMER MRI, including a 

specific selection procedure for correlated measures, permits to identify the 

microstructural diffusion measures that are most discriminative of focal MS pathology 

among the ones obtained with eight open-source mathematical models of multi-shell 

diffusion data. Moreover, our data showed that some of the combinations of the selected 

normalized diffusion measures better correlated with patients’ disability and neuroaxonal 

damage than the individual measures. 

Diffusion-based microstructural measures quantify different compartments based on 

various assumptions. Nevertheless, the relative sensitivity of the different diffusion-based 

microstructural metrics to specific CNS pathologies is unclear. In this work, we have 

provided a methodological frame to discriminate the most sensitive diffusion 

microstructural measures to focal MS pathology in a large population of MS patients. 

        We first aimed at identifying which measure best discriminated MS lesions from the 

perilesional tissue because we judged that if the neural network was able to differentiate 

between lesions and the immediate surrounding tissue, the learned pattern would have 

been most sensitive to focal MS pathology than the one we would have derived by 

comparing lesions to distant normal-appearing tissue. The evaluation metrics in Table 2 

indicated that the neural network was able to learn pivotal information for the target 

classification. As expected, because of the highly correlated nature of the studied 

diffusion-based measures, the difference among the obtained attention weights was small. 

The proposed selection process alleviated the fluctuating order of attention weights due 

to their small differences. The threshold of 0.5 in the selection process was empirically 

chosen considering the representativeness of selected diffusion measures and the 

multiple comparison problem.  

        The core idea of the attention mechanism is to enhance important features from the 

data themselves relevant to the specific application (Bahdanau et al., 2015). Therefore, 

in most of the applications in natural language processing and natural image classification, 

the attention weights were used to enhance the connection to the corresponding features 

based on their importance instead of quantifying the relative importance among the 

features (Hu et al., 2018; Maicas et al., 2017; Vaswani et al., 2017; Woo et al., 2018). 
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Using different designs of the attention mechanism, the attention weights provide also the 

relative importance among features as shown in a histopathological image classification 

and image captioning (Ilse et al., 2018; You et al., 2016). In GAMER MRI, attention 

weights were computed and validated on multi-contrast MRI measures in order to select 

their relative importance in a given neurological disease classification. 

        To our knowledge so far, only a few studies applied measures derived from 

microstructural models to study focal MS pathology (for a review see (Granziera et al., 

2021)) and only one study used deep-learning to show the superior performance of 

diffusion basis spectrum imaging to segment voxel-wise different types of MS lesions 

compared to using diffusion tensor imaging (Ye et al., 2020).  However, the joint 

comparison of multiple microstructural diffusion measures in MS lesions has not been 

explored yet. This work considered the potential interaction between the measures and 

tried to address this issue. 

        The four selected diffusion measures include three measures for the intra-axonal 

compartment from three models and one measure for the isotropic compartment from one 

of the three models. This means that most of the discriminating information of the 

damaged neurons was from the loss of axonal integrity. The additional information about 

the inflammatory processes might be reflected by the measure for the isotropic 

compartment to better characterize the distinction of lesions. 

        Besides, by combining the selected diffusion measures in the discrimination of focal 

pathology, it was possible to achieve a stronger correlation with patient disability than the 

one of those metrics alone or even conventional MRI metrics, such as the lesion number 

and volume. These results suggest that a comprehensive description of the tissue 

microstructure in regions of focal damage in MS patients may well help decrease the 

clinic-radiological paradox (Barkhof, 2002). Interestingly, the combined contrast achieving 

the best correlation with disability was the sum of measures quantifying intra-axonal and 

isotropic diffusion, which may be considered surrogate measures of the loss of integrity 

of axons and myelin as well as of inflammatory processes (i.e., increased cellularity and 

edema).  

        Most of the combinations that best correlated to EDSS were also highly related to 

the sNfL levels: remarkably, the correlation coefficients between sNfL and combinations 
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of diffusion-MRI metrics were even higher than the ones obtained between sNfL and the 

lesion load, which is known to be highly related to sNfL levels (Chitnis et al., 2018; Todea 

et al., 2020). The patient, who had an extremely high level of sNfL, had a relapse 2 months 

before the sNfL acquisition, which may have well influenced the strong increase in sNfL 

levels.  

        To perform the correlation analyses with EDSS and sNfL, we have used subject-

wise normalized maps of diffusion-based microstructural measures, which were the ones 

encoded by GAMER MRI. We also trained the neural network on the original images, 

which - however - led to worse classification performance. Because subject-wise 

normalized maps were used, it is challenging to determine whether the network could 

learn the right pattern and to generate representative attention weights. Owing to the 

applied normalization procedure, the interpretation of the pathological meaning of the 

combined metrics is particularly difficult. Another limitation of this study was that we 

divided the cross-validation folds based on the number of patients instead of the number 

of patches: this led to different distributions of lesion and perilesional patches in the 

validation datasets of all cross-validation folds and to the fluctuation of the validation 

results.  On the other hand, this also had the advantage of preventing the leak of 

information induced by the appearance of patches from one patient in both the training 

and validation dataset. Based on the obtained result (Table 2), the performance on the 

test dataset was stable, so the limitation was alleviated. 

5 Conclusion 

        In summary, our work showed that the proposed attention-based neural network 

and the selection process based on the previous work can select important diffusion 

measures despite they are highly inter-correlated. Those measures have the potential to 

be combined to enhance the correlation with the clinical measures. Future work will be 

required to directly find the best combinations without using a statistical test and tackling 

the multiple comparison problem. Furthermore, the use of a combination of diffusion-

based microstructural measures deserves further attention and development allowing 

better interpretability of its pathological meaning.  
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Supplementary Materials: 

 

 

 

 

 

 

 

 

 

Supp. Figure 1: Other diffusion measures in the analysis. (A) The first intra-axonal 

compartment from microstructure fingerprinting (MF-f0). (B) The second intra-axonal 

compartment from microstructure fingerprinting (MF-f1). (C) The intra-axonal 

compartment from DIstribution of 3-D Anisotropic MicrOstructural eNvironments in 

Diffusion-compartment imaging (DIAMOND). (D) The isotropic compartment from 

Neurite Orientation and Dispersion Density Imaging (ISOVF) 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

