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A B S T R A C T   

Noise pollution has negative health consequences, which becomes increasingly relevant with rapid urbanization. 
In low- and middle-income countries research on health effects of noise is hampered by scarce exposure data and 
noise maps. In this study, we developed land use regression (LUR) models to assess spatial variability of com-
munity noise in the Western Region of São Paulo, Brazil.We measured outdoor noise levels continuously at 42 
homes once or twice for one week in the summer and the winter season. These measurements were integrated 
with various geographic information system variables to develop LUR models for predicting average A-weighted 
(dB(A)) day-evening-night equivalent sound levels (Lden) and night sound levels (Lnight). A supervised mixed 
linear regression analysis was conducted to test potential noise predictors for various buffer sizes and distances 
between home and noise source. Noise exposure levels in the study area were high with a site average Lden of 
69.3 dB(A) ranging from 60.3 to 82.3 dB(A), and a site average Lnight of 59.9 dB(A) ranging from 50.7 to 76.6 dB 
(A). LUR models had a good fit with a R2 of 0.56 for Lden and 0.63 for Lnight in a leave-one-site-out cross vali-
dation. Main predictors of noise were the inverse distance to medium roads, count of educational facilities within 
a 400 m buffer, mean Normalized Difference Vegetation Index (NDVI) within a 100 m buffer, residential areas 
within a 50 m (Lden) or 25 m (Lnight) buffer and slum areas within a 400 m buffer. Our study suggests that LUR 
modelling with geographic predictor data is a promising and efficient approach for noise exposure assessment in 
low- and middle-income countries, where noise maps are not available.   

1. Introduction 

Rapid urbanization and life style changes have led to increasing 
noise exposure in many low- and middle-income countries (LMIC). 
Growing evidence suggests that noise may have negative health conse-
quences and should therefore be considered a major threat for public 
health (World Health Organization, 2011). Chronic exposure to noise 
has been linked to several negative health outcomes, such as annoyance 
(Brink et al., 2016), sleep disturbance (Frei et al., 2014), cardiovascular 
diseases (Héritier et al., 2017; Seidler et al., 2016; Sørensen et al., 2012; 
Vienneau et al., 2015), diabetes mellitus (Eze et al., 2017; Sørensen 
et al., 2013), respiratory diseases (Recio et al., 2016), depression 
(Seidler et al., 2017; Zijlema et al., 2016) and cognitive impairment 

(Schlittmeier et al., 2015; van Kempen et al., 2010). Community noise 
can have its origin from multiple sources, such as transportation (road 
traffic, railway and airport), industry, construction sites and social 
sources (Singh and Davar, 2004; Sheng and Tang, 2011). According to 
recent estimates of the European Environment Agency at least 20% of 
the European Union population live in areas where traffic noise levels 
are considered harmful to health. 21.8 million residents are annoyed by 
noise and 6.5 million sleep disturbed (European Environment Agency. 
Environmental noise in Europe -, 2020) These significant health impacts 
are most likely to be underestimated, with new WHO evidence sug-
gesting health effects at lower levels than used for this burden of disease 
estimates (World Health Organization. Environmental Noise Guidelines 
for the European Region, 2018). 

Abbreviations: GIS, geographic information systems; LUR, Land use regression; SP-ROC, São Paulo Western Region Birth Cohort; OSM, Open Street Map; NDVI, 
Normalized Difference Vegetation Index; LAeq, A-weighted equivalent sound pressure levels; dB(A), A-weighted decibel; Lden, A-weighted day-evening-night 
equivalent sound levels; Lnight, A-weighted night sound levels; GPS, Global Positioning system; LOSOCV, leave-one-site-out cross validation; LMIC, low and mid-
dle income countries. 
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For guiding policy makers’ decisions on noise thresholds and pro-
tective actions, noise prediction models are necessary, because 
measuring individual noise exposure is not feasible from a logistical and 
budgetary point of view and would need a lot of extra effort for accurate 
source apportionment. Gold standard for transportation noise exposure 
assessment are sound propagation models, which are based on the 
components influencing sound emissions and propagation in the envi-
ronment (Björk et al., 2006; Tang and Wang, 2007). In recent years land 
use regression (LUR) modelling has been increasingly employed 
(Ragettli et al., 2016; Harouvi et al., 2018; Aguilera et al., 2015; Chang 
et al., 2019; Liu et al., 2020). This methodology, which was initially 
developed for air pollution studies (Morley et al., 2015; de Hoogh et al., 
2014; Kloog et al., 2015), uses multiple regression between the noise 
measurements and land use predictors for producing high-resolution 
noise maps. It is a promising and relatively inexpensive method for 
assessing noise exposure, especially for areas where high quality nu-
merical models and corresponding input data do not exist and for urban 
areas with a large spatial noise variability. It was demonstrated, that 
LUR modelling can potentially explain spatial variability and without 
systematic difference when comparing with standard sound propagation 
noise models (Aguilera et al., 2015). To the best of our knowledge, only 
two studies have used a LUR model to assess noise exposure in LMICs, 
where availability of suitable noise emission data is challenging and 
noise sources may be different (Sieber et al., 2017a; Xie et al., 2011). 

