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Competitive Information Disclosure to an Auctioneer†

By Stefan Terstiege and Cédric Wasser*

We analyze how voluntary disclosure of information by bidders 
affects the outcome of optimally designed auctions. In a single-object 
auction environment, we assume that before the revenue-maximizing 
auctioneer designs the auction, bidders noncooperatively choose 
signal structures that disclose information about their valua-
tions. We show that an equilibrium exists in this two-stage game 
and that in every equilibrium the object is sold with probability 
one. Our main result concerns the consequences of information 
disclosure for the auctioneer’s revenue. If in the benchmark with-
out disclosure the object remains unsold with positive probability, 
then disclosure yields strictly higher revenue in every equilibrium.  
(JEL D44, D82, D83)

Prospective bidders in an auction often try to influence the design of the auction 
in their favor. Consultations conducted before public assets are auctioned pro-

vide an opportunity for this. For example, details of the rules of spectrum auctions, 
such as reserve prices as well as the configuration and permitted use of the spectrum, 
are often determined by a consultation process that facilitates lobbying by prospec-
tive bidders (Ausubel and Baranov 2017).1 Importantly, by contributing to consul-
tations, stakeholders may disclose information to the auctioneer and sometimes to 
the general public.2 Also in procurement auctions, exertion of influence via market 
consultations is widespread. In the European Union, public contracting authorities 
are therefore required to take strict measures to ensure that using advice from a 
potential bidder does not distort competition (in particular, all relevant information 
exchanged with that bidder has to be shared with the other bidders; see Directive 
2014/24/EU).

1 As a case in point, consider the lobbying for favorable rules in the 2000 Dutch UMTS auction reported by 
Van Damme (2003). Before the 2016 broadcast incentive auction in the United States, the two largest carriers, 
AT&T and Verizon, lobbied against rules that set aside spectrum for smaller carriers, while smaller carriers, includ-
ing Sprint and T-Mobile US, lobbied for such rules.

2 For example, see https://ec.europa.eu/clima/consultations/articles/0002_en for the public contributions to the 
2009 consultation by the European Commission on the auctioning rules of the EU Emissions Trading Scheme and 
https://www.rtr.at/TKP/aktuelles/veroeffentlichungen/veroeffentlichungen/konsultationen/stn_konsult700-1500-
2100-mhz.de.html for those on the 2020 5G auction in Austria.
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Information revealed in advance by potential participants influences auction rules 
in many contexts. In indicative bidding, a common practice in takeover auctions, 
real estate sales, divestiture sales, and utility privatization, prospective buyers first 
submit nonbinding bids that the auctioneer may use to short-list bidders or set the 
reserve price in the actual auction (see, e.g., Quint and Hendricks 2018). In common 
procedures for initial public offerings, such as bookbuilding, the investment banker 
first solicits indications of interest from institutional investors before fixing pric-
ing and allocation rules.3 Finally, prospective bidders may be inclined to disclose 
information even before plans to hold an auction are announced, as, for instance, 
suppliers in repeated business-to-business procurement who care about their repu-
tation and anticipate that the buyer will demand similar goods or services again in 
the future.

In this paper, we investigate the incentives of bidders to influence the auction 
design by disclosing information about their valuations prior to the auction. We find 
that, quite generally, bidders have an incentive for such persuasion. Importantly, the 
auctioneer often benefits from the disclosed information.

We consider an auctioneer who seeks to sell an object at the highest possible 
price without knowing the bidders’ valuations for the object, as in the standard opti-
mal auction design framework (Myerson 1981). We augment this framework by an 
initial stage in which the bidders noncooperatively disclose information about their 
valuations to the auctioneer in the sense of Bayesian persuasion (Gentzkow and 
Kamenica 2017; Kamenica and Gentzkow 2011). Specifically, each bidder commits 
to a signal structure, that is, to a mapping from his valuation to probability distri-
butions over signals. The auctioneer observes the signals, updates his prior beliefs 
concerning the bidders’ valuations, and then designs a revenue-maximizing auction.

The assumption that the bidders can commit to a signal structure breaks with the 
usual assumption in mechanism design that agents have no commitment power: 
When reporting to the mechanism, agents are usually assumed to choose reports 
that are best for them given the content of their private information. For example, 
an agent cannot commit to withhold information in one state to extract better terms 
in another state. This is plausible once the mechanism is established. Before, how-
ever, agents benefit from commitment power and should therefore try to acquire 
it. We also assume that the bidders choose the signal structures before they know 
their valuations. This assumption seems appropriate when the bidders are not anon-
ymous and frequently participate in similar auctions, so that they benefit from a 
long-run disclosure strategy. Finally, whereas the auctioneer can commit to an auc-
tion after information has been disclosed, she cannot make commitments already at 
the disclosure stage. For example, she cannot commit to hold the auction only if the 
bidders fully reveal their valuations, which would allow extracting the entire sur-
plus. Our point is that bidders automatically have an incentive to disclose valuable 
information. Indeed, in reality, information about valuations is often confidential 
(see, e.g., Rothkopf, Teisberg, and Kahn 1990)—disclosure requirements that go 
beyond what bidders reveal voluntarily could deter participation in the auction. 

3 See Cornelli and Goldreich (2001), who find evidence that bidders who reveal information are favored when 
the investment banker allocates shares.
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More generally, the disclosure stage represents a point in time at which the bidders 
anticipate that an auction is going to take place but the details have not been deter-
mined yet.4

Optimal auctions allocate the object to a bidder with the highest virtual valuation, 
provided the latter is strictly positive (Myerson 1981). The virtual valuation mea-
sures the surplus that the auctioneer can extract from a bidder, and it is lower than the 
true valuation as the bidder earns an information rent. How much lower it is depends 
on what information the auctioneer has about that bidder. In our model, the bidders 
control the auctioneer’s information via their disclosure in the first stage. A bidder 
thus faces the following trade-off when deciding whether to disclose more infor-
mation: on the one hand, this reduces his information rent, but on the other hand, it 
increases his virtual valuation and thereby results in a more favorable allocation.5

We show that our two-stage game of information disclosure and auction design 
has an equilibrium, and in every equilibrium, with probability one at least one bid-
der’s virtual valuation is strictly positive. Taken together, these insights imply our 
main result: if under the auctioneer’s prior information the virtual valuation of each 
bidder can be weakly negative, then our two-stage game results in strictly more 
expected revenue for the auctioneer than the standard framework without disclo-
sure. In a nutshell, competition in information disclosure erodes the bidders’ infor-
mation rents such that keeping the object is strictly suboptimal for the auctioneer. 
Remarkably, the anticipation of an optimally designed auction automatically pro-
vides bidders with an incentive to reveal valuable information. For real-world auc-
tion design, this implies that auctioneers might benefit from announcing plans to 
hold an auction early and being open for information disclosure, even if they cannot 
make commitments at the disclosure stage nor design this stage itself. Requiring 
auctioneers to be immune against lobbying may come at a cost of lower auction 
revenues or higher procurement prices.

We now sketch why, in every equilibrium, with probability one at least one bid-
der’s virtual valuation is strictly positive. We show later that any signal structure can 
be modified so as to raise strictly negative virtual valuations to zero without sacrific-
ing any payoff. It can then be modified further by sending, with probability ​ϵ  >  0​, 
an additional signal if the bidder’s valuation is his highest possible one. The cost 
is that, when the signal is sent, the bidder retains no private information and thus 
gets no information rent. When the signal is not sent, the highest possible valuation 
appears less likely than before, and as a consequence, the bidder’s virtual valuations 
strictly increase. Now, as ​ϵ  →  0​, the cost of the modification becomes negligible. 
On the other hand, any ​ϵ  >  0​ suffices to make all virtual valuations strictly posi-
tive—and thus to win with probability one when all other bidders happen to have a 
weakly negative virtual valuation. Thus, all bidders having a weakly negative virtual 
valuation cannot happen in equilibrium.

