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Abstract

The Kingman coalescent and its developments are often considered among the most important advances in population
genetics of the last decades. Demographic inference based on coalescent theory has been used to reconstruct the
population dynamics and evolutionary history of several species, including Mycobacterium tuberculosis (MTB), an im-
portant human pathogen causing tuberculosis. One key assumption of the Kingman coalescent is that the number of
descendants of different individuals does not vary strongly, and violating this assumption could lead to severe biases
caused by model misspecification. Individual lineages of MTB are expected to vary strongly in reproductive success
because 1) MTB is potentially under constant selection due to the pressure of the host immune system and of antibiotic
treatment, 2) MTB undergoes repeated population bottlenecks when it transmits from one host to the next, and 3) some
hosts show much higher transmission rates compared with the average (superspreaders).
Here, we used an approximate Bayesian computation approach to test whether multiple-merger coalescents (MMC), a
class of models that allow for large variation in reproductive success among lineages, are more appropriate models to
study MTB populations. We considered 11 publicly available whole-genome sequence data sets sampled from local MTB
populations and outbreaks and found that MMC had a better fit compared with the Kingman coalescent for 10 of the 11
data sets. These results indicate that the null model for analyzing MTB outbreaks should be reassessed and that past
findings based on the Kingman coalescent need to be revisited.

Key words: Mycobacterium tuberculosis, demographic inference, multiple-merger coalescents, approximate Bayesian
computation, random forest.

Introduction
The coalescent is a stochastic mathematical model that for-
mally describes the shapes of the expected genealogies in a
population (Kingman 1982b). The original formulation of
Kingman has been extended to include different evolutionary
processes, such as fluctuations in population size (Griffiths
and Tavar�e 1994), population subdivision and migration
(Wilkinson-Herbots 1998), recombination (Hudson 1983),
and selection (Kaplan et al. 1988; Neuhauser and Krone 1997).

Although the genealogy of a sample is typically unknown,
mutational models can be superimposed onto the coalescent
to describe DNA sequence polymorphisms. These are gener-
ally easy to obtain from natural populations, thus opening the
possibility of data-based statistical inference.

Applications of the coalescent include the study of the
evolutionary histories and population dynamics of a variety
of taxa (Kuhner 2009), including humans (Excoffier et al.

2013) and pathogens (Pybus et al. 2001; Joy et al. 2003),
and the identification of genetic loci under selection
(Biswas and Akey 2006; Hernandez et al. 2011).

One of the assumptions of the Kingman coalescent is that
the variation in reproductive success among individuals is
sufficiently small (e.g., the variance of offspring per individual
is bounded regardless of population size), such as at most one
pair of sampled lineages can find a common ancestor for any
single time point on the coalescent time scale.

This assumption is relaxed in a more general class of mod-
els, the so-called multiple-merger coalescents (MMC). MMC
have been developed to model scenarios in which the vari-
ance in reproductive success is large enough to cause the
coalescence of more than two lineages at the same time point
on the coalescent time scale (Möhle and Sagitov 2001; see
Tellier and Lemaire [2014] for a review). Some of the underlying
discrete generation models leading to MMC allow for very
large offspring numbers of one or more individuals in a single
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generation (Schweinsberg 2003; Eldon and Wakeley 2006).
However, MMC genealogies can also arise if one individual
has many descendants in a relatively small number of gen-
erations, so that this family leads to multiple mergers after
collapsing discrete generations to arrive at the timescale of
the continuous time coalescent. In this article, we will refer to
“skewed offspring distribution” to indicate variation in repro-
ductive success that leads to multiple merger genealogies. For
details on how coalescent models arise from discrete gener-
ation models, we refer to the relevant mathematical literature
(Kingman 1982a; Griffiths and Tavar�e 1994; Möhle and
Sagitov 2001; Freund 2020).

Compared with the Kingman coalescent, MMC have been
proposed to be more appropriate models to investigate ma-
rine organisms with sweepstakes reproduction (Sargsyan and
Wakeley 2008), agricultural pathogens with recurrent sea-
sonal bottlenecks (Tellier and Lemaire 2014), loci under pos-
itive selection (Durrett and Schweinsberg 2005), and rapidly
adapting pathogens (Neher and Hallatschek 2013).

Despite a growing interest in MMC, there are few studies
that used genetic polymorphisms to test whether MMC are
indeed better fitting models compared with the Kingman
coalescent. Signatures of MMC have been detected at the
creatin kinase muscle type A locus of the Atlantic cod
(Gadus morhua; �Arnason and Halld�orsd�ottir 2015), in the
mitochondrial genome of Japanese sardines (Sardinops mel-
anostictus; Niwa et al. 2016), in populations of breast cancer
cells (Kato et al. 2017), and in the B-cell repertoire response to
viruses such as HIV-1 and influenza (Horns et al. 2019;
Nourmohammad et al. 2019). Although MMC are theoreti-
cally appealing genealogy models for pathogen samples (Irwin
et al. 2016; Neher and Walczak 2018; Rocha 2018), their fit to
observed data in pathogen populations has not been inves-
tigated so far. Only very recently, MMC have been used to
study the within-host genetic diversity of Mycobacterium
tuberculosis (MTB), a major human pathogen causing tuber-
culosis (Morales-Arce et al. 2020).

Here, we look for evidence of MMC in between-host pop-
ulations of MTB. Between-host populations of MTB are
expected to have a skewed offspring distribution because of
three reasons: 1) MTB is an obligate pathogen, and therefore
potentially constantly adapting under the pressure of the
host immune system and of antibiotic treatment (Gagneux
2018); 2) superspreaders; these are patients responsible for a
very large number of secondary infections compared with the
average (Gardy et al. 2011; Walker et al. 2013; Ypma et al.
2013; Lee, Radomski, Proulx, Manry, et al. 2015; Stucki et al.
2015; Lee et al. 2020), thus causing a large variance of the
pathogen’s offspring size; and 3) MTB undergoes repeated
bottlenecks when transmitting from one host to the next,
with a few bacteria, and potentially as few as one, founding
the entire population infecting the new host (Lin et al. 2014).

Additionally, a low genetic diversity and an excess of rare
variants (singletons) have been reported in MTB (Hershberg
et al. 2008; Pepperell et al. 2013), and both are known signa-
tures of MMC genealogies (Tellier and Lemaire 2014).

Methods based on the Kingman coalescent are often used
in population genetic analyses of MTB; for example: 1) The

Bayesian skyline plot (BSP, Drummond et al. 2005) has been
used to infer past population dynamics in tuberculosis out-
breaks, finding evidence for constant effective population size
(Bainomugisa et al. 2018), rapid effective population growth
(Eldholm et al. 2015; Folkvardsen et al. 2017; Brown et al.
2019), or slow effective population decline (Lee, Radomski,
Proulx, Levade, et al. 2015); 2) different methods have been
used to infer the demographic history of the global MTB
population (Comas et al. 2013; Pepperell et al. 2013; Bos
et al. 2014) and of individual MTB lineages (Wirth et al.
2008; Kay et al. 2015; Luo et al. 2015; Liu et al. 2018; Merker
et al. 2015, 2018; Huang et al. 2019; Mulholland et al. 2019;
O’Neill et al. 2019), finding evidence for effective population
growth or for complex fluctuations that have been correlated
with major events in human history such as the introduction
of antibiotic treatment; and 3) the strength of purifying se-
lection was estimated with a simulation-based approach,
finding a genome-wide selection coefficient several order of
magnitude higher compared with other prokaryotes and
eukaryotes (Pepperell et al. 2013).

Although some of these results might be biased by unac-
counted population structure (Heller et al. 2013) or sampling
biases (Lapierre et al. 2016), potentially they are all impacted
by the violation of the Kingman’s assumption described
above, and their conclusions could be affected by model
misspecification (Tellier and Lemaire 2014).

Given the undergoing efforts in controlling and stopping
the spread of tuberculosis, and the global impact of this path-
ogen that causes more than 1.4 million deaths each year
(WHO 2019), it is important to evaluate the adequacy of
the population genetic models used to study tuberculosis
epidemics. To this end, we considered 11 MTB whole-
genome sequence (WGS) data sets, and used an approximate
Bayesian computation (ABC) approach based on simulations
to find the best-fitting model among Kingman’s coalescent,
and two MMC models, the Beta coalescent (Schweinsberg
2003) and the Dirac coalescent (Eldon and Wakeley 2006).
We found that MMC were the best-fitting model for 10 of the
11 data sets (nine fitted best to the Beta, one to the Dirac
coalescent). In addition, we investigated the consequences of
violating the assumption on the offspring distribution when
performing demographic inference with the BSP and found
that it leads to the inference of false population dynamics.
Consequently, demographic inference based on models as-
suming nonskewed offspring distribution (i.e., Kingman’s co-
alescent) likely leads to inaccurate results when applied to
MTB epidemics, and potentially to the epidemics of other
pathogens with similar life histories.