With a population of over 20 million, São Paulo is one of the largest 
cities in the world and showed a rapid population growth in the past 
years. However, very scarce city-wide noise models are available in 
Brazil. The aim of this study was to develop a LUR model using one-week 
outdoor noise measurements collected in summer and winter including 
local GIS predictors to assess the spatial variability of community noise 
levels in São Paulo. The modeled noise exposure will ultimately be used 
to investigate effects of community noise exposure on children’s 
development using data from São Paulo Western Region Birth Cohort 
(SP-ROC) study (Brentani et al., 2020). 

2. Materials and methods 

2.1. Study design and study areas 

Outdoor noise levels were measured at 42 homes of SP-ROC 

participants once or twice during one week in the summer and the 
winter season in the Butanta-Jaguaré region of São Paulo. São Paulo has 
a population of over 20 million people and is the largest city in Brazil 
and South America. The Butanta-Jaguaré region, which is located in the 
western part of São Paulo, has an area of 62 km2 and approximately 
480,000 inhabitants (Secretaria Municipal da Saúde, 2018). The study 
area comprises of residential, industrial and commercial areas with a 
large and congested road network, extended build-up environment but 
also large green areas. Residential areas vary between middle-class and 
informal settlements (called “favelas”). Measurement locations were 
selected from addresses of SP-ROC study participants following the 
design used in the ESCAPE study (Beelen et al., 2013). The homes were 
selected to represent a broad range of potential low to high noise 
exposure situations among the SP-ROC population (Fig. 1). By visual 
inspection on Google Earth, we considered various situations in terms of 
settlement type, distance to street, railways, industry, surrounding green 
space, education etc. (Table 1) with an equal distribution across the 
study area. 

2.2. Noise measurements 

Two measurement campaigns were conducted in 2019. The first 
measurement campaign was done from 12 to 19 February 2019 (summer 
season) and the second one from 7 to August 14, 2019 (winter season). 
In total, data were collected from 42 different homes. Thereof, 26 homes 
were measured twice, eight homes exclusively in summer and eight 
homes in the winter season only, because some sites could not be 
measured again, for various reasons such as missing informed consent, 
participant not at home, new construction site. A-weighted (loudness of 
sounds in air as perceived by the human ear) equivalent sound pressure 
levels (LAeq) averaged over one-second (1-s) intervals were continu-
ously measured during one week using a Noise Sentry RT type-II sound 
level meter data logger (Convergence Instruments, Sherbrooke, QC, 
Canada). The installation and retrieval of the measurement devices was 
performed by several field work teams in parallel, therefore starting and 
ending times of measurement were maximum 4 h apart. The process of 
installation and retrieval occurred on Tuesdays, in order to capture the 
weekend noise, considering the noise variation along working days and 
weekends. In order to receive reliable measurements and to avoid theft, 
vandalism or unwanted noise sources, the study team was given clear 

Fig. 1. Map of study area (yellow) and noise measurement locations. Out of a total of 42 locations, 26 locations were measured twice in summer and winter season 
(red), with additional 8 locations in summer season (blue) and winter season (green). (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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instructions on the device installations. Devices were mounted within 
the study participants’ property, attached at external part of the home 
without direct local source affection such as air-conditioning, preferably 
at the most exposed façade. Special attention was also given to the 
height of microphone positioning (height of 2–3 m), since this was 
proven to be crucial (Montes González et al., 2020). Building structures 
varied substantially across areas, ranging from high rise apartment 
buildings in some areas to mostly small buildings in informal settlements 
(favelas). Each sampling site was geocoded with a Global Positioning 
System (GPS). Noise meters were calibrated before and after deployment 
in the field at 94 dB(A) with a Pulsar Acoustic Calibrator Model 105 
Class 1. The devices have a noise floor (detection limit) at 31 dB(A), 
which is lower than the minimal levels measured during both mea-
surement campaigns. However, two devices showed a higher lower 

detection limit of 37 and 49 dB(A). Measurements of these devices were 
checked with Robust regression on order statistics (ROS) method for 
censored measures. The maximum difference of various mean values (e. 
g. Lnight, Lden, Lweekend etc.) for these devices was found to be 0.04 dB(A). 
Therefore, no relevant bias was expected and these data were used 
without further adjustment. 

For the analysis, measurements were restricted to the period from 
midnight after measurement begin to midnight before measurement 
end, in order to have the same times for each site, resulting in 6 suc-
cessive days of continued noise monitoring per each site and measure-
ment week. Virtually no missing data occurred (<0.1%). In order obtain 
robust mean values, upper outliers, defined as 1-s noise measurements 
exceeding the six-day mean by more than three standard deviations, 
were removed (3,953 out of 19,633,345 1-s measurements in summer 

Table 1 
List of LUR predictor variables.  

