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Abstract: This study presents a novel method for estimating the heat-attributable fractions (HAF)
based on the cross-validated best temperature metric. We analyzed the association of eight temper-
ature metrics (mean, maximum, minimum temperature, maximum temperature during daytime,
minimum temperature during nighttime, and mean, maximum, and minimum apparent tempera-
ture) with mortality and performed the cross-validation method to select the best model in selected
cities of Switzerland and South Korea from May to September of 1995–2015. It was observed that
HAF estimated using different metrics varied by 2.69–4.09% in eight cities of Switzerland and by
0.61–0.90% in six cities of South Korea. Based on the cross-validation method, mean temperature
was estimated to be the best metric, and it revealed that the HAF of Switzerland and South Korea
were 3.29% and 0.72%, respectively. Furthermore, estimates of HAF were improved by selecting
the best city-specific model for each city, that is, 3.34% for Switzerland and 0.78% for South Korea.
To the best of our knowledge, this study is the first to observe the uncertainty of HAF estimation
originated from the selection of temperature metric and to present the HAF estimation based on the
cross-validation method.

Keywords: temperature-mortality association; DLNM; cross validation

1. Introduction

Excessive heat exposure is a well-known public health problem. Several studies have
examined the association between daily temperature and mortality based on historical
data [1–17]. Among various temperature indices, the best predictor of heat-related mortality
has been questioned and studied [18–22]. The results from previous studies revealed that
the best model varies according to the study location. Barnett et al. (2010) argued that in
107 US cities, various temperature indices have the same predictive ability based on cross-
validated residual [18]. Hajat et al. (2006) showed that in three European cities (London,
Budapest, and Milan), the daily mean temperature was a better predictor of mortality than
the daily maximum or daily minimum temperature because it characterized the complete
profile of daily exposure [19]. Metzger et al. (2009) revealed that the maximum apparent
temperature was better at predicting heat-related mortality in New York City, as compared
to the daily mean, minimum, or maximum temperature based on the deviance explained
metric [22].

Although it is unclear which temperature metric is the best, a majority of heat exposure
studies have used the daily mean temperature as the temperature exposure metric to
capture the overall daily temperature characteristics [1–10]; the second most popular choice
of temperature metric is the daily maximum temperature [11–14]. The majority of these
studies did not compare the models with multiple temperature metrics for more accurate
estimation of the health impact.
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This study aims to quantify the variability of the models with various temperature
metrics and to suggest predicting heat-related mortality based on the cross-validated best
model. To the best of our knowledge, no previous studies focused on this uncertainty
in heat-related mortality estimation. To this end, this study modeled the relationship of
temperature and mortality in selected cities of Switzerland and South Korea, based on
eight temperature metrics (mean, maximum, minimum temperature, maximum temper-
ature in daytime, minimum temperature in nighttime, mean, maximum, and minimum
apparent temperature). Among these models, the best one was selected via cross-validation
method, and the heat-related mortality was estimated using the best model. It is assumed
that the analyses of two countries with different summer climates (hot and dry summers in
Switzerland, and hot and humid summers in South Korea) are informative, such that the
results can be generalized.

2. Method
2.1. Data Collection

Historical data on daily mortality, including non-external causes (ICD-10 A00-R99)
and accidents (ICD-10 V01-X59), were obtained. Moreover, eight daily temperature metrics
for eight cities in Switzerland (Basel, Bern, Geneva, Lausanne, Lugano, Lucerne, St. Gallen,
and Zurich) and six cities in South Korea (Busan, Daegu, Daejeon, Gwangju, Incheon, and
Seoul) were collected. Table 1 presents the descriptions and sources of the data. Figure S1
shows the map of the study locations. Daily temperature data on several meteorological
indicators from a representative monitoring station in each city were collected from the
IDAweb (Federal Office of Meteorology and Climatology Switzerland, MeteoSwiss) and the
Korea Meteorological Administration. It included daily mean temperature (tmean), daily
maximum temperature (tmax), daily minimum temperature (tmin), daytime maximum
temperature (tmax_day), and nighttime minimum temperature (tmin_night). To determine
the combined effect of heat and humidity, the daily mean, maximum, and minimum
apparent temperatures (tmean_app, tmax_app, and tmin_app) were also assessed. The
formula for apparent temperature is provided in the Appendix A.

Table 1. Overall description of the data.