Diffusion Measures NDI Intra-MB Iso-MB Intra-SMT ISOVF 
Intra-

MCMDI 

Attention Weights 
0.121 

±0.014 

0.117 

±0.014 

0.145 

±0.007 

0.131 

±0.015 

0.038 

±0.014 

0.098 

±0.010 

Diffusion Measures 
Intra-Ball 

and Stick 

Iso-Ball 

and Stick 

Intra-

DIAMOND 

Intra-

NODDIDA 
MF-f0 MF-f1 

Attention Weights 
0.049 

±0.012 

0.055 

±0.005 

0.03 

0±0.012 

0.049 

±0.007 

0.090 

±0.001 

0.077 

±0.004 

 Supp. Table 1: The attention weights of the diffusion measures in the validation dataset on 5-fold cross-

validation (average mean and standard deviation are reported). The prefix, “intra-“, stands for the intra-axonal 

compartment of the following model. The prefix. “iso”, represents the isotropic compartment of the following 

model. 
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Footnote 

1. https://github.com/AthenaEPI/dmipy 

2. https://github.com/daducci/AMICO 

3. https://bitbucket.org/reisert/baydiff/wiki/Home 

4. https://github.com/robbert-harms/MDT 

5. https://bitbucket.org/benoitscherrer/crldciestimate 

6. The author needs to be contacted. 

7. https://hub.docker.com/r/francescolr/ms_seg 
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Chapter 4. GAMER-MRI identifies patterns of 

brain changes associated with disability in 

multiple sclerosis patients 

In this work, we further extended GAMER-MRI from the previous lesion-level analysis 

to the patient-level analysis and presented an improvement of the Layer-wise Relevance 

Propagation (LRP) in combination with the attention weights from GAMER-MRI to 

address the issue of the unknown decision process of deep learning on MR images. Deep 

learning has a hierarchical layer structure containing nonlinear activation function to 

understand data on different scales at different layers. Nevertheless, the deep layer 

structure and non-linear activations cast a limitation on the explainability of the decision 

process. This becomes a major challenge for medical applications where reasoning of 

clinical decision is essential. LRP includes various rules to redistribute relevance to the 

input image and has been shown effective in increasing the explainability. Here, we 

proposed a new LRP rule for GAMER-MRI and used the attention weight as the relevance 

to redistribute. The results showed that the proposed improvement could reveal more 

regions deemed important by GAMER-MRI than the original LRP, and the quantitative 

MRI within the regions correlated with patients’ EDSS.  
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Abstract 

Introduction: Deep neural networks are powerful but suffer from a black-box 

nature, as their exact decision process is elusive. Layer-wise relevance propagation 

(LRP) is a technique for increasing the explainability of the decision of deep neural 

networks. In this work, we have developed and validated a new LRP rule for GAMER-

MRI – a neural network exploiting the gated attention mechanism – to explore brain 

regions relevant to the classification of multiple sclerosis patients having a severe or mild 

disability. 

Methods: GAMER-MRI is based on the gated attention mechanism and was 

shown to provide attention weights as proxies of the importance of the quantitative 

magnetic resonance images (qMR images) in a given classification task. In this work, the 

encoder part of GAMER-MRI was based on DenseNet to tackle volumetric qMR images, 

including quantitative T1 relaxometry (qT1), neurite density index (NDI), and myelin water 

fraction (MWF). The proposed LRP considered the joint contribution nature of the gate 

and signal layers within the gated attention mechanism. We hypothesized that the 

attention weights could be more appropriate to relate to disability measures in patients 

with multiple sclerosis (MS) in LRP than the output score from the classifier. We also 

hypothesized that the relevance maps of the qMR images could be linearly combined with 

the qMR images to form a more informative combined map. The important regions 

revealed by the LRP were assessed by the impact on the area under the receiver 

operating characteristic curve (AUC) if voxel values within the regions were inverted. The 

Spearman’s correlation with the Expanded Disability Status Scale (EDSS) – a measure 

of disability in MS patients - accompanied by the two-sided permutation test was also 

conducted for the assessment. 

Results:  The model performance of GAMER-MRI was AUC=0.864 on the 

validation folds on average in the three-fold cross-validation and 0.885 on the 

independent test dataset. qT1 was the most sensitive, followed by NDI and MWF. In the 

voxel inverting experiment, the most affected AUC was achieved by using the combined 

map based on the proposed rule and the attention weights. The importance mask, which 

was defined by the top 40th quantiles of the combined map, covered regions, where qT1 

and NDI moderately correlated with EDSS (ρ = -0.371 and 0.440, respectively). 
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Conclusions:  This work demonstrates that the proposed configurations for 

GAMER-MRI and the modified LRP rule based on attention weights might be useful to 

assess the relative importance of MRI measures for MS patients with a severe or mild 

movement disability and reveal potentially patient-specific regions to patients’ 

impairment. 

Keywords 

Deep learning, Attention Mechanism, Multiple Sclerosis, quantitative MRI, Layer-wise 

Relevance Propagation  

 

1. Introduction 

        Deep neural networks (DNNs) have achieved remarkable success in various 

applications using Magnetic Resonance Imaging (MRI), including brain lesion detection 

(Barquero et al., 2020; Koschmieder et al., 2022; Maggi et al., 2020), classification of 

brain disease (Nael et al., 2021; Wen et al., 2020; Yoo et al., 2018), segmentation of brain 

lesions (Andermatt et al., 2018; La Rosa et al., 2020; Zeineldin et al., 2020),  and 

prediction of disease prognosis (Saha et al., 2020; Sivaranjini and Sujatha, 2020). DNNs 

have a hierarchical layer structure containing nonlinear activation functions. Thus, they 

have the capacity to understand the data on different scales at different layers (LeCun et 

al., 2015). This characteristic allows DNNs to gradually learn and condense raw or 

minimally pre-processed data into meaningful and lower-dimensional features, during the 

iterative training process for a given task. In addition, it may shed light on unexpected 

patterns in data for further exploration. However, the deep layer structure and nonlinear 

activations represent a limitation on the explainability of the decision process of DNNs 

(Samek et al., 2021). This becomes a major challenge for medical applications where the 

reasoning of clinical decisions is important. To tackle this issue, several methods have 

been developed to improve the explainability of the decision of DNNs, including saliency 

(Simonyan et al., 2013), integrated gradients (Sundararajan et al., 2017), and layer-wise 

relevance propagation (LRP) (Bach et al., 2015). LRP has been shown to be more 

effective than other methods (Samek et al., 2021, 2017). It leverages the DNN layer 

structure to generate a map, which is based on the output score from the classifier before 

the sigmoid/softmax function and designed rules, showing the relevance of individual 
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pixels to the given task (Arras et al., 2019; Bach et al., 2015; Montavon et al., 2019). It 

has been shown that the relevance maps were able to illustrate the disease-specific 

evidence (Böhle et al., 2019).  