Results

Models and Data Sets
MTB is thought to be strictly clonal, with lateral gene flow
completely absent, or very rare (Hershberg et al. 2008;
Gagneux 2018; Chiner-Oms et al. 2019). Therefore, the MTB
genome can be considered as a single genetic locus, and one
single genealogy describes the relationships among all MTB
strains in any data set. The shape of the genealogy of a sample
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is influenced by many factors, such as the underlying offspring
distribution, sampling scheme, population subdivision, geo-
graphic population structure, migration, and changes in
population size. To avoid these confounding effects, we con-
sidered only populations that were unlikely to be affected by
population structure, sampling biases, population subdivi-
sion, and migration. We searched the literature for WGS
data sets of MTB where all strains were sampled from a single
phylogenetic clade that was restricted to a particular geo-
graphic region, and identified 11 studies. Most of these data
sets represent single outbreaks (Materials and Methods). For
each data set, we downloaded the raw Illumina sequences
(supplementary table 1, Supplementary Material online) and
used a bioinformatic pipeline described in the Materials and
Methods section to identify high-confidence single nucleotide
polymorphisms (SNPs) (table 1). To test the robustness of our
analyses to different SNP call procedures, we performed an
additional SNP call altering one key parameter: the minimum
proportion of reads supporting an SNP call (from 90% to 75%,
see Materials and Methods). We found that the allele fre-
quency spectrum (one of the most important statistics, see
below) was robust to the different SNP call settings (supple-
mentary figs. 1 and 2, Supplementary Material online). We
performed the main analyses (see below) on both data set
variants. As the results were similar, and we consider the SNP
call with the 75% threshold less stringent, in the article we
report the results for the data sets based on the 90% thresh-
old. The results for the data sets based on the 75% threshold
and the comparison between the two different sets are
reported in supplementary table 2, Supplementary Material
online.

Excluding population structure, two factors that can shape
the diversity of these data sets are changes in population size,
and whether offspring distributions are skewed. We modeled
changes in population size assuming exponential population
growth, as has often been done in previous studies (Eldholm
et al. 2015; Merker et al. 2015; Eldholm et al. 2016; O’Neill et al.
2019).

We modeled skewed offspring distributions with two
MMC models deriving from explicit population models:

(1) The Beta coalescent, in which the probability of each
individual to coalesce in a multiple merger event is

regulated by a Beta distribution with parameters a (be-
tween 1 and 2) and 2 � a. The Beta coalescent was
originally introduced to model populations with sweep-
stakes reproduction (Schweinsberg 2003), but it was also
proposed to capture the genealogies of populations un-
dergoing recurrent bottlenecks and of epidemics char-
acterized by superspreaders (Tellier and Lemaire 2014;
Hoscheit and Pybus 2019). Lower values of a (closer to
one) correspond to larger multiple merger events, and
for a¼ 1 the Beta coalescent corresponds to the
Bolthausen–Sznitman (BSZ) coalescent (Bolthausen
and Sznitman 1998). The BSZ coalescent is an explicit
model for genealogies of populations evolving under
rapid positive selection, which lead certain families of
selected genotypes to have strongly increased sizes com-
pared with the average (Brunet and Derrida 2013; Neher
and Hallatschek 2013).

(2) The Dirac coalescent, also known as psi coalescent, is
defined by a single parameter (w). The parameter w
represents the average proportion of sampled lineages
that coalesce in a single multiple merger event. The Dirac
coalescent was derived from a modified Moran popula-
tion model, where at each generation, with a small prob-
ability, a single individual produces a proportion w of the
next generation, instead of just two offspring. This gives
an alternative model with skewed offspring distribution
(Eldon and Wakeley 2006).

Importantly, none of these MMC models was derived from
a population model specific for MTB. Nevertheless, they are
useful to investigate whether processes leading to skewed
offspring distribution (on the coalescent time scale) are im-
portant in MTB, and we will discuss this further below.

In a first analysis, we tested whether modeling skewed
offspring distributions alone explained the observed genetic
diversity better than modeling variable population sizes (with
an exponential growth model) and standard offspring distri-
butions. Therefore, we considered MMC models with con-
stant population sizes. It was previously shown that even for a
single locus, these hypotheses can be distinguished for mod-
erate sample sizes and high enough mutation rates (Eldon
et al. 2015; Freund and Siri-J�egousse 2020).

Table 1. Data Sets Used in This Study.

Data Seta Number of Strains Number of Polymorphic Positions Locality of Sampling

Eldholm 2015 248 497 Buenos Aires (Argentina)
Lee 2015 147 454 Nunavit (Canada)
Stucki 2016 175 6,264 Central African countries
Shitikov 2017 176 1,164 Russia and Belarus
Roetzer 2013 61 74 Hamburg (Germany)
Comas 2015 21 1,334 Ethiopia
Bainomugisa 2018 81 401 Daru Island (PNG)
Bjorn-Mortensen 2016 121 128 East Greenland
Folkvardsen 2017 702 214 Copenhagen (Denmark)
Stucki 2014 60 128 Bern (Switzerland)
Eldholm 2016 25 17 Oslo (Norway)

aWe identified the data sets with the first author’s name and year of the original publication.
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Subsequently, we explored whether modeling skewed off-
spring distribution together with variable population size (ex-
ponential growth) further improved the fit to the data.

Model Selection and Parameter Estimation with ABC
For model selection and parameter estimation, we used an
ABC approach based on random forests (RF), as reported in
detail in the Materials and Methods section. We considered
four models: Kingman’s coalescent with constant population
size (KM), Kingman’s coalescent with exponential popula-
tion growth (KMþexp), Beta coalescent with constant pop-
ulation size (BETA), and Dirac coalescent with constant
population size (Dirac). Briefly, for each data set, we collected
the SNPs identified with the bioinformatic analysis, recon-
structed the genotype of the most recent common ancestor
(MRCA) and used it to polarize the SNPs. We then calculated
a set of 24 summary statistics measuring genetic diversity and
phylogenetic properties. For each model, we performed
125,000 simulations of a sample of size n, where n is the
number of individuals in the data set, drawing the scaled
mutation rate from a prior distribution spanning 1 order
of magnitude around the Watterson estimator (hobs). As
described in Pudlo et al. (2016), we performed model selec-
tion via ABC using a random forest of 1,000 decision trees.
For parameter estimation within a model class, we followed
the approach of Raynal et al. (2019).

We found that for most data sets, the ABC approach had
overall good discriminatory power, with out-of-bag (OOB)
error rates (the misclassification probabilities, see Materials
and Methods and table 2 for details) ranging from 4% to
16.4%. The only exception was the data set Eldholm 2016
(OOB error rate ¼ 32.2%), which was the data set with the
lowest genetic diversity. Most importantly for our study, the
probability that data generated under a model with standard
offspring distribution (KM and KMþexp) were misclassified
as multiple merger was low (1.1–7%), again the only excep-
tion was the data set Eldholm 2016 (18%).

We found that BETA was the best-fitting model for 7 of the
11 data sets, KMþexp was the best model for three data sets,
and Dirac was the best model for one data set. For all but one

data set (Eldholm 2016), the posterior probability of the se-
lected model was higher than 80% and therefore more than
four times more likely than all other models combined (table 2
and supplementary table 2, Supplementary Material online).

One potential problem when performing model selection
is that none of the considered models is able to generate key
features of the observed data (i.e., the considered models are
not adequate; Chapter 6 in Gelman et al. 2013). To exclude
this possibility, we performed posterior predictive checks, in
which for each data set, we simulated data under the best-
fitting model using the median of the posterior distribution of
the relative parameter. We then compared the observed data
with the simulated data. If the selected model is adequate, we
expect the simulated and observed data to be similar.
Conversely, if the selected model is not adequate, we expect
simulated and observed data to be different. We found that
for all but two data sets, the observed values of 20 summary
statistics were within the range of values obtained from the
simulated data, indicating that the best model can reproduce
the features of the observed data (supplementary figs. 3–13,
Supplementary Material online). The two exceptions were
Stucki 2016 and Shitikov 2017, for which, respectively, the
0.9 quantile of the Hamming distance, and the mean of
the minimal observable clade size statistic were not overlap-
ping with the simulated values (supplementary figs. 12 and
13, Supplementary Material online). This indicates that the
best-fitting model (KMþexp) cannot reproduce the observed
data, and that none of the considered models is adequate for
these two data sets.

