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Abstract

Dengue is endemic in tropical and subtropical countries and is transmitted mainly by Aedes

aegypti. Mosquito movement can be affected by human-made structures such as roads that

can act as a barrier. Roads can influence the population genetic structure of Ae. aegypti. We

investigated the genetic structure and gene flow of Ae. aegypti as influenced by a primary

road, España Boulevard (EB) with 2000-meter-long stretch and 24-meters-wide in a very

fine spatial scale. We hypothesized that Ae. aegypti populations separated by EB will be dif-

ferent due to the limited gene flow as caused by the barrier effect of the road. A total of 359

adults and 17 larvae Ae. aegypti were collected from June to September 2017 in 13 sites

across EB. North (N1-N8) and South (S1-S5) comprised of 211 and 165 individuals, respec-

tively. All mosquitoes were genotyped at 11 microsatellite loci. AMOVA FST indicated signifi-

cant genetic differentiation across the road. The constructed UPGMA dendrogram found 3

genetic groups revealing the clear separation between North and South sites across the

road. On the other hand, Bayesian cluster analysis showed four genetic clusters (K = 4)

wherein each individual samples have no distinct genetic cluster thus genetic admixture.

Our results suggest that human-made landscape features such as primary roads are poten-

tial barriers to mosquito movement thereby limiting its gene flow across the road. This infor-

mation is valuable in designing an effective mosquito control program in a very fine spatial

scale.

Author summary

Dengue, a mosquito-borne viral infection is a serious health problem in tropical and sub-

tropical countries such as Philippines. Most dengue prevention programs aim to eradicate

its mosquito vector, Aedes aegypti. A successful population control program is reliant in

understanding the mosquito behavior and ecology including how human-made structures
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such as roads influence its expansion and movement. Previous studies have discovered

the barrier effect of roads in the movement of mosquitoes. In this study, we examined the

influence of roads in the population genetic structure of Ae. aegypti in a fine spatial scale

using 11 microsatellite markers. We found significant genetic differentiation of mosquito

populations across the road. Our results suggest limited gene flow across the road and

supports our hypothesis that roads are potential barriers to mosquito dispersal. This infor-

mation can be used in designing an effective mosquito population control zones in per-

ceived barrier to mosquito dispersal such as roads.

Introduction

Dengue is an infectious disease transmitted by Aedes mosquitoes. The main dengue vector,

Aedes aegypti is best adapted to urban environments. Dengue prevention programs are usually

focusing on eliminating mosquito larval habitats and adult mosquito populations [1,2]. Suc-

cessful dengue control programs are dependent upon understanding the population genetic

structure of Ae. aegypti including how human-made structures such as roads influence its dis-

persal. For example, estimating gene flow and barriers to dispersal such as roads can help in

predicting the spread of insecticide resistance genes in Ae. aegypti populations [3] and Wolba-
chia-infected mosquito populations release [4,5].

Most population genetic studies of Ae. aegypti were usually described at a country spatial

scale [6–8]. In contrast, fine spatial scale genetic analysis (e.g scale of several households or city

block) though challenging is still feasible as evidenced in several studies that revealed signifi-

cant genetic differentiation of Ae. aegypti at fine spatial scales. For example, significant genetic

differentiation was found at spatial scales of 5 km to 2,000 km using ND4 mitochondrial gene

[9] and microsatellite markers [10–12]. Recently, Carvajal et al [13,14] revealed the low genetic

differentiation and high gene flow among Ae. aegypti populations in Metropolitan Manila,

Philippines, which suggest the influence of passive and active dispersals of the mosquitoes to

population genetic structure. Dispersal ability is a determinant factor of population genetic

structure and the genetic effects of habitat fragmentation at fine spatial scales [15]. Population

genetics can be utilized in estimating dispersal ability through spatial autocorrelation analysis.

For example, limited spatial ranges of significant spatial autocorrelations of up to 1 km sug-

gested the active dispersal capability of Ae. aegypti at microgeographic areas of eastern Thai-

land [12] and in Metro Manila, Philippines [13].

