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A B S T R A C T   

Background: Air pollution is a major global public health problem. The situation is most severe in low- and 
middle-income countries, where pollution control measures and monitoring systems are largely lacking. Data to 
quantify the exposure to air pollution in low-income settings are scarce. 
Methods: In this study, land use regression models (LUR) were developed to predict the outdoor nitrogen dioxide 
(NO2) concentration in the study area of the Western Region Birth Cohort in São Paulo. NO2 measurements were 
performed for one week in winter and summer at eighty locations. Additionally, weekly measurements at one 
regional background location were performed over a full one-year period to create an annual prediction. 
Results: Three LUR models were developed (annual, summer, winter) by using a supervised stepwise linear 
regression method. The winter, summer and annual models explained 52 %, 75 % and 66 % of the variance (R2) 
respectively. Cross-holdout validation tests suggest robust models. NO2 levels ranged from 43.2 μg/m3 to 93.4 
μg/m3 in the winter and between 28.1 μg/m3 and 72.8 μg/m3 in summer. Based on our annual prediction, about 
67 % of the population living in the study area is exposed to NO2 values over the WHO suggested annual 
guideline of 40 μg/m3 annual average. 
Conclusion: In this study we were able to develop robust models to predict NO2 residential exposure. We could 
show that average measures, and therefore the predictions of NO2, in such a complex urban area are substantially 
high and that a major variability within the area and especially within the season is present. These findings also 
suggest that in general a high proportion of the population is exposed to high NO2 levels.   

1. Introduction 

Globally, approximately four million deaths are attributable to out
door air pollution each year, with the highest burden in low and middle- 
income countries (WHO, 2020). The WHO estimates that 91 % of the 
world’s population breathe polluted air, often over the recommended 
limits (WHO, 2020). This causes chronic and acute pulmonary as well as 
ischemic heart disease (WHO, 2013). Air pollution affects multiple or
gans (Schraufnagel et al., 2019) because of an activation of the immune 
response, followed by inflammatory problems (Schraufnagel et al., 
2019; Babadjouni et al., 2017; Calderón-Garcidueñas et al., 2015; Genc 

et al., 2012). The central nervous system is one of the affected organs 
(Babadjouni et al., 2017). Because their rapid development, children are 
especially vulnerable to high air pollution levels (Schraufnagel et al., 
2019; Babadjouni et al., 2017; Calderón-Garcidueñas et al., 2015). 

One of the main pollutants related to negative health outcome is 
nitrogen dioxide (NO2) (WHO, 2020). The sources are primarily burning 
fossil fuel and industrial processes (European Environment Agency, 
2019). Living in proximity to a major street, resulting in exposure to 
vehicle pollution, shows a higher risk to develop illnesses (WHO, 2013) 
such as cardiovascular diseases (Babadjouni et al., 2017; Künzli et al., 
2010; Bravo et al., 2016), respiratory diseases and cancer (Schraufnagel 
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et al., 2019; Ribeiro et al., 2019). 
São Paulo city, the capital of the state of São Paulo, is located in 

south-eastern Brazil, approximately 50 km north-west from the Atlantic 
Ocean and lies at an elevation of 820 m above sea level (Schneider et al., 
2020). With a population of over 20 million, São Paulo is considered a 
mega city that continues to spread omnidirectionally without major 
natural constraint. Illegal settlements (favelas), which continue to 
develop within São Paulo’s city boundaries, are characterised by lack of 
city services and infrastructures, overcrowding, unhealthy living con
ditions and pollution (Wallenfeldt, 2019). 

The city of São Paulo has been improving its air quality during the 
past thirty years. In this period it has reduced NO2 emissions by about 
half (Andrade et al., 2017). However, NO2 concentrations are mostly 
high and show large variations within neighbourhoods, depending on 
the sources close to measuring sites. For the whole São Paulo mega city, 
at the moment, there are few NO2 measuring stations, most of them in 
background urban areas where they measure lower concentrations of 
NO2 compared to sites in proximity to roads (The world air quality 
project, 2021). In 2019, sites near busy roads scarcely met the limits 
given by the State of São Paulo (annual average of 60 μg/m3 NO2), and 
widely exceed the WHO guideline of 40 μg/m3 annual average (CETESB, 
2020). For São Paulo we could not find information on population 
exposure. Reducing emissions and knowing exposure of the population 
is extremely important to prevent diseases. A recent study suggests that 
in European cities, a reduction of NO2 to the lowest measured concen
tration in this study (3.5 μg/m3) could prevent 79 435 premature deaths 
per year (Khomenko, 2021). 