4 E.g., the 2016 broadcast incentive auction in the United States was mandated by Congress in 2012 but finalized 
by the Federal Communications Commission only in 2015 (see Milgrom and Segal 2017).

5 More precisely, what matters are the ironed virtual valuations. Since virtual valuations are endogenous in our 
model, we cannot impose Myerson’s regularity condition.



VOL. 14 NO. 3� 625TERSTIEGE AND WASSER: COMPETITIVE INFORMATION DISCLOSURE

Our equilibrium existence proof has similar arguments at its core. For each pro-
file of posterior beliefs, we fix an optimal auction for the auctioneer. This defines 
a one-stage game with the bidders as the only players. The existence of a Nash 
equilibrium in this game implies the existence of subgame-perfect Nash equilibrium 
in the overall two-stage game. In the one-stage game, the bidders’ payoffs can be 
discontinuous in signal structures, so that standard equilibrium existence proofs do 
not apply. However, each bidder can modify his virtual valuations at virtually no 
cost so as to win any tie. We use this insight to show that the one-stage game is 
better-reply secure as defined by Reny (1999), which guarantees the existence of a 
Nash equilibrium.

After establishing our main result, we fully characterize equilibrium signal struc-
tures for several special cases of the model, which yields insights on bidders’ payoffs 
and efficiency. Whereas the auctioneer typically benefits from information disclosure 
(and is never worse off), bidders may but need not gain: to improve their chances 
of winning in the auction, some or all might disclose so much that they would be 
better off if nobody disclosed anything. Moreover, whereas the auctioneer does not 
inefficiently retain the object in equilibrium, the auction can nevertheless result in an 
inefficient allocation in that the winner need not be the bidder with the highest valua-
tion. In a nutshell, some bidders can have a stronger incentive than others to increase 
virtual valuations through disclosure. Finally, we extend our model and show that it 
does not matter for the auctioneer’s revenue if the bidders disclose information pub-
licly or only to the auctioneer—the revenue is the same in either case.

For analytical convenience, we work with finitely many possible valuations. With 
continuous valuations, posterior beliefs upon information disclosure can be arbi-
trary distributions. Optimal auctions for arbitrary distributions are considerably more 
involved than with discrete distributions or probability density functions, the two cases 
that most of the literature considers.6 By assuming a discrete prior for each bidder, we 
ensure that posteriors are discrete as well and avoid technicalities. The auctioneer ben-
efits from the disclosure because the discontinuities of optimal auctions at ties induce 
bidders to disclose valuable information. It is worth mentioning that discrete priors 
are not essential for this argument. More specifically, we do not require symmetry of 
priors across bidders. Thus, under the prior information, ties can have probability zero.

The most closely related paper is by Bergemann, Brooks, and Morris (2015), 
who study monopoly pricing under the assumption that the monopolist receives 
further information about the buyer’s valuation, beyond the prior, before setting the 
price. Allowing for arbitrary further information, they characterize all possible out-
comes that can arise, including the buyer-optimal outcome. The buyer-optimal out-
come maximizes the social surplus, while the seller just gets the prior-information 
monopoly profit; all remaining surplus accrues to the buyer. Thus, in particular, 
the seller does not benefit from the additional information she receives. Our model 
differs from the one by Bergemann, Brooks, and Morris (2015) only in that there is 
more than one bidder, so that the monopolist sells the good by an auction. Hence, 
it is solely due to competition among bidders that the auctioneer receives (strictly) 

6 See Skreta (2006) and Monteiro and Svaiter (2010) for optimal auctions with arbitrary distributions.
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valuable information. Intuitively, in the one-bidder case, the bidder discloses only to 
prevent that the auctioneer inefficiently retains the object, and only so much that the 
auctioneer is just indifferent, whereas in our multibidder case, bidders also disclose 
to increase their virtual valuations relative to those of their competitors. More spe-
cifically, Bergemann, Brooks, and Morris (2015) show that there is a buyer-optimal 
signal structure in their model under which all possible virtual valuations except for 
the highest one are zero—which cannot happen in any equilibrium of our model, 
as explained above.7 Thus, due to the discontinuities of optimal auctions at ties, 
competition has a significant effect on information design and the seller’s revenue.

Glode, Opp, and Zhang (2018) investigate buyer-optimal information disclosure 
under monopoly pricing when disclosure can be represented by a deterministic sig-
nal conditional on the valuation. They show that buyer-optimal disclosure always 
results in efficient trade, as in the paper by Bergemann, Brooks, and Morris (2015). 
But because of the restriction to deterministic signals, the buyer is typically unable 
to fully extract the additional surplus, so that also the seller benefits. We allow for 
stochastic signals, as is standard in the literature on Bayesian persuasion. In our 
model, instead, the auctioneer benefits because the discontinuities in optimal auc-
tion design induce bidders to disclose valuable information: these discontinuities 
arise due to ties and do not exist in monopoly pricing. Stochastic signals enable the 
bidders to raise virtual valuations at virtually no cost and thereby take full advan-
tage of the discontinuities. In applications, disclosure can often not be represented 
by a deterministic signal. For instance, a bidder’s valuation for winning the auction 
typically depends on many initially uncertain factors. Naturally, disclosure may then 
take the form of revealing information about some of those factors, which corre-
sponds to a stochastic signal about the valuation.8

Another literature studies the disclosure of (typically verifiable) information by 
bidders ahead of exogenously given auctions (see, e.g., Benoît and Dubra 2006; 
Kovenock, Morath, and Münster 2015; Tan 2016). This literature focuses on inter-
dependent valuations, where a bidder’s private information can be payoff relevant 
for their competitors. When the auction is given, bidders may disclose information 
to their competitors with the aim of influencing their bidding behavior.9 As in our 
paper, voluntary disclosure can result in a higher expected revenue for the auction-
eer (see in particular Tan 2016).

In the literature on Bayesian persuasion, several papers analyze simultaneous 
information disclosure by a group of senders to a receiver who then takes an action 
that is relevant to all players (see, e.g., Boleslavsky and Cotton 2015 and Gentzkow 

7 In Roesler and Szentes (2017), the monopolist receives no information, but, instead, the buyer chooses a signal 
structure to acquire information about his valuation. Again, there is a buyer-optimal signal structure under which all 
virtual valuations except for the highest one are zero (see also Condorelli and Szentes 2020). Yang (2019) considers 
an extension to auctions and shows that as the number of buyers goes to infinity, buyers acquire full information 
and the auctioneer extracts the first-best surplus. In Terstiege and Wasser (2020), the seller can refine the signal 
structure chosen by the buyer.

8 For example, in spectrum auctions, potential bidders may disclose how they assess the installation costs for 
their new use of spectrum, or in procurement, potential suppliers may provide information about their production 
efficiency based on experimenting with an early prototype.