Hidden Population Structure and Population Decline
in the Data Set Lee 2015
In our analysis, we focused on local data sets to control for the
confounding effect of complex population dynamics and
population structure. However, in one case (Lee 2015), it is
possible that some degree of population structure was still
present. Lee 2015 is a data set sampled from an epidemic in
Inuit villages in Nunavik, QC, Canada (Lee, Radomski, Proulx,
Levade, et al. 2015). Lee, Radomski, Proulx, Levade, et al. (2015)
showed that transmission of MTB among patients was more

Table 2. Results of Model Selection and Parameter Estimation.

Data Set Selected
Model

OOB Error Rate
(misclassification % as MMC)a

Posterior
Probability

Median and 95% Posterior CI of
Coalescent Parametersb

Eldholm 2015 BETA 5.4% (2.1%) 96.6% a: 1.19 (1.01–1.39)
Lee 2015 BETA 6.8% (2.6%) 96.0% a: 1.27 (1.06–1.59)
Stucki 2016 KM1exp 4.1% (1.1%) 100% g: 2,828 (676–4,508)
Shitikov 2017 KM1exp 5.3% (1.8%) 99.7% g: 2,833 (1,158–4,819)
Roetzer 2013 BETA 15.8% (7.0%) 95.7% a: 1.23 (1.02–1.50)
Comas 2015 BETA 16.4% (5.4%) 87.3% a: 1.31 (1.05–1.72)
Bainomugisa 2018 BETA 8.9% (3.3%) 97.6% a: 1.22 (1.02–1.51)
Bjorn-Mortensen 2016 BETA 10.2% (4.2%) 80.6% a: 1.03 (1.00–1.16)
Folkvardsen 2017 BETA 4.0% (1.4%) 97.8% a: 1.13 (1.02–1.33)
Stucki 2015 KM1exp 13.2% (5.4%) 87.4% g: 13,288 (3,756–19,932)
Eldholm 2016 Dirac 32.2% (18.0%) 77.1% w: 0.36 (0.19–0.61)

aThe OOB error rate is the probability that a simulation is misclassified as coming from any other model class, between parentheses we report the probability that a simulation
generated with KM or KMþexp is misclassified as an MMC (BETA or Dirac).
bThe interval between the 0.025 quantile and the 0.975 quantile of the parameter of the selected model (g for KMþexp, w for Dirac, and a for BETA). The growth rate g is
reported as used in Hudson’s ms (for diploid genealogies; Hudson 2002), thus all growth estimates have to be halved to be interpreted for MTB.
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frequent within a village than between villages, and that re-
lated strains tended to be present in the same village. This was
supported by the reconstructed phylogenetic tree, which
showed three clades separating at the root that could repre-
sent distinct subpopulations (supplementary fig. 14,
Supplementary Material online; see also figure 2 in Lee,
Radomski, Proulx, Levade, et al. 2015). These data suggest
the existence of some degree of geographic population struc-
ture. Therefore, we tested whether this might influence the
results of our model selection. To do this, we ran two analyses:

(1) We repeated the ABC-RF analysis on three subsets of Lee
2015, which represent the three main clades described
above (supplementary fig. 14, Supplementary Material
online). Under the assumptions that the separate
branches of the phylogeny reflect different subpopula-
tions, and that migration does not alter the coalescent
rates within the subpopulations, the genealogy of each
subclade should then follow one of the coalescent mod-
els that we are fitting. We found that BETA was the best-
fitting model for two of the subclades, whereas Dirac was
the best-fitting model for the third (table 3). The poste-
rior predictive checks showed that the best model could
reproduce the data of these three subsets (supplemen-
tary figs. 15–17, Supplementary Material online).
However, the posterior probabilities were low compared
with the complete data set, and the misclassification
probabilities were larger. This was probably due to the
smaller sample size of the individual subsets compared
with the full data set (table 3).

(2) We performed an additional model selection analysis
between three competing models, BETA, Dirac and a
third scenario, in which we modeled a structured pop-
ulation with migration and with standard offspring dis-
tribution and exponential growth (KMþexp; see
Materials and Methods for details). Also in this case,
BETA resulted to be the most likely model (table 3).
Overall, our findings indicate that it is unlikely that the
MMC signal in the Nunavik MTB population is an arti-
fact caused by population structure.

Structured populations have similar genealogies to popu-
lations that are shrinking in size (forward in time), with many
lineages coalescing close to the tips of the genealogy. In their
original publication, Lee, Radomski, Proulx, Levade, et al.
(2015) used the BSP (Drummond et al. 2005) to reconstruct
the fluctuations in population size of the Nunavik population
and found evidence for a slow population decline. Here, we
are not interested in whether the inferred population decline
is genuine or caused by unaccounted population structure;
we only want to assess whether a decline in population size
could bias our analysis. We repeated the ABC-RF model se-
lection among two models: BETA and KM with population
decline (see Materials and Methods for details). Again, we
found that BETA was the best-fitting model (table 3), indi-
cating that our results for this data set are unlikely to be an
artifact caused by population decline.

Serial Sampling
One limitation of our analysis is that it assumes that all
samples were collected at the same time (synchronous sam-
pling). Generally, MTB strains are sampled from the sputum
of patients, which is collected when they first present for
diagnosis. All data sets that resulted in an MMC as best-
fitting model included samples obtained over extended peri-
ods of time (serial sampling), corresponding to between�8%
and�100% of the estimated tree age (supplementary table 3,
Supplementary Material online).

We investigated whether, at least in principle, the violation
of the assumption of synchronous sampling could bias the
results of the ABC analysis performed above, and whether the
better fit of MMC could be an artifact due to such violation.
To do this, we generated simulated data assuming serial sam-
pling and performed model selection on the simulated data
assuming synchronous sampling (see Materials and
Methods). As this analysis depends on assumptions about
the sample size, the genetic diversity, and the sampling times,
we used the settings (sample size, observed generalized
Watterson’s estimator as scaled mutation rate, and the real
years of isolation) of three of the observed data sets, which
differed in these characteristics (Eldholm 2015, Lee 2015, and
Roetzer 2013).

We found that data simulated under KMþexp can be
misclassified as BETA or Dirac if we do not account for serial
sampling. Specifically, this was true for extended sampling
periods compared with the expected height of the genealogy
(on the coalescent time scale), and for low growth rates
(fig. 1). Similarly to model selection, not accounting for serial
sampling affected the estimation of the growth rate param-
eter, and this effect was greater for large sampling periods and
low growth rates (supplementary fig. 18, Supplementary
Material online).

It is difficult to relate these results to the observed data sets
because we do not know the scaling factor between coales-
cent time and real time (and therefore cannot estimate the
value of c in fig. 1, see Materials and Methods). However, for
six of the eight data sets that resulted in an MMC as best-
fitting model, we estimated large growth rates (g� 1,000)
under the KMþexp model (supplementary table 2,
Supplementary Material online), indicating that serial sam-
pling is unlikely to affect the results of model selection in
these cases (fig. 1 and supplementary fig. 18, Supplementary
Material online).

Nevertheless, we adopted a complementary approach, in
which we drastically reduced serial sampling by subsampling
only strains that were isolated in a single year. As small data
sets have lower discriminatory power, for this analysis, we
selected the four data sets with the highest genetic diversity
(data sets with more than 200 polymorphic positions:
Eldholm 2015, Lee 2015, Folkvardsen 2017, and
Bainomugisa 2018) among the ones for which the sampling
times were available. For each data set, we repeated the ABC
analysis on the largest possible subset of strains that were
sampled in a single year (supplementary table 1,
Supplementary Material online, and table 4). We found
that all subsets had lower posterior probabilities and higher
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misclassification errors compared with the full data sets, most
likely because of the smaller sample size. KMþexp was the
best-fitting model for two subsets, and Dirac and BETA were
the best-fitting model for one subset each. For the data sets
Eldholm 2015 and Folkvardsen 2017, the second and third
most sampled years had a similar number of strains com-
pared with the most sampled year. Therefore, we extended
the analysis to these four additional subsets, which all resulted
in BETA as the best-fitting model (table 4). We also noticed
that in the subset of Lee 2015 (sampled 2012), all strains but

one belonged to one of the three clades discussed above
(clade A; supplementary fig. 14, Supplementary Material on-
line). We suspected that this analysis was influenced by pop-
ulation structure and we repeated it excluding the single
strain not belonging to clade A. Again, we found that Dirac
was the best-fitting model (table 4 and supplementary table
2, Supplementary Material online).