Layer Source Year Unit Transformation Expected 
effect 

Land use (Green space, Industry, Train 
terminal, Residential, Waters) 

OSMa/ESRIb 2019 Surface (ha) 25, 50, 100, 200, 400, 1000 buffer +/−

Roads OSM 2019 Distance (m)/ 
Length (m) 

Distance and inverse distance to nearest road 
Road length within 25, 50, 100, 200, 400, 1000 buffer 

+

size S (motorway, trunk, primary, secondary, 
tertiary, residential roads) 
size M (motorway, trunk, primary, 
secondary, tertiary roads) 
size L (motorway, trunk, primary, secondary 
roads) 
size XL (motorway, trunk, primary roads) 
size XXL (motorway, trunk) 
separate road type: motorway/trunk/ 
primary/secondary/tertiary/residential 

NDVI Landsat 8/ 
USGSc 

2017 Mean index (− 1 to 
1) 

25, 50, 100, 200, 400, 1000 buffer – 

Built-up environment Landsat 8/ 
USGS 

2017 Mean index (− 1 to 
1) 

25, 50, 100, 200, 400, 1000 buffer +

Traffic signals OSMa 2020 Distance (m)/Count Distance/inverse distance to nearest traffic signal Count 
within 25, 50, 100, 200, 400, 1000 buffer 

+

Fuel stations OSMa 2019 Distance (m)/Count Distance/inverse distance to nearest fuel station Count 
within 25, 50, 100, 200, 400, 1000 buffer 

+

Bus stations OSMa 2019 Distance (m)/Count Distance/inverse distance to nearest bus station Count 
within 25, 50, 100, 200, 400, 1000 buffer 

+

Informal settlements („favelas“) CEMd 2016 Surface (ha) 25, 50, 100, 200, 400, 1000 buffer +

Shopping (Shopping Centers, Marketplaces) Dados 
Abertose/OSMa 

2020 Distance (m)/Count Distance/inverse distance to nearest shopping place Count 
within 25, 50, 100, 200, 400, 1000 buffer 

+

Police stations OSMa 2020 Distance (m)/Count Distance/inverse distance to nearest police station Count 
within 25, 50, 100, 200, 400, 1000 buffer 

+

Education (Schools, Kindergarten, College, 
(University)) 

OSMa 2020 Distance (m)/Count Distance/inverse distance to nearest education place Count 
within 25, 50, 100, 200, 400, 1000 buffer 

+

Gastronomy (Bars, Restaurants, Nightclubs, 
Fast food, Cafe, Cinema) 

OSMa 2020 Distance (m)/Count Distance/inverse distance to nearest gastronomy place 
Count within 25, 50, 100, 200, 400, 1000 buffer 

+

Leisure (Playground, Sportcenters, Stadiums) OSMa 2020 Distance (m)/Count Distance/inverse distance to nearest leisure place Count 
within 25, 50, 100, 200, 400, 1000 buffer 

+

Railway OSMa 2020 Distance (m) Distance/inverse distance to nearest railway station +

Income CEMe 2010 Mean (US$) 25, 50, 100, 200, 400, 1000 buffer – 
Household density CEMe 2010 Density (n/ha) 25, 50, 100, 200, 400, 1000 buffer +

Weekly NO2 passive sampling measurements own data 2019 Concentration (ug/ 
m3) 

at measurement location +

Hospital OSMa 2019 Distance (m) Distance/inverse distance to nearest hospital +

Rain Ecmwff 2019 mm at measurement location +

Note: LUR, Land use regression; NDVI, Normalized Difference Vegetation Index; OSM, OpenStreetMap; CEM, Center for Metropolitan Studies; ha, hectare; m, meter; 
mm, milimeter 

a OpenStreetMap contributors. OpenStreetMap [November 04, 2020]. Available from: https://www.openstreetmap.org. 
b Environmental Systems Research Institute (Esri). [December 11, 2020]. Available from: https://www.esri.com. 
c U.S. Geological Survey. Landsat 8 Mission [November 04, 2020]. Available from: https://www.usgs.gov. 
d Centro de Estudos da Metrópole. Relatórios Favelas e Loteamentos - Estudo do CEM para Sehab/PMSP (English translation: Center for Metropolitan Studies (CEM). 

Report on Slums and Settlements - Study by CEM for the Municipal Housing Department (SEHAB)) [November 04, 2020]. Available from: http://centrodametropole.ffl 
ch.usp.br/pt-br/downloads-de-dados/relatorios-favelas-e-loteamentos-estudo-do-cem-para-sehabpmsp. 

e Secretaria Municipal da Saúde 2018. Prefeitura da Cidade de São Paulo 2018 (English translation: Municipal Health Secretariat 2018. Prefecture of the City of São 
Paulo) [November 04, 2020]. Available from: http://www.prefeitura.sp.gov.br/cidade/secretarias/saude/. 

f Instituto Brasileor de Geografia e Estatistica (English translation: Brazilian Institute of Geography and Statistics Foundation). Population Census 2010 [November 
04, 2020]. Available from: https://www.ibge.gov.br.7 European Centre for Medium-Range Weather Forecasts (ECMWF) [November 04, 2020]. Available from: htt 
ps://www.ecmwf.int. 
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season and 8,890 out of 20,271,184 in winter season). No lower outliers 
were removed, since quiet phases are expected to be always plausible. 
Additionally, measurements from three devices of summer season and 
from three devices of winter season were removed because of extreme 
recordings during a specific time period or suspicious, unexplainable 
patterns (see two examples in Supplementary Figure S1). Lden was 
calculated as an energetic mean over 6 consecutive days of the 1s-LAeq 
measurements at each site, by applying a penalty of 10 dB(A) for night 
time noise (23:00–7:00) and 5 dB(A) for evening noise (19:00–23:00). 
Lnight refers to the energetic mean value of measurements from 
23:00–7:00 and LAeq24h from 7:00–7:00 on the next day. 