Country Switzerland South Korea

Year 1995–2015 1995–2015

Month May-Sep May-Sep

Cities Basel, Bern, Geneva, Lausanne, Lugano, Lucerne,
St. Gallen, Zurich

Busan, Daegu, Daejeon, Gwangju,
Incheon, Seoul

Mortality causes
(ICD-10)

A00-R99 (non-external)
V01-X59 (accidents)

A00-R99 (non-external)
V01-X59 (accidents)

Mortality data source Federal Office of Statistics Korea Bureau of Statistics

Temperature data source MeteoSwiss, the Swiss Federal Office of
Meteorology and Climatology Korea Meteorological Administration

2.2. Temperature–Mortality Relationship Assessment

To assess the temperature–mortality relationship, the two-stage time-series analysis
was used, as described in previous studies [23,24]. The distributed lag nonlinear model
(DLNM) used in this study is presented in Equation (1):

log(E[Mortality]) = CB + DOW + NS(time) (1)

Here, CB is a cross-basis modeling of a lagged nonlinear effect of temperature, DOW
is the day of the week (to control for daily variation), and NS(time) is a natural cubic
spline with four degrees of freedom per year modeling seasonal and long-term variation.
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Three internal knots were placed at the 10th, 75th, and 90th percentiles of regional tem-
perature to model the nonlinearity of the temperature effect [2]. With respect to mortality,
a quasi-Poisson distribution was assumed. A maximum lag of 10 days was modeled with
two logarithmic, equally spaced internal knots to capture the delayed effects of heat and
short-term harvesting [25].

After DLNM modeling, a meta-analysis of all city-specific models from each country
was performed to obtain the pooled temperature–mortality relationship. Additionally,
the best linear unbiased prediction was conducted, based on the pooled and modeled
relationships [24]. The minimum mortality temperature (MMT), which is defined as the
temperature at which the temperature-attributable mortality is the smallest, was calculated
based on the method described in Tobias et al. (2017) [26]. Identical methodologies and
models were used for both countries.

2.3. Assessment of the Best Predictor for Temperature-Related Mortality

To analyze the best predictor for temperature-related mortality among various tem-
perature metrics, the cross-validation method was used to avoid overfitting. Among the
baseline period (1995–2015) data, for each round of cross-validation, a particular year’s
data was selected as a validation data set and the remaining data were chosen as training
dataset. For example, 1995 was used for validation, and 1996–2015 was selected for training
in the first round; moreover, 1996 was targeted for validation, and 1995 and 1997–2015
were chosen for training in the second round, and so on. Then, the temperature–mortality
relationship was obtained based on DLNM using the training set (20 years, e.g., 1996–2015
for the first round) and evaluated the model on the validation set (1 year, e.g., 1995 for the
first round). For the evaluation, the DLNM model was used to estimate the daily mortality
during the validation period, and the R2 was calculated by comparing the estimated and
measured daily mortality. This process was performed iteratively for each year of the
baseline period. Among the various temperature metrics, the best predictor among the
various temperature metrics, which gave the maximum overall R2 throughout 1995–2015,
was considered.

2.4. Heat-Attributable Fraction

Equation (2) shows the heat-attributable fraction (HAF), which is the ratio of heat-
attributable mortality (the numerator) to the total mortality (the denominator).

HAF =
∑i∈B mi·

(
1− 1

RRi

)
∑j∈A mj

, B = {i ∈ A|Ti ≥ MMT} (2)

Here, A is a set whose elements are the days in the study period; B is the subset of
A, whose elements are the days when the temperature is above the MMT; mi is the daily
mortality for day i; Ti is the temperature for day i, RRi which stands for the relative risk is
the ratio of mortality increase when exposed to temperature Ti, and mj is the daily mortality
for day j. The term 1-1/RRi in the numerator is the daily heat-attributable risk which is
identical to the definition in [9].