        In our previous work, we developed a gated attention-based convolutional neural 

network (CNN) – GAMER-MRI – using qualitative MRI and quantitative MRI (qMRI) for 

patch-based classification of acute infarct stroke lesions and of perilesional and 

juxtacortical multiple sclerosis (MS) lesions (Lu et al., 2021b). The attention weight (AW) 

in GAMER-MRI was demonstrated to be a proxy quantification of the clinical importance 

of the individual MR contrasts. In (Lu et al., 2021a), GAMER-MRI was used for the 

classification of lesions and peri-lesion tissue using various diffusion measures of 

biophysical microstructure models derived from diffusion MRI. The AWs were able to 

select a subset of diffusion measures, which could be summed to enhance the statistically 

significant correlation with biological and clinical measures. Based on these findings, we 

hypothesized that an LRP relevance map based on AWs would be more relevant than a 

map based on the output score from the classifier, and the LRP relevance map could be 

linearly combined with qMR images to form an especially relevant relevance map. In 

addition, we proposed a new LRP rule to account for the gated attention mechanism in 

GAMER-MRI. To tackle the high number of voxels in 3D qMR images, the encoder in 

GAMER-MRI was based on the DenseNet architecture (Huang et al., 2017) because 

DenseNet encourages the reuse of features at different layers and greatly reduces the 

number of learnable parameters. DenseNet has been used in various neuroimaging 

studies (Ghesu et al., 2021; Ruiz et al., 2020; Zeineldin et al., 2020). We assessed our 

hypotheses and the effect of the proposed rule on an MS 3D qMR dataset aiming to 

decode the pattern of the movement disability of MS on qMR images. Some works 

deployed CNN and LRP in the classification of MS patients/healthy controls using 

volumetric conventional MRI and slices of susceptibility weighted images (Eitel et al., 

2019; Lopatina et al., 2020) and classification of relapsing and remitting MS/progressive 

MS (RRMS/PMS) (Cruciani et al., 2021). Each of their studies used a single rule for 

different kinds of layers in the NNs and demonstrated the applicability of LRP on MS MRI 

datasets. In addition, they obtained the relevance maps based on the classification 
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probability instead of the output score before the sigmoid/softmax function as shown in 

(Bach et al., 2015; Montavon et al., 2019).  

        MS is a chronic inflammatory disease of the central nervous system, which affects 

~ 2.3 million people worldwide (Walton et al., 2020). The representative characteristics 

include multifocal inflammatory infiltration, demyelination, remyelination, and axonal loss 

leading to the accumulation of disability in MS patients (Albert et al., 2007; Barkhof et al., 

2003; Dziedzic et al., 2010; Kuhlmann et al., 2002). These microstructural properties of 

brain tissue can be better measured by qMRI (e.g. myelin – myelin water fraction (MWF) 

and quantitative T1 relaxometry (qT1); axon – qT1 and neurite density index (NDI)) 

(Granziera et al., 2021), compared to conventional MRI. Disability in MS patients is 

clinically assessed by the Expanded Disability Status Scale (EDSS), a nonlinear 

representation of clinical disability ranging from 0 to 10. Starting from 5, MS patients are 

considered to have a severe disability.  

        Therefore, we have two specific aims in this work: (i) the classification of MS patients 

of severe/moderate-mild disability using GAMER-MRI with volumetric qMR images and 

(ii) assessment of the relevance maps of qMR based on AWs and/or the proposed LRP 

rule in terms of changes in performance and correlation with EDSS.   
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2.  Materials and methods 

2.1 MRI data 

        One-hundred-sixty-six MS patients (100 RRMS and 66 PMS, 99 females and 67 

males, age range=45.9±14.3 years, median EDSS=2.5) were enrolled in the study, which 

was approved by the Ethics Committee Northwest and Central Switzerland and the Basel 

University Hospital. Written consent was obtained prior to the MRI acquisition. Forty out 

of the 166 patients had EDSS ≥5 (severe disability group) and 126/166 had a mild 

disability (<5). Sixty-nine patients had a two-year follow-up acquisition. Patients 

underwent a multi-parametric protocol on a 3T Siemens Healthineers MAGNETOM 

Prisma MRI system. The volumetric protocol included 3D Magnetization-Prepared 2 

RApid Gradient Echoes (MP2RAGE) (Kober et al., 2012; Marques et al., 2010), 3D turbo 

spin echo (SPACE) based Fluid Attenuated Inversion Recovery (FLAIR), 3D Fast 

Acquisition with Spiral Trajectory and T2prep sequence (FAST-T2) (Nguyen et al., 2016), 

and multi-shell Diffusion-Weighted Imaging (multi-shell DWI) with contiguous 2D slices. 

The most important acquisition parameters are shown in Table 1. 

        White matter lesions (WM lesions) were automatically segmented using FLAIR and 

MP2RAGE (La Rosa et al., 2019) and manually corrected by three expert raters. The WM 

lesion masks were used for lesion-filling on MP2RAGE images by FMRIB Software 

Library (FSL) (Jenkinson et al., 2012). FreeSurfer (Fischl et al., 2001) processing was 

 TE (ms) TR (ms) FOV (mm3) SR (mm3) 
TI 

(ms) 
Additional 
Parameters 

MP2RAGE 3 5000 256x256x256 1x1x1 
700, 
2500 

-- 

FLAIR 386 5000 256x256x256 1x1x1 1800 -- 

FAST-T2 0.5 7.5 240x240x160 1.25x1.25x5 -- 

T2prep times 
(ms) 

0 (T2prep turned 
off),7.5,17.5, 

67.5,147.5,307.5 

Multi-shell 
DWI 

75 4500 256x256x144 1.8x1.8x1.8 -- 

b values 
(s/mm2) 

0;700;1000; 
2000;3000 

/149 directions 
in total 

 
Table 1. Acquisition parameters of each MR contrast in the MS dataset. TE: echo time; TR: repetition time; 

FOV: field of view; SR: spatial resolution; TI: inversion time.  
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performed on lesion-filled MP2RAGE images to obtain brain segmentation. From multi-

parametric MRIs, qMR images were further reconstructed. The qT1 was reconstructed 

from MP2RAGE as in (Kober et al., 2012; Marques et al., 2010). The MWF map was 

reconstructed from FAST-T2 as in (Nguyen et al., 2016). The neurite density index (NDI) 

from the neurite orientation dispersion and density imaging model (NODDI) (Zhang et al., 

2012) was reconstructed from multi-shell DWI as in (Daducci et al., 2015). The qMR 

images were co-registered using FSL. The brain segmentation was transformed to the 

coordinates of each qMR image to remove non-brain tissue. qMR values within the brain 

were then normalized between zero and one. qT1 feasible values fall between 0 and 2500 

ms excluding ventricles (Bojorquez et al., 2017; Bonnier et al., 2014). MWF feasible 

values within the brain are at most 30 % (MacKay and Laule, 2016). Normalized qMR 

images were then transformed to the coordinates of NDI. NDI was chosen as the 

reference coordinate for the trade-off between the lower degree of slice interpolation for 

MWF and the retainment of fine resolution of qT1. Cerebellum details were coarse under 

the resolution of NDI and it was removed to improve the performance of the subsequent 

training. The matrix size of each qMR image was (96, 96, 112) after the removal of empty 

space. 