2.3. Predictor variables of noise exposure 

GIS data related to factors relevant for noise exposure were collected 
for developing the LUR model and implemented in the program QGIS 
3.4.15 (Table 1). Details on road geography and different facilities, such 
as schools, police stations, bus stations and gastronomic institutions 
were extracted from Open Street Map (OSM) (OpenStreetMap contrib-
utors, 2020) and were directly available in QGIS. The census of 2010 
gave information about income and household density (Instituto Brasi-
leor de Geografia e Estatistica. Population Census, 2010). Land cover 
information, such as the Normalized Difference Vegetation Index (NDVI, 
a substitute for green space) and built-up environment, were available 
from remote sensing data (based on Landsat 8 images acquired from the 
U.S. Geological Survey website (U.S. Geological Survey. Landsat 8 
Mission [04.11, 2020)). Areas of informal settlements (“favelas”) were 
defined by the Centro de Estudos da Metrópole (Centro de Estudos da 
Metrópole. Relatórios Favelas e Loteamentos - Estudo do CEM para 
Sehab/PMSP [04.11, 2020). The categories of land use were manually 
generated by applying aerial photographs from ESRI World Imagery 
(Environmental Systems Res, 2020) and data from OSM. The road sys-
tem was categorized by OSM into motorway, trunk, primary, secondary, 
tertiary and residential roads. We made a further classification by 
combining these road types. We computed at each measurement site the 
distance to the GIS variable and/or the quantity of the GIS variable 
within circular buffers of different sizes (Table 1). We did not use pre-
dictors with more than 90% zero values which may happen for small 
buffer sizes. 

In addition to GIS predictors, we also considered weekly NO2 levels, 
concurrently measured at the same sites like noise using passive gas 
samplers from Passam AG, Switzerland (Passam, 2021). Precipitation 
data obtained from the European Centre for Medium-Range Weather 
Forecasts (ECMWF) (European Centre for Mediu, 2020) was also used to 
check whether some heavy rains during the measurements in wet season 
could have impacted the noise measurements. 

2.4. Development of LUR models 

For developing the LUR model, we conducted supervised mixed 
linear regression analysis using measurement site as random intercept 
effect to account for multiple measurements from the same site. We used 
the noise metric Lden, because it best represents the average noise burden 
(World Health Organization. Environmental Noise Guidelines for the 
European Region, 2018), and Lnight, because we also want to separately 
evaluate the effect of night time noise in subsequent epidemiological 
analysis. First, univariate regression with all predictor variables pre-
sented in Table 1 was performed. The variables with the highest adjusted 
explained variance (adjusted R2) and with the expected direction of 
effect, which we defined previously, were then one by one added in the 
model with a stepwise forward selection. We continued this process until 
the adjusted R2 did not further increase. To prevent from overfitting of 
the model, no more than 5 predictors were included, which represents 
less than 10% of the sample size. In a next step, we challenged each 
variable in the model with all their buffer sizes or distance type to check 
if any of them could further improve the model. We then removed 

variables with a p-value above 0.05 from the LUR model one by one. 
Additionally, we checked for heteroscedasticity and normality of re-
siduals, collinearity of the predictor variables by calculating the Vari-
ance Inflation Factor (VIF), for influential observations by calculating 
the Cook’s Distance and for spatial autocorrelation using Moran’s I. In a 
last step, we performed a leave-one-site-out cross validation (LOSOCV) 
by means of the corresponding Stata function: measurement(s) from 
each location were sequentially left out from the model and noise 
exposure was predicted from a model without data from the corre-
sponding site. 

3. Results 

In total after data cleaning, valid noise measurements were used over 
6 consecutive days at 31 sites in summer season and 31 sites in winter 
season (Supplementary Figure S2) totaling to 62 valid measurements 
from 39 different locations for developing the LUR model. In Table 2 
summary statistics for Lday, Levening, Lnight, LAeq24h, Lden of the cleaned 
noise measurements are presented. Expressed as Lden the arithmetic 
mean of all 1s-LAeq measurements was 73.1 dB(A) with a standard 
deviation of 9.9 dB(A). Highest and lowest site specific Lden were 82.3 
and 60.3 dB(A). Fig. 2 presents the diurnal variability of noise for each 
day of week with highest noise levels in the evening. In particular on 
weekends (Friday-Sunday), noise levels in the evening and night hours 
were high. Noise levels of summer season (February) seem to be slightly 
higher in the later hours and lower in the earlier hours compared to 
winter season, which were measured in August. On average, Lden noise 
levels were similar in summer (69 dB(A)) and winter season (70 dB(A)) 
for the 23 sites with data from both seasons (Lnight: 59 dB(A) and 60 dB 
(A)). Pearson and Spearman correlation between Lden and Lnight mea-
surements of summer and winter season were between 0.76 and 0.78 
(Fig. 3). 