HAF estimation was performed for each temperature metric for comparison. Similarly,
the extreme-heat-attributable fraction (EHAF) and moderate-heat-attributable fraction
(MHAF) are defined as follows:

EHAF =
∑i∈C mi·

(
1− 1

RRi

)
∑j∈A mj

, C = {i ∈ A|Ti ≥ P90} (3)

MHAF =
∑i∈D mi·

(
1− 1

RRi

)
∑j∈A mj

, D = {i ∈ A|MMT ≤ Ti < P90} (4)

Here, P90 is the 90th temperature percentile.
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3. Results

Based on the DLNM models, the relationship between temperature and mortality
was established for various temperature measures in Switzerland and South Korea (see
Figure 1 for the relationship curves; see Supplementary Figure S2 (Switzerland) and
S3 (South Korea) for a 95% confidence interval). The mortality increase was presented
in RR (the relative risk) in y-axis, which is the ratio of the increased mortality to the
mortality at the minimum mortality temperature (MMT) [26]. Figure 1a,b shows that the
relationship curves are different from the measured values because of different temperature
profiles (see Supplementary Table S1 for descriptive statistics). However, when they are
shown based on the temperature percentile, as in Figure 1c,d, the curves among various
temperature measures appear to be similar. This is because of the high correlation between
the temperature measures (see Supplementary Table S2 for the correlation coefficients).
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Figure 1. Temperature–mortality relationship for various temperature measures in (a) Switzerland
and (b) South Korea; temperature percentile–mortality relationship for various temperature measures
in (c) Switzerland and (d) South Korea. The curves are shown for the temperature range between
0.5 and 99.5 percentiles. Exposure–response associations are reported as relative risks (RR) for a
cumulative 10-d lag of warm-season temperature, versus the optimum temperature (corresponding
to the temperature of minimum mortality).

Despite the high correlation and similarity shown in Figure 1, the curves of the various
temperature metrics show some differences. First, the variability in the minimum mortality
percentile (MMP), which is defined as the temperature percentile at which the temperature-
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attributable-mortality is the smallest, is significant (see Table 2). In Switzerland, MMP
ranged between 10.0% (tmin_night) and 55.7% (tmin_app) for eight temperature metrics,
while in South Korea, it ranged between 62.0% (tmin_night) and 72.1% (tmean_app). In
addition, the HAF that was estimated based on each temperature metric demonstrated
remarkable variability (see Table 3). In Switzerland, HAF ranged between 2.69% (tmin_app)
and 4.09% (tmax_day), while in South Korea, its value was between 0.61% (tmin) and 0.90%
(tmax_app). Table 3 shows the extreme-heat attributable fraction (EHAF) and MHAF. These
fractions also showed variability, depending on the selection of temperature measures. In
Switzerland, MHAF has a higher variation than EHAF, while in South Korea, the reverse
is true.

Table 2. Minimum mortality percentile (MMP) and minimum mortality temperature (MMT) of the
temperature–mortality relationship using eight temperature metrics in Switzerland and South Korea.

Switzerland South Korea

MMP MMT MMP MMT

tmean 31.4% 15.3 ◦C 70.9% 24.9 ◦C
tmax 17.7% 16.9 ◦C 66.2% 28.7 ◦C

tmax_day 15.3% 16.3 ◦C 67.3% 28.8 ◦C
tmin 50.3% 13.3 ◦C 65.9% 21.3 ◦C

tmin_night 10.0% 8.4 ◦C 62.0% 21.2 ◦C
tmean_app 39.8% 15.8 ◦C 72.1% 25.9 ◦C
tmax_app 25.6% 17.7 ◦C 68.9% 30.4 ◦C
tmin_app 55.7% 13.5 ◦C 65.5% 21.7 ◦C

Table 3. Heat-attributable fraction (HAF), extreme-heat-attributable fraction (EHAF), and moderate-
heat-attributable fraction (MHAF) based on the various temperature metrics in Switzerland and
South Korea. Average = the average of fractions from eight temperature metrics. City-specific best
model = fractions calculated using the city-specific best models based on cross-validation.

Switzerland South Korea

HAF EHAF MHAF HAF EHAF MHAF

tmean 3.29% 1.88% 1.41% 0.72% 0.63% 0.10%
tmax 3.94% 1.93% 2.01% 0.74% 0.61% 0.13%

tmax_day 4.09% 1.94% 2.16% 0.74% 0.61% 0.13%
tmin 2.76% 1.67% 1.10% 0.61% 0.47% 0.14%

tmin_night 3.31% 1.91% 1.41% 0.71% 0.51% 0.20%
tmean_app 3.08% 1.88% 1.20% 0.72% 0.60% 0.12%
tmax_app 3.90% 1.96% 1.94% 0.90% 0.63% 0.27%
tmin_app 2.69% 1.68% 1.01% 0.61% 0.47% 0.15%