9 In our independent private values model, bidders do not gain by disclosing information to each other. 
Specifically, an optimal auction can always be found among dominant strategy incentive-compatible auctions, 
where the beliefs of bidders about their competitors’ valuations do not matter.
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and Kamenica 2017; see Li and Norman 2021 for sequential disclosure). While our 
two-stage game has the same structure, with the bidders being the senders and the 
auctioneer the receiver, none of the existing analyses captures information disclo-
sure before auction design. Most closely related in this literature are the papers by 
Gentzkow and Kamenica (2017) and Au and Kawai (2020), who show that increased 
competition in the form of additional senders can increase the information content 
of the senders’ disclosure. The key difference to Gentzkow and Kamenica (2017) is 
that their senders disclose information about the complete state of the world, which 
in our setting would correspond to disclosure not only about one’s own valuation 
but also about the valuations of competitors. Au and Kawai (2020) assume a specific 
choice problem for the receiver (namely, to select a sender) that does not capture our 
choice problem (selecting an auction mechanism).

The paper is organized as follows. The next section  presents the model. In 
Section  II, we discuss an example that illustrates the main result. Section  III 
studies the auction design problem in stage two of our game and Section  IV the 
bidders’ choice over signal structures in stage one. In Section V, we show that a 
subgame-perfect Nash equilibrium exists. Section VI presents our main result on the 
auctioneer’s revenue. Section VII gives full equilibrium characterizations for several 
special cases of the model, and Section VIII shows that our results are independent 
of how much the other bidders learn about a bidder’s disclosure. Section IX con-
cludes. Most proofs are in the Appendix. The online Appendix contains additional 
material that complements Section IVB and Section VII.

I.  Model

Players and Prior Information.—There is a risk-neutral auctioneer with 
one object, who seeks to maximize her expected revenue, and there is a set  
​N  = ​ {1,  …, n}​​ of risk-neutral bidders, where ​n  >  1​. The auctioneer’s valuation 
for the object is normalized to zero. The valuation of each bidder ​i  ∈  N​ is ini-
tially unknown to all players, including bidder ​i​. The common prior belief is that 
the valuation is independently drawn from the set ​​​V 

–
​​i​​​ according to the probability 

distribution ​​​p – ​​i​​​. We assume that there are finitely many possible valuations, so that  
​​​V 
–
​​i​​  = ​ {​​v –​​ i​ 

1​,  …, ​​v –​​ i​ 
​​m – ​​i​​​}​​, where ​0  < ​​ v ¯ ​​ i​ 1​  <  ⋯  < ​​ v –​​ i​ 

​​m – ​​i​​​​ and ​​​p – ​​i​​​(​v​i​​)​  >  0​ for all ​​v​i​​  ∈ ​​ V 
–
​​i​​​.

Signal Structures.—Before learning his valuation, and before the auction is 
designed, each bidder ​i​ chooses and commits to a signal structure. A signal structure 
for bidder ​i​ can be understood as a mapping from ​i​’s true valuation ​​v​i​​​ to distribu-
tions over signals. Knowing the signal structure and observing the realized signal 
allows to update from the prior ​​​p – ​​i​​​ to a posterior ​​p​i​​  ∈ ​ ​i​​​, where ​​​i​​​ denotes the set 
of all probability distributions on ​​​V 

–
​​i​​​. Following Kamenica and Gentzkow (2011), 

we abstract from signals and represent any signal structure as a distribution (i.e., a 
Borel probability measure) ​​b​i​​​ on the set of posteriors ​​​i​​​ such that, to be consistent 
with Bayesian updating, the expectation equals the prior,

(1)	​​ ∫ ​​i​​
​ 

 

 ​​ ​p​i​​​(​v​i​​)​ d​b​i​​​(​p​i​​)​  = ​​ p – ​​i​​​(​v​i​​)​,  ∀​v​i​​  ∈ ​​ V 
–
​​i​​.​
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Let ​​B​i​​​ be the set of all signal structures of bidder ​i​, that is, the set of all distributions ​​
b​i​​​ on ​​​i​​​ that satisfy (1).

Auctions.—Given any distribution ​​p​i​​  ∈ ​ ​i​​​, let ​​V​i​​​(​p​i​​)​​ be its support, a sub-
set of ​​​V 

–
​​i​​​. Given any profile ​𝐩  = ​ (​p​1​​,  …, ​p​n​​)​  ∈    = ​ ​1​​ × ⋯ × ​​n​​​, let  

​V​(𝐩)​  = ​ V​1​​​(​p​1​​)​ × ⋯ × ​V​n​​​(​p​n​​)​​.
Fix any profile ​𝐩  ∈  ​. Suppose each bidder ​i​ knows his own valuation and 

believes that the valuation of any other bidder ​j​ is drawn from ​​p​j​​​, and this is common 
knowledge. A direct auction mechanism at ​𝐩​ is a combination ​​(𝐪​( · , 𝐩)​, 𝐭​( · , 𝐩)​)​​,  
where ​𝐪​( ·, 𝐩)​  = ​ (​q​1​​​( · , 𝐩)​, …, ​q​n​​​( · , 𝐩)​)​​ is an allocation rule and ​𝐭​( · , 𝐩)​  
= ​ (​t​1​​​( · , 𝐩)​, …, ​t​n​​​( · , 𝐩)​)​​ is a transfer rule. The function ​​q​i​​​( · , 𝐩)​  : V​(𝐩)​  → ​ [0, 1]​​ 
determines bidder ​i​’s probability of getting the object depending on a profile of 
reported valuations ​𝐯  = ​ (​v​1​​, …, ​v​n​​)​  ∈  V​(𝐩)​​, where ​​∑ i∈N​ 

 
 ​​​ q​i​​​(𝐯, 𝐩)​  ≤  1​ for all ​𝐯​. 

The function ​​t​i​​​( · , 𝐩)​ : V​(𝐩)​  →  ℝ​ determines a transfer paid by bidder ​i​ to the auc-
tioneer. As usual, ​​(𝐪​( · , 𝐩)​, 𝐭​( · , 𝐩)​)​​ is said to be Bayesian incentive compatible and 
interim individually rational if truthful reporting and participating in the auction is 
a Bayes-Nash equilibrium. Invoking the revelation principle, we restrict attention to 
such auction mechanisms, which we call auctions.

The ex ante expected payoff of bidder ​i​ in auction ​​(𝐪​( · , 𝐩)​, 𝐭​( · , 𝐩)​)​​ is

	​​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ [​v​i​​ ​q​i​​​(𝐯, 𝐩)​ − ​t​i​​​(𝐯, 𝐩)​]​p​(𝐯)​,​

where ​p​(𝐯)​  = ​ ∏ i∈N​​ ​p​i​​​(​v​i​​)​​​, and the ex ante expected revenue of the auctioneer is

(2)	​​  ∑ 
i∈N

​ 
 

 ​​  ​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ t​i​​​(𝐯, 𝐩)​p​(𝐯)​.​

Timing.—The interaction between the bidders and the auctioneer is a two-stage 
game. In stage one, each bidder chooses a signal structure. Signal structures are 
chosen simultaneously. In stage two, each bidder ​i​ first observes his valuation ​​v​i​​​ and 
publicly discloses information according to his signal structure.10 Thus, the players 
update to a profile of common posteriors, each bidder knowing his own valuation. 
Afterward, the auctioneer chooses an auction. Following the mechanism-design tra-
dition, we assume that the bidders participate in the auction and report truthfully 
when indifferent.