LUR models were developed for Lden and Lnight and are described in 
Table 3a,3b. Five relevant predictors were identified: educational fa-
cilities within a 400 m buffer, inverse distance to the closest medium 
road (including motorway, trunk, primary, secondary and tertiary 
roads), proportion of informal settlements (“favelas”) within a 400 m 
buffer, proportion of residential land use within a 50 m buffer (Lden) and 
25 m buffer (Lnight) and mean NDVI within a 100 m buffer. The same 
predictors were found for the Lnight model, although a different buffer 
size for residential land use and differing coefficients. The most pre-
dictive variable was the inverse distance to the closest medium road 
explaining 26% of the measured spatial variability (Supplementary 
Table S1). Summary statistics of all relevant predictor variables can be 
found in Table 4. Fig. 4 describes the distribution of the measured and 
predicted noise values. The mean difference between predicted minus 
observed exposure was 0.12 dB(A) (standard error: 0.46 dB(A)) for Lden 
and 0.04 dB(A) (0.49 dB(A)) for Lnight (Supplementary Figure S3). A 
substantial fraction of the measured spatial variability can be explained 
by the available GIS predictor variables with a R2 of 0.61 for Lden and a 

Table 2 
Summary statistics (mean, standard deviation (SD), minimum (min), maximum 
(max) of the measured cleaned noise levels for five different metrics (Lday, Lev-

ening, Lnight, LAeq24h, and Lden) for all 1-s LAeq measurements and for site aver-
ages, in A-weighted decibels ([dB(A)]).   

all 1-s LAeq measurementsa site averagesb 

Variable Name Mean SD Min Max Mean SD Min Max 

Lday 69.5 9.2 32.4 105.4 66.4 5 58.1 78.3 
Levening 69.5 9.8 33.5 109.3 66.4 5.2 55.7 77.0 
Lnight 65.2 10.4 31.2 110.4 59.9 6.7 50.7 76.6 
LAeq24h 68.5 10.7 31.2 110.4 65.4 5.2 56.5 76.4 
Lden 73.1 9.9 32.4 120.4 69.3 5.7 60.3 82.3  

a Energetic mean level. 
b Mean values calculated in dB(A)-units. 
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Fig. 2. Diurnal variation of 2-h average of LAeq [db(A)] by day of week represent by different colors for summer season (A) and winter season (B) . (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Comparison of mean Lden (A) and Lnight [db(A)] (B) measurements in summer and winter season at each location (n = 23).  

Table 3a 
Results of the LUR model explaining Lden measured at 39 sample sites 
(R2 = 0.612). The coefficient (coef.) refers to Lden increase per unit of the pre-
dictor variable.  

Variable Name Buffer 
Radius 
(m) 

Unit of the 
Coef. and the 
95%-CI 

Coef (95% CI) p-value 

Residential 
land use 

50 surface (ha) − 8.03 (-9.93, 
− 6.14) 

<0.001 

Medium roads  inverse 
distance (m− 1) 

39.6 (33.6, 
45.7) 

<0.001 

Educational 
facilities 

400 count 1.14 (0.738, 
1.54) 

0.004 

Informal 
settlements 

400 surface (ha) 0.201 (0.126, 
0.276) 

0.007 

NDVI 100 Mean index − 21.5 (-27.4, 
− 15.6) 

<0.001 

Intercept  dB(A) 75.8 (73.5, 
78.2) 

<0.001 

Note: NDVI, Normalized Difference Vegetation Index; ha, hectare; m, meter; dB 
(A), A-weighted decibels. 

Table 3b 
Results of the LUR model explaining Lnight measured at 39 sample sites 
(R2 = 0.677). The coefficient (coef.) refers to Lnight increase per unit of the 
predictor variable.  

Variable Name Buffer 
Radius 
(m) 

Unit of the 
Coef. and the 
95%-CI 

Coef (95% CI) p-value 

Residential 
land use 

25 surface (ha) − 39.3 (-46.9, 
− 31.7) 

<0.001 

Medium roads  inverse 
distance (m− 1) 

49.9 (43.5, 
56.3) 

<0.001 

Educational 
facilities 

400 count 1.30 (0.883, 
1.72) 

0.002 

Informal 
settlements 

400 surface (ha) 0.295 (0.217, 
0.373) 

<0.001 

NDVI 100 Mean index − 24.1 (-30.3, 
− 17.8) 

<0.001 

Intercept  dB(A) 67.0 (64.5, 
69.5) 