Although the genetic effect of roads in the dispersal pattern of Ae. aegypti in a fine spatial

scale is very limited, the influence of roads was often studied through conventional mark-

release-recapture method (MRR). This method is labor-intensive and the rearing and marking

procedure can affect the mosquito fitness and movement in the field [16]. Studies in MRR of

Ae. aegypti demonstrated that the dispersal of this mosquito vector could be influenced by the

type of road [17–18]. Ae. aegypti prefer crossing smaller and quieter roads as compared to

larger and busy roads [17–18]. To date, the only study that investigated the effect of road such

as highway on Ae. aegypti using genetic approach was done by [19]. Using larval samples, [19]

found significant genetic differentiation across a 900-meter-long stretch and 120-meters-wide

highway. Our study, provided an extensive sampling of adult mosquitoes and larval survey in a

primary road, España Boulevard (EB). As compared to highways, primary roads are character-

ized with presence of several households, buildings and minor residential roads across that

could serve as a pathway for public and private transportation to traverse. We expect that
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passive method of mosquito dispersal in primary roads are more likely possible than in high-

ways because of the presence of minor roads that can aid the movement across.

Furthermore, genetic analysis may also reveal co-occurrences of multiple genetic clusters at

fine-spatial scale and their genetic admixture in mosquito individuals. For example, previous

studies of Ae. aegypti revealed sympatric numerous genetic clusters (K = 3 to K = 16) from 30

km up to 2, 000 km [10,11,13,20], which might be due to the divergence from a single ancestry

resulting into multiple genetic clusters over time and the random distribution of Ae. aegypti
populations from nearby cities, regions or country. A recent study in the region of Metropoli-

tan Manila, Philippines [13], discovered the probable number of genetic clusters of K = 4 in a

fine spatial scale in Metro Manila, Philippines and genetic admixture in Ae. aegypti individuals.

In this study, we narrow down the spatial scale up to 2 km to test if we could still observe mul-

tiple genetic clusters. This information is important prior to analysis of population genetic

structure and gene flow because it can give background information on how the variety of

genes are co-existing in a limited spatial scale.

Here, we studied the influence of road on the population genetic structure and gene flow of

Ae. aegypti using 11 microsatellite loci, to analyze the genetic relatedness among the mosquito

populations and to determine if multiple genetic clusters in a very fine spatial scale can still be

observed. We hypothesize that Ae. aegypti populations across a 2000-meter-long stretch and

24-meters-wide road may have differences in its population genetic structure because it acts as

a potential barrier in mosquito movement.

Methods

Study site

The study selected a certain area in City of Manila, Philippines. This area consists of two tra-

versing roads, a primary road España Boulevard (EB) and a secondary road AH Lacson Ave-

nue (LA). EB is the selected study area and is divided into North and South sides. It is a

primary road based on Philippine geographic information system (PhilGIS). It is located

within a highly urbanized area in Metro Manila consisting of commercial, residential, and

industrial infrastructures and it connects two cities: Manila City and Quezon City. EB as a pri-

mary road have 44 intersections connecting two or more roads across the north and south. It

is one of the busiest roads in the city of Manila with heavy traffic congestion and high human

population density. Some shaded areas such as trees can be found across EB. The mean width

of the road (EB) sampled is 24.27 meters and its length is 2, 000 meters with coordinates of 14˚

370 3@ N, 121˚ 00 4@ E.

Collection, sampling and identification

We used a two stage cluster systematic sampling design to randomly select households for col-

lecting mosquitoes. We used OpenEPI software [21] to calculate the target sample size. Equal

allocation and a design effect of 3 [22,23] was used to calculate the target sample size. The esti-

mate of p used in the calculation was 0.23 according to the study of [24]. The alpha level was

set at 95% (α = 1.96). The maximum tolerable error was equal to 10%. We computed the sam-

ple size on OpenEpi online software (https://www.openepi.com/Menu/OE_Menu.htm) [21].