Average 3.38% 1.86% 1.53% 0.72% 0.57% 0.15%

City-specific best model 3.34% 1.91% 1.43% 0.78% 0.67% 0.11%

To evaluate the quality of the models based on various temperature measures, a cross-
validation was performed. Table 4 summarizes the R2 values of the daily mortality esti-
mation for the total validation set for each temperature measure. Table S3 summarizes
the root mean squared error (RMSE) for comparison. In Switzerland, R2 values for eight
measures ranged from 14.38% (tmin_night) to 15.45% (tmean), while in South Korea, R2

values ranged from 27.71% (tmin_app) to 29.87% (tmean). The R2 values are low because
temperature-attributable mortality accounts for only a small fraction of the total mortality,
which includes all non-external causes and accidents (see Table 3 for HAF). Among the
eight measures, tmean is the best measure for mortality in both Switzerland and South
Korea based on cross-validation. The results also show that the relative humidity incor-
porated in the form of the apparent temperature plays an insignificant role in modeling
heat-attributable mortality based on R2.
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Table 4. Cross-validated R2 values of DLNM models based on various temperature metrics in Scheme
2. values are calculated by comparing the measured and estimated daily mortality on the validation
data set. Average = the average of R2 from eight temperature metrics. City-specific best model = R2
achieved using the city-specific best models based on the cross-validation.

Switzerland South Korea

tmean 15.45% 29.87%
tmax 15.09% 28.47%

tmax_day 14.89% 28.43%
tmin 14.71% 28.02%

tmin_night 14.38% 28.43%
tmean_app 15.31% 29.49%
tmax_app 15.15% 28.72%
tmin_app 14.43% 27.71%

Average 14.93% 28.64%

City-specific best model 15.47% 29.90%

Given that each city is unique in terms of socio-economic and demographic aspects, the
best model for each city tends to vary. We evaluated the relationships between temperature
percentiles and mortality for various temperature measures for each city of Switzerland
(Supplementary Figure S4) and South Korea (Supplementary Figure S5). Supplementary
Table S4 presents city-specific cross-validation results. Based on the cross-validated R2

values, the best model varies. Moreover, no one measure is consistently better than the
others. Tmean is ideal for modeling the relationship in Lucerne, Daegu, Incheon, and Seoul.
Tmean_app, tmin_night, tmin, and tmax_app are the best in the two cities, while tmin_app
and tmax_day are the best in one city. Supplementary Figures S6 and S7 highlight the best
model curves in the cities of Switzerland and South Korea, respectively. These city-specific
best models show higher R2 values (0.28%–1.28%) than the average R2 values for eight
measures (see Supplementary Table S4). Using these city-specific best models, the overall
R2 values between the measured and estimated daily mortality for the total study cities
were 15.47% for Switzerland and 29.90% for South Korea. These are marginally better than
the model that is based on tmean (see Table 4). In addition, based on the city-specific best
models, the HAF is 3.34% in Switzerland and 0.78% in South Korea (see Table 3). These
results are similar to the estimates obtained using tmean (3.29% in Switzerland and 0.72%
in South Korea).

4. Discussion

The question about the best temperature metric to predict mortality has been ad-
dressed by previous researchers. However, the answer is dependent on the study location
and the measure of goodness. Metzger et al. (2009) argued that the maximum apparent tem-
perature is a better predictor of mortality in New York City than the daily mean, minimum,
or maximum temperature, based on the explained deviance [22]. However, there was little
evidence to support the argument for the cities of Switzerland and South Korea based on
cross-validation. Barnett et al. (2010) [18] argued that there was no specific temperature
metric that was superior to any other based on the cross-validated residual. Furthermore,
they had the same predictive ability because of the high correlation between temperature
metrics. Based on the results of the 14 cities selected for this study, it is argued that no
measure is consistently better than the others. However, the argument about the same
predictive ability has to be revisited, as models with different temperature metrics result in
large variability (from 2.69% to 4.09% in Switzerland and from 0.61% to 0.90% in South
Korea) when estimating the HAF. To better estimate the HAF, the cross-validation method
is suggested to find the best temperature measure and to get an estimation based on the
best measure. The cross-validation method can select the best temperature measures with a
lower risk of overfitting than other commonly used methods, such as QAIC [27–29]. In our
study, tmean was the best measure for both Switzerland and South Korea. Additionally,
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the city-specific best metric can be used in a multi-city study for better estimation; however,
our result suggests that the improvement is marginal.