Strategies and Equilibrium.—A strategy of the auctioneer is a (measurable) 
function

	​ f : 𝐩  ↦ ​ (​𝐪​​ f​​( · , 𝐩)​, ​𝐭​​ f​​( · , 𝐩)​)​​

that determines an auction for every profile of posteriors ​𝐩  ∈  ​. A strategy of 
bidder ​i​ is a signal structure ​​b​i​​  ∈ ​ B​i​​​. We use subgame-perfect Nash equilibrium 

10 In Section VIII, we relax the assumption that the disclosure is public.
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(SPNE) as solution concept. An SPNE is a strategy profile ​​(​f​​ ∗​, ​𝐛​​ ∗​)​​ such that  
​(​𝐪​​ ​f​​ 

∗​​​( · , 𝐩)​, ​𝐭​​ ​f​​ 
∗​​​( · , 𝐩)​)​ maximizes the auctioneer’s expected revenue (2) at ​𝐩​, subject 

to Bayesian incentive compatibility and interim individual rationality, and ​​b​ i​ 
∗​​ maxi-

mizes bidder ​i​’s payoff

	​​ ∫ ​​i​​
​ 

 

 ​​​∫ ​​−i​​
​ 

 

 ​​​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ [​v​i​​ ​q​ i​ 
​f ​​ ∗​​​(𝐯, 𝐩)​ − ​t​ i​ 

​f ​​ ⁎​​​(𝐯, 𝐩)​]​p​(𝐯)​ d​b​ −i​ 
∗ ​​(​𝐩​−i​​)​ d​b​i​​​(​p​i​​)​,​

where ​𝐛  = ​ (​b​1​​, …, ​b​n​​)​  ∈  B  = ​ B​1​​ × ⋯ × ​B​n​​​, ​b​ denotes the product distribu-
tion constructed from ​​b​1​​, …, ​b​n​​​ and the symbol ​− i​ denotes “all bidders but ​i​.”

II.  Illustration of the Main Result

We use a simple example to illustrate our main result that bidders disclose valu-
able information in equilibrium and to highlight the importance of competition 
among bidders.

Suppose there are two bidders with identical priors over two possible valua-
tions ​​​V 

–
​​1​​  = ​​ V 

–
​​2​​  = ​ {​v​​ L​, ​v​​ H​}​​ such that ​​​p – ​​1​​​(​v​​ L​)​  = ​​ p – ​​2​​​(​v​​ L​)​  = ​ λ – ​  ∈ ​ (0, ​λ​​ 0​)​​, where ​​

v​​ L​  < ​ v​​ H​​ and ​​λ​​ 0​  = ​ (​v​​ H​ − ​v​​ L​)​ / ​v​​ H​​. We simplify the notation in this section  and 
identify any posterior ​​p​i​​​ for bidder ​i​ with the probability of the low valuation  
​​λ​i​​  = ​ p​i​​​(​v​​ L​)​  ∈ ​ [0, 1]​​.

One-Bidder Benchmark.—It is instructive to begin with a simple benchmark in 
which the auctioneer faces only bidder 1. In this case, it is optimal for the auction-
eer to just post a price. Price ​​v​​ L​​ is optimal if ​​λ​1​​  ≥ ​ λ​​ 0​​, which is equivalent to ​​v​​ L​  ≥ ​

(1 − ​λ​1​​)​ ​v​​ H​​. Price ​​v​​ H​​ is optimal if ​​λ​1​​  < ​ λ​​ 0​​. Thus, without disclosure and prior ​​λ – ​ 
< ​ λ​​ 0​​, the auctioneer posts price ​​v​​ H​​, the object remains unsold with probability ​​λ – ​​, 
and the bidder’s payoff is zero. With disclosure, the bidder can ensure that the object 
is always sold and appropriate the entire additional surplus. Specifically, there is an 
optimal signal structure ​​b​ 1​ 

∗​​ that draws posterior ​​λ​ 1​ ′ ​  = ​ λ​​ 0​​ with probability ​​λ – ​ / ​λ​​ 0​​ and 
posterior ​​λ​ 1​ ′′​  =  0​ with probability ​1 − ​λ – ​ / ​λ​​ 0​​. As

	​​  ​λ – ​ ___ 
​λ​​ 0​

 ​ ​λ​ 1​ ′ ​ + ​(1 − ​ ​λ – ​ ___ 
​λ​​ 0​

 ​)​ ​λ​ 1​ ′′​  = ​ λ – ​,​

​​b​ 1​ 
∗​​ clearly satisfies (1). Intuitively, this corresponds to the bidder revealing his val-

uation with a certain probability when it is ​​v​​ H​​. At posterior ​​λ​ 1​ ′′​  =  0​, there is thus 
no uncertainty, and the auctioneer still charges price ​​v​​ H​​. Yet at posterior ​​λ​ 1​ ′ ​  = ​ λ​​ 0​​, 
she is now willing to charge only ​​v​​ L​​, resulting in a positive payoff for the bidder if 
his valuation is ​​v​​ H​​. As the auctioneer is indifferent between both prices at posterior ​​
λ​​ 0​​, her revenue is the same as when always charging ​​v​​ H​​. Hence, the auctioneer does 
not benefit from the disclosure—a result that generalizes to arbitrary priors ​​​p – ​​1​​​ (see 
Bergemann, Brooks, and Morris 2015).

Stage Two: Auction Design.—Return to the two-bidder case. As we will see, the 
prospect of an optimally designed auction gives the bidders an incentive to reveal 
valuable information, resulting in strictly higher auction revenue. We first need 
to consider the optimal auction design for any posterior profile ​​(​λ​1​​, ​λ​2​​)​​ in stage 
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two. We restrict attention to one specific optimal auction with a particularly sim-
ple implementation. If ​max​{​λ​1​​, ​λ​2​​}​  < ​ λ​​ 0​​, the auctioneer uses a posted price equal 
to ​​v​​ H​​ as in the one-bidder case. If ​​λ​i​​  ≥  max​{​λ​j​​, ​λ​​ 0​}​​ for some bidder ​i​, however,  
it is optimal to first offer the object at price ​​v​​ H​​ to bidder ​j​ and, in case he rejects, to 
then sell it to bidder ​i​ at price ​​v​​ L​​.11 Let the order be random with equal probability 
if ​​λ​1​​  = ​ λ​2​​  ≥ ​ λ​​ 0​​. The expected payoff of bidder ​i​ given posteriors ​​(​λ​1​​, ​λ​2​​)​​ is thus

(3)	​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​

​λ​j​​​(1 − ​λ​i​​)​​(​v​​ H​ − ​v​​ L​)​,

​ 

if ​λ​i​​  ≥ ​ λ​​ 0​ and ​λ​i​​  > ​ λ​j​​;

​    ​λ​j​​​(1 − ​λ​i​​)​​(​v​​ H​ − ​v​​ L​)​ / 2,​  if ​λ​i​​  = ​ λ​j​​  ≥ ​ λ​​ 0​;​    

0,

​ 

otherwise.

 ​​​

The auctioneer favors the bidder who is more likely to have a low valuation by offer-
ing him the low price, thereby granting him an information rent in case his valuation 
is high. In disclosing information, bidders may thus compete for being offered the 
low price.