An additional 15% allowance was added to provide a buffer, including refusal to participate,

yielding a target sample size of 236 households per stratum (North and South; n = 472). Each

sampling site (n = 13) is comprised of 1 to 5 smallest administrative division within the city

(barangay; n = 35) and is defined as the population of this study. Households (n = 7 to 25 per

sampling site) were selected based on their voluntary informed consent for mosquito collec-

tion and larval survey (Fig 1). The sampling unit of our study was the household defined as
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Fig 1. (A) An unweighted pair group method with the arithmetic mean (UPGMA) dendrogram and (B) map of

the 13 sites where the Ae. aegypti were collected in households across EB highlighted in red and in black is LA, an

important East-west connection. For more detailed information, please see S1 Table. The map was created using

ArcGIS version 10.2.2 from http://landsat.gsfc.nasa.gov/images/. A. A dendrogram based on the unweighted pair

group method with the arithmetic mean (UPGMA) using the pairwise genetic distance among the 13 sites from the

north and south of EB road. The red numbers indicate the approximately unbiased (AU) p-values [44–45] and the

green numbers are the standard bootstrap value (BP) [46] using the r package pvclust [47]. B. Map showing the

distribution of the genetic groups as observed in the UPGMA cluster dendrogram (Fig 2A). The color of the triangles

corresponds to the results of the dendrogram.

https://doi.org/10.1371/journal.pntd.0009139.g001
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one unit of accommodation [25]. The geographic coordinates of the sampled households were

recorded. In order to obtain a single geographic coordinate for each sampling site, we calcu-

lated the geographic midpoint [26] of sampled households in their respective sites.

To provide more information about the effect of roads, we collected adult mosquitoes and

representative larval samples from each water holding containers across a primary road with

presence of several smaller roads that can potentially carry mosquito migrants across. The sam-

pling method of collection of both adult Ae. aegypti and larvae though labor intensive is more

informative as compared to only larval samples. Collections of adult and larval mosquitoes in

each household were performed simultaneously in the different sites during the rainy season

and high dengue cases, from June to September 2017. Adult mosquitoes were collected by

installing commercially available mosquito UV light trap (MosquitoTrap, Jocanima Corpora-

tion, Las Piñas, Philippines) for 48 hours either inside or outside of each household. The UV

light trap produces heat and CO2 gas attracting mosquitoes to enter into the capture net via a

strong current from the ventilator [27]. In each household, one mosquito trap was installed.

We also surveyed potential water breeding sites on each of the household premises and col-

lected larvae when present. Mosquitoes and larvae collected were identified morphologically to

species level using the keys for adult and immature mosquitoes of Rueda et al [28]. All collected

samples were preserved in RNALater and stored at -20˚C prior to nucleic acid extraction.

We analyzed 211 Ae. aegypti from 106 households in the North area and 165 Ae. aegypti col-

lected from 104 households in the South area of the road (S1 Table). The number of Ae. aegypti
collected per site ranged from 20 to 46 individuals.

DNA extraction, PCR amplification and microsatellite genotyping

Simultaneous DNA and RNA extraction in individual mosquito adult and larval samples

(n = 376) was performed using the Qiagen AllPrep DNA/RNA micro kit following the manu-

facturer’s protocol with some modifications. In this study, the extracted DNA was only used

while the extracted RNA were kept in– 80˚C for future investigations (e.g. transcriptome anal-

ysis). DNA quality was checked in NanoDrop 2000 Spectrophotometer (Thermo Scientific).

