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Abstract
Background: The asthma syndrome is influenced by hereditary and environmental 
factors. With the example of farm exposure, we study whether genetic and environ-
mental factors interact for asthma.
Methods: Statistical learning approaches based on penalized regression and deci-
sion trees were used to predict asthma in the GABRIELA study with 850 cases (9% 
farm children) and 857 controls (14% farm children). Single-nucleotide polymorphisms 
(SNPs) were selected from a genome-wide dataset based on a literature search or by 
statistical selection techniques. Prediction was assessed by receiver operating char-
acteristics (ROC) curves and validated in the PASTURE cohort.
Results: Prediction by family history of asthma and atopy yielded an area under the 
ROC curve (AUC) of 0.62 [0.57-0.66] in the random forest machine learning approach. 
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1  | INTRODUC TION

A meta-analysis of genome-wide association studies (GWAS) on 
childhood onset asthma yielded low predictive values with a rather 
low area under the receiver operating characteristic (ROC) curve of 
0.58.1 This modest result conflicted with the strong hereditary back-
ground postulated from twin studies.2 Twins do not only share their 
genetic background but usually also their environment, and gene-
environment interactions particularly with the farming environment 
seem to play an important role for childhood asthma.3 This may sug-
gest that prediction of asthma by genetic factors might be improved 
by considering environmental influences.

On the other hand, the overall statistical power of prediction is 
severely reduced by the multiplicity of the commonly applied uni-
variate tests assessing 0.6-0.7 million independent loci in the human 
genome separately.4 This is a conceptual limitation of the classical 
test theory and can hardly be overcome by increasing case numbers. 
In addition, univariate models ignore potentially important depen-
dencies between loci.

The aim of the present study was to test whether prediction of 
childhood asthma by genetic determinants varies with the environ-
mental setting, particularly the farm exposure. For this purpose, we 
applied the state-of-the-art statistical tools that consider predictor 
variables integratively and provide high statistical power.

2  | METHODS

2.1 | Population and questionnaires

The cross-sectional GABRIEL Advanced Studies (GABRIELA) was de-
signed to study gene-environment interactions.5 From the Austrian, 
Swiss, and German arms of GABRIELA, 1707 schoolchildren were 
randomly selected from all 34  491 children eligible for genotyp-
ing in a stratified design (Figure  S1).5,6 This approach was chosen 
to perform a case-control study with simultaneously enriching farm 

exposure. The outcome childhood asthma was defined as a physician 
diagnosis of asthma at least once or of asthmatic bronchitis at least 
twice.7 The questionnaires contained items on individual and family 
health, socio-economic background and farm-related exposures. If 
a child lived on a farm run by the family, the child was termed “farm 
child” (n = 483) and “non-farm child” (n = 1224) when not living on 
a farm. Other farm-related exposures were related to raw milk con-
sumption or contact with animals or animal feed. Those variables 
were included either as exposure in the first years of life or as expo-
sure during the past 12 months.

The final model was externally validated in 928 children of the 
prospective PASTURE birth cohort. Both studies were approved by 
the respective local ethics committees. Written informed consent 
was obtained from parents or guardians.

2.2 | Genotyping

Genotyping was performed with the Illumina Human610 quad 
array (Illumina Inc, San Diego, Calif, http://www.illum​ina.com), and 

Editor: Ömer Kalaycı
By adding information on demographics (sex and age) and 26 environmental exposure 
variables, the quality of prediction significantly improved (AUC = 0.65 [0.61-0.70]). In 
farm children, however, environmental variables did not improve prediction quality. 
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quality was assessed as described previously.1 SNPs were imputed 
by Markov chain-based haplotyper8 using the 1000 Genomes pilot 
1 release.9 SNPs were filtered for imputation quality (Rsq  ≥  0.30) 
and minor allele frequency (MAF ≥ 0.05) and pruned for linkage dis-
equilibrium by removing SNPs within a 5 ∙ 105 SNP window that had 
r2 > 0.95 resulting in 744 908 SNPs.10

Candidate SNPs (Table 1) were defined as SNPs included in the 
GWAS catalog for childhood onset asthma.11

2.3 | Computational and statistical analysis

All statistical analyses were performed with r software.12 Details 
are provided in this article’s Online Repository. R code is available at 
https://github.com/fuchs​lab/gabriela.

Environmental variables (Table  S1) had <25% missing values. 
Missing values of variables were imputed by multiple imputation 

resulting in five imputation data sets,13 which means that subse-
quent analyses were performed 5-fold and averaged.