We performed posterior predictive checks for all subsets
and found that in all cases the best-fitting model could

FIG. 1. Proportion of model misidentification for serial simulations when model selection was performed via ABC using ultrametric tree models.
Misclassification probabilities are shown as a function of c0 (the proportion of the genealogy corresponding to the time period in which samples are
collected, that is, the period of sampling spans a time period c0�h, where h is the expected height of the genealogy without serial sampling), and of
the parameter of the coalescent models. Misclassification was measured as follows: 1) for simulations from serially sampled Kingman’s coalescent
with exponential growth as being misidentified as either Beta or Dirac (first column); and 2) for simulations from serially sampled Beta or Dirac
coalescents as being misidentified as Kingman’s coalescent with or without exponential growth (second and third columns).
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reproduce the observed data (supplementary figs. 19–27,
Supplementary Material online).

Overall, these findings indicate that not accounting for
serial sampling can indeed bias the results of model selection
in favor of MMC models. However, this was unlikely to affect
data sets fitting to large growth rates (six out of eight).
Additionally, seven of the nine subsets in which we minimized
the serial sampling to one single year resulted in an MMC as
best-fitting model.

Sensitivity to the Choice of Prior Distributions
An important aspect of Bayesian analyses is to test whether
the results are robust to different priors and model assump-
tions. Therefore, we performed a set of analyses investigating
the sensitivity of the results of the ABC to changes to the prior
distribution of the growth rate (g) for KMþexp, of the pa-
rameter a for BETA, and of the scaled mutation rate (h) for all
models. These analyses are reported in supplementary appen-
dix 1, Supplementary Material online. Overall, we performed
four additional ABC analyses testing different prior combina-
tions, and for two of them we also tested the data sets
obtained with the 75% threshold on the SNP call (supple-
mentary table 2 and supplementary figs. 28–35,
Supplementary Material online). We found that in 89% of

cases, the results of model selection did not change compared
with the main analysis presented above. The data sets that
were sensitive to the prior choice were mostly the ones with
low sample sizes, low number of polymorphisms, low poste-
rior probabilities, and large error rates, further highlighting
that the results of small data sets should be taken with
some caution.

Modeling Skewed Offspring Distribution and Variable
Population Size
So far, we considered only multiple merger models with con-
stant effective population size. However, for many of the
outbreak analyzed, it is reasonable to expect that the effective
population size was growing (forward in time). We therefore
performed a further model selection between the best-fitting
model resulted from the analysis described above, and two
additional model classes: BETA with exponential population
growth (BETAþexp) and Dirac with exponential population
growth (Diracþexp; see Materials and Methods for details).

Overall, we found that 22 of the 23 data sets (including
subsets) resulted in an MMC (with or without growth)
as best-fitting model. For 11 data sets we found that the
best-fitting model was an MMC with exponential growth,

Table 3. Results of Model Selection for the Complete Lee 2015 Data Set, and for the Three Major Subclades Separately.

Data Set No. of
Strains

Selected
Model

OOB Error Rate
(misclassification % as MMC)a

Posterior
Probability

Second Best-
Fitting Model

Lee 2015 147 BETA 6.8% (2.6%) 96.0% Dirac
Lee 2015 Clade A 61 Dirac 20.2% (10.0%) 82.2% BETA
Lee 2015 Clade B 36 BETA 16.6% (6.8%) 64.4% KM
Lee 2015 Clade C 49 BETA 12.8% (5.0%) 78.6% Dirac
Lee 2015 Pop. structureb 147 BETA 8.5% (6.9%) 94.4% Dirac
Lee 2015 Pop. declinec 147 BETA 3.4 % (3.0%) 99.9% Pop. decline

NOTE.—The shaded row represents the results of the standard analysis on the full data set.
aThe OOB error rate is the probability that a simulation is misclassified as coming from any other model class, between parentheses we report the probability that a simulation
generated with KM or KMþexp is misclassified as MMC (BETA or Dirac).
bModel selection among BETA, Dirac, and KM with structure.
cModel selection among BETA and KM with population decline.

Table 4. Results of Model Selection for the Temporal Subsets.

Data Seta No. of Strains Selected
Model

OOB Error Rate
(misclassification % as MMC)b

Posterior
Probability

Second Best-Fitting
Model

Eldholm 2015 248 BETA 5.4% (2.1%) 96.6% KM1exp
Eldholm 2015 (1998) 34 KM1exp 20.9% (9.5%) 75.9% BETA
Eldholm 2015 (2001) 31 BETA 18.3% (7.7%) 79.9% Dirac
Eldholm 2015 (2003) 32 BETA 18.3% (7.8%) 83.0% KM1exp
Lee 2015 147 BETA 6.8% (2.6%) 96.0% Dirac
Lee 2015 (2012) 45 Dirac 15.8% (6.5%) 96.3% BETA
Lee 2015 (2012) Clade A 44 Dirac 22.7% (11.3%) 84.5% BETA
Bainomugisa 2018 81 BETA 8.9% (3.3%) 97.6% KM1exp
Bainomugisa 2018 (2014) 56 BETA 11.3% (4.2%) 94.9% KM1exp
Folkvardsen 2017 702 BETA 4.0% (1.4%) 97.8% KM 1exp
Folkvardsen 2017 (2009) 53 BETA 14.0% (5.8%) 85.1% KM1exp
Folkvardsen 2017 (2010) 64 KM1exp 13.5% (5.7%) 83.8% BETA
Folkvardsen 2017 (2012) 52 BETA 15.1 % (6.4%) 96.8% KM

NOTE.—Shaded rows contain the results for the full data sets.
aBetween parentheses we report the year in which the strains were sampled (only for temporal subsets).
bThe OOB error rate is the probability that a simulation is misclassified as coming from any other model class, between parenthesis we report the probability that a simulation
generated with KM or KMþexp was misclassified as MMC (BETA or Dirac).
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suggesting that these populations were indeed growing in size
(supplementary table 2, Supplementary Material online).
However, for some data sets the posterior probabilities
were low, indicating that different models fitted the data
similarly well.

Skewed Offspring Distribution Can Bias Demographic
Inference with the BSP
To reconstruct the past demographic history of MTB and
other organisms, many studies use nonparametric
approaches such as the BSP (Heled and Drummond 2008).
In the last few years (since 2013), at least 16 studies applied
the BSP to MTB data sets (cited in the Introduction). It was
shown before that the BSP can be biased by unaccounted
population structure (Heller et al. 2013), recombination, and
nonrandom sampling (Lapierre et al. 2016). Hence, we next
assessed the impact of skewed offspring distribution on de-
mographic reconstruction with the BSP. To do this, we sim-
ulated 50 data sets under the BETA coalescent with constant
population size. We used different values of a corresponding
to the range of values estimated for the observed MTB data
sets (a¼ 0.5, 0.75, 1, 1.25, 1.5; ten replicates each, see Materials
and Methods). We then performed an extended BSP analysis
on the simulated data using BEAST2 (Bouckaert et al. 2019).
For 49 of the 50 simulated data sets we found that the 95%
highest posterior distribution interval of the number of pop-
ulation size changes did not include zero, thus rejecting the
constant population size model (Heled and Drummond
2008). The inferred skyline plots showed different patterns
of fluctuation of the effective population size (fig. 2 and

supplementary figs. 36–40, Supplementary Material online).
These results demonstrate that skewed offspring distribu-
tion alone can bias the outcome of the BSP, leading to the
inference of complex population dynamics that are entirely
due to the violation of the assumption on the offspring
distribution.

Discussion
As for many other organisms, demographic inference based
on Kingman’s coalescent has become an important tool to
study the evolution and epidemiology of MTB. As always
when performing statistical inference, the results of these
analyses depend on the assumptions of the model.

Our results showed that, when studying MTB local popu-
lation and outbreaks, models that do not allow for skewed
offspring distribution on the coalescent timescale (Kingman)
had consistently worse fit compared with MMC and can lead
to the inference of false fluctuations of past effective popu-
lation size.

Better Fit of MMC Models Is Robust to Possible
Confounders
We tested the robustness of our results by changing different
aspects of the analysis, including one of the main SNP call
parameters and the choice of prior distributions in the ABC
(supplementary appendix 1, Supplementary Material online).
We performed eight different model selection analyses on all
23 data sets (including subsets), and invariably found that a
large majority of the data sets resulted in an MMC as best-
fitting model (supplementary table 2, Supplementary
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FIG. 2. Four examples of BSP obtained from data simulated under a Beta coalescent with constant effective population size, and a¼ 1 (top-left),
a¼ 1.25 (top-right and bottom-left), and a¼ 1.5 (bottom-right). On the y-axis the inferred effective population size, on the x-axis the time in years
before sampling. The plots for all 50 simulations are reported in supplementary figures 36–40, Supplementary Material online.
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Material online). When we included MMC models with ex-
ponential growth in an additional ABC analysis, only one data
set (Stucki 2016) resulted in Kingman as the best coalescent
type. However, for this data set, the posterior predictive
checks could not reproduce the observed genetic diversity,
indicating that none of the models used was adequate (sup-
plementary fig. 13, Supplementary Material online). Although
our results are robust to different settings, it is important to
discuss some of the assumptions on which they are based, in
particular regarding 1) sampling bias, 2) population structure,
and 3) serial sampling.