Stage One: Disclosure.—Considering the bidders’ choice of disclosure in the 
first stage, we next argue that there are profitable deviations if the signal structures 
of both bidders draw posteriors in ​​(0, ​λ​​ 0​]​​. Suppose first that the bidders choose sig-
nal structures ​​(​b​1​​, ​b​2​​)​​ under which posteriors ​​λ​i​​  ∈ ​ (0, ​λ​​ 0​)​​ and ​​λ​j​​  ∈ ​ (0, ​λ​​ 0​]​​ have 
positive probability. At ​​λ​i​​​, ​i​’s expected payoff is always zero. Consider a modifi-
cation ​​b​ i​ ′​​ of ​​b​i​​​ where posterior ​​λ​i​​  ∈ ​ (0, ​λ​​ 0​)​​ is replaced with two posteriors ​​λ​ i​ ′ ​​, ​​λ​ i​ ′′​​: 
instead of drawing posterior ​​λ​i​​​ with, say, probability ​β​, ​​b​ i​ ′​​ draws ​​λ​ i​ ′ ​  ∈ ​ (​λ​​ 0​, 1)​​ with 
probability ​β ​λ​i​​ / ​λ​ i​ ′ ​​ and ​​λ​ i​ ′′​  =  0​ with probability ​β​(1 − ​λ​i​​ / ​λ​ i​ ′ ​)​​. This modification 
is feasible since

	​ β ​ 
​λ​i​​ _ 
​λ​ i​ ′ ​

 ​ ​λ​ i​ ′ ​ + β​(1 − ​ 
​λ​i​​ _ 
​λ​ i​ ′ ​

 ​)​ ​λ​ i​ ′′​  =  β ​λ​i​​​,

and thus ​​b​ i​ ′​​ is consistent with (1) whenever ​​b​i​​​ is. Similar to ​​b​ 1​ 
∗​​ in the one-bidder case, 

conditional on ​​b​i​​​ drawing ​​λ​i​​​, ​​b​ i​ ′​​ reveals with a certain probability when ​i​’s valuation 
is ​​v​​ H​​, resulting in posterior ​​λ​ i​ ′′​  =  0​ if the valuation is revealed and in posterior ​​λ​ i​ ′ ​  > ​
λ​​ 0​  > ​ λ​i​​​ if the valuation is not revealed. Bidder ​i​ clearly benefits from the modifica-
tion: whereas his payoff was always zero under ​​λ​i​​​, now his payoff is strictly positive 
under any posterior profile ​​(​λ​ i​ ′ ​, ​λ​j​​)​​ with ​​λ​j​​  ∈ ​ (0, ​λ​​ 0​]​​. Hence, ​​(​b​1​​, ​b​2​​)​​ cannot be part 
of an equilibrium.

Now suppose the signal structures ​​(​b​1​​, ​b​2​​)​​ are such that each draws posterior ​​λ​​ 0​​ 
with positive probability, whereas posteriors in ​​(0, ​λ​​ 0​)​​ have probability zero. At ​​
λ​i​​  = ​ λ​j​​  = ​ λ​​ 0​​, neither bidder’s payoff (3) is zero; however, the seller randomizes 
to whom to offer the object at the low price ​​v​​ L​​. Consider the same modification ​​b​ i​ ′​​ 
of ​​b​i​​​ as above: ​​λ​i​​  = ​ λ​​ 0​​ is replaced with probability ​​λ​​ 0​ / ​λ​ i​ ′ ​​ by ​​λ​ i​ ′ ​  > ​ λ​​ 0​​ and with 

11 Using the characterization of optimal auctions in Section III, it is easily verified that these sequential offers 
are optimal. In general, the revenue is at most equal to the expected highest virtual valuation. Depending on his 
valuation, ​i​’s virtual valuation is ​​J​i​​​(​v​​ L​)​  =  ​v​​ L​ − ​(​v​​ H​ − ​v​​ L​)​​(1 − ​λ​i​​)​ / ​λ​i​​​ or ​​J​i​​​(​v​​ H​)​  =  ​v​​ H​​. Hence, if ​​λ​i​​  ≥  ​{​λ​j​​, ​λ​​ 0​}​​,  
the revenue is at most ​​(1 − ​λ​i​​ ​λ​j​​)​ ​v​​ H​ + ​λ​i​​ ​λ​j​​ ​J​i​​​(​v​​ L​)​  =  ​(1 − ​λ​j​​)​ ​v​​ H​ + ​λ​j​​ ​v​​ L​​, which equals the revenue under the 
sequential offers.
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probability ​​(1 − ​λ​​ 0​ / ​λ​ i​ ′ ​)​​ by ​​λ​ i​ ′′​  =  0​. With the latter posterior, bidder ​i​’s payoff is 
always zero. However, as ​​λ​ i​ ′ ​  → ​ λ​​ 0​​, this cost of the modification vanishes because ​​
(1 − ​λ​​ 0​ / ​λ​ i​ ′ ​)​  →  0​. On the other hand, any ​​λ​ i​ ′ ​  > ​ λ​​ 0​​ suffices to get the low price 
with probability one when ​​λ​j​​  = ​ λ​​ 0​​. Thus, for small ​​λ​ i​ ′ ​​, the modification benefits 
bidder ​i​, and ​​(​b​1​​, ​b​2​​)​​ again cannot be part of an equilibrium.

Auctioneer’s Benefit.—We conclude that equilibrium signal structures ​​(​b​1​​, ​b​2​​)​​ 
are such that in stage two the auctioneer is either certain of a bidder’s valuation or 
assigns a posterior ​​λ​i​​  > ​ λ​​ 0​​ to at least one bidder ​i​. Accordingly, the auctioneer’s 
revenue must be strictly greater than when she always posts price ​​v​​ H​​ in stage two. 
Yet without disclosure and prior ​​λ – ​  < ​ λ​​ 0​​, posting price ​​v​​ H​​ is optimal. Hence, the 
auctioneer strictly benefits from the disclosure.12

Our main result is that the auctioneer strictly benefits from the disclosure in every 
equilibrium of the general model of Section I if under the prior the virtual valuation 
of each bidder can be weakly negative. In the example, this condition on the prior 
corresponds to ​​λ – ​  ∈ ​ (0, ​λ​​ 0​]​​, which holds by assumption. Beyond the result on the 
auctioneer’s revenue, the example has a number of features that do not generalize, as 
we will discuss in Section VII. In particular, in the setting considered here, bidders 
perfectly disclose their valuation and thus obtain zero payoff (as without disclosure) 
in every equilibrium, whereas in general bidders can both benefit or suffer from the 
disclosure.

Plan of the Main Analysis.—The following four sections contain our main anal-
ysis, culminating in Theorem 1 on the effect of disclosure on the auctioneer’s rev-
enue. We proceed in a similar manner as here. We first consider stage two of the 
game and characterize optimal auctions for arbitrary posteriors in Section  III. In 
Section IV, we then turn to stage one: We first fix an arbitrary optimal strategy for 
the auctioneer—a strategy that specifies an optimal auction at every posterior pro-
file. This reduces the model to a one-stage game in which the bidders choose their 
signal structures. To identify profitable deviations, we then generalize the idea of 
the modifications ​​b​ i​ ′​​ discussed above. We thereby show how a bidder can modify 
his signal structure so as to raise negative (ironed) virtual valuations to zero and 
win any tie (which is akin to replacing ​​λ​i​​  ≤ ​ λ​​ 0​​). Section V presents an optimal 
strategy for the auctioneer under which the corresponding one-stage game has a 
Nash equilibrium. This proves the existence of a subgame-perfect Nash equilibrium 
in the overall two-stage game. In Section VI, we show that in equilibrium at least 
one bidder always has a strictly positive virtual valuation under the posterior, which 
corresponds to ​​λ​i​​  ∉ ​ (0, ​λ​​ 0​]​​ in the example. By a similar argument as here, we then 
conclude that the auctioneer’s revenue must be strictly greater than under the prior.