Prediction was performed in the entire dataset and additionally 
in the two strata of farm and non-farm children. In addition to classi-
cal GWAS performing an association test univariately for each single 
SNP,1,10 we incorporated all variables at once in multivariable sta-
tistical learning models with the following regularization methods: 
the least absolute shrinkage and selection operator (LASSO), elastic 
net, and the integrative L1-penalized regression with penalty factors 
(IPF-LASSO).14,15 Additionally, random forests were built on 20 000 
trees.16

Model selection and 5-fold cross-validation were performed on 
the 1410 Swiss and German participants. The best models were then 
externally validated in the 297 Austrian participants (the smallest 
centre) and additionally in PASTURE.

As a metric for model comparison, we applied the area under 
the receiver operating characteristics (ROC) curve (AUC) with a 

SNP Region P-value* Gene** Comments

rs4658627 1q44 6 × 10−6 C1orf100 chromosome 1 open 
reading frame 100

rs9815663 3p26.2 2 × 10−8 IL5RA interleukin 5 receptor 
subunit alpha

rs2705520 3q13.2 2 × 10−6 ATG3 Autophagy Related 3

rs17033506 3p22.3 4 × 10−7 (intergenic) ARPP21: cAMP Regulated 
Phosphoprotein 21

rs9823506 3q12.2 6 × 10−8 ABI3BP ABI Family Member 3 
Binding Protein

rs6871536 5q31.1 8 × 10−7 RAD50 RAD50 Double Strand 
Break Repair Protein

rs1295686 5q31.1 2 × 10−6 IL13 Interleukin 13

rs2473967 6q21 2 × 10−6 (intergenic) LOC105377956, 
LOC105377953

rs6967330 7q22.3 3 × 10−14 CDHR3 Cadherin Related Family 
Member 3

rs9297216 8p12 1 × 10−6 (intergenic) LOC105379365

rs16929097 9p23 8 × 10−9 (intergenic) TYRP1 (Tyrosinase 
Related Protein 1)

rs11141597 9q21.33 2 × 10−6 (intergenic) LOC105376124/ GAS1

rs928413 9p24.1 9 × 10−13 IL33 Interleukin 33

rs7927044 11q24.2 7 × 10−9 (intergenic) LOC107984373, 
LOC387820

rs7328278 13q13.3 3 × 10−6 (not reported) DCLK1 (Doublecortin Like 
Kinase 1)

rs10521233 17p12 3 × 10−6 (intergenic) LOC105371544, 
LOC107985014

rs2305480 17q21.1 6 × 10−23 GSDMB Gasdermin B

rs3894194 17q21.1 3 × 10−21 GSDMA Gasdermin A

rs7216389 17q21.1 9 × 10−11 ORMDL3 ORMDL sphingolipid 
biosynthesis regulator 3

*P-values for associations with childhood onset asthma are taken from the GWAS catalog.11 
**Genes are reported by authors of original publications.11 If no genes are reported, mapped genes 
are given in the comments column. 

TA B L E  1   SNPs reported for childhood 
asthma in the GWAS catalog

https://github.com/fuchslab/gabriela
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bootstrapped 95%—confidence interval.17 The ROC curve plots sen-
sitivity against 1—specificity; the AUC thus integrates measures of 
prediction quality. An AUC of 1.0 means perfect prediction, whereas 
an AUC of 0.5 reflects no prediction at all. If not indicated otherwise, 
AUC values refer to random forest models.

3  | RESULTS

The n = 850 cases and n = 857 controls included in the present anal-
yses differed with respect to sex, family history of asthma and atopy, 
and various farm-related exposures (Table 2, Table S1).

When predicting asthma by groups of variables separately, that 
is family history, demographics (sex, age and BMI), environment 
and genetics, the explored multivariable learning approaches did 
not differ with respect to prediction quality (Figure 1, upper panel). 
Family history was the best predictor of childhood asthma with an 
AUC value of 0.62 [0.57-0.66] in the random forest model. All other 

groups of variables did not predict better than by chance except for 
environmental variables in the random forest model (AUC  =  0.55 
[0.51-0.59]). Findings were similar when restricting the model to 
non-farm children (Figure 1, middle panel). For farm children, how-
ever, a different prediction model emerged: instead of environmen-
tal variables, demographics and genome-wide SNPs (AUC  =  0.61 
[0.51-0.70]) predicted significantly (Figure 1, lower panel).