In epidemiological studies land use regression (LUR) method is 
widely used to estimate the exposure to air pollution in the absence of 
dispersion models needing accurate emission inventories (Ryan and 
LeMasters, 2007; Hoek et al., 2008). LUR is a method to estimate 
small-scale spatial variation in air pollution levels based on geographical 
and meteorological predictor variables. This approach has been used for 
predicting NO2, NOx, PM2.5 and PM10 (Hoek et al., 2008; Araki et al., 
2018; Eeftens et al., 2012; Beelen et al., 2013; Saucy et al., 2018). The 
method is well established in urban settings to explain small-scale var
iations (Beelen et al., 2013). 

We conducted NO2 measurements at 80 sites during warm and cold 
season in the Butantã and the Jaguaré districts of São Paulo city and then 
subsequently developed a LUR model for the study area. This exposure 
assessment will be used in further studies to estimate NO2 levels at the 
residential addresses of children taking part in the São Paulo Western 
Region Birth Cohort (SP-ROC) (Brentani et al., 2020). 

2. Methods 

2.1. Study area 

The study was conducted in the Western Region of São Paulo city, 
namely in the Butantã and the Jaguaré districts. The area is about 70 
km2 and is the home of approximately 637′000 inhabitants (census 
2010) (São Paulo, 2020). 

In this area the street network is complex and dense within different 
settlements from middle and high class neighbourhoods to informal 
settlements, also known as favelas. Green areas are extensive and well 
known for cultural and leisure activities. The area hosts also important 
structures for the entire city, such as the main campus of the University 
of São Paulo (São Paulo, 2020). 

São Paulo enjoys a subtropical climate as classified by Köppen-Gei
ger (De Souza Rolim et al., 2007) with rainfall occurring throughout the 
year (IBGE and I.B.d.G.e.E., 2002), peaking in summer (October to 
March). In winter, July is the coldest month with an average tempera
ture of 17 ◦C (average maxima and minima of 21 ◦C and 12 ◦C). Summer 
is hot with the highest temperatures in February, averaging 23 ◦C and 
with average maxima and minima around 28 ◦C and 19 ◦C (Schneider 
et al., 2020; Canty et al., 2021). 

2.2. Measurements 

To measure local levels of weekly average NO2 exposure, 80 loca
tions were selected from the residential addresses of SP-ROC study 
participants, similarly as done in the ESCAPE Project (Beelen et al., 
2013). These sites were purposely chosen to capture the complete range 
of expected NO2 concentrations and were divided in different types. The 
street sites (29), representing the higher concentrations, were located 
near busy roads. Urban background sites (43) were situated in highly 
populated areas away from busy roads. Regional background sites (8), 
representing the lower concentrations, were located in areas with lower 
population density, higher vegetation density, distant from roads and 
industrial areas. Fig. 1 shows the study area with the different types of 
measuring sites. 

We implemented two rounds of air pollution measurements, one in 
the summer and one in winter. The summer campaign took place in 
February 2019, a hot, humid and rainy month, in which lower air 
pollution levels were expected. The winter campaign took place in 
August 2019, which is on average the driest month of the year and where 
highest air pollution levels were expected. Besides the two seasonal 
campaigns, one site was selected as a reference location where weekly 
NO2 levels were measured continuously throughout one entire year. 
This reference location, shown in Fig. 1, was chosen in a regional 
background location, away from major NO2 emission sources, easily 
accessible for staff to perform sampler changes, and in a safe location to 
avoid theft. 