We used the same 11 microsatellite primer and PCR protocol that have been used in an earlier

study by Carvajal et al [13]. All PCR amplifications were performed with 1μl of genomic DNA

in a final volume of 10 μl. We performed 4 sets of multiplex PCRs with 3 pairs of loci grouped

together (S2 Table). All PCR amplifications were composed of the following: 10x Ex Taq

buffer, 25mM MgCl2, 2.5mM dNTP, 5% dimethyl sulfoxide (DMSO), 10μm of fluorescently

labelled forward primer, 10μm of reverse primer, and 5 units/μl of Takara Ex Taq (Takara Bio

Inc.). Each multiplex PCR amplification was conducted as follows: an initial denaturation of

94˚C, denaturation at 94˚C, annealing varies in each set of multiplex PCR (57˚C to 62˚C),

extension at 72˚C, and final extension of 72˚C. PCR products were analyzed in 3% agarose gel

electrophoresis stained with Midori Green Advance DNA stain.

Multiplex PCR products were diluted in 1:3 water and pooled into final volume of 16 μl.

Samples were prepared prior to fragment analysis with 1 μl of pooled PCR product added with

0.5 μl GeneScan 600 LIZ dye standard and 10 μl HI-DI Formamide. Fragment analysis was

performed using SeqStudio Genetic Analyzer (Applied Biosystems). We used PeakScanner

(ThermoFisher Scientific) to identify peak and fragment size and Microsatellite Analysis app

(ThermoFisher Scientific) for genotyping.

Data analysis

Allele scores were checked for genotyping errors and for the presence of null alleles using

Microchecker [29]. The observed heterozygosity (Ho), expected heterozygosity (He), mean
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number of alleles, mean number of effective alleles, allelic richness, mean number of allele fre-

quency and mean number of private alleles were computed in GenAlEx version 6.51b2 [30].

We calculated the Inbreeding coefficient (FIS) for all loci across populations following [31] and

tested statistical deviation from Hardy-Weinberg equilibrium (HWE) using Genepop web ver-

sion [32]. The markov chain parameters were set at 10,000 dememorizations, 100 batches and

5,000 iterations for testing deviations from HWE.

To test the statistical significance of genetic variations among groups (North and South of

EB), among sites (N1 to N8 and S1 to S5) within groups, and within sites (N1 to N8; S1 to S5),

we computed the Analysis of Molecular Variance (AMOVA) using Arlequin version 3.5.2.2

[33] with 10,000 permutations. We assessed the degree of genetic differentiation between the

13 sampling sites by calculation of the pairwise FST values in Arlequin. In order to determine if

the mean values of the pairwise FST within groups (North versus South) and between groups

are significantly different from each other, we performed Mann- Whitney U-test.

Dendrograms among the sites were constructed using the genetic distance matrix (pairwise

FST values) generated from Arlequin software. We employed the Unweighted Pair Group

Method with the arithmetic mean (UPGMA) method using the APE package [34] and R pro-

gram [35]. To determine the optimal number of groups in the dendrogram, we used the

pseudo-t2 index from the package NbClust [36] of R program.

To infer the individual assignment of Ae. aegypti to genetic clusters whose members share

similar genetic characters, we used the Bayesian clustering algorithm in STRUCTURE version

2.3.4 software [37]. We used the same parameter set as in [13] testing for 1–20 presumed

genetic clusters (K) with 20 iterations per K, a burn-in period of 200,000 steps and 600,000

Markov Chain Monte-Carlo (MCMC) replications using an admixture model with correlated

allele frequencies. The best estimate of K was calculated with the ad-hoc statistic ΔK as

described by [38] using Structure Harvester Web version 0.6.94 (http://taylor0.biology.ucla.

edu/structureHarvester/#) [39]. We visualized the final barplots using the R package pophelper
[40] as implemented in R program.

To estimate the migration rate between the North and South sites and within North and

South, we used the GENECLASS v2.0 [41]. For each individual Ae. aegypti in a population, we

determined the probability that it belongs to its home population, probability of being a

migrant across the road and the probability of being a migrant within North or South. We

used the Bayesian criterion of [42] to identify the first generation migrants and the likelihood

computation of Lhome/Lmax with a Monte-Carlo resampling algorithm [43]. We used the fol-

lowing parameter sets: 10,000 simulations and a threshold probability value of 0.05. In order to

determine if the proportion of the migration rate across the road is lower than that within

North or South, we performed Z-score for 2 populations proportions.