This study has a few limitations and drawbacks. Temperature was measured at an
official station located in each city. It was assumed that the temperature data from the
station could be applied as the temperature was exposed to individuals. Uncertainty of
individual exposure is expected to result in the underestimation of the HAF. The R2 values
of the best model used in this study are 15.47% for Switzerland and 29.90% for South Korea,
which are quite low. This is because there are diverse causes of mortality, such as accidents,
infections, diseases, and other environmental causes. For example, ambient ozone and
particulate matters are known to have adverse health effects, thereby acting as confounding
factors in modeling the temperature effects. Such confounding factors were not included in
our DLNM model. Information on socio-economic and socio-demographic factors, such as
proliferation of household air conditioning, insulation of buildings, frequency of outdoor
activities, and demographic distributions was also not available. These factors may help
explain city-specific differences and improve the quality of the model.

5. Conclusions

This study explored the relationship between temperature and mortality for eight
temperature metrics in 14 cities of Switzerland and South Korea from May to September
of 1995–2015. It was observed that the MMP and HAF for each metric was different. On
evaluating the goodness of models based on cross-validation, it was revealed that tmean
was the best measure for Switzerland and South Korea. However, there was no particular
metric that was consistently better than the others. Therefore, to obtain a better estimation
of MMP and HAF, the cross-validated best model (the overall best or the city-specific best)
has been suggested.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18126413/s1. Figure S1: Map of the study locations. Figure S2: Temperature percentile-
mortality relationships with 95% confidence interval in Switzerland. The curves were shown for
the temperature range between 0.5 and 99.5 percentiles. The red dotted line shows the minimum
mortality percentile (MMP). Figure S3: Temperature percentile-mortality relationships with 95%
confidence interval in South Korea. The curves were shown for the temperature range between 0.5
and 99.5 percentiles. The red dotted line shows the minimum mortality percentile (MMP). Table S1:
Descriptive statistics of temperature metrics in Switzerland and South Korea. Table S2: Correlation
between various temperature metrics in Switzerland and South Korea. Table S3: Cross-validated root
mean squared error (RMSE) values of DLNM models based on various temperature metrics in cities
of Switzerland and South Korea. Table S4: Cross-validated R2 values of DLNM models based on
various temperature metrics in cities of Switzerland and South Korea. The R2 values are between the
measured and estimated daily mortality on the validation data set. Figure S4: Temperature percentile-
mortality relationships in cities of Switzerland. The curves were shown for the temperature range
between 0.5 and 99.5 percentiles. Figure S5: Temperature percentile–mortality relationships in cities
of South Korea. The curves were shown for the temperature range between 0.5 and 99.5 percentiles.
Figure S6: The city-specific best temperature percentile–mortality relationships in cities of Switzerland.
The curves were shown for the temperature range between 0.5 and 99.5 percentiles. The grey curves
were eight temperature percentile-mortality relationships shown in Figure S4. Figure S7: The city-
specific best temperature percentile-mortality relationships in cities of South Korea. The curves
were shown for the temperature range between 0.5 and 99.5 percentiles. The grey curves were eight
temperature percentile–mortality relationships shown in Figure S5.
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Appendix A. Apparent Temperature Calculation

The apparent temperature, also known as the heat index, was developed by Stead-
man [30]. We used this index for our study as in Metzger et al. (2009). To calculate the
apparent temperature, we used the Celsius version of the formula presented by Roth-
fusz [31], since it can well approximate the original tables by Steadman within ±0.7 ◦C and
easy to calculate due to its polynomial form. The formula is given as below:

Tapp = c1 + c2T + c3R + c4TR + c5T2 + c6R2 + c7T2R + c8TR2 + c9T2R2 (A1)

Here, Tapp is the apparent temperature in Celsius, T is the mean, maximum, or
minimum temperature in Celsius, R is the relative humidity (percentage value between
0 and 100), c1 is −8.78469475556, c2 is 1.61139411, c3 is 2.33854883889, c4 is −0.14611605,
c5 is −0.012308094, c6 is −0.0164248277778, c7 is 0.002211732, c8 is 0.00072546, and c9 is
−0.000003582.
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