Each measurement campaign took place simultaneously at all 80 
locations during one week. The rainy summer season measurements 
were taken between February 12, 2019 and February 19, 2019; the dry 
winter season measurements were taken between August 7, 2019 and 
August 14, 2019. The installation and retrieval of the measurement 
devices was performed by 8 groups of 2 persons within around 5 h. The 
groups took photos of the locations of the mounted devices as well as the 
surrounding area and recorded the global positioning system (GPS) co
ordinates by using a provided mobile phone with GPS and camera 
function. Each group had printed field forms for each location. These 
were filled out during the installation and retrieval with information 
about site characterization, external influences that could be observed in 
the immediate surroundings, and NO2 measuring device position. To 
ensure reliable measurements, explicit instructions were given how and 
where the sampler had to be installed: within the SP-ROC-Cohort par
ticipants property, in a height of 2–3 m and on a post or fence as opposed 
to a wall to ensure free air circulation. Field workers were told to avoid 
locations near fuel stations, restaurants or street crossings. Written 
consent was obtained from all participants. 

Week average NO2 levels were measured using NO2 passive gas 
samplers (Yu et al., 2008) from Passam AG, Switzerland. For sampler 
and measurement’s quality control, an extra 10 % blanks and 20 % 
duplicates were deployed. Before and after the measurement campaign, 
all samplers were stored in a refrigerator. During the measurement 
campaign, the samplers were transported using cooling bags and cooling 
elements. After collection, the samplers were sent to the manufacturer 
for analysis. 

2.3. Predictor variables 

For this study, GIS datasets of sufficient resolution were identified to 
extract predictor variables from which to accurately capture emissions 
sources and the atmospheric dispersion of NO2. 

Information on road geography was gained directly in QGIS 3.4.1, 
from Open Street Map (OSM) (OpenStreetMap Contributors). Data on 
land cover, such as altitude, green space given as Normalized Difference 
Vegetation Index (NDVI), and built-up environment, were available 
from remote sensing data (based on Landsat 8 images from the U.S. 
Geological Survey website) (U.S. Geological Survey, 2021). Areas of 
informal settlements (favelas) were available from the Centro de Estudos 
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Fig. 1. Study Area with monitoring locations and, reference site.  

Table 1 
GIS Predictor variables.  

GIS predictor variables 

Category Source Year Unit Buffer size and Transformation Expected 
effect 

Type 

Land use (green) OSM/ 
ESRI 

2019 Surface (m2) Area in 100, 200, 300, 400, 500, 1000 buffers – Shapefile 

Land use (industry, residential-campus) OSM/ 
ESRI 

2019 Surface (m2) Area in 100, 200, 300, 400, 500, 1000 buffers + Shapefile 

Altitude USGS 2019 meters above sea level Altitude per point – Raster 
Roads OSM 2019 Distance (m) 

Inverse distance (m^- 
1) 
Inverse distance 
squared (m^-2) 
Length (m) 

Distance, inverse distance (id) and inverse distance 
squared (ids) to next road; 
Road length within 25, 50, 100, 200, 300, 400, 500, 
1000 buffers 

+ Shapefile 
- All (motorway, trunk, primary, secondary, 

tertiary, residential) 
- size M (motorway, trunk, primary, 

secondary, tertiary) 
- size L (motorway, trunk, primary, 

secondary) 
- size XL (motorway, trunk, primary) 
- size XXL (motorway, trunk) 
NDVI USGS 2017 Mean index (− 1 to 1) Index in 100, 200, 300, 400, 500, 1000 buffers – Raster 
Impervious surface USGS 2017 Mean index (− 1 to 1) Index in 100, 200, 300, 400, 500, 1000 buffers + Raster 
Traffic signals OSM 2019 Distance (m)/Count Distance, inverse distance and inverse distance 

squared to next traffic signal; 
Traffic signal count within 100, 200, 300, 400, 500, 
1000 buffers 

+ Shapefile 

Fuel stations OSM 2019 Distance (m)/Count Distance, id and ids to next traffic signal; 
Traffic signal count within 100, 200, 300, 400, 500, 
1000 buffers 