The test for Isolation by distance was performed using a Mantel’s test in GenAlex to deter-

mine if geographical distance influence the genetic differentiation. The pairwise genetic dis-

tance (FST) was compared to the geographical distance (km) among the sites. To obtain the

geographic distances between sites we used the geographic midpoint of the sampled house-

holds per site calculated based on the coordinates (latitude and longitude) of the households.

All Mantel tests were assessed for the significance of the correlation using permutation tests

(9999 permutations).

To further evaluate whether genetic variation was correlated with geographic distance, we

performed a spatial autocorrelation analysis using GenAlEx [30]. We computed the autocorre-

lation coefficient (r) from the geographic distance as described above and the genetic distance

(pairwise FST values). This measure determines the genetic similarity between the 13 sites

within an identified geographic distance class. We identified the suitable distance class based
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on the observed distribution of pairwise geographic distance between sites. We used 14 dis-

tance classes at 0.10 km interval.

Results

Genetic diversity and differentiation

The mean number of alleles (MNa) per sampling site ranged from 7.73 (N6) to 12.73 (N1)

while the mean number of effective alleles (Mne) ranged from 3.28 (S5) to 4.58 (N1) (S1

Table). In contrast, the mean number of allele frequency ranged from 3.64 (S4 and S5) to 4.91

(N6) between sites and the mean number of private alleles ranged from 0.00 (N6) to 1.6 (N1)

between sites. All 13 sites displayed significant non-conformance to Hardy-Weinberg equilib-

rium (He > Ho) after Bonferroni correction which implies heterozygosity deficiency that can

be caused by inbreeding, the expected heterozygosity (He) ranged from 0.60 (S5) to 0.72 (N8).

AMOVA results showed significant genetic differentiation (FST = 0.0268) between sampling

sites North (N1 –N8) and South (S1 –S5) of the EB road (Table 1). Small but significant esti-

mates among (FSC) and within (FCT) 13 sites (N1 to N8; S1 to S5) were observed. Population

pairwise FST between the combined all northern and all southern sites showed significant

genetic differentiation (FST = 0.0321). A significant difference between the mean pairwise FST

within groups (North and South; mean = 0.0321) and between groups (mean = 0.0337) were

found using the Mann-Whitney U-test at P< 0.05. The pairwise FST among the 13 sites ranged

from 0.0024 (N1 and N5) to 0.0818 (N4 and N6). Among these comparisons of pairs of sites,

53 out of 91 (58.24%) pairwise FST values presented significant genetic differences (S3 Table).

The number of groups identified on the UPGMA Dendrogram was three based on the cin-

dex index. The groupings (Fig 1) revealed the clear separation of North (Group 3– N1 to N3)

and South (Group 2 –S2 to S5) of EB. On the other hand, genetic similarity between one site

from the South and North of EB were shown for group 1 (N4 to N8 and S1).

Genetic structure

In STRUCTURE analysis, the most probable number of genetically differentiated clusters

across the mosquito populations was K = 4 (S1 Fig). The barplot (Fig 2) displays the distribu-

tion of the assumed genetic clusters of each Ae. aegypti in the North (N1 to N8) and South (S1

to S5) of the road. The barplot suggests admixture of the genetic clusters across all the mos-

quito individuals. STRUCTURE barplot at non-optimal k-values at K = 2,3,5,6 and 7 (S2 Fig)

also displayed genetic admixture.

Migration rate estimates between North and South sites and within North

and South

We identified 94 individuals out of 376 (25%) as potential first-generation (F0) migrants (S4

Table), of which 26 (6.91%) were migrants across the road and 68 (18.08%) were migrants

Table 1. Analysis of molecular variance (AMOVA) using a panel of 11 microsatellites.