(1) One factor that could bias the results of demographic
inference is sampling bias (Lapierre et al. 2016). The ma-
jority of the data sets considered in this study is com-
posed of strains sampled from (nearly) all known
tuberculosis cases caused by a certain phylogenetic clade
(Roetzer et al. 2013; Lee, Radomski, Proulx, Levade, et al.
2015; Stucki et al. 2015; Bjorn-Mortensen et al. 2016;
Eldholm et al. 2016) or by a random subset of them
(Folkvardsen et al. 2017). Therefore, these data sets
should not be strongly affected by sampling bias.

(2) In our analyses, we assumed that the data originated
from single panmictic populations. For clonal organisms,
or when only a single locus is available, recognizing pop-
ulation structure from genetic data is challenging, be-
cause clusters of genetically similar individuals can occur
also in a panmictic population (at a single locus).
Therefore, to avoid the effect of unaccounted popula-
tion structure, we chose data sets from single outbreaks
and local populations in restricted geographic regions.
However, we cannot completely exclude that for some
data sets some level of geographic structure was present,
and this might have affected the results of our analyses.

For one data set where a prior analysis suggested some
degree of population structure (Lee, Radomski, Proulx,
Levade, et al. 2015), we found that including a model with
population subdivision and migration, or subsampling the
potential subpopulations, resulted again in an MMC as the
best-fitting model, indicating that population structure is un-
likely to bias the results of this analysis.

(3) Serial sampling could also affect the results of model se-
lection. All the considered models assume a common
sampling time for all strains, which is almost never the
case for MTB data sets. Due to the relatively short gener-
ation time of MTB compared with the sampling period,
this may likely correspond to serial sampling on the coa-
lescent time scale. Under serial sampling on the coales-
cent time scale, our simulations of several scenarios
mimicking three of our data sets revealed that
Kingman’s genealogies under exponential growth can be
misidentified as MMC, while inferring a true MMC is not
affected. The misclassification probability was higher
when the sampling window spanned a large part of the
genealogical history of the sample but dropped consider-
ably under strong exponential growth (fig 1 and

supplementary figs. 18, 28, and 29, supplementary appen-
dix 1, Supplementary Material online). For six of the eight
full data sets that resulted in an MMC as best model, the
fitted growth parameter under KMþexp was 1,000 or
higher; and therefore, it is unlikely that the serial sampling
influenced the results of model selection for these data
sets. Additionally, when we subsampled strains from a
single year from four data sets, thus minimizing the effect
of serial sampling, seven of the nine subsets resulted in an
MMC model (table 4). For most data sets, the better fit of
MMC is unlikely to be an artifact caused by serial sam-
pling. Nevertheless, it is possible that serial sampling influ-
enced some of these results. Obtaining truly synchronous
samples is essentially impossible for MTB, and reducing
the sampling time to 1 year or few months could still not
be enough to avoid serial sampling on the coalescent time
scale. Thus, to overcome the limitation of assuming syn-
chronous sampling, we encourage future studies to de-
velop MMC models that explicitly consider the time of
sampling. Such a model is proposed in Hoscheit and
Pybus (2019) as an extension of the Beta coalescent but
without an explicit mechanism to convert real time units
into coalescent time units.

Our result that the Beta coalescent is generally fitting bet-
ter to outbreaks of MTB is in contrast with the use of the
Dirac coalescent as the model for within-host MTB genealo-
gies in Morales-Arce et al. (2020). Although within-host and
between-host dynamics are surely different, it would be in-
teresting to test whether the Beta coalescent also fits better
within-host data. A hint that this could be the case is that the
strength of multiple mergers (the coalescent parameter w)
estimated in Morales-Arce et al. (2020; figure 3) was very low.

What Are the Processes Generating Multiple Merger
Genealogies in MTB?
At least three different biological processes could lead to
MMC genealogies in MTB: 1) repeated bottlenecks at trans-
mission between hosts, 2) superspreaders, and 3) rapid recur-
rent selection induced by the immune system, and/or by
antibiotic treatment.

To formally test which of these three processes (if any) is
generating the MMC genealogies in outbreaks of MTB, we
would need to have an explicit population model for each of
these scenarios and for their combinations. Additionally, for
each population model, we would need to know the corre-
sponding coalescent process. If these three mechanisms (or
their combinations) lead to different coalescent processes, we
could then use the observed data to test the different
hypotheses.

However this information is only partially available:

(1) Although the Beta coalescent has been proposed as ge-
nealogy model for populations with recurrent strong
bottlenecks (Tellier and Lemaire 2014), rigorous mathe-
matical modeling predicted different coalescent pro-
cesses for extreme bottlenecks, which allow for
simultaneous multiple mergers (Birkner et al. 2009;
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Casanova et al. 2019). In any case, these models are not
appropriate for MTB outbreaks, because they model
bottlenecks affecting the whole population.
Transmission bottlenecks in an MTB population can
be thought as multiple serial founder events. To model
such processes, one would need to account for both
intrahost dynamics within multiple hosts and
between-hosts transmission. Such a model is currently
not available, and it is not clear to which coalescent
process it would lead. It is possible that the Beta or the
Dirac coalescent captures well the main features of the
genealogies generated by such a mechanism. However,
without an explicit model a formal test is impossible.

(2) The Beta coalescent has also been proposed to model
the genealogies of epidemics with superspreaders. A sim-
ulation study showed that the parameter a contains
information about the degree of superspreading, with
lower values of a corresponding to higher level of super-
spreading (and larger multiple merger events; Hoscheit
and Pybus 2019). However, also in this case, an explicit
population model is missing. Thus, we cannot formally
test whether MMC genealogies in MTB outbreaks are
due to superspreaders.

(3) The genealogies of populations evolving under recurrent
rapid positive selection are described by the BSZ coales-
cent (Bolthausen and Sznitman 1998; Brunet and
Derrida 2013; Neher and Hallatschek 2013), which cor-
respond to the Beta coalescent with a¼ 1. Therefore, by
estimating the value of a from the data, we can partially
test whether rapid selection is the single factor causing
the MMC signal in MTB outbreaks. More precisely, if the
95% credibility interval (CI) of the posterior distribution
of a does not include one, we can exclude that rapid
selection is the only factor involved.

For five of the data sets that resulted in an MMC as the
best-fitting model, the 95% CI of a did not include one (sup-
plementary appendix 1; supplementary figs. 33–35,
Supplementary Material online). These results suggest that
for these data sets we can exclude recurrent rapid positive
selection as the only process leading to multiple merger ge-
nealogies; whereas for many others, the data fitted well with
the BSZ. For instance, two data sets, Eldholm 2015 and
Bainomugisa 2018, represent outbreaks of drug-resistant
clones which acquired several additional drug resistance
mutations during the outbreak (Eldholm et al. 2015;
Bainomugisa et al. 2018). It is possible that strains with novel
drug resistance mutations were advantaged, resulting in re-
current positive selection. This scenario would lead to the BSZ
(corresponding to a¼ 1), and indeed the estimates of a
encompassed 1 for both data sets. In this analysis, we used
the BSZ coalescent as a null model for ongoing constant
selection pressure, as also proposed in Neher and
Hallatschek (2013). This coalescent model arises in several
models of ongoing selection in a rapidly adapting fixed-size
population, where the constant size is maintained by viability
selection against the least fit individuals (Berestycki et al. 2013;

Brunet and Derrida 2013; Neher and Hallatschek 2013). In
these models, multiple mergers occur when an individual
becomes much fitter than the rest of the population.
However, we want to stress that there are alternative MMC
models that correspond to different selection scenarios, such
as a model with a modified fitness distribution (Huillet 2014),
models considering the effect of several beneficial mutations
(Desai et al. 2013; Huillet 2014; Schweinsberg 2017), or hitch-
hiking of a neutral locus with a single beneficial mutant
(Gillespie 2000). In addition, selection could also act in com-
bination with other (selectively neutral) sources of multiple
mergers, as discussed in Der et al. (2011, 2012) or Etheridge et
al. (2010).