        The dataset was divided into an independent test dataset and a dataset for cross-

validation. In this case, the dataset for cross-validation was used for the optimization of 

the hyperparameters and the model selection. The independent test dataset was used to 

estimate the model performance on unforeseen data. The test dataset included 21/166 

patients (16 in the mild disability group and 5 in the severe group) and 20 of them had the 

follow-up acquisition. The baseline and follow-up acquisitions were considered two 

samples in the same dataset. In light of the number of the remaining patients in the severe 

group being only 35, stratified 3-fold cross-validation was used for evaluating our method. 

As a result, the dataset for cross-validation was divided into three folds. In each turn of 

cross-validation, two folds formed the training dataset and the remaining fold was the 

validation dataset 

 

2.2 GAMER-MRI 
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       The core idea of GAMER-MRI was to use the gated attention mechanism (Ilse et al., 

2018) and a parallel encoding structure to generate attention weights as proxies of 

relative importance among input MR images. The variant gated attention mechanism (Lu 

et al., 2021b) is formulated as follows: 

𝒏 = ∑ 𝑎𝑙𝒎𝑙 = ∑ 𝑎𝑙𝑞𝑙(𝑥𝑙)

𝐿

𝑙=1

 = ∑ 𝑔(𝑥)

𝑥∈𝑋

𝐿

𝑙=1

, (1) 

𝑎𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝒘𝑇(tanh(𝑼𝒎𝑙) ⊙ sigm(𝐕𝒎𝑙))) , (2) 

where 𝒏 is the combined representation for the classifier, 𝒎𝑙 is the hidden representation 

of the 𝑙𝑡ℎ instance, 𝑞𝑙(𝑥) is the encoding function and 𝑎𝑙 is the AW of the 𝑙𝑡ℎ instance,  𝑼 

and 𝑽  ∈  𝑅𝐾×𝑀  are weights of the fully connected layers (FCs) following the hidden 

representations, 𝑡𝑎𝑛ℎ stands for the nonlinear hyperbolic tangent function, sigm stands 

for the nonlinear sigmoid function, ⊙ is the element-wise multiplication operator, 𝒘 ∈

 𝑅1×𝐾 contains the weights of an FC, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 stands for the softmax function. 

         

2.2.1 Architecture 

        The multi-path neural network included three main compartments, including the 

parallel feature extracting compartment, GAMER-MRI, and a classifier, as depicted in Fig. 

1. The feature extracting compartment was based on the DenseNet architecture (Huang 

et al., 2017). DenseNet concatenated all feature maps generated within the same dense 

block to reuse feature maps and facilitate feature propagation. This reduced the number 

of trainable parameters substantially and alleviated the vanishing gradient issue. The 

feature extraction consisted of a convolutional block, four dense blocks, and three 

transition layers. The convolutional block was composed of an initial convolutional layer 

(Conv) of 16 filters with a kernel size of 3x3x3, a batch normalization layer (BN), rectified 

linear units (ReLU) and a 3D max pooling layer with a kernel size of 3, a stride of 2 and a 

padding of 1. Each dense block contained two dense layers, each of which was a 

collection of BN, ReLU, and Conv with a kernel size of 1x1x1 and replicate padding, and 

BN, ReLU, and Conv with a kernel size of 3x3x3. The transition layer was BN, ReLU, 

Conv (1x1x1), and average pooling with a kernel size of 2x2x2 and a stride of 2. The 

growth rate of the number of feature maps was four. The fourth dense block was followed 

by a BN, ReLU, and a fully connected layer (FC) of 32 neurons to form a hidden feature 
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vector for the input image. The main components of GAMER-MRI were the signal layer 

and the gate layer. The FCs in the signal layer and the gate layer had 16 neurons. The 

combined hidden feature vector formed by the AWs and the hidden feature vectors from 

all paths was concatenated by patients’ age information. Patients’ ages were divided by 

100 prior to concatenation. The incorporation of age information accounted for the age 

effect (Zeydan and Kantarci, 2020). The classifier was an FC of a neuron outputting 𝑓(𝒙) 

that was subsequently transformed to classification probability by sigm. 

 

2.2.2 Training Strategy 

        As the loss function, the binary cross-entropy was used. In consideration of the 

heterogeneity within each group and across groups measured by EDSS, the training loss 

of each sample was weighted by the closeness between EDSS=5 and patients’ EDSS 

(𝑤𝑒𝑖𝑔ℎ𝑡 = 2 −
|𝐸𝐷𝑆𝑆−5|

5
). The mini-batch size was 70 for training. The weighted sampler 

was used to account for the class imbalance during training, and the optimizer was the 

Adam optimizer with decoupled weight decay (AdamW) with the learning rate=5e-5 and 

the default weight decay=1e-2 (Loshchilov and Hutter, 2019). The evaluation metric was 

the area under the receiver operating characteristic curve (AUC). To alleviate overfitting, 

data augmentation included random flipping, random 90-degree rotation, random 

Figure 1: The network structure consists of the feature extraction, the GAMER-MRI and the 

classifier. FC is the fully connected layer. The linear combination forms the combined feature vector. 

⊙ represents an element-wise multiplication. 
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Gaussian noise of zero mean and standard deviation equal to 0.2, and random affine 

transformation with maximum rotation ±30 degrees and ±10% scaling. We implemented 

our method in PyTorch v1.7 and used two A100 GPUs (Nvidia, Santa Clara, CA, USA) 

for training.       

2.2.3 Layer-wise relevance propagation 

        Layer-wise relevance propagation (LRP) is a post-hoc explaining technique for 

neural networks and is based on Deep Taylor Decomposition (DTD) (Montavon et al., 

2017). The main rationale is to redistribute the prediction backward through the layer 

structure of the NN down to the input data based on the percentage of contribution from 

the individual neuron in the forward pass. It is formulated as follows: 

𝑹𝑥 = 𝐷𝑗 (𝐷𝑗+1 (… 𝐷𝑐(𝑓(𝑥)))) , (3) 

 ∑ 𝑅𝑣

 

𝑣 ∈ 𝑥

= 𝑓(𝑥), (4) 

where 𝑹𝑥 is the relevance map of the input image 𝑥, 𝑅𝑣 is the relevance of the voxel 𝑣, 

𝐷𝑐  is the redistribution rule function for the classifier and 𝐷𝑗  is the function for the 𝑗th 

intermediate layer. For (4) to be valid, the bias parameters in the NN are considered in 

the forward and backward passes during training and prediction, but aren’t considered in 

the LRP backward passes to get the relevance map (Samek et al., 2021). For the rest of 

the paper, all the rules do not consider the bias parameters.  