12 As another benchmark besides the one-bidder case, suppose the bidders jointly choose their disclosure. Then 
both choosing ​​b​ 1​ 

∗​​ as in the one-bidder case is optimal for them: that way, the auctioneer is willing to make sequential 
offers under posterior profile ​​(​λ​​ 0​, ​λ​​ 0​)​​, ensuring the object is always sold. As the auctioneer is indifferent to always 
posting price ​​v​​ H​​, she does not benefit from the disclosure, and the entire additional surplus goes to the bidders. So, 
for the auctioneer to benefit, competition is essential. 
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III.  Stage Two: Auction Design

Returning to the general model of Section  I, we start our analysis with stage 
two of the game, in which the auctioneer designs the auction. We characterize the 
optimal auctions at an arbitrary profile of posteriors ​𝐩​. Since ​𝐩​ remains unchanged 
in this section, we denote an auction by ​​(𝐪, 𝐭)​​ instead of ​​(𝐪​( · , 𝐩)​, 𝐭​( · , 𝐩)​)​​, and we 
denote the support of posterior ​​p​i​​​ by ​​V​i​​​ instead of ​​V​i​​​(​p​i​​)​​.

Let ​​V​i​​  = ​ {​v​ i​ 
1​, …, ​v​ i​ 

​m​i​​​}​​ and ​V  = ​ V​1​​ × ⋯ × ​V​n​​​. Let ​​P​i​​​(​v​ i​ 
k​)​  = ​ ∑ l=1​ 

k  ​​​p​i​​​(​v​ i​ 
l​)​​  

be the probability that bidder ​i​’s valuation is at most ​​v​ i​ 
k​​. Let ​​Q​i​​​(​v​i​​)​  

= ​ ∑ ​𝐯​−i​​∈​V​−i​​​ 
 
 ​​​ q​i​​​(​v​i​​, ​𝐯​−i​​)​ ​p​−i​​​(​𝐯​−i​​)​​ be bidder ​i​’s interim allocation probability and  

​​T​i​​​(​v​i​​)​  = ​ ∑ ​𝐯​−i​​∈​V​−i​​​ 
 
 ​​​ t​i​​​(​v​i​​, ​𝐯​−i​​)​ ​p​−i​​​(​𝐯​−i​​)​​ his interim expected transfer.

The auctioneer’s goal is to design an auction ​​(𝐪, 𝐭)​​ that maximizes her expected 
revenue subject to Bayesian incentive compatibility and interim individual rational-
ity. Thus, an optimal auction solves

	​​ max​ 
​(𝐪,𝐭)​

​ ​ ​ ∑ 
i∈N

​​​ ​ ∑ 
𝐯∈V

​​​​t​i​​​(𝐯)​p​(𝐯)​​

subject to

(4)	​​ v​i​​ ​Q​i​​​(​v​i​​)​ − ​T​i​​​(​v​i​​)​  ≥ ​ v​i​​ ​Q​i​​​(​v​ i​ ′​)​ − ​T​i​​​(​v​ i​ ′​)​,    ∀i  ∈  N, ∀ ​v​i​​, ​v​ i​ ′​  ∈ ​ V​i​​,​

(5)	 ​​v​i​​ ​Q​i​​​(​v​i​​)​ − ​T​i​​​(​v​i​​)​  ≥  0,    ∀ i  ∈  N, ∀ ​v​i​​  ∈ ​ V​i​​,​

where (4) ensures Bayesian incentive compatibility and (5) interim individual 
rationality.

By standard arguments (see, e.g., Vohra 2011, section  6.2), there is a ​𝐭​ such 
that the auction ​​(𝐪, 𝐭)​​ is Bayesian incentive compatible if and only if ​​Q​i​​​(​v​ i​ 

k+1​)​  ≥  
​Q​i​​​(​v​ i​ 

k​)​​ for all ​k  ∈ ​ {1, …, ​m​i​​ − 1}​​ and all ​i  ∈  N​. Moreover, for any optimal auc-
tion ​​(𝐪, 𝐭)​​, all local downward incentive constraints as well as the individual ratio-
nality constraint for valuation ​​v​ i​ 

1​​ for each bidder ​i​ are binding, yielding interim 
expected transfers

(6)	​​ T​i​​​(​v​ i​ 
k​)​  = ​ v​ i​ 

k​ ​Q​i​​​(​v​ i​ 
k​)​ − ​ ∑ 

l=1
​ 

k−1

​​​(​v​ i​ 
l+1​ − ​v​ i​ 

l​)​ ​Q​i​​​(​v​ i​ 
l​)​.​

By (6), the ex ante expected transfer from bidder ​i​ to the auctioneer can be written as

(7)	​​  ∑ 
​v​i​​∈​V​i​​

​ 
 

 ​​​ T​i​​​(​v​i​​)​ ​p​i​​​(​v​i​​)​  = ​  ∑ 
​v​i​​∈​V​i​​

​ 
 

 ​​​ J​i​​​(​v​i​​)​ ​Q​i​​​(​v​i​​)​ ​p​i​​​(​v​i​​)​,​

where the virtual valuation ​​J​i​​​(​v​ i​ 
k​)​​ of bidder ​i​ with valuation ​​v​ i​ 

k​​ is defined as

	​​ J​i​​​(​v​ i​ 
k​)​  = ​

⎧
 

⎪

 ⎨ 
⎪

 

⎩
​
​v​ i​ 

k​ − ​ 
1 − ​P​i​​​(​v​ i​ 

k​)​
 _ 

​p​i​​​(​v​ i​ 
k​)​

 ​​ (​v​ i​ 
k+1​ − ​v​ i​ 

k​)​,
​ 
if k  < ​ m​i​​;​   

​v​ i​ 
k​,

​ 

if k  = ​ m​i​​.
​​​
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Consequently, we can state the problem of designing an optimal allocation rule as 
[P]:

	​​ max​ 𝐪​ ​ ​  ∑ 
i∈N

​​​ ​ ∑ 
​v​i​​∈​V​i​​

​​​​J​i​​​(​v​i​​)​ ​Q​i​​​(​v​i​​)​ ​p​i​​​(​v​i​​)​​

subject to

(8)	​​ Q​i​​​(​v​ i​ 
1​)​  ≤  ⋯  ≤ ​ Q​i​​​(​v​ i​ 

​m​i​​​)​    ∀ i  ∈  N.​

To characterize optimal allocation rules, we follow Elkind (2007), who adapts the 
ironing procedure of Myerson (1981) to our environment with discrete valuations. 
Consider any bidder ​i​. Define ​​G​i​​​(​v​ i​ 

k​)​  = ​ ∑ l=1​ 
k  ​​​J​i​​​(​v​ i​ 

l​)​ ​p​i​​​(​v​ i​ 
l​)​​. The notation ​​G​i​​​(​v​ i​ 

0​)​​ will 
also be used and means zero. Similarly, ​​P​i​​​(​v​ i​ 

0​)​​ means zero. Define the function  
​​C​i​​  :  ​[0, 1]​  →  ℝ​ by

	​​ C​i​​​(z)​  =  ​  min​ 
0≤k,l≤​m​i​​,α∈​[0,1]​

​​α ​G​i​​​(​v​ i​ 
k​)​ + ​(1 − α)​ ​G​i​​​(​v​ i​ 

l​)​​

subject to

	​ α ​P​i​​​(​v​ i​ 
k​)​ + ​(1 − α)​ ​P​i​​​(​v​ i​ 

l​)​  =  z​.