+ Shapefile 

Bus stations OSM 2019 Distance (m)/Count Distance, id and ids to next bus stop; 
Bus stop count within 100, 200, 300, 400, 500, 1000 
buffers 

+ Shapefile 

Favelas CEM 2016 Surface (m2) Area in 100, 200, 300, 400, 500, 1000 buffers + Shapefile  
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da Metrópole (Centro de Estudos da Metrópole, 2021). As a surrogate for 
domestic air pollution sources, we used residential land use. Land use 
categories were generated manually, using aerial photographs from 
ESRI World Imagery (Environmental Systems Research Institute (Esri), 
2021), and data from OSM (OpenStreetMap Contributors). Table 1 
summarizes the GIS predictor variables. 

Variables such as roads, built-up environment, housing or industry 
were expected to increase air pollution levels, while open areas and 
parks or forests were expected to decrease air pollution levels. The ex
pected effect is shown in Table 1. 

Measures of distance to nearest attribute (e.g. distance to nearest 
street or distance to nearest bus station) were calculated directly in QGIS 
3.4.4 using the NNjoin plugin and transformed into inverse distance (ID) 
and inverse distance squared (IDS). 

All other variables were summarized using circular buffers of 
different sizes, representing areas where source emissions could affect 
the concentrations at each location. For buffer operations we used the 
Buffer plugin in QGIS 3.4.4. The chosen buffer sizes were 100, 200, 300, 
400, 500, 1000 m for all variables. For the roads variables, buffer size of 
25 and 50 m were additionally used. In a second step, GIS layers were 
intersected with the buffered variables using the Intersect plugin. Basic 
statistics were calculated for each of the buffers. Point data was sum
marized using the Count points in polygon plugin. Line and area data 
was summarized in sum length and sum area within the buffer using the 
attribute table calculator and the Group stats plugin. Mean values for 
raster data within the buffer were computed using the Zonal statistics 
plugin. 

2.4. Statistical analysis 

2.4.1. Temporal adjustment 
Annual average NO2 concentrations were calculated, similar to 

previous work (Cyrys et al., 2012), by combining the winter and summer 
measurements with a temporal adjustment using the measurements at 
the reference site. The annual mean of the reference location, which was 
measured throughout the year, was calculated and was subtracted from 
the summer and winter measurements at the same site. The resulting 
differences were then subtracted from the measurements at the 80 lo
cations. Finally, the mean of the adjusted winter and adjusted summer 
measurement was calculated for each location and averaged to an 
adjusted annual average NO2 concentration. These temporal adjusted 
annual average NO2 concentrations were then used to develop the 
annual model. 

2.4.2. Land use regression 
A LUR model was developed by applying a multivariable linear 

regression model with the adjusted summer, winter and annual average 
NO2 concentrations as the dependent variable and the predictor data as 
independent variables. The model was then applied to unmeasured lo
cations to predict air pollution estimate values. 

Three LUR models, a summer, a winter and an annual model were 
developed following protocols developed in the ESCAPE study (Beelen 
et al., 2013) using the statistical software R-Studio, Version March 1, 
1093. 

The models were developed by performing a supervised stepwise 
linear regression. First predictor variables with more than 90 % of null 
values were removed. A univariate linear regression between the 
dependent measured NO2 values and the independent predictor vari
ables was run. The predictor variable that explained most of the variance 
(highest adj. R2) was selected first. Sequentially, from all remaining 
variables, the variable that maximized the observed variance was 
selected. This was repeated until a variable did not improve the total 
adjusted R2 of the model by over 1 %. The accuracy of the model was 
evaluated by calculating the Root Mean Square Error (RMSE). 

Only variables with a coefficient showing the expected direction 
were entered in the model. The variables showing non-significant p- 

values (<0.1) were excluded from the model. The final model was tested 
for correlation between predictor variables (VIF<3) and for potential 
highly influential sites (Cook’s D < 1). Heteroscedasticity, normality and 
spatial autocorrelation (Moran’s I, z-score − 1.65 to 1.65, p-value > 0.1) 
of the residuals were tested to assure independency. 