Because of the lack of explicit models, we cannot test the
exact biological process or processes generating multiple
merger genealogies in MTB. The better fit of MMC models
only indicates that one or more processes leading to skewed
offspring distribution (on the coalescent time scale) play an
important role in shaping the diversity of MTB populations.
Moreover, our estimates of a, the inference of the best-fitting
MMC models (Beta or Dirac), and whether the best-fitting
model included an exponential growth component, differed
distinctively across data sets. This suggests that different pro-
cesses, or different magnitudes of the same process, produced
multiple merger genealogies in different populations. For ex-
ample, two of the data sets that had an estimate of a lower
than 1 (corresponding to larger multiple merger events, see
supplementary appendix 1, Supplementary Material online)
were sampled from different outbreaks with important super-
spreading events (Stucki 2015, Lee 2015 Clade A). Stucki 2015
is a data set representing an outbreak characterized by one
key patient that had two distinct disease episodes, separated
by 3 years, both of which resulted in a large number of sec-
ondary infections (Stucki et al. 2015). The data set Lee 2015
Clade A is a sample of an outbreak occurred in an Inuit village
in Quebec (Canada), in this case two patients were respon-
sible for 75% of all secondary infections (Lee, Radomski,
Proulx, Manry, et al. 2015; Lee et al. 2020). These data strongly
suggest that for these data sets the mechanism generating
large multiple mergers was the superspreading behavior of
one or few patients. We found only one additional data sets
that resulted in a lower than 1, and interestingly it was also an
outbreak among Inuit villages in East Greenland (Bjorn-
Mortensen et al. 2016). Lee, Radomski, Proulx, Manry, et al.
(2015) and Lee et al. (2020) found that all secondary cases of
the Canadian outbreak visited the same local community
gathering houses. It is possible that such social gatherings
played a similar role also in the spread of the Greenlandic
outbreak leading to large multiple merger events.

A further observation is that that the magnitude of mul-
tiple mergers might also change through time. For example,
the temporal subsets of Folkvardsen 2017 fitted values of a
around 1, or larger than 1, depending on the year of sampling
(supplementary fig. 34, Supplementary Material online).

Additional processes might also generate multiple merger
genealogies. For instance, MTB infections can remain latent
for several years and reactivate under favorable circumstances
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(e.g., immunosuppression due to age, or HIV coinfection),
although these cases might be less common than previously
thought (Behr et al. 2018). It is known that stochastic exit
from dormancy can lead to heavy-tailed offspring distribu-
tions, with bacteria exiting dormancy earlier having an ex-
tremely high reproductive success (Wright and Vetsigian
2019). Also in this case, mathematical modeling will be nec-
essary to investigate whether this mechanism can affect the
genealogies of MTB and to identify the coalescent type that
would result from such process.

Finally, MMC could also arise from the violation of another
assumption of the Kingman coalescent, specifically when the
sample size is on the same order of magnitude (or larger) than
the effective population size (Wakeley and Takahashi 2003).
This could be relevant for outbreaks in which the effective
population size is small because all strains descend from a
very recent common ancestor.

Modeling MTB Genealogies
A population model for MTB should include host-to-host
transmission, intrahost evolution, superspreaders, serial sam-
pling, latency, population size changes, and the potential se-
lective pressure caused by the host immune system and/or by
the antibiotic treatment; although some of these factors
might not influence strongly the genetic diversity when mod-
eled in combination with other mechanisms. This might very
well result in a different multiple merger model compared
with the ones that we employed. Such a model could also
close the following implicit modeling gap in applying MMC to
MTB and to bacteria in general. Mathematically, MMC pro-
cesses have been introduced as approximations (with
changed time scale) of the genealogy in underlying discrete
population reproduction models, so called Cannings models
(e.g., Möhle and Sagitov 2001). The underlying population
models feature many offspring of a single individual per gen-
eration (e.g., Schweinsberg 2003; Eldon and Wakeley 2006;
Desai et al. 2013). However, bacteria replicate through binary
fission. Although such population models are not applicable
directly to bacteria, the underlying mathematical theory only
needs to guarantee that the mergers within a single time
point on the coalescent time scale follow a certain probability
distribution, such that similar models can be defined, in which
the large offspring number of one individual per generation is
spread over multiple generations (Möhle and Sagitov 2001).

Conclusions
In this study, we investigated whether the Kingman’s assump-
tion of low variance of reproductive success is violated in
MTB populations, and whether demographic inference with
Kingman as null model could lead to artifacts due to model
misspecification. We found that MTB genealogies are indeed
affected by skewed offspring distribution and that this can
significantly bias the results of demographic inference, result-
ing in spurious past population dynamics. Potentially, these
results can be extended to other obligate pathogens with
similar life histories.

Further research is needed to develop an explicit popu-
lation model for MTB. This would help to identify the

biological mechanisms leading to multiple merger genealo-
gies, and the most appropriate genealogy model for MTB
populations. In the meantime, we encourage researchers to
be extremely cautious when interpreting the results of de-
mographic inference of MTB data sets based on the
Kingman coalescent.

Materials and Methods

Data Set Selection
We searched the literature for WGS studies of outbreaks or
local populations of MTB. We selected local data sets to avoid
as much as possible geographic population structure and
sampling biases that could influence the analysis. We identi-
fied 11 data sets: eight outbreaks and three clades with a
restricted geographical range (the inferred phylogenies for
all data sets are reported in supplementary figs. 41–51,
Supplementary Material online):

• Roetzer et al. 2013: lineage 4 outbreak in Hamburg,
Germany (61 strains, 74 polymorphic positions).

• Comas et al. 2015: lineage 7 strains sampled in Ethiopia.
Lineage 7 is a rare human-adapted lineage endemic to
Ethiopia and perhaps also to neighboring countries, only
few genomes are available and most of them are included
in this data set (21 strains, 1,334 polymorphic positions).

• Eldholm et al. 2015: lineage 4 multidrug-resistant out-
break in Buenos Aires, Argentina (248 strains, 497 poly-
morphic positions).

• Lee, Radomski, Proulx, Levade, et al. 2015: lineage 4 out-
break in 11 Inuit villages in Nunavik, QC, Canada. We
considered only the major sublineage Mj, a second
smaller outbreaks of an unrelated sublineage (Mn) was
excluded (147 strains, 454 polymorphic positions).

• Stucki et al. 2015: lineage 4 outbreak in Bern, Switzerland
(60 strains, 128 polymorphic positions).

• Bjorn-Mortensen et al. 2016: lineage 4 outbreak in
Greenland. To minimize the potential effect of popula-
tion structure we considered only the major cluster GC4,
because the other clusters represent independent out-
breaks belonging to other sublineages (121 strains 128
polymorphic positions).

• Stucki et al. 2016: sublineage L4.6.1/Uganda, belonging to
lineage 4. This sublineage is endemic to central African
countries (175 strains, 6,264 polymorphic positions).

• Eldholm et al. 2016: lineage 2 outbreak in Oslo, Norway.
From the data set of the original publication, we excluded
all strains that did not belong to the Oslo outbreak (25
strains, 17 polymorphic positions).

• Folkvardsen et al. 2017: large lineage 4 outbreak in
Copenhagen, Denmark (702 strains 514 polymorphic
positions).

• Shitikov et al. 2017: W148 outbreak belonging to lineage 2,
this clade has also been named B, B0, CC2, East European 2,
and ECDC0002 (176 strains, 1,164 polymorphic positions).

• Bainomugisa et al. 2018: lineage 2 multidrug-resistant
outbreak on a small island (Daru) in Papua New
Guinea. From the data set of the original publication,
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we excluded all the strains that did not belong to the
Daru outbreak (81 strains, 401 polymorphic positions).

Bioinformatic Pipeline
For all samples Illumina reads were trimmed with
Trimmomatic v0.33 (SLIDINGWINDOW:5:20,ILLUMINACLIP:
fadapterg:2:30:10) (Bolger et al. 2014). Reads shorter than
20 bp were excluded for the downstream analysis.
Overlapping paired-end reads were then merged with
SeqPrep (overlap size ¼ 15; https://github.com/jstjohn/
SeqPrep; last accessed July 26, 2020). The resulting reads
were mapped to the reconstructed MTB complex ancestral
sequence (Comas et al. 2013) with BWA v0.7.12 (mem algo-
rithm; Li and Durbin 2009). Duplicate reads were marked by
the MarkDuplicates module of Picard v 2.1.1 (https://github.
com/broadinstitute/picard; last accessed July 26, 2020). The
RealignerTargetCreator and IndelRealigner modules of GATK
v.3.4.0 (McKenna et al. 2010) were used to perform local
realignment of reads around Indels. Reads with alignment
score lower than (0.93*read_length)-(read_length*4*0.07))
were excluded: This corresponds to more than seven mis-
matches per 100 bp.