Thus, ​​C​i​​​ is the highest convex function on ​​[0, 1]​​ that is everywhere smaller than or 
equal to the function that assigns to each ​​P​i​​​(​v​i​​)​​, ​​v​i​​  ∈ ​ V​i​​​, the value ​​G​i​​​(​v​i​​)​​. We also 
say ​​C​i​​​ is the lower convex envelope. See Figure 1 for an illustration. The ironed 
virtual valuation of bidder ​i​ with valuation ​​v​ i​ 

k​​ is defined as

	​​ H​i​​​(​v​ i​ 
k​)​  = ​ 

​C​i​​​(​P​i​​​(​v​ i​ 
k​)​)​ − ​C​i​​​(​P​i​​​(​v​ i​ 

k−1​)​)​
   _______________________  

​p​i​​​(​v​ i​ 
k​)​

 ​ .​

Thus, ​​H​i​​​(​v​ i​ 
k​)​​ is equal to the slope of ​​C​i​​​ between ​​P​i​​​(​v​ i​ 

k−1​)​​ and ​​P​i​​​(​v​ i​ 
k​)​​. Since ​​C​i​​​ is a 

convex function, ​​H​i​​​(​v​ i​ 
k​)​​ is nondecreasing in ​k​.

The following proposition fully characterizes optimal allocation rules, which 
implies a characterization of the set of optimal auctions.13 Moreover, the propo-
sition gives a convenient representation of bidder ​i​’s ex ante expected payoff in an 
optimal auction. Given a profile of reports ​𝐯  ∈  V​, let

	​ W​(𝐯)​  = ​ {i  ∈  N ∣ ​H​i​​​(​v​i​​)​  >  0  and  i  ∈ ​ arg max​ 
j
​ ​ ​ H​j​​​(​v​j​​)​}​​

be the set of bidders whose ironed virtual valuation is strictly positive and the high-
est among all bidders. Let

	​ L​(𝐯)​  = ​ {i  ∈  N ∣ ​H​i​​​(​v​i​​)​  <  0  or  i  ∉ ​ arg max​ 
j
​ ​ ​ H​j​​​(​v​j​​)​}​​

13 The proof of part (a) of Proposition 1 is adapted from the proof of Elkind (2007, theorem 2), which identifies 
one specific allocation rule that is optimal under dominant strategy incentive compatibility.
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be the set of bidders whose ironed virtual valuation is strictly negative or not the 
highest among all bidders. Any optimal auction allocates to a bidder in ​W​(𝐯)​​ if 
this set is not empty and does not allocate to a bidder in ​L​(𝐯)​​. If ​W​(𝐯)​​ is empty 
and ​N  ≠  L​(𝐯)​​, that is, if the highest ironed virtual valuation is equal to zero, it does 
not matter for the expected revenue if the object is allocated or retained.

PROPOSITION 1: 

	 (a)	 An allocation rule ​𝐪​ is optimal if and only if (i) for all ​𝐯  ∈  V​, ​​∑ i∈W​(𝐯)​​ 
 
 ​​​ q​i​​​(𝐯)​  

=  1​ if ​W​(𝐯)​  ≠  ∅​; (ii) for all ​𝐯  ∈  V​, ​​∑ i∈L​(𝐯)​​ 
 
 ​​​ q​i​​​(𝐯)​  =  0​; and (iii) 

for all ​i  ∈  N​ and all ​k  < ​ m​i​​​ such that ​​H​i​​​(​v​ i​ 
k​)​  = ​ H​i​​​(​v​ i​ 

k+1​)​​, ​​Q​i​​​(​v​ i​ 
k​)​  

= ​ Q​i​​​(​v​ i​ 
k+1​)​​ if ​​C​i​​​(​P​i​​​(​v​ i​ 

k​)​)​  < ​ G​i​​​(​v​ i​ 
k​)​​ and ​​Q​i​​​(​v​ i​ 

k​)​  ≤ ​ Q​i​​​(​v​ i​ 
k+1​)​​ otherwise.

	 (b)	 An auction ​​(𝐪, 𝐭)​​ is optimal if and only if ​𝐪​ is optimal and ​𝐭​ satisfies (6).

	 (c)	 The ex ante expected payoff of bidder ​i  ∈  N​ in an optimal auction ​​(𝐪, 𝐭)​​ is

	​​  ∑ 
𝐯∈V

​ 
 

 ​​​ [​v​i​​ ​q​i​​​(𝐯)​ − ​t​i​​​(𝐯)​]​p​(𝐯)​  = ​  ∑ 
𝐯∈V

​ 
 

 ​​​ [​v​i​​ − ​H​i​​​(​v​i​​)​]​ ​q​i​​​(v)​p​(𝐯)​.​

Part (b) of the proposition identifies the auctions that maximize the auctioneer’s 
expected revenue subject to Bayesian incentive compatibility and interim individual 
rationality. As is well known, some optimal auctions are actually dominant strategy 
incentive compatible and ex post individually rational; that is, they induce truthful 
reporting and participation in the auction even if the bidders know the valuations of 
their competitors (see Gershkov et al. 2013). Formally, an auction ​​(𝐪, 𝐭)​​ is dominant 
strategy incentive compatible if

	​​ v​i​​ ​q​i​​​(𝐯)​ − ​t​i​​​(𝐯)​  ≥ ​ v​i​​ ​q​i​​​(​v​ i​ ′​, ​𝐯​−i​​)​ − ​t​i​​​(​v​ i​ ′​, ​𝐯​−i​​)​,  ∀ i  ∈  N, ∀ ​v​i​​, ​v​ i​ ′​  ∈ ​ V​i​​, ∀ ​𝐯​−i​​  ∈ ​ V​−i​​,​

Figure 1. The Function ​​C​i​​​

Notes: The function ​​C​i​​​ (solid curve) is displayed for ​​V​i​​  =  ​{1, 5, 6, 15}​​ with ​​p​i​​​(​v​ i​ 
2​)​  =  0.4​ and ​​p​i​​​(​v​ i​ 

1​)​  =  ​p​i​​​(​v​ i​ 
3​)​  

=  ​p​i​​​(​v​ i​ 
4​)​  =  0.2​. The virtual valuations ​​J​i​​​(​v​ i​ 

2​)​  =  4​ and ​​J​i​​​(​v​ i​ 
3​)​  =  − 3​ (slopes of the dashed line segments) are 

ironed to ​​H​i​​​(​v​ i​ 
2​)​  =  ​H​i​​​(​v​ i​ 

3​)​  =  5 / 3​.
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and it is ex post individually rational if

	​​ v​i​​ ​q​i​​​(𝐯)​ − ​t​i​​​(𝐯)​  ≥  0,  ∀ i  ∈  N, ∀ ​v​i​​  ∈ ​ V​i​​, ∀ ​𝐯​−i​​  ∈ ​ V​−i​​.​

For our purposes, it will be important that among such optimal auctions there are 
ones that do not allocate the object when the highest ironed virtual valuation is 
weakly negative.

COROLLARY 1: There is an optimal auction ​​(q, t)​​ that is dominant strategy 
incentive compatible and ex post individually rational such that, for all ​i  ∈  N​ and 
all ​v  ∈  V​, ​​q​i​​​(v)​  =  0​ if ​i  ∉  W​(v)​​.

IV.  Stage One: Information Disclosure

We now turn to stage one of the game, in which the bidders choose the signal 
structures to disclose information.