2.5. Validation and mapping 

As suggested by Wang et al. (2016) the validation was performed 
using a cross-holdout validation. By offering all variables, for all N-1 
locations (i.e. omitting the measurement from one location), eighty new 
models were developed as explained above. Each model was used to 
predict the location left out from the model development. The final 
validation R2 was calculated by correlating the measured NO2 values 
against the predicted. 

Three maps were created at a 25 × 25 m grid cell level. For each 
center point of the 25 × 25 m grid cell the predictor variables were 
calculated and then used to predict the NO2 values based on the 
developed LUR models. 

2.6. Population exposed 

The percentage of exposed population to the different NO2 values 
were calculated by performing area weighting. For this the predicted 
concentrations surfaces and the census data (São Paulo, 2020) were 
used. 

3. Results 

3.1. Measured and temporal adjusted NO2 values 

NO2 measurements (in μg/m3) were sampled in 80 locations for one 
week in summer and one week in winter. At the reference location, NO2 
was measured continuously through the year (from February 12, 2019 to 
February 18, 2020). Due to missing data, two locations were left out of 
the models. Between the first and the second measuring campaign, two 
locations showed differences in the position, so for the annual model we 
used these as separate sites. Blanks were all within the norm and du
plicates were very similar to each other the mean of the differences 
between duplicates was 0.9 μg/m3 with the lowest being 0 μg/m3 and 
the highest 4.6 μg/m3. 

As expected, the measurements in August, during the cold season, 
were higher than in February (summer). Fig. 2 shows box plots for the 
summer and winter campaigns in yellow and blue respectively. In green, 
the annual adjusted values are shown and in grey, the NO2 annual 
average of the public data by the Environmental Company of the State of 
São Paulo (CETESB) (CETESB, 2020). For the winter, the NO2 mea
surements ranged from 43.2 μg/m3 to 93.4 μg/m3 with a median of 56 
μg/m3. The summer measurements were lower, ranging from 28.1 
μg/m3 to 72.8 μg/m3, the median was 36.3 μg/m3. 

The estimated annual average NO2 concentrations ranged from 31.7 
μg/m3 to 79.2 μg/m3 with a median of 42.7 μg/m3. The Pearson cor
relation coefficient between estimated annual NO2 means and unad
justed mean between summer and winter NO2 measurements for all 
measurement sites was 0.95. 

At the reference location the measured weekly concentration ranged 
from 17.9 μg/m3 to 65.6 μg/m3 (median = 36.3 μg/m3, mean 37.7 μg/ 
m3). These measurements are consistent with the measurements con
ducted in the city of São Paulo. The most recent annual mean NO2 
concentration reported by CETESB in 2018 at the nearest location to our 
reference site (Cid.Universitária USP-IPEN) was 31.0 μg/m3 (CETESB, 
2020). 

As expected, measuring locations near large roads reported higher 
NO2 concentrations than urban background sites and regional back
ground sites, as reported in Fig. 3, with one location very close to a busy 
road measuring over 70, respectively 90 μg/m3 in the summer and 
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winter campaigns. 

3.2. LUR models 

Three LUR models were developed, one for summer, one for winter, 
and one for the annual adjusted mean. Prior to the model development, 
we log transformed the NO2 concentrations to address the skewness in 
the distribution. Afterwards the predicted values were back 
transformed. 

The final models are presented in Table 2 together with the perfor
mance statistics R-Squared (R2), root mean squared error (RMSE), the 
number of observations in the model (N), the mean variance inflation 
factor (VIF) of the model, and the Cook’s D (CD). The annual NO2 LUR 
model explained 66 % of the spatial variability in the NO2 adjusted 
concentrations. For the annual model, 80 locations were used to build 
the model. The summer and winter models explained 75 % and 52 % of 

spatial variability in NO2 concentrations and were built with 78 and 77 
measuring sites respectively. For the winter model we excluded location 
68 from the analysis, because this was an outlier (Cook’s D > 10). As 
expected, most of the predictor variables in the models were road var
iables. The road variables were divided by type of roads and were 
expressed as meters road in a buffer or as distance or inverse distance to 
a road. The variable bus_100, which contained the number of bus stops 
in a 100 m buffer around the measuring locations, was present in all 
three models. The annual and summer model shared five variables 
(Road_XXL_500, Road_XL_ids, Road_M_d, Imp_surf_300 and bus_100). 
The annual and winter model shared two variables (Road_M_25 and 
bus_100), and the summer and winter models shared one variable 
(bus_100). 