Variation ss vc pv FI

Among North & South 18.509 0.0149 0.2810 FST = 0.0268�

Among sites within North and South 136.329 0.1274 2.3995 FSC = 0.0241�

Within sites 3725.183 5.1670 97.3196 FCT = 0.0028�

ss = sum of squares; vc = variance components; pv = percentage variation; F-statistics for each hierarchy; FST = among groups; FSC = among populations within groups;

FCT = within populations;

�P < 0.05

https://doi.org/10.1371/journal.pntd.0009139.t001
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within South or North. The migration rate across the road (6.91%) was significantly lower

than that within North or South (18.08%) based on the z-score test for two populations pro-

portions at p<0.05.

Isolation by distance and spatial autocorrelation

The Mantel test analysis based on the pairwise genetic distances (FST) and the geographic dis-

tances between all populations was not significantly correlated (r = 0.05, p-value = 0.34) (S3

Fig) thus indicating no isolation by distance. Non-significant results were also obtained in the

northern populations (r = 0.03, p-value = 0.39) and in the southern populations (r = 0.29, p-

value = 0.11). On the other hand, the spatial autocorrelation also showed a negative correlation

between genetic and geographic distance (S4 Fig).

Discussion

Our findings support the hypothesis that human-made structure such as roads can create a

barrier to dispersal of Ae. aegypti on a very fine spatial scale. The significant FST estimate

(0.0268) across the EB revealed genetic differentiation on both sides (North and South) of EB

as supported by the significant population pairwise FST (FST = 0.0321) between the combined

all North sites and all South sites. Our result is consistent with a study conducted in a

900-meter long and 120-meter wide road in West Indies, which found a small but significant

FST value (0.011 to 0.021) across the road using 9 microsatellite loci and 2 SNP markers [19].

The results of the cluster dendrogram showed the clear separation of North sites and South

sites that further supported our hypothesis of barrier effect of roads in mosquito movement.

Group 2 (Fig 1B, orange triangle) illustrates the clustering of the genetically similar Ae. aegypti
populations from the south side of the EB while Group 3 (Fig 1B, green triangle) showed the

clustering of populations from the north sites. The EB road may separate the two areas poten-

tially limiting the migration between mosquito populations thereby resulting in the formation

of genetic groups as seen in the results of the cluster dendrogram. In a previous study of Carva-

jal et al [13] in Metropolitan Manila, it was inferred that unique landscape features such as

highways or rivers could potentially result to the formation of genetic groups. It was further

discussed that such landscape feature may generally preserved the alleles within that mosquito

population, thereby making it distinct from other populations overtime due to limited gene

flow.

Our results of the cluster dendrogram and pairwise FST are interesting because the mean

width of the road is around 24.27 m and given the dispersal capability of Ae. aegypti ranging

from 100 m to 800 m [48–52], we expected no distinct groupings and wide adult dispersal

unless the mosquitoes were not able to successfully cross EB road. Despite the fact that the dis-

tance of the EB road is within the dispersal estimates of Ae. aegypti, possibly the inadequate

Fig 2. STRUCTURE bar plot displaying the assignment probabilities of each genotyped Ae. aegypti individual

grouping into 4 clusters. Each individual is represented by a single vertical horizontal line. Brackets are shown to

separate collection sites of North (N1 to N8) and South (S1 to S5).

https://doi.org/10.1371/journal.pntd.0009139.g002
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cover and shade from trees and vegetation across the EB road made it unsuitable for the mos-

quitoes to traverse across as previously explained by Hemme et al [19]. The degree of shade

has strong interrelation with the presence of Ae. aegypti in mosquito and larval surveys [53].

Mosquitoes tend to disperse in areas with numerous water breeding containers and trees that

can provide heavy shading while busy roads seem to inhibit the mosquito movement [18]. The

lack of available oviposition sites and suitable blood meal hosts [19] are possibly some of the

factors that have prevented Ae. aegypti movement across EB road.