When complementing prediction models of asthma by family 
history with the other groups of variables, random forest and IPF-
LASSO performed much better than simple LASSO (Figure 2, upper 
panel) and the other techniques (data not shown). Prediction by 
family history was significantly (Table S2) improved by demograph-
ics and environmental variables (AUC = 0.65 [0.61-0.70]) or, in case 
of farm children, by demographics and candidate SNPs (AUC = 0.70 
[0.62-0.78]), whereas GWAS SNPs and interaction terms did not fur-
ther improve prediction quality (Figure 2, lower panel).

Besides family history of asthma and atopy, age and sex, 26 en-
vironmental exposure variables such as contact to cats, dogs, cows, 
straw and hay importantly contributed to the random forest predic-
tion model for all children (AUC  =  0.64 [0.54-0.73], Figure  3, left 
panel) and non-farm children (AUC  =  0.63 [0.53-0.72], Figure  3, 
centre panel). For farm children (Figure  3, right panel), we found, 
beyond family history and sex, three candidate SNPs, one of them 
intergenic. The two other SNPs are known to be related to IL33 and 
RAD50 (Table  1). Sensitivity analyses using IPF-LASSO confirmed 
the IL33 SNPs from the random forest prediction model (Figure S2) 
with an AUC of 0.86 [0.59-0.99] averaged over the prediction scores 
of random forest and IPF-LASSO (Figure S3). A sensitivity analysis 
revealed AUCs of 0.57 [0.51-0.64] and 0.55 [0.51-0.58] for predic-
tion by candidate SNPs and demographics in all children with and 
without a family history of asthma, respectively.

External validation in the Austrian GABRIELA arm (Figure 4A) 
and the PASTURE birth cohort (Figure  4B, Table  S3) confirmed 
the AUC values from the previously cross-validated random forest 
prediction model of asthma based on family history, demograph-
ics and environment. Sensitivity analyses yielded a better predic-
tion quality for a model excluding individuals with current wheeze 
or asthma medication from the reference group (Figure  4C) and 
a model assigning children with recurrent obstructive bronchitis 
but without an established asthma diagnosis to the control group 
(Figure 4D).

4  | DISCUSSION

With the use of advanced statistical methods from the area of ma-
chine learning, which allow for multivariable consideration of predic-
tors without susceptibility to multiple testing issues, performance 
of prediction was improved noticeably beyond the classical logistic 
regression approach. In combined models, prediction of asthma 
was driven by various environmental variables in addition to fam-
ily history and sex, whereas candidate and genome-wide SNPs did 
not improve prediction. Only in farm children, genetic information 

TA B L E  2   Potential determinants of asthma

Characteristic
Cases (%) 
n = 850

Controls (%) 
n = 857 P-value*

Female sex 39.70% 49.40% .002

agea  8.32 (0.06) 8.19 (0.06) .150

Body mass indexa  17.11 (0.11) 16.99 (0.11) .375

Family history of atopy 70.00% 49.40% <.001

Family history of asthma 30.06% 12.40% <.001

Living on a farm 9.00% 13.60% <.001

At least two siblings 0.42 (0.02) 0.45 (0.02) .374

High parental education 27.30% 28.80% .633

Maternal smoking during 
pregnancy

12.40% 8.50% .037

Consumption of farm milk 
during past 12 mo

13.40% 19.40% <.001

Consumption of farm milk 
in first year of life

6.20% 11.80% <.001

Consumption of farm milk 
(pregnancy to age 3 y)

20.70% 27.60% <.001

Contact with cows (past 
12 mo)

12.90% 16.60% .020

Contact with cows 
(pregnancy to age 3 y)

14.60% 20.30% <.001

Contact with straw (past 
12 mo)

15.70% 21.10% .009

Contact with straw 
(pregnancy to age 3 y)

12.40% 16.20% .009

Contact with hay (past 
12 mo)

29.70% 33.50% .145

Only variables are shown that appeared as most relevant in subsequent 
analyses. A complete list of environmental variables is provided in 
Table S1 in the Online Repository.
aMean and standard error of mean. 
*P-values based on Fisher’s exact test or, in case of continuous 
variables, Wilcoxon tests. 
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contributed significantly to the prediction model, while environ-
mental exposure did not add to prediction models in this group of 
children.