The variables entering the models were all significant, for more in
formation see appendix A (Fig. A.1.1, Fig. A.2.1, Fig. A.3.1). Accurate 
model’s predictions are shown by the RMSE ranging from 3 μg/m3 to 

Fig. 2. A: Distribution of NO2 measurements (annual mean, summer week, winter week and annual public data by CETESB), B: Weekly measurement of NO2 at 
reference site. 
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5.4 μg/m3 for the three models. There was no collinearity, the VIF range 
from 1.18 to 1.23. The sites had Cook’s D values below 0.25, which 
means they were all influencing the model by a similar amount. The 
models were checked for spatial autocorrelation with the Moran’s I 
statistic. All models showed a random distribution with Moran’s I Index 
ranging from − 0.028 to 0.02. In appendix A (Fig. A.1.2, Fig. A.2.2, 
Fig. A.3.2), graphs illustrating homoskedasticity are reported. 

Fig. 4 presents the predicted NO2 concentrations for annual, summer 
and winter. As expected, areas in proximity to roads were clearly 
showing higher predicted NO2 values. The NO2 annual average pre
dictions ranged from 31.1 μg/m3 to 128.8 μg/m3. For summer and 
winter the predictions ranged from: 27.5 μg/m3 to 117 μg/m3 and 45.3 
μg/m3 to 117.1 μg/m3 respectively. 

Approximately 637′000 people live in the study area (census 2010) 

(São Paulo, 2020). Table 3 show the percentage of people living in the 
study area exposed to different ranges of NO2 concentrations annually, 
in summer and winter. According to our prediction, about 67.6% of 
these people (i.e. 430′500 individuals) are exposed to NO2 values 
exceeding the WHO guideline of 40 μg/m3 annual average. . In summer 
the proportion of people exposed to higher than recommended NO2 
values is around 15 %. For winter the corresponding proportion reaches 
94 %. 

3.3. Validation 

Cross-holdout validation yielded R2’s of 0.59, 0.71 and 0.4 respec
tively for the annual, summer and winter model. The difference between 
the model R2 and the validation R2 were 7 % for annual, 4 % for summer 
and 12 % for winter, depicting robust stability of the models. The 
measured NO2 values vs. the predicted NO2 values from the cross- 
holdout annual, summer and winter models are plotted in Fig. 5. 

4. Discussion 

Land use regression models have been widely used in epidemiolog
ical studies in Europe, America and Asia (Ryan and LeMasters, 2007; 
Hoek et al., 2008). Only few studies applied LUR modelling for air 
pollution in São Paulo (Habermann and Gouveia, 2012), others used 
NO2 exposures from a global LUR model (Ribeiro et al., 2019; Ribeiro 
et al., 2020). 

To our knowledge, this is the first time a LUR model has been applied 
for predicting NO2 in a city district in São Paulo. This district is partic
ularly suited for such a model as it contains such a variety of different 
living, industrial and leisure areas. 

Three models were developed (annual, summer, winter) of which the 
summer model was the best performing in terms of explained variance 
(0.75). The summer and annual models were the most similar and 

Fig. 3. Box plots of nitrogen dioxide values divided by site type.  

Table 2 
LUR models.  