Interestingly, Group 1 (N4 to N8 and S1) (Fig 1A, blue square) of the dendrogram displayed

clustering of one site from the south and north. The co-presence of South sites (S1) and North

sites (N4 to N8) in Group 1 could be attributed that a part of the EB is not a potential barrier

and migration of mosquitoes could be possible. For example, the presence of secondary roads

(e.g LA road and the intersections) probably facilitated the passive dispersal of mosquitoes

between sites N4 to N7 and site SI for example through increased human-mediated dispersal

of Ae. aegypti. The presence of minor roads such as residential, pedestrian lane and intersec-

tions can act as a route of passive mosquito dispersal. Minor roads could be a possible route

for mosquitoes to traverse the road. Small pedestrian lanes provide passive mosquito dispersal

by humans. For example, when mosquitoes are accidentally transported by land vehicles that

can be over the flight distance capability of a typical Ae. aegypti [52,54,55]. Future investiga-

tions are necessary to validate the kinds of conclusions that can be drawn from the effects of

ecological factors mentioned previously. Alternative mechanisms that drive the mixed struc-

ture in group 1 might be because of common source population/s between the sites in group 1

that allow to share same alleles across the road.

We detected multiple genetic clusters (K = 4) in a very fine spatial area by Bayesian analysis,

which was concordant with the results (K = 3 to 4) from a previous study of Ae. aegypti among

11 sites not more than 30 km apart in Sao Paulo, Brazil [11]. Previous population genetic stud-

ies of Ae. aegypti from Philippines also displayed multiple genetic clusters (K = 2 to K = 6) in

fine-spatial scale using microsatellite markers [13,56,57]. The different ancestry populations of

our samples may be the reason of the co-occurrence of the four genetic clusters in the small

area rather than the limited gene flow in the study area. Despite the occurrence of multiple

genetic clusters (K = 4), our results revealed genetic admixture thus no distinct genetic cluster

observed. The genetic admixture might indicate that the individual Ae. aegypti from these sites

could potentially share alleles possibly due to the several mosquito invasions from neighboring

cities surrounding the study area as observed in Philippines [13], China [58] and in the USA

[59].

Our sampling strategy of collecting adult and representative larval samples from surveyed

water breeding containers though challenging is more informative in the analysis of mosquito

populations in a very fine spatial scale. We assume that our sampling strategy of adult mosqui-

toes’ collection are more likely to represent the sampling site as compared to collecting or sam-

pling eggs or larvae from the same water container [60]. Adult mosquito sampling within

household can increase the chance of getting higher genetic variability as compared to only lar-

val sampling. In contrast to [19], our study sampled adult mosquitoes (n = 359) and single

larva from each surveyed water breeding container (n = 17) to minimize the possibility of sam-

pling family members as seen from the previous studies of [61,62,63,64]. The collection of one

larvae per water breeding container throughout the sampling site minimizes the probability of

larvae from the same progeny [65].

Overall, the findings of this study displayed strong evidence of limited gene flow across the

highway causing habitat fragmentation of the mosquito populations from the north and south

of EB road. The results suggest that human-made structures such as primary road are potential

barriers to mosquito dispersal limiting its movement across the road. Understanding the
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dispersal pattern of Ae. aegypti in a very fine-spatial scale can give insights in predicting the

spread of dengue virus infection. This information can also be used in the design of successful

vector control strategies such as mosquito elimination programs in a very fine spatial scale.

For example, we can use the information on the blocking potential of roads in Wolbachia-
infected mosquito release programs. Road can be used as a unit of release as compared to city-

wide mosquito release. Local elimination of Ae. aegypti can also be achieved by assigning con-

trol zones along roads that can potentially block the mosquito movement. Road blocking

information can be used during dengue outbreaks wherein vector control agencies can deter-

mine high risk areas in the control zones. Knowledge on the effect of human-made structures

such as roads in mosquito dispersal can greatly improve the implementation of a successful

mosquito control programs [19].
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