        The redistribution rules depend on the kinds of layers and are thus versatile. The 

common rules included the ε-rule, the αβ-rule, the 𝑧𝛽-rule and others (Arras et al., 2019; 

Montavon et al., 2019). In (Montavon et al., 2019), they recommended different rules for 

layers in different positions in the hierarchical structure and the kinds of layers, so we 

applied an orderly mixture of rules. The ε-rule was used in FCs for the relevance 𝑅𝑠 of the 

neuron 𝑠 in the 𝑗th layer: 

𝑅𝑠 = 𝐷𝑗(𝑹𝑗+1) =  ∑
𝑢𝑠𝜔𝑠→𝑡

ε + ∑ 𝑢𝑠𝜔𝑠→𝑡𝑠∈𝑗𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 
𝑡∈ (𝑗+1)𝑡ℎ 𝑙𝑎𝑦𝑒𝑟

𝑅𝑡, (5) 

where 𝑢𝑠 is the output from the neuron 𝑠 in the 𝑗th layer,  𝜔𝑠→𝑡 is the weight connecting 𝑠 

and the neuron 𝑡 in the (𝑗 + 1)th layer, 𝑅𝑡 is the relevance of 𝑡 and ε is a small value to 

avoid zero division and increasing ε can also function as absorbing small relevance to 
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keep more salient features on the relevance map. In this work, ε was 1e-8. The αβ-rule 

was used for Conv and is formulated as follows: 

𝑅𝑠 =  ∑ (𝛼
(𝑢𝑠𝜔𝑠→𝑡)+

∑ (𝑢𝑠𝜔𝑠→𝑡)+
𝑠∈𝑗𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 

𝑡∈ (𝑗+1)𝑡ℎ 𝑙𝑎𝑦𝑒𝑟

− ß
(𝑢𝑠𝜔𝑠→𝑡)−

∑ (𝑢𝑠𝜔𝑠→𝑡)−
𝑠∈𝑗𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 

)𝑅𝑡, (6) 

where (𝑢𝑠𝜔𝑠→𝑡)+  takes only positive values and (𝑢𝑠𝜔𝑠→𝑡)−  takes negative values, 𝛼 −

ß = 1.  In this study, (𝛼, ß) were (1, 0) because it can be interpreted by DTD. The 𝑧𝛽-rule 

was for the layer taking the input MR image and is given as: 

𝑅𝑣 =  ∑
𝑣𝜔𝑣→𝑡  −  𝑙𝜔𝑣→𝑡

+ − ℎ𝜔𝑣→𝑡
−

∑ 𝑣𝜔𝑣→𝑡  −  𝑙𝜔𝑣→𝑡
+ − ℎ𝜔𝑣→𝑡

−
𝑣∈𝑥 

𝑡∈ (𝑗+1)𝑡ℎ 𝑙𝑎𝑦𝑒𝑟

𝑅𝑡, (7) 

where 𝑣 is the voxel value and 𝑙 and ℎ are the lowest and highest possible values on the 

input image, respectively.  

        To account for the element-wise multiplication tanh(𝑼𝒎𝑙) ⊙ sigm(𝐕𝒎𝑙) in the gated 

attention mechanism, we proposed a new rule. In (Arras et al., 2019), they proposed the 

LRP-all rule for the element-wise multiplication of the cell input and the input gate within 

the long short-term memory network (LSTM) and showed that it was more suitable than 

the LRP-prop (Ding et al., 2017) and LRP-abs rules. The LRP-all only lets the cell input 

take all the relevance. However, for the gated attention mechanism, this rule neglects the 

nature of the structure that both tanh(𝑼𝒎𝑙)  and sigm(𝐕𝒎𝑙)  contribute towards the 

attention weights. The proposed modification is formulated as follows: 

𝑅𝑠 =  
|sigm(𝐕𝒎𝑙)|

|sigm(𝐕𝒎𝑙)|  +  | tanh(𝑼𝒎𝑙) |
𝑅𝑎 , (8) 

𝑅𝑔 =  
 | tanh(𝑼𝒎𝑙) |

|sigm(𝐕𝒎𝑙)|  +  | tanh(𝑼𝒎𝑙) |
𝑅𝑎 , (9) 

where 𝑅𝑠 is the relevance for the branch of sigm(𝐕𝒎𝑙), 𝑅𝑔 is the relevance for the branch 

of tanh(𝑼𝒎𝑙) and 𝑅𝑎 is the relevance received by the attention weight. The modification 

is similar to LRP-abs, which in principle takes the absolute values of 𝐕𝒎𝑙 and 𝑼𝒎𝑙, if it is 

applied to the gated attention mechanism. The scales of 𝐕𝒎𝑙 and 𝑼𝒎𝑙 are not bounded, 

so the LRP-abs rule cannot properly reflect the individual contributions in the element-

wise multiplication. In addition, there is also a similar element-wise structure in the linear 

combination of AWs and the hidden feature vectors to form the combined hidden feature 

vector. Applying the principle of the LRP-all rule, AWs would be considered as 𝜔𝑠→𝑡  and 
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elements of hidden feature vectors as 𝑢𝑠 in (5) if relevance maps are based on 𝑓(𝒙). No 

relevance would be redistributed through the gated attention mechanism, but the hidden 

feature vectors. The proposed rule was also applied to redistribute the relevance to AWs 

and hidden feature vectors. For LRP to be applicable to the DenseNet, we followed suit 

in (Binder, 2020) to merge the collection of BN, ReLU, and Conv into equivalent Conv 

and the collection of BN and FC into equivalent FC during the LRP backward pass. Other 

layers in the NN were the same as in (Montavon et al., 2019). For each qMR image, a 

relevance map was generated. 

        Here, we proposed to start the LRP backward pass from AWs for the relevance map 

instead of the output value 𝑓(𝒙). The AW as the proxy for the importance of the input 

image should focus on more relevant features. In addition, the parallel encoding structure 

of GAMER-MRI and the corresponding AWs could potentially allow a linearly combined 

map incorporating the joint information of the input qMR images.   