The GWAS of the last two decades were definitively a success 
when considering the discovery of new loci and the confirmation or 
invalidation of candidate genes.18,19 However, prediction of poly-
genic disease such as asthma remains difficult on an individual level. 
Moffatt and colleagues already reported a low AUC of 0.58 for 
the seven top SNPs identified by their meta-analysis for childhood 
asthma.1 However, the prediction model was fitted on the entire 
dataset leaving no independent sample for validation, which may 
have resulted in a too optimistic AUC. In our population, such an 

approach would have resulted in an AUC of 0.60 for GWAS SNPs, 
instead of 0.54 as reported in Figure 1. Otherwise, Moffatt and col-
leagues integrated only the top seven SNPs, that is the ones reaching 
genome-wide significance. Thereby, they disregarded information 
conveyed by additional SNPs and thus did not fully exploit the pre-
dictive power of a genome-wide approach.19,20

Therefore, we integrated all available genetic information by mul-
tivariable modelling and complemented that with questionnaire data 
on familial predisposition and strong environmental determinants. 
In addition, we applied random forest and various forms of penal-
ized multivariable logistic regression such as LASSO, elastic net and 
IPF-LASSO. These models find an optimal trade-off between model 

F I G U R E  1   Comparison of prediction performance for different modalities and statistical methods for the prediction of childhood asthma. 
Prediction performance of the variable groups family history, demographics, environment, candidate SNPs (Table 1) and genome-wide SNPs on a 
stand-alone basis. As statistical methods, we used multivariable logistic regression with LASSO penalty, multivariable logistic regression with 
elastic net penalty, the random forest and, for genome-wide SNPs, multivariable logistic regression models. The AUC is calculated as mean 
over 5 imputation data sets with 95% confidence intervals constructed by bootstrap using selection probabilities. The dotted line at 0.5 
corresponds to the AUC value where a prediction model classifies cases and controls not better than at random [Colour figure can be viewed 
at wileyonlinelibrary.com]
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F I G U R E  2   Prediction performance in predicting childhood asthma by family history and additional predictors for different statistical 
methods. Prediction performance for models based on family history alone and successively combined with demographics, environment or 
candidate SNPs, environment and candidate SNPs, environment interacting with candidate SNPs, and demographics plus genome-wide SNPs. 
Genome-wide SNPs were only assessed in farm children, since they were not predictive in non-farm children and the entire population (see 
Figure 1). As statistical methods, we used multivariable logistic regression with LASSO penalty, IPF-LASSO, and the random forest. The AUC 
is calculated as mean over 5 imputation data sets with 95% confidence intervals constructed by bootstrap using selection probabilities. The 
dotted line at 0.5 corresponds to the AUC value where a prediction model classifies cases and controls not better than at random [Colour 
figure can be viewed at wileyonlinelibrary.com]
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complexity and the risk of overfitting; the latter might negatively 
impact external validity and thus predictive power. For comparison, 
we also applied a two-step approach creating a prediction score 
based on the 100 top hits of a previous simple logistic regression.10 
Prediction quality for asthma has already been shown to decrease 
beyond 100 SNPs.21

Given the rather weak genetic effects in polygenic diseases, 
the random forest prediction model by genome-wide SNPs with 

its AUC of 0.61 [0.51-0.70] in farm children is particularly re-
markable (Figure 1, lower panel). It may reflect improved predic-
tion by inclusion of SNPs beyond the genome-wide significance 
threshold. These non-significant SNPs might still be relevant for 
polygenic diseases and finally may help explaining the missing her-
itability.19,20 On the other hand, 99.5% of the genome-wide SNPs 
did not significantly contribute to the prediction model and may 
have increased noise.22 This may also apply to the candidate SNPs 

F I G U R E  4   External validation of prediction models for childhood asthma. For external validation, individual ROC curves of the 5 
imputations with averaged area under the curve (AUC) are shown. The internally validated random forest prediction model of a parent-
reported doctor diagnosis of asthma once or obstructive bronchitis twice based on family history, demographics and environment yielded a 
AUC of 0.65 [0.61-0.70]. A, External validation in the Austrian arm of GABRIELA. B, External validation in the PASTURE birth cohort. C, 
Similarly to A, but excluding control individuals with current wheeze or use of asthma-specific drugs. D, Similarly to A, but for a parent-
reported doctor-diagnosis of asthma once irrespectively of any obstructive bronchitis
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from the GWAS catalogue, as some of them missed genome-wide 
significance (see Table 1).

When establishing combined prediction models based on several 
groups of variables, the genome-wide SNPs were replaced by candi-
date SNPs not among the top genome-wide SNPs and family history 
of asthma or other atopic diseases, which might be better proxies for 
predictive hereditary factors than the vast majority of genome-wide 
SNPs. Though genome-wide data include a lot of noise, family his-
tory and its effect on the index child are not free from misclassifica-
tion and likewise affected by noise.