Period LUR Model* Model R2 RMSE (μg/m3) N VIF CD 

Annual 3.596699 0.66 4.04 80 1.35 <0.15 
+0.0016636*Road_M_25 
+15.2392*Road_XL_ids 
- 0.0002183*Road_M_d 
+0.0019168*Imp_surf_300 
+0.0415239*bus_100 
+0.0000367*Road_XXL_500 

Summer 3.464911 0.75 3.04 78 1.26 <0.2 
+0.0000283*Road_XXL_500 
+21.43656*Road_XL_ids 
- 0.0002057*Road_M_d 
+0.0014305*Imp_surf_300 
+0.0000000689*landuse_ind_1000 
+0.0548767*bus_100 
+0.4536094*road_L_id 

Winter 4.023391 0.52 5.41 77 1.18 <0.25 
+0.0020733*Road_M_25 
+0.00000825*Road_XL_1000 
+0.0474643*bus_100 
- 0.2994813*NDVI_300 

*Variables explanation. 
Road_M_25 Length of roads (M) in a 25m buffer, unit: meters 
Road_XL_ids Inverse distance squared to roads (XL), unit: meters− 2 

Road_M_d Distance to roads (M), unit: meters 
Imp_surf_300 Impervious surfaces given as mean index, unit free 
bus_100 Number of bus stops in a 100m buffer, unit free 
Road_XXL_500 Length of roads (XXL) in a 500m buffer, unit: meters 
landuse_ind_1000 Surface of industry ground in a 1000m buffer, unit meters2 

Road_L_id Inverse distance to roads (L), unit: m− 1 

Road_XL_1000 Length of roads (XL) in a 1000m buffer, unit: m 
NDVI_300 Mean NDVI index in a 300m buffer, unit free 
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shared the highest number of predictor variables. The number of bus 
stations within 100 m (Bus_100) was present in all models. The cross 
hold out validation showed stable models. 

Our measurements are consistent with the annual monitoring mea
surements in proximity to roads in the São Paulo state (CETESB, 2020) 
as with the differences between measuring location at background, 
residential or road sites (JúlioBarbozaChiquetto et al., 2020). The sea
sonality (winter higher values than summer) is due to the greater air 
instability and higher precipitation in summer (JúlioBarbozaChiquetto 
et al., 2020). One interesting and sobering finding is that, accordingly to 
our annual predictions, 67 % of the people living in the study area are 
exposed to NO2 values exceeding the WHO guideline. 

LUR models are suitable for assessing people’s exposure to air 
pollution as these models capture the within-city variations (Crouse 
et al., 2015). In Australia a standard LUR model was compared with a 
national LUR using satellite estimates and a Bayesian blended model. 
They found that all three methods performed similarly and could reaf
firm the standard LUR approach for predicting NO2 in small study areas 
of cohort studies (Cowie et al., 2019). 

The best predictor variables in our LUR models were, as expected, 
road or traffic-related variables in line with previous NO2 modelling 
studies in urban areas where traffic related variables, like traffic count 
and road type, are often found to be the best predictors (Beelen et al., 
2013; Lee et al., 2014), followed by land use variable and altitude (Ryan 
and LeMasters, 2007). Altitude is not present in any model, probably 
because of the low variability in altitude (less than 100 m) in our small 
study area. 

Our models perform similar as other models in Europe (R2 ranged 
from 0.55 to 0.92, median R2 = 0.82, over 36 study areas) (Beelen et al., 
2013), in Canada (R2 ranged from 0.61 to 0.84, median R2 = 0.78, over 
10 cities) (Crouse et al., 2015), in Australia (R2 = 0.84) (Cowie et al., 
2019), in China (R2 ranging from 0.42 to 0.87) (He et al., 2018) and in 
Japan (R2 = 0.68, for all locations and R2 = 0.76 for background sites 
only) (Kashima et al., 2018). Similar to us, Saucy et al. (2018) also 
developed NO2 LUR models for annual average, cold and warm season in 
informal settlements in South Africa. The measured NO2 values were 
lower than in our study area, showing an annual mean ranging between 
9.9 μg/m3 and 39.1 μg/m3. Their models explained a slightly higher 
similar spatial variability than our models of 76 %, 62 % and 77 % in the 
NO2 concentrations for the annual, warm and cold season respectively. 
As advised by Wang et al. (2016), to avoid overfitting problems in the 
validation, we did a cross hold out validation, instead of a leave-one-out 
cross validation. A hold out validation is not suitable in this case, 
because of the few locations remaining for building a model. With the 
performed cross hold out validation, we can be confident that our 
models are robust with validations R-Squared ranging from 0.40 to 0.71. 