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑚𝑎𝑝 =  𝑅𝑀𝑊𝐹 ∗ 𝑀𝑊𝐹 + 𝑅𝑁𝐷𝐼 ∗ 𝑁𝐷𝐼 + 𝑅𝑞𝑇1 ∗ 𝑞𝑇1. (10) 

 

2.2.4 Assessment 
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        To assess if the proposed modifications could reveal more important brain regions, 

a voxel value inverting experiment from the aspect of model performance and 

Spearman’s correlation (ρ) with EDSS from the clinical aspect were conducted. The joint 

dataset from the test and the validation datasets was in use for both assessments to have 

a sufficiently large number of samples. The relevance maps and the combined maps were 

binarized from high to low quantiles of positive relevance within the brain. In the voxel 

inverting experiment, voxel values of the normalized qMR images were inverted, i.e., 

𝑞𝑀𝑅 =  1 –  𝑞𝑀𝑅, according to the quantile masks. If regions identified by a quantile mask 

are important, the AUC is affected by inverting voxel values in the regions. If a quantile 

mask based on a scenario can affect the AUC more than the quantile mask based on 

other scenarios, this means the mask identifies more important regions. There were three 

conditions to be evaluated, including (i) whether the relevance map was based on AWs 

or 𝑓(𝒙), (ii) if the proposed rule or the LRP-all rule was used and (iii) whether the individual 

relevance maps or the combined map were/was considered. Table 2 lists the eight 

Scenarios 

 AW  𝑓(𝒙)  

Rule Proposal LRP-all Proposal LRP-all 

Individual 

Relevance Map 
1 2 5 6 

Combined 

Map 
3 4 7 8 

 

Table 2: The eight scenarios for comparison.  

Scenarios 

 AW  𝑓(𝒙)  

Rule Saliency 
Integrated 

Gradient 
Saliency 

Integrated 

Gradient 

Individual 

Relevance Map 
9 10 11 12 

 

Table 3: Four additional scenarios for comparison using saliency and integrated gradients to 

obtain relevant maps. 



 

73 

possible scenarios. Furthermore, heatmaps based on the saliency and integrated 

gradient methods were also in comparison (Table 3). The scenario/scenarios that 

achieved the largest drop in AUC was/were assessed for the correlation with EDSS. The 

correlation was performed on the normalized qMR values, which were averaged within 

the quantile mask of the scenario. The two-sided permutation test with 20,000 

permutations was used for testing the strongest correlation achieved by the quantile 

masks in the scenario. The statistics were performed in R.  

The quantile mask of the strongest correlation of each patient was further transformed 

to the MNI152 template (Grabner et al., 2006) for exploring potential group effect areas 

on the heatmap. The transformation matrices were obtained by greedy (Yushkevich, n.d.; 

Yushkevich et al., 2016) in ITK-Snap (Yushkevich et al., 2006) using the normalized 

cross-correlation metric with a 2x2x2 patch radius in the nonlinear deformable registration 

of MP2RAGE to MNI152. The c3d_affine_tool of ITK-Snap was used to convert the 

previously obtained transformation matrix between MP2RAGE and multi-shell DWI to the 

itk format.   
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3. Results 

3.1 Performance 

       The test and averaged cross-validation results in AUC, accuracy, specificity, 

sensitivity, and the mean AWs of qMRs are reported in Table 4 and Table 5. As in (Lu et 

al., 2021b, 2021a), the reported AWs were averaged across the correctly classified 

samples. qT1 was the most important, followed by NDI and MWF in terms of the AWs 

both in the test dataset and the cross-validation folds on average. 

 

3.2 Voxel inverting experiment 

        The AUCs in the scenarios 1,2,3,4 are given in Fig. 2. The scenarios 3 and 4, where 

the quantile masks were defined by the combined map based on AWs using, respectively, 

the proposed rule and the LRP-all rule, had similar AUC for most of the compared 

quantiles. From the top 40th quantile, the scenario 3 had a lower AUC than other 

scenarios. The performance of the scenarios 5 to 8 is illustrated in Fig. 3 and of the 

Cross-Validation dataset 

Metrics AUC Accuracy Specificity Sensitivity 

 0.864 0.809 0.839 0.718 

 MWF NDI qT1 

AWs 0.188 0.309 0.503 

 
Table 4: The average cross-validation result.  

 

Test dataset 

Metrics AUC Accuracy Specificity Sensitivity 

 0.885 0.854 0.844 0.889 

 MWF NDI qT1 

AWs 0.164 0.369 0.467 

 
Table 5: The test dataset result.  
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scenarios 9 to 12 in Fig. 4 in addition to the best scenario 3 are shown in Fig. 2. The 

scenario 3 achieved the largest decrease in AUC.  

3.3 Correlation with EDSS 

Figure 2: The AUC of different top Nth quantile 

masks in the voxel inverting experiment for the 

scenarios from 1 to 4. The scenarios used the 

relevance maps based on the attention weights 

and the combinations of different rules and the 

individual masks or the combined mask. 

Figure 3: The AUC of different top Nth quantile 

masks in the voxel inverting experiment for the 

scenarios from 5 to 8 and the scenario 3. The 

scenarios used the relevance maps based on the 

output 𝑓(𝒙) and the combinations of different rules 

and the individual masks or the combined mask. 

Figure 4: The AUC of different top Nth quantile 

masks in the voxel inverting experiment for the 

scenarios from 9 to 12 and the scenario 3. The 

scenarios used the heatmaps of the saliency 

method and the integrated gradient method based 

on the output 𝑓(𝒙) and the attention weights. 
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       When qMR voxel values within the top 40th quantile mask, i.e., the 60th quantile, were 

averaged, ρ of qT1 and NDI were the largest (Table 6). Compared with ρ in the scenario 

3 (Table 6), ρ of qT1 and NDI in the scenario 4 (Table 7) were smaller. Therefore, the 

permutation test was performed on the regions covered by the top 40th quantile mask in 

the scenario 3. The correlation is statistically significant, and the p-values are reported in 

Table 8. The NDI images of two exemplary patients in the two groups, as well as the top 

40th quantile masks, are shown in Fig. 5. The mask of the patient in the severe disability 

group covered extensively the posterior limb of the internal capsule, where the 

corticospinal tract goes through and thus, the average NDI values are high in the relevant 

regions. 

Spearman’s Correlation Coefficient 

Top Nth Quantile qT1 NDI 

10 -0.288 0.341 

20 -0.344 0.414 

30 -0.362 0.429 

40 -0.371 0.440 

50 -0.366 0.431 

60 -0.346 0.411 

30 -0.362 0.429 

Table 6: Spearman’s correlation coefficients by different quantile masks 

of the scenario 3. 

Spearman’s Correlation Coefficient 

Top Nth Quantile qT1 NDI 

10 -0.219 0.239 

20 -0.248 0.314 

30 -0.269 0.337 

40 -0.281 0.348 

50 -0.277 0.345 

60 -0.261 0.343 

 
Table 7: Spearman’s correlation coefficients by different quantile masks 

of the scenario 4. 
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3.4 Heatmap on MNI152 

       Fig. 6 illustrates the heatmaps of the scenarios 3 and 4. Identified regions include the 

left thalamus, the left internal capsule, and part of the putamen. Scenario 3, which used 

the proposed rule and the combined mask based on AWs, identified more regions, 

including the left caudate, a larger part of the right putamen, and the right internal capsule. 

 

4. Discussion 

       In this work, we extended the capability of GAMER-MRI trained from scratch using 

volumetric qMR images to classify MS patients with a severe or mild disability. Besides, 

we provided evidence that the proposed LRP rule for the gated attention mechanism in 

combination with AWs and the combined map could better identify brain regions whose 

alterations were most related to patients’ disability than the LRP-all rule. 

 qT1 NDI MWF 

Correlation -0.371 0.440 0.298 

P-value <0.001 <0.0001 <0.01 

 
Table 8: Spearman’s correlation coefficient in the scenario 3 with a top 40th quantile mask and 

the corresponding p-values from the permutation test   

Figure 5: The top 40th quantile masks of the scenario 3 on two exemplary 

patients’ NDI images. (A) the NDI image of a patient in the mild disability 

group; (B) the NDI image in (A) overlapped with the mask; (C) the NDI 

image of a patient in the severe disability; (D) The NDI image in (C) 

overlapped with the mask. 

 

(A) (B) (C) (D) 
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       The comparable NN performance on cross-validation and test datasets in Table 4 

and 5 indicated that the NN learned a right representation to classify patients into severe 

and moderate/mild disability groups. This established the ground for further analyses 

related to LRP. According to the obtained attention weights, qT1 was the measure that 

best discriminated clinical severity in our cohort of MS patients. This might be due to 

different reasons: (i) qT1 provides a more comprehensive representation of tissue 

damage compared to MWF and NDI (i.e. global microstructural damage and iron 

accumulation vs myelin and axon-related damage) (Granziera et al., 2021) or (ii) the 

original higher spatial resolution and the higher white-grey matter contrast of qT1 reveal 

more details compared to MWF and NDI. Fig. 2, 3, and 4 demonstrate that AUC is 

affected most by inverting qMR voxel values within regions identified by the combined 

map based on AWs. These results meet our hypothesis on the advantage of the combined 

map, which is formed by the linear combination of AWs and qMR images. Furthermore, 

Figure 6: The heatmaps of the top 40th quantile masks of the scenarios 3 and 4 

on the MNI 152 template. (A) MNI152 template (B) the heatmap of the scenario 

3. (C) the heatmap of the scenario 4. The color scale is from 0 to 0.65. 

 

(A) (B) (C) 
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the proposed rule and the relevance maps based on AWs affected more performance 

than the maps based on 𝑓(𝒙). This supports our hypothesis that AWs, used as a proxy 

for the importance of input qMR images, contain more relevant information than the output 

from the classifier. Scenario 3 shows a statistically significant correlation with EDSS, 

stronger than that with other scenarios listed in Table 2. From a clinical perspective, this 

supports our hypothesis that the identified regions were not merely important to the NN, 

but also meaningfully related to clinical measures of disability in MS patients. In Fig. 3, 

the impacted performance by the mask of scenarios 5 and 6 using the proposed rule was 

less than in scenarios 7 and 8 using the LRP-all rule. This may be due to the fact that the 

elements of the hidden feature vectors are unbounded in the element-wise multiplication 

contrary to AWs, which are between 0~1 and sum to 1. A potential way to tackle this issue 

is to apply an activation function to the hidden feature vectors prior to the gated attention 

mechanism so that the scale of elements of the hidden feature vectors is on par with AWs.  

       In the brain regions identified as relevant by the NN, the negative correlation of qT1 

and the positive correlation of NDI with EDSS possibly indicate that the integrity or the 

structural composition of those brain regions – rather than their damage – is the driver of 

the classification. NDI provides specific information about axonal content (Zhang et al., 

2012), and qT1 quantifies the overall microstructural tissue environment (Bonnier et al., 

2014). The axonal damage and demyelination within lesions should increase the qT1 and 

decrease NDI. In Fig. 5, the relevant regions overlap less with the MS lesions, which are 

near the posterior horn of the lateral ventricles. For the patient in the severe disability 

group (Fig. 5), the relevant regions include a larger part of the posterior limb of the internal 

capsule and the thalamus, which contain the bundled corticospinal tract and collateral 

fibers to the tract (Tovar-Moll et al., 2015) and thus, moderate to high NDI values in 

comparison with other brain regions. Therefore, the opposite trend of the correlation of 

qT1 and NDI points us in the direction of assessing the structural integrity of brain tissue 

for patients’ ability to maintain their function. This might also be partly reflected by the fact 

that the average cross-validation performance achieved specificity higher than sensitivity. 

To further validate the interpretation in this cross-sectional patient study, future works on 

the differentiation between healthy controls and patients and the assessment of the 

longitudinal changes in a larger group of patients having a severe disability are required. 
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On the MNI152 template, the regions identified by the heatmap of the top 40 th quantile 

masks of all samples overlap with part of the corticospinal tract and regions of many 

collateral fibers (Fig. 6), which are strongly related to EDSS and disability (Tovar-Moll et 

al., 2015).  

       In (Eitel et al., 2019), healthy controls and MS patients were classified using 3D 

FLAIR and a CNN, and the ε-rule was applied to obtain a relevance map. In (Cruciani et 

al., 2021), the authors trained single-path CNNs to classify relapsing-remitting MS and 

progressive MS patients for each of 3D T1-weighted, diffusion MRI and microstructural 

maps derived from diffusion MRI within grey matter and the αß-rule with α=1, ß=0 was 

used. Different than in those previous works, in our study, we used the multi-path CNN-

based NN to simultaneously take into account the information provided by multiple 

quantitative MRIs of tissue properties. Additionally, we used a collection of LRP, an 

approach that was shown to perform better than using single rules (Montavon et al., 

2019). Besides, we have evaluated the relevance of the maps by using a quantile-based 

region-of-interest analysis as previously performed (Lopatina et al., 2020). 

       There were some limitations to this work. The first limitation was the size of the 

dataset. Even though the size of the dataset is large compared with other neuroimaging 

studies exploiting qMRI and DenseNet greatly reduces the required number of learnable 

parameters, the original DenseNet configuration with the parallel encoding structure of 

GAMER-MRI leads to a sizeable number of parameters. It is easily prone to overfitting 

using qMR images in this work. The minimal configuration of the DenseNet encoder was 

experimented with to have better performance. The richness of hidden representation is 

limited to certain degrees. Transfer learning can alleviate this issue and was 

demonstrated in (Eitel et al., 2019) using the Alzheimer’s Disease Neuroimaging Initiative 

dataset. We have attempted to pre-train the model on the same patients’ conventional 

MRI contrasts and fine-tuned it on the qMR images, but the model performance did not 

improve. It might be that the representation of conventional MRI contrasts learned by the 

pre-trained model was quite different from the target application using the qMR images 

and the model suffered from the negative transfer issue (Wang et al., 2019).  The second 

limitation was the choice of LRP rules. Here we only utilized rules including the ε-rule, the 

αβ-rule, and the 𝑧𝛽-rule in addition to the proposed and LRP-all rules. There are more 
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LRP rules for different types and positions of layers and NN structures (Hui and Binder, 

2019; Motzkus et al., 2022), and it might be beneficial for a more comprehensive 

assessment to experiment on the best combinations of rules. Another limitation was that 

the relevance maps and the combined map were used as different quantile masks instead 

of the values being used. The average number of voxels in a volumetric MR image is on 

the order of 106 and the AW is 0~1, so the relevance value received by a voxel was often 

tiny. Results in (Eitel et al., 2019) and (Cruciani et al., 2021) were also affected by the tiny 

values. The value itself can be affected differently across data samples depending on the 

choice of ε in the ε-rule and the numerical precision used for training the NN. In (Eitel et 

al., 2019), ε was 0.001, while it was 1 in (Lopatina et al., 2020).  The use of the mask 

based on quantiles of the relevance values functioned as a workaround to this issue. 

Furthermore, only the positive relevance values were considered and the assessment of 

the negative relevance values will be a potential future work. The validity of (4) also 

imposed a limitation. The bias parameters were not considered during the LRP backward 

pass and this led to the fact that the obtained relevance map reflected only the interaction 

of the input images and the partial pattern learned by the NN. On the other hand, 

incorporation of the bias cannot enforce the sum of the relevance maps to be the same 

as the starting value, and the relevance values can be of different orders of magnitude.  

 

5. Conclusion 

        In this work, we demonstrate that GAMER-MRI identifies brain regions that are 

potentially related to patients’ disability in qMRI maps, which are sensitive to MS 

pathology. In addition, the combination of the proposed LRP rule for the gated attention 

mechanism, starting the LRP backward pass from the attention weights, and the 

combined importance map reveal potentially important regions to the integrity of the 

mobile function. Future work will aim at (i) investigating the hidden representations 

learned by GAMER-MRI and their pathological meaning; (ii) integrating other qMRI 

measures such as quantitative susceptibility mapping (QSM) and magnetization transfer 

saturation (MTsat) and (iii) increasing the richness and completeness of the 

representations by the incorporation of bias parameters during LRP backward pass. The 

method is suitable and easily adaptable to study different diseases. 
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Chapter 5. Discussion and Conclusion  

The goal of this project was to develop a tool able to jointly and selectively 

consider the advanced MRI or derived quantitative measures in studying MS axonal 

and myelin damage and repair. Advanced MRI and the derived quantitative measures 

provide abundant information on the microstructural changes caused by MS 

inflammation, demyelination, remyelination, and axonal damage. How to maximize the 

utilization of all the available information, while selecting the most informative MR 

contrasts to reduce redundancy was an issue.   

In the first work, we showed that GAMER MRI provided (through its parallel 

encoding structure) attention weights, whose order met the clinically meaningful order 

of importance for MR-based features, in the classification of infarct strokes. GAMER 

MRI, furthermore, proposed a potential order of importance for quantitative measures 

in the classification of Juxtacortical and periventricular lesions in MS. These results 

demonstrated its clinical potential in selecting the more informative MRI measures 

based on the corresponding attention weights. However, in this work, multiple 

evaluations were required to overcome the strong correlation of attention weights of the 

MR contrasts in the experiment of classification of acute/subacute infarct stroke 

patients vs other patients and healthy controls. The sources of the strong correlation 

were hypothesized to include the intrinsically physical correlation and the similar 

image representation of infarct lesions on TRACE and ADC at one of the phases of the 

stroke evolvement.  

In the second publication, we tackled the issue of the aforementioned correlation 

among different diffusion measures derived from the same diffusion MRI but based on 

different biophysical assumptions in the classification of lesion and perilesional tissue 

patches. The results showed that by enhancing the differences prior to the conversion to 

attention weights by the softmax function and the proposed selection process, GAMER-

MRI was able to select informative diffusion measures. In addition, the combination of 

the selected measures at the lesion level led to a stronger correlation with the patient-
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level clinical measure of mobile impairment and the biological measure of axonal 

damage. However, the use of subject-wise normalization rendered the interpretation of 

the combined value difficult since it diminished the physical meaning of the measures. 

This suggested the use of a combination of diffusion-based microstructural measures 

deserved further attention for better interpretability of its pathological meaning.  

The third work demonstrated the feasibility of GAMER-MRI to select important 

volumetric quantitative MR images while being trained from scratch for patient-level 

classification, despite the generality of and heterogeneity within EDSS - a measure of 

disability in MS patients. With the proposed relevance propagation rule, the new 

referent relevance to propagate, and the linearly combined map, we could identify brain 

regions whose alterations were mostly related to EDSS by GAMER-MRI. The average 

quantitative measures within the identified regions appeared to reflect the integrity of 

the mobile function considering the physical meanings and the respective correlation 

with EDSS of qT1 and NDI. This result of the linearly combined map addressed the 

joint consideration of quantitative measures. There are some limitations that need to be 

addressed or alleviated in the future. The first limitation was the large number of 

trainable parameters due to the parallel encoding structure of GAMER-MRI since each 

quantitative measure required an individual encoder. This constituted a challenge to 

avoid/alleviate overfitting given the number of the volumetric data and to include 

many more measures. The second limitation was the loss of information of the negative 

relevance. In the analysis, only the positive relevance within brain was considered. 

Future work will need to include negative relevance for more comprehensive analyses. 

In addition, the relevance maps of each quantitative measure and the combined map 

were used as a mask defined by the quantiles of the relevance values. It is of deep 

interest to further develop on how to use the relevance values directly instead of being 

used for the creation of masks. By addressing this, it might be possible to condense the 

combined relevance values into a single index indicating the extent of the integrity of 

brain function.  
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To conclude, the developed GAMER-MRI addressed the issue of selective 

consideration of advanced MRI and the derived quantitative measures in disentangling 

the interplay between axonal damage and repair, such as remyelination and axonal 

reorganization through the intensity of attention weights. The issue of joint 

consideration was addressed by the linearly combined map based on attention weights 

and the incorporation of the proposed relevance propagation rule with other layer-wise 

relevance propagation rules. 
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