The insight that asthma runs in families is not trivial. Family his-
tory integrates a wealth of hereditary information though at much 
lower resolution as compared to genome-wide SNPs. Obviously, a 
family history may reflect shared environments such as the micro-
biome, which is clearly passed from mother to child.23 Likewise, a 
family history may represent conditions during pregnancy, for exam-
ple epigenetic mechanisms or an inflammatory status of the mother 
shaping the foetal immune system and thus contributing to disease 
transmission.24 In conclusion, the simple question on a family history 
of asthma and atopy just integrates multifaceted information on sev-
eral known environmental and genetic predictors and complements 
it with all the complexity of family life, which is captured neither by 
questionnaire records nor by genome-wide data.

The prediction models varied completely between farm and non-
farm children with respect to genetics. Farm exposures may prevent 
many cases of asthma so that farm children might be affected mainly 
by genetically determined forms of asthma, which renders them an 
interesting population for genetic research. In more general terms, 
this notion may challenge the usefulness of populations with hetero-
geneous environmental exposures for analyses of GWAS.

Two of the SNPs contained in the random forest prediction 
model for farm children are related to the genes IL33 (rs928413) and 
RAD50 (rs6871536), thereby representing two major asthma risk 
loci.25 IL33 has been implied in allergies and autoimmune disorders, 
and a role in exuberant immune responses related to reduced num-
bers of regulatory T cells is discussed.26 The other SNP is situated in 
an intron of RAD50 in the TH2 cytokine locus on chromosome 5 and 
has been reported to be associated with asthma, atopic eczema and 
total IgE levels.25,27,28

Though marginally missing statistical significance, two further 
candidate SNPs (rs9815663, rs6967330) may also be of interest as 
they are related to CDHR3 and IL5RA. Like other members of the 
cadherin family of transmembrane proteins, CDHR3 is associated 
with asthma-related traits and a function in epithelial polarity, cell-
cell interaction and differentiation has thus been suggested.25 The 
alpha chain of the IL5 receptor is essential for differentiation and 
maturation of eosinophils, and inactivation of IL5 reduces airway 
eosinophilia.29 Taken together, the detected genes are mainly re-
lated to the allergic aspects of asthma; allergic asthma, in turn, is 
related specifically to lung function impairment and need for inhaled 
corticosteroids.30 In contrast, the SNPs of the asthma risk locus on 
chromosome 17q21 did not relevantly contribute to the prediction 
models in farm children. This locus has been suggested to encode 

susceptibility to environmental signals,31 which might not be rele-
vant for the prediction of the sort of asthma farm children suffer 
from.

Six environmental variables, which all related to pet exposure 
in childhood, were affected by more than 6% missing values and 
were imputed. Although multiple imputation is designed to reduce 
systematic imputation bias, the corresponding results should be 
interpreted with caution. The most relevant predictor among pet 
exposure was contact to a cat during the last year, which had only 
6% missing values. Consequently, relevant contribution to asthma 
prediction by pet exposure seems possible.

Essentially, asthma is an umbrella term for various disease enti-
ties manifesting with similar symptoms.30,32 Children whose parents 
are not aware of an asthma diagnosis might be classified as controls 
even if they are treated with asthma drugs or experience current 
asthma symptoms. When excluding these children from the refer-
ence group (Figure 4), the prediction performed significantly better 
thereby implying true cases of asthma covered by this grey zone. The 
performance of the prediction also improved when asthma was de-
fined irrespectively of recurrent diagnoses of obstructive bronchitis, 
which may include less severe asthma forms.30

Technically, we have exploited instruments of predicting child-
hood asthma with modern machine learning methods. Consistently, 
the highest prediction quality was achieved by random forest. In con-
trast to regression models, it is based on decision trees and can ef-
ficiently handle high-dimensional data. Random forest is unaffected 
by highly correlated variables and thus inherently robust. During the 
tree building process, random forest essentially stratifies for vari-
ables, thereby automatically considering interactions between pre-
dictor variables. One interpretation of the relatively good prediction 
quality in farm children might be found in gene-gene interactions, 
which are disregarded by all other methods. Taken together, we have 
applied computationally efficient, stable and robust methods, which 
run a low risk of model overfitting and can handle a high number 
of variables simultaneously and hence more appropriately. These 
properties render them ideal tools for prediction though they may 
be computationally demanding and require a powerful computing 
infrastructure.

In conclusion, asthma in farm children seems to be distinct from 
asthma in non-farm children, at least with respect to genetic and 
environmental predictors. The common denominator is family his-
tory, which may integrate genotype and degree of penetrance con-
ditional on the environmental setting. Retrospectively, the potential 
of genome-wide data for the prediction of polygenic diseases might 
have been overrated, whereas the power of the environment merits 
a second look.
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