A. Disclosure Games

Fix an optimal strategy for the auctioneer, that is, a function  
​f : 𝐩  ↦ ​ (​𝐪​​ f​​( · , 𝐩)​, ​𝐭​​ f​​( · , 𝐩)​)​​ that determines an optimal auction for every profile of 
posteriors ​𝐩  ∈  ​. With the auctions fixed, the bidders’ choice of signal structures is 
a one-stage game, which we call a disclosure game. Note that due to the possibility 
of ties or the highest ironed virtual valuation being zero, optimal auctions need not 
be unique. Thus, the optimal strategy of the auctioneer is not unique, and one can 
construct different disclosure games. In any disclosure game, the set of strategies of 
bidder ​i​ is the set of his signal structures ​​B​i​​​. In the disclosure game corresponding 
to the auctioneer’s strategy ​f​, bidder ​i​’s ex ante expected payoff in the auction at ​𝐩​ is

(9)	​​ u​ i​ 
f​​(𝐩)​  = ​   ∑ 

𝐯∈V​(𝐩)​
​ 

 

 ​​​ [​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​q​ i​ 
f​​(𝐯, 𝐩)​p​(𝐯)​,​

as stated in Proposition 1(c), making the dependence on ​𝐩​ explicit in the notation.14 
His payoff with signal structure ​​b​i​​​ when the other bidders play ​​𝐛​−i​​​ is

	​​ U​ i​ 
f​​(​b​i​​, ​𝐛​−i​​)​  = ​ ∫ ​​i​​

​ 
 

 ​​​∫ ​​−i​​
​ 

 

 ​​​ u​ i​ 
f​​(𝐩)​ d​b​−i​​​(​𝐩​−i​​)​ d​b​i​​​(​p​i​​)​.​

A Nash equilibrium of the disclosure game corresponding to ​f​ is a profile ​​𝐛​​ ∗​​ such 
that

	​​ U​ i​ 
f​​(​𝐛​​ ∗​)​  ≥ ​ U​ i​ 

f​​(​b​i​​, ​𝐛​ −i​ 
∗ ​)​    ∀​b​i​​  ∈ ​ B​i​​, ∀i  ∈  N.​

14 In the Appendix, further notation from Section III is augmented by ​𝐩​ or ​​p​i​​​, respectively.
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B. Improving Ironed Virtual Valuations

In this subsection, we describe how bidders can improve their ironed virtual 
valuations by disclosing more information. This will enable us to identify profit-
able deviations in the following sections. Throughout the paper, we usually denote 
the support ​​V​i​​​(​p​i​​)​​ of any posterior ​​p​i​​  ∈ ​ ​i​​​ by ​​V​i​​​(​p​i​​)​  = ​ {​v​ i​ 

1​,  …, ​v​ i​ 
​m​i​​​}​​, where ​​

v​ i​ 
1​  <  ⋯  < ​ v​ i​ 

​m​i​​​​ and ​​m​i​​  ≥  1​. Occasionally, we also write ​​V​i​​​(​p​i​​)​  = ​ {​v​ i​ 
1​​(​p​i​​)​,  …, ​

v​ i​ 
​m​i​​​​(​p​i​​)​}​​ to stress the dependence on ​​p​i​​​. Recall that under posterior ​​p​i​​​, the virtual 

valuations are ​​J​i​​​(​v​ i​ 
​m​i​​​, ​p​i​​)​  = ​ v​ i​ 

​m​i​​​​ and

	​​ J​i​​​(​v​ i​ 
k​, ​p​i​​)​  = ​ v​ i​ 

k​ − ​ 
1 − ​P​i​​​(​v​ i​ 

k​)​
 _ 

​p​i​​​(​v​ i​ 
k​)​

 ​​ (​v​ i​ 
k+1​ − ​v​ i​ 

k​)​    for 1  ≤  k  < ​ m​i​​.​

We start with an intuitive description of the main idea. Consider a posterior ​​p​i​​​ that is 
in the support of bidder ​i​’s signal structure. Let ​​v ˆ ​  ∈ ​ V​i​​​(​p​i​​)​​ and ​ξ  ∈ ​ (0, 1)​​. Suppose 
bidder ​i​ discloses more information by sending an additional signal together with the 
signal that induces posterior ​​p​i​​​. If bidder ​i​’s valuation is ​​v​i​​  > ​ v ˆ ​​, the additional sig-
nal reveals with probability ​ξ​ that this is the case, and otherwise nothing is revealed. 
Consequently, instead of ​​p​i​​​, the auctioneer updates with probability ​θ  = ​ [1 − ​P​i​​​(​v ˆ ​)​]​ξ​  
to posterior ​​p​ i​ 

I​​ and with probability ​1 − θ​ to posterior ​​p​ i​ 
II​​, where

	​​ p​ i​ 
I​​(​v​i​​)​  = ​

{
​
0,

​ 
if ​v​i​​  ≤ ​ v ˆ ​;

​  
​ 
ξ _ θ ​ ​p​i​​​(​v​i​​)​,

​ 
if ​v​i​​  > ​ v ˆ ​,

 ​​    and  ​  p​ i​ 
II​​(​v​i​​)​  = ​

{
​
​  1 _ 
1 − θ ​ ​p​i​​​(​v​i​​)​,

​ 
if ​v​i​​  ≤ ​ v ˆ ​;

​  
​ 
1 − ξ _ 
1 − θ ​ ​p​i​​​(​v​i​​)​,

​ 
if ​v​i​​  > ​ v ˆ ​.

 ​​​

That is, now either the auctioneer is certain that the valuation is above the cutoff ​​v ˆ ​​ or 
she remains uncertain but assigns less probability to valuations above ​​v ˆ ​​. As in each 
case the probabilities ​​p​i​​​(​v​i​​)​​ are multiplied by the same factor for all ​​v​i​​  > ​ v ˆ ​​, the cor-
responding virtual valuations remain unchanged: ​​J​i​​​(​v​i​​, ​p​ i​ 

I​)​  = ​ J​i​​​(​v​i​​, ​p​ i​ 
II​)​  = ​ J​i​​​(​v​i​​, ​p​i​​)​​  

for ​​v​i​​  > ​ v ˆ ​​. But ​​J​i​​​(​v​i​​, ​p​ i​ 
II​)​  > ​ J​i​​​(​v​i​​, ​p​i​​)​​ for ​​v​i​​  ≤ ​ v ˆ ​​, as valuations ​​v​i​​  ≤ ​ v ˆ ​​ get more 

weight than ​​v​i​​  > ​ v ˆ ​​. So, by replacing ​​p​i​​​ with ​​p​ i​ 
I​​ and ​​p​ i​ 

II​​, bidder ​i​ may increase his 
chance of winning the auction with valuations ​​v​i​​  ≤ ​ v ˆ ​​ at the cost of a lower infor-
mation rent, while leaving valuations ​​v​i​​  > ​ v ˆ ​​ unaffected. Finally, note that the signal 
structure we obtain when replacing a posterior ​​p​i​​​ by ​​p​ i​ 

I​​ and ​​p​ i​ 
II​​ is also consistent 

with (1) because, by construction, the expected posterior conditional on the original 
signal structure drawing ​​p​i​​​ is ​​p​i​​​ (i.e., ​θ ​p​ i​ 

I​​(​v​i​​)​ + ​(1 − ​θ​i​​)​ ​p​ i​ 
II​​(​v​i​​)​  = ​ p​i​​​(​v​i​​)​​ for all ​​v​i​​​).

We next define two specific modifications of signal structures, called ​ϵ​-extension 
and ​δ​-extension, that consist of replacing potentially many posteriors ​​p​i​​​ with some 
corresponding ​​p​ i​ 

I​​ and ​​p​ i​ 
II​​.15 We show that the effect on ​​J​i​​​ translates to the ironed 

virtual valuations ​​H​i​​​, which are relevant for the allocation