SNPs were called with Samtools v1.2 mpileup (Li 2011) and
VarScan v2.4.1 (Koboldt et al. 2012) using the following
thresholds: minimum mapping quality of 20, minimum
base quality at a position of 20, and minimum read depth
at a position of 7�minimum percentage of reads supporting
a call 90%.

Genomes were excluded if they had 1) an average coverage
<20�, 2) more than 50% of their SNPs excluded due to the
strand bias filter, 3) more than 50% of their SNPs having a
percentage of reads supporting the call between 10% and
90%, or 4) contained SNPs that belonged to different MTB
lineages, as this indicates that a mix of genomes was se-
quenced. Because missing data can significantly impact pop-
ulation genetic inference, we further excluded all strains that
had less SNP calls than (average� (2 * SD)) of the respective
data set (calculated after all previous filtering steps). The filters
described above were applied to all data sets with one excep-
tion: In the Comas 2015 data set most strains failed the strand
bias filter, therefore this filter was not applied.

To test the robustness of our results, we performed an
additional SNP call, in which we used a 75% threshold on
the minimum proportion of reads supporting a call.

The single vcf was merged with the CombineVariant mod-
ule of GATK v.3.4.0 (McKenna et al. 2010), and the genotype
field was edited to make it haploid (0/0¼> 0; 1/1¼> 1; 0/1
and 1/0¼> .). Vcftools 0.1.14 (Danecek et al. 2011) was used
to extract variable positions excluding predefined repetitive
regions (Comas et al. 2013) and excluding position with miss-
ing data.

The variable positions were converted in a multi fasta file
including the reconstructed ancestral sequence on which the
mapping was performed.

A phylogenetic tree based on the resulting variable posi-
tions was built with RaxML 8.2.11 (Stamatakis 2014) using a
GTRCAT model and the -V option.

To identify the MRCA of each data set, the tree was rooted
using the reconstructed ancestral sequence of the MTB com-
plex as published in Comas et al. (2013), which is also the
genome reference sequence used for the mapping. PAML4
(baseml; Yang 2007) was used to reconstruct the ancestral
sequence of each data set. For all data sets, the sequence
accuracy (the marginal probability of the reconstructed se-
quence) of the MRCA was larger than 0.999.

For each data set, all polymorphic positions for all strains
and their reconstructed ancestor were then collected in fasta
files. The data (obtained with both the 90% and 75% thresh-
old) are available together with the ABC pipeline at https://
github.com/fabianHOH/mmc_R_gendiv/tree/master/MTB_
MMC_repo (last accessed July 26, 2020).

Model Selection and Parameter Estimation
For model selection and parameter estimation, we used a
random forest-based ABC approach (Pudlo et al. 2016;
Raynal et al. 2019).

We selected between Kingman’s n-coalescent (KM),
Kingman’s n-coalescent with exponential growth
(KMþexp), Beta coalescent (BETA), and Dirac coalescent
(Dirac). For each data set, we collected the genetic polymor-
phisms identified with the bioinformatic analysis and calcu-
lated a set of 24 summary statistics following the
recommendations from Freund and Siri-J�egousse (2020),
Scenario 3: the (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) quantiles
of the mutant allele frequency spectrum, the (0.1, 0.3, 0.5, 0.7,
0.9) quantiles of the pairwise Hamming distances, the (0.1, 0.3,
0.5, 0.7, 0.9) quantiles of the minimal observable clade sizes of
each sequence, the number of segregating sites, the nucleo-
tide diversity and the mean, standard deviation and harmonic
mean of the minimal observable clade sizes. For each model
we performed 125,000 simulations of a sample of size n where
n is the number of individuals in the data set, drawing the
scaled mutation rate from a binomial distribution on log-
equally spaced discrete h spanning 1 order of magnitude
around the Watterson estimator (hobs), that is, 11 steps in
[hobs/5,5hobs], as in Freund and Siri-J�egousse (2020). The
Watterson estimator is calculated as 2 s/E(L), where s is the
number of mutations observed in the data set and E(L) is
theexpected length of the genealogy. For KMþexp we drew the
value of the exponential growth rate (g) from a uniform distri-
bution on [0.5, 5,000] except for the data sets Bainomugisa 2018,
Bjorn-Mortensen 2016, Eldholm 2015, Stucki 2015, Lee 2015
(sampled in 2012), and Folkvardsen 2017, where we used a
uniform distribution on [0.5, 20,000]. Note that this is a growth
rate for a coalescent within a diploid population, and values
should be halved for interpretation in a haploid setting. The
choice of wider ranges was based on preliminary analyses of the
data with narrower prior distributions that showed a posterior
distribution of g skewed at the upper end. For comparison, we
also used an alternative setting with log-uniform priors on these
ranges (supplementary appendix 1, Supplementary Material on-
line). For BETA and Dirac, we drew the value of the free param-
eters a and w from a uniform distribution on [1, 2] and [0, 1],
respectively. Additionally, we performed an alternative analysis
in which we drew the value of a from a uniform prior
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distribution on [0, 2] (supplementary appendix 1,
Supplementary Material online). Note that although BSZ is the-
oretically included in BETA as a¼ 1, it will not be chosen as a
parameter because we use a continuously distributed prior. To
further assess whether BSZ is a well-fitting model, we alterna-
tively employed a spike and slab type prior, that is, we replaced
1% of all parameters drawn from the continuous uniform prior
for BETA with a¼ 1. We used this in an additional ABC analysis
on BETA with a from [0, 2], the log prior on the growth rate for
KMþexp, and the standard setting for Dirac (supplementary
appendix 1, Supplementary Material online).

Simulations were performed in R as described in Freund
and Siri-J�egousse (2020), and the code is available at https://
github.com/fabianHOH/mmc_R_gendiv (last accessed July
26, 2020).

As described in Pudlo et al. (2016), we performed model
selection via ABC using a random forest of decision trees,
using the R package abcrf (Pudlo et al. 2016). We drew
1,000 bootstrap samples of size 100,000 from the simulations
and then constructed decision trees based on decision nodes
of the form S> t, where S is one of the summary statistics
used. For each node, S and t are chosen so that the bootstrap
sample is divided as well as possible in sets coming from the
same of the four model classes (minimal Gini impurity).
Nodes are added to the tree until all simulations of the boot-
strap samples are sorted into sets from the same model class.
Misclassification is measured by the OOB error, that is, the
proportion of decision trees for each simulation that sorts it
into a wrong model class, averaged over simulations and, for
the overall OOB error, model classes.

For parameter estimation within a model class, we fol-
lowed Raynal et al. (2019). Here, the decision (regression) trees
are constructed analogously, only S and t are chosen so that
the parameters of the simulations have similar values in both
sets divided by the node. This is achieved by minimizing the L2

loss, that is, minimizing, for the two sets divided by the node,
the L2 distances of the simulation parameter to the mean
parameter in the set. Nodes are added until all simulations
sorted into one leaf have the same parameter or there are<5
simulations allocated to the leaf.

The observed data are then assigned to the model class
where the majority of decision trees for model selection
assigns it, and its posterior parameter distribution is given
by the distribution of the weighted average parameter of
the allocated leaf across all trees in the (regression) random
forest (see Raynal et al. 2019, Sections 2.3.2 and 2.3.3). The
posterior probability for model selection is computed as a
machine-learning estimate of classifying the model class cor-
rectly, which includes another regression tree. (See Pudlo et al.
[2016] for details, a summary can be found in Appendix A.2 in
Freund and Siri-J�egousse [2020]).

Misclassification Probabilities
The misclassification probabilities were calculated as follows.
After building the random forest, all simulated data sets were
assigned to one of the models based on a random forest
composed only of trees built from bootstrap samples not
including this simulation (so that the data were not used

to produce the decision trees). As the true model is known,
we can easily calculate the proportion of trees that classify this
simulation in a wrong model class. The OOB error rate for a
model class is the proportion of misclassified simulations over
all simulations from the model class. The mean OOB error is
the average of OOB errors across model classes. More infor-
mative error rates can also be calculated, for example, the
proportion of simulations from a bifurcating model that are
classified as a multiple merger.

Posterior Predictive Checks
To assess whether the best-fitting model could reproduce the
observed data, we performed posterior predictive checks. We
simulated 10,000 sets of summary statistics under the best-
fitting model (using the median of the posterior growth rate
or of the multiple-merger coalescent parameter, obtained
from the main analysis, Analysis 1 in supplementary table 2,
Supplementary Material online) and compared them graph-
ically with the value of the statistics observed in each data set.
As scaled mutation rate, we used the generalized Watterson
estimate 2 s/E(L), where s is the number of mutations ob-
served in the data set and E(L) is the expected length of all
branches for the best-fitting coalescent model.