One limitation of the LUR method is the almost endless potential 
combinations of different variables entered as linear, quadratic or higher 
order terms that practically cannot be manually tested. To overcome 
this, machine learning systems have been used for model parameter 
selection instead of supervised stepwise linear regression (Araki et al., 
2018; Cowie et al., 2019; Chen et al., 2020). We tested the machine 
learning method Random Forest on our dataset using the function 
Ranger in R-Studio March 1, 1093. The Random Forest model predicting 
annual NO2 (R2 = 0.45) did not perform better than our LUR annual 
model (R2 = 0.66). This is probably due to the small amount of locations 
to be able to predict by using a machine learning algorithm. 

The models were developed by using measurements at approxi
mately 80 monitoring sites. This number of sites is at the lower end of 
the recommended number of monitoring sites to develop a LUR model in 
a complex urban setting (Basagaña et al., 2012). Another limitation of 
this study is the use of the predictor variables roads as a proxy for traffic, 
instead to use traffic counts, which have been shown to improve sub
stantially the model development (Beelen et al., 2013). Such data, 

Fig. 4. Annual, summer and winter NO2 predictive maps.  

Table 3 
Percentage of people living in the study area exposed to NO2.  

Percentage (%) of people living in the study area exposed to NO2 concentrations  

Models 

NO2 (μg/m3) Concentration in Categories Annual Summer Winter 

0–35 6.4 43.5 5.2 
36–40 26.1 41.7 0.6 
41–45 51 10.8 0.8 
46–50 11.5 3.2 3.3 
51–55 4.1 0.5 50.7 
56–60 0.8 0.2 32.6 
61–100 0.2 0.04 6.8  

O. Luminati et al.                                                                                                                                                                                                                               



Environmental Pollution 289 (2021) 117832

8

however, were not available for the study area. A further limitation of 
our study is that we did not include local cooking sources, which can 
vary a lot between residential area and favelas and showed an impact in 
previous particulate matter models (Saucy et al., 2018), but are unlikely 
to play a major role for ambient NO2 concentrations. Also we did not 
include the height of the buildings, which vary considerably between 
different settlements and have been shown to have an impact on the LUR 
development (Jin et al., 2019; Rotko et al., 2002). It is unclear how well 
the model performs outside the initial study area, so we recommend not 
to transfer these models to other parts of the city without external 
validation. 

We developed the annual model to predict the annual NO2 exposure 
at location of the residential address of the children taking part in the SP- 
ROC health study (Brentani et al., 2020). 

5. Conclusion 

In this study we were able to develop robust models to predict NO2 
exposure. We showed that NO2 concentrations in our study area are 
generally high with a large within-study area and between-season 
variability. Our LUR model estimates that around 67 % of the popula
tion in the study area was exposed to NO2 values exceeding the sug
gested guideline values by the WHO. The resulting NO2 concentrations 
maps will facilitate epidemiological studies in São Paulo investigating 
the effects of air pollution on human health. 
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APPENDIX A 

A. LUR models 

A.1. Annual model

Fig. A.1.1. Regression.  

Fig. A.1.2. Normality of the residuals, Cook’s D and Homoscedasticity.  
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A.2. Summer model

Fig. A.2.1. Regression.  

Fig. A.2.2. Normality of the residuals, Cook’s D and Homoscedasticity.  

A.3. Winter model 
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Fig. A.3.1. Regression.  

Fig. A.3.2. Normality of the residuals, Cook’s D and Homoscedasticity.  
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Calderón-Garcidueñas, L., et al., 2015. Air pollution and your brain: what do you need to 

know right now. Prim. Health Care Res. Dev. 16 (4), 329–345. 
Canty, J.L., Frischling, B., Frischling, D., 2021. Wheatherbase. São Paulo. Available from: 

http://www.weatherbase.com/weather/weather.php3?s=8738. (Accessed 24 June 
2021). 
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