<0.001 

Note: NDVI, Normalized Difference Vegetation Index; ha, hectare; m, meter; dB 
(A), A-weighted decibels. 
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R2 of 0.68 for Lnight (Table 5). For both models, the differences between 
the model R2 and the LOSOCV R2 was less than 10%, which indicates 
stable models. No signs for heteroscedasticity were found and the re-
siduals were approximately normally distributed (Supplementary 

Figure S3). There is neither concern about influential observations with 
Cook’s Distance values of maximum 0.49 nor for collinearity of the 
predictors with the Variance Inflation Factor (VIF) having a maximum 
value of 1.19. Additionally, no sign for spatial autocorrelation was found 
(p-value for Moran’s I 0.65 for Lden and 0.56 for Lnight). From Fig. 5, 
which shows a map of the study area with a resolution of 20 × 20 m with 
predicted values of Lden and Lnight, we can see that the model captures 
well high noise levels near main roads and informal settlements. More 
than half of predicted values in the study area lie over 65 dB(A) for Lden 
and over 55 dB(A) for Lnight (Table 6). 

We also tested other LUR models, such as for Lday, different weekdays 
and using the average value of both seasons instead of separate mea-
surements, as well as separate models for summer and winter season. 

Table 4 
Summary statistics of the GIS predictor variables used in the LUR model to 
explain Lden and Lnight.  

Variable 
Name 

Buffer 
Radius 
(m) 

Unit Mean SD Min Max 

Residential 
land use 

25 (Lnight) surface (ha) 0.148 0.076 0 0.196  

50 (Lden) surface (ha) 0.573 0.292 0 0.785 
Medium roads  inverse 

distance 
(m− 1) 

0.047 0.089 0.001 0.451 

Educational 
facilities 

400 count 0.887 1.380 0 7 

Informal 
settlements 

400 
(Lnight) 

surface (ha) 4.480 7.233 0 40.760 

NDVI 100 Mean index 0.271 0.092 0.161 0.554 

Note: NDVI, Normalized Difference Vegetation Index; ha, hectare; m, meter; dB 
(A), A-weighted decibels. 

Fig. 4. Scatter plot and distribution of predicted noise against measured noise (A and C: Lden and B and D: Lnight) (n = 62). In the scatter plot, the fitted value line 
(red) and the 95% confidence interval (grey zone) are also displayed. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Table 5 
Summary of LUR model validation.   

native Model LOSOCVa 

Variable Name R2 adj R2 RSME R2 adj R2 RSME 

Lden 0.61 0.58 3.0 0.56 0.52 3.8 
Lnight 0.68 0.65 3.4 0.63 0.60 4.1  

a Leave-one-site-out cross validation. 
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These models achieved similar outcomes with comparable GIS pre-
dictors, R2 and validation results, underlining the accuracy of our 
developed LUR models (see Supplementary Table S2-8, Figures S4-7). 

4. Discussion 

We developed LUR models for Lden and Lnight derived from contin-
uous six-day noise measurements at 39 homes to assess the spatial 
variability of community noise levels in São Paulo, Brazil. We obtained a 
moderate to good model fit (R2 of 0.56 for Lden and 0.63 for Lnight using 
LOSOCV). 

To our knowledge, this is the first LUR modelling study of South 
America and only the third one in a low- and middle-income country. 
The first study in a low- and middle-income country, which was con-
ducted in China by Xie et al. (2011), could explain 70% of the observed 
variance. However, they only considered roads as predictor variables. 
The LUR model of the second study, conducted by Sieber et al. (2017a) 
in informal settings of the Western Cape, South Africa, explained only 
13% of the noise exposure variability. Their explanation for the low 
model performance was that GIS predictor data was inaccurate and 
constantly changing in informal settlements. Although several informal 
settlements are situated within our study area and most GIS predictor 
data were obtained from Open Street Map, which is an open-source tool 
and therefore prone to errors and missing data, we achieved a LUR 
model performance comparable to previous models from high-income 
countries, which achieved R2 values between 0.47 and 0.89 (Ragettli 
et al., 2016; Harouvi et al., 2018; Aguilera et al., 2015; Chang et al., 
2019; Liu et al., 2020). 

In our models of Lden as well as Lnight, the inverse distance to the 
nearest medium sized road were the most predictive variable for noise 
levels according to explained variance. Transport related predictor 
variables have already previously been proven to have a good correla-
tion with noise measurement (Ragettli et al., 2016; Harouvi et al., 2018; 
Aguilera et al., 2015). Additionally, the negative association of NDVI 
and residential land use with noise levels were demonstrated in a pre-
vious study of Ragettli et al. (2016). However, our study is the first to 

find educational facilities and informal settlements (“favelas”) as rele-
vant predictor variables for increased noise levels. Several studies pre-
viously measured elevated noise levels in schoolyards, as a result of 
screaming, loud playing children (Kapetanaki et al., 2018; Sar-
antopoulos et al., 2014). Informal settlements have not only high pop-
ulation densities (Paraisópolis, one of the largest informal settlement in 
São Paulo, with 1.000 inhabitants per hectare (Théry, 2020)) but also 
increased outdoor activities due to limited indoor space such as outdoor 
weekend parties. Therefore, identifying informal settlements as sub-
stantial noise predictor is crucial, given that more than 11% of people in 
São Paulo living in informal settlements with an upward trend (Instituto 
Brasileor de Geografia e Estatistica. Population Census, 2010). 

In the guidelines of the World Health Organization (WHO) for 
community noise, Lden of less than 54 dB(A) is recommended for road 
traffic noise and less than 45 dB(A) for Lnight (World Health Organiza-
tion. Environmental Noise Guidelines for the European Region, 2018). 
Our community noise measurements were above these guidelines at all 
sites and our mean Lden in São Paulo of 69 dB(A) was also very high 
compared to other countries. In Western Cape of South Africa, a mean 
Lden of 63 dB(A) was measured (Sieber et al., 2017b). Modelled road 
traffic noise was 54 dB(A) in Switzerland (Cantuaria et al., 2018) and 
between 44 and 52 dB(A) in Munich (Tiesler et al., 2013). Another study 
in São Paulo (Moura-de-Sousa and Alves Cardoso, 2002), which 
measured noise levels in a different area, presented mean LAeq24h values 
between 61 and 75 dB(A) which fits very well the exposure range of our 
maps of the study area. One reason for higher noise levels, compared to 
results from other studies of mainly high-income countries, can be 
louder traffic noise because of less modern and therefore louder cars and 
pavement. Another factor explaining higher noise levels might include 
climate differences, with warmer and therefore more comfortable tem-
peratures for outside activities, which can potentially lead to noise 
sources, such as street markets or parties. Last but not least, the popu-
lation density in our study area is higher than the study areas of most 
other cited studies (average 79 inhabitants per hectare, but highly var-
iable depending on area) (Secretaria Municipal da Saúde, 2018). The 
association of high population densities and noise levels has been shown 
in several studies (European Environment Agency, 2020; Stewart et al., 
1999). 

In addition to the high outdoor noise exposure values, it has to be 
considered for health impact assessment that buildings in this climate 
zone are usually not well sound insulated and windows are kept open, 
resulting in higher transmission of outdoor noise into the homes (De 
et al., 2005). Epidemiological research on noise is thus warranted for 
such areas, although still quite rare (Paiva-Vianna and Cardoso, 2016; 
Barbaresco et al., 2019). 

A strength of our study is the short sampling interval of one second 
allowing for the fact that community noise shows a high temporal 
variability. Previous studies used intervals between 2 min and 20 min 

Fig. 5. Map of study area with modeled Lden (A) and Lnight (B) with a 20 × 20 m resolution.  

Table 6 
Predicted cumulative noise distribution for Lden and Lnight in all 20 × 20 m grid 
points of the study area.  

Threshold [dB(A)] Cumulative proportion 
Lden threshold [%] 

Cumulative proportion 
Lnight threshold [%] 

55 100.0 65.0 
60 97.8 36.0 
65 68.6 16.3 
70 33.2 6.8 
75 11.7 3.8  
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(Ragettli et al., 2016; Harouvi et al., 2018; Aguilera et al., 2015; Chang 
et al., 2019). One limitation of this study is that no data on traffic in-
tensity was available, which has been identified as relevant noise pre-
dictor in previous studies (Aguilera et al., 2015; Chang et al., 2019). 
However, with the different road type variables, this aspect is considered 
to some extent. Besides traffic intensity, also other temporal predictors 
would have been interesting, in order to be able to predict on a dai-
ly/weekly/monthly scale. However, we checked for differences in LUR 
models using different days and times, which did not lead to relevant 
differences in model results. Furthermore, the number of measurement 
locations in our study area is relatively small. The study of Basagana 
et al. (Basagaña et al., 2012) demonstrated, that LUR models with small 
sample sizes and high number of potential predictors offered, tend to 
give higher and more inflated R2 and LOSOCV R2 values. We therefore 
tried to limit the set of predictors in the final model to five. Finally, noise 
measurements were conducted for two weeks only and thus may not 
have captured all relevant differences between seasons and weather 
conditions. However, the good correlation between summer and winter 
measurements indicates that seasonal variations are not substantial. By 
conducting continuous measurements over a week, we collected data 
from a variety of common weather conditions. The two measurement 
campaigns represent dry and wet season including some heavy rains 
during the measurements in wet season. We checked for rain as a pre-
dictor variable, however it did not have relevant spatial resolution. 

5. Conclusions 

Our study demonstrates the feasibility of LUR models to estimate 
community noise exposures for epidemiological research in areas where 
no public noise maps are available. Week-to-week variation of noise is 
relatively small compared to air pollution (Allen et al., 2009), as also 
demonstrated in these data. Thus, short measurement campaigns are 
suitable to estimate long-term spatial distribution of noise levels. Such 
estimates are also useful for epidemiological research and to assess the 
public health impact of community noise. 
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Centro de Estudos da Metrópole Relatórios Favelas e Loteamentos - Estudo do CEM para 
Sehab/PMSP [04.11.2020], 2020. http://centrodametropole.fflch.usp.br/pt-br/do 
wnloads-de-dados/relatorios-favelas-e-loteamentos-estudo-do-cem-para-sehabpmsp. 

Chang, T.-Y., Liang, C.-H., Wu, C.-F., Chang, L.-T., 2019. Application of land-use 
regression models to estimate sound pressure levels and frequency components of 
road traffic noise in Taichung, Taiwan. Environ. Int. 131, 104959. 

De, E., Duarte, A., Viveiros, E., 2005. Sound insulation performance of Brazilian 
dwellings: from colonial ages to contemporary architecture. Environmental Noise 
Control 2. 

de Hoogh, K., Korek, M., Vienneau, D., Keuken, M., Kukkonen, J., Nieuwenhuijsen, M.J., 
et al., 2014. Comparing land use regression and dispersion modelling to assess 
residential exposure to ambient air pollution for epidemiological studies. Environ. 
Int. 73, 382–392. 

Environmental Systems Research Institute (ESRI), 11.12.2020. https://www.esri.com. 
European Centre for Medium-Range Weather Forecasts (ECMWF), 2020. Precipitation 

data [04.11.2020]. Available from. https://www.ecmwf.int. 
European Environment Agency, 2016. Quiet Areas in Europe. The Environment 

Unaffected by Noise Pollution (Report No 14/2016) [18.11.2020]. Available from. 
http://www.eea.europa.eu/highlights/mapping-europe2019s-quiet-areas. 

European Environment Agency, 2020. Environmental noise in Europe - 2020 (EEA 
Report No 22/2019) [01.12.2020]. Available from. https://www.eea.europa.eu/pub 
lications/environmental-noise-in-europe. 

Eze, I.C., Foraster, M., Schaffner, E., Vienneau, D., Heritier, H., Rudzik, F., et al., 2017. 
Long-term exposure to transportation noise and air pollution in relation to incident 
diabetes in the SAPALDIA study. Int. J. Epidemiol. 46 (4), 1115–1125. 
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Hervé Théry, 20.11.2020. Picturing Inequalities [20.11.2020]. Available from. https 
://halshs.archives-ouvertes.fr/halshs-01718713. 

Instituto Brasileor de Geografia e Estatistica, 2010. Instituto Brasileor de Geografia e 
Estatistica, 2010. Population Census 2010 [04.11.2020]. Available from. http 
s://www.ibge.gov.br. 

Kapetanaki, S., Konstantopoulou, S., Linos, A., 2018. Noise Measurements and Sources of 
Noise in Primary Schools Located in Vulnerable Areas in Greece: A Cross-Sectional 
Study. Occupational Medicine & Health Affairs, p. 6. 

Kloog, I., Sorek-Hamer, M., Lyapustin, A., Coull, B., Wang, Y., Just, A.C., et al., 2015. 
Estimating daily PM(2.5) and PM(10) across the complex geo-climate region of Israel 
using MAIAC satellite-based AOD data. Atmospheric environment (Oxford, England. 
1994) 122, 409–416. 

M. Raess et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.envres.2021.111231
https://doi.org/10.1016/j.envres.2021.111231
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref1
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref1
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref1
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref1
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref2
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref2
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref2
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref3
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref3
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref3
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref4
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref4
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref4
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref5
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref5
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref5
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref5
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref6
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref6
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref6
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref7
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref7
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref7
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref8
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref8
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref8
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref8
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref9
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref9
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref9
http://centrodametropole.fflch.usp.br/pt-br/downloads-de-dados/relatorios-favelas-e-loteamentos-estudo-do-cem-para-sehabpmsp
http://centrodametropole.fflch.usp.br/pt-br/downloads-de-dados/relatorios-favelas-e-loteamentos-estudo-do-cem-para-sehabpmsp
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref11
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref11
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref11
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref12
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref12
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref12
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref13
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref13
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref13
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref13
https://www.esri.com
https://www.ecmwf.int
http://www.eea.europa.eu/highlights/mapping-europe2019s-quiet-areas
https://www.eea.europa.eu/publications/environmental-noise-in-europe
https://www.eea.europa.eu/publications/environmental-noise-in-europe
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref18
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref18
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref18
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref19
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref19
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref19
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref20
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref20
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref20
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref21
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref21
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref21
https://halshs.archives-ouvertes.fr/halshs-01718713
https://halshs.archives-ouvertes.fr/halshs-01718713
https://www.ibge.gov.br
https://www.ibge.gov.br
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref23
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref23
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref23
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref24
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref24
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref24
http://refhub.elsevier.com/S0013-9351(21)00525-9/sref24


Environmental Research 199 (2021) 111231

9

Liu, Y., Goudreau, S., Oiamo, T., Rainham, D., Hatzopoulou, M., Chen, H., et al., 2020. 
Comparison of land use regression and random forests models on estimating noise 
levels in five Canadian cities. Environ. Pollut. 256, 113367. 
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