Population Structure and Declining Population Size
for the Data Set Lee 2015
To assess the effect of population structure in the data set Lee
2015, we simulated samples under Kingman’s n-coalescent
with population structure. From the phylogenetic tree (sup-
plementary fig. 14, Supplementary Material online), we iden-
tified four different clades with sizes 61, 36, 49, and 1. We then
assumed these to be sampled from different subpopulations
of equal size in an island model with scaled symmetric mi-
gration. We performed coalescent simulations under a struc-
tured (Kingman) coalescent with exponential growth. We
used a discrete uniform prior on f0, 2, 4, . . . , 5,000g for
growth rates and additionally drew the scaled migration
rate m (in units of 4Nm*, where m* is the migration rate in
the discrete island model) from the uniform discrete distri-
bution f0.25, 0.5, 1, 2, 3g. We approximated Watterson’s es-
timator for a specific choice of parameters by replacing the
expected total length of the coalescent by the mean total
length from 10,000 coalescent simulations with these param-
eters. This approximation comes with an increased compu-
tational load compared with our standard approach, which in
turn led us to the discretization of the prior described above.

For generating samples under Kingman’s n-coalescent
with exponential decline, we had to slightly change the sim-
ulation procedure using ms. As population decline may lead
to coalescent times to large too simulate, we fixed the max-
imal population size in the past to 1,000 times the present
population size. Then, given an exponential growth rate g< 0,
the decline starts at time log(1,000)/(�g) (in coalescent time
units backwards in time from time of sampling) and contin-
ues until the sampling time.

To compute Watterson’s estimator in this scenario for any
g, we need the expected total length of the coalescent tree.
Instead of computing it analytically, we recorded the total
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coalescent tree length of 10,000 simulations under the model
and used their mean as an approximation of the expected
total branch length.

As parameters for exponential decline, we use exponential
growth rates drawn uniformly from f�250, �200, �150,
�100,�50,�25,�10g, again we used a discrete prior distri-
bution because Watterson’s estimator was too costly to ap-
proximate for a continuous range.

For both exponential decline and population structure, we
ran the ABC-RF analysis as for all other data sets. Simulations
were produced with Hudson’s ms (Hudson 2002) as imple-
mented in the R package phyclust.

Accounting for Serial Sampling
Following Hoscheit and Pybus (2019), we add serial sampling
to the MMC and to Kingman’s coalescent with exponential
growth simply by stopping the coalescent at times (on the
coalescent time scale) where further individuals are sampled.
Then, we start a new (independent) coalescent tree that has
rates and waiting times as the nonserial coalescent (multiple
merger or with growth) started in the last state of the stopped
coalescent plus adding one block with a single individual for
each individual sampled at this time. A R implementation is
available at https://github.com/fabianHOH/mmc_R_gendiv/
tree/master/MTB_MMC_repo (last accessed July 26, 2020).

A problem with this approach is that one needs the scaling
factor between coalescent time and real time. Although esti-
mation procedures coming from phylogenetics are available
in the case of Kingman’s coalescent (e.g., Drummond and
Rodrigo 2000), they cannot be applied directly to the case
of MMC. Additionally, a brute force search for appropriate
scaling on top of our models is computationally unfeasible
with the ABC approach that we adopted in this study.

Hence, we assessed, for different fixed scaling factors, how
strong the effect of ignoring serial sampling in the models is.
We considered the setting of Eldholm 2015 (n¼ 248, s¼ 497,
where n is the sample size and s is the number of mutations),
Lee 2015 (n¼ 147, s¼ 454), and Roetzer 2013 (n¼ 61,
s¼ 74). We used the real dates of the serial sampling for these
data sets and we performed serial coalescent simulations as
described above. We used different time (re)scaling factors c,
such as c determines the time ct at which an individual sam-
pled at real time �t (0 corresponds to the latest sampling
time) is added as a new lineage to the coalescent tree (so ct is
in coalescent time units). Here, we assessed c by setting the
earliest sampling time (highest t) to a fraction c0 � 0 of the
expected height of the coalescent tree if there was no serial
sampling (so keeping all other parameters, but assuming
c¼ 0). For each c0 in f0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1,1.5g, we
simulated 1,000 simulations under each parameter set (g in
f1, 10, 50, 100, 250, 500, 1,000, 2,000g, a in f1, 1.2, 1.4, 1.6, 1.8,
2g, w in f0.1, 0.3, 0.5, 0.7, 0.9g) and then performed ABC
model selection for each simulation (as described above),
recording how often the serial coalescent simulations were
sorted to which nonserial model class. We also reported the
quality of parameter estimation for the growth rate or coa-
lescent parameter by measuring the (absolute) distances of
the estimated parameter to the parameter used for the

simulation (supplementary figs. 18 and 29, Supplementary
Material online).

MMC with Exponential Growth
We define Beta coalescents with exponential growth as limit
processes of modified Moran models with variable popula-
tion sizes, as described in Corollary 1 and Equation (10) in
Freund (2020). This means that we take a Beta(2 � a, a)
coalescent, but change the time scale with the function
t! (ga)�1(exp(gat)� 1), where g is the exponential growth
rate; that is, the time changed coalescent at time t corresponds
to the original coalscent at time (ga)�1(exp(gat) � 1). For
Dirac coalescents, we consider the approach as described
in Matuszewski et al. (2018), which adds exponential growth
to the modified Moran models with skewed offspring distri-
butions from Eldon and Wakeley (2006). This results in a
Dirac coalescent whose time scale is changed by the function
t! (1.5g)�1(exp(1.5gt) � 1), regardless of the Dirac coales-
cent parameter (we choose c¼ 1.5 in the prelimit modified
Moran models).

We again approximate the Watterson estimator by ap-
proximating the total expected length of the coalescent
tree with the mean over 1,000 simulations of the chosen
Dirac coalescent with exponential growth. Due to the com-
putational load, this led us to use a discrete prior, a uniform
distribution on both the coalescent parameter and the
growth parameter.

For both models, the growth rates were uniformly chosen
as exp(g) from ten equidistant steps g between 0 and
log(5,000) (including both values), in other words we used
a discretized log uniform prior on growth rates. The coales-
cent parameter was similarly chosen from ten equidistant
steps between 1 and 1.9 for BETA (so 1, 1.1, . . ., 1.9) and
between 0.05 and 0.95 for Dirac.

We performed a model section between these two models
and the best-fitting model class resulted from the main anal-
ysis (Analysis 1 in supplementary table 2, Supplementary
Material online). We performed 125,000 simulations (reduced
to 80,000 for Stucki 2016 and Folkvardsen 2017 due to large
computation times). As for all other scenarios, we drew the
scaled mutation rate from a binomial distribution on log-
equally spaced discrete h spanning 1 order of magnitude
around the Watterson estimator (hobs), and then performed
the ABC analysis as described above.

Bayesian Skyline Plots
We simulated data under the BETA coalescent with different
values of alpha spanning the range of estimates obtained
from the observed data (a¼ 0.5, a¼ 0.75, a¼ 1, a¼ 1.25,
a¼ 1.5; ten simulations for each value of a). For this analysis,
we used the settings corresponding to a medium sized data
set such as Eldholm 2015 (n¼ 250, s¼ 500, h set to the
generalized Watterson’s estimate 2s/E(L)). The simulated
data sets are lists of mutations and their states (derived or
ancestral) for all individuals. We transformed the simulated
data in sequence data by randomly assigning nucleotides (A,
T, C, or G) to ancestral and derived mutations, drawing them
from the empirical nucleotide frequency distribution of the
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data set Eldholm 2015. For all 50 simulated data sets, we ran
an extended Bayesian skyline analysis (Heled and Drummond
2008) with BEAST 2.5.0 (Bouckaert et al. 2019).

We assumed a strict clock, with clock rate equal to 5� 10�8

nucleotide changes per site per year, a value that falls in the
range of possible evolutionary rates for MTB (Menardo et al.
2019). Importantly assuming that a different evolutionary rate
would result in a different time scale, but it would not affect the
demographic reconstruction. We assumed the GTR (general
time reversible) substitution model, and a 1/X [0–100,000]
prior on the mean of the distribution of population sizes.
For each data set we ran two runs of 400 million generations,
discarded the first 40 million generation as burn-in and com-
bined the two runs. For all data sets, the effective sample sizes
of the posterior distribution and of the number of changes in
population size (sum(indicators.alltrees)) were larger than 180
(and in most cases larger than 200). The plots were produced
with the plotEBSP R script available here (https://www.beast2.
org/tutorials/; last accessed July 26, 2020). The simulated data
and one example of the BEAST input (xml) files are available
at https://github.com/fabianHOH/mmc_R_gendiv/tree/mas-
ter/MTB_MMC_repo (last accessed July 26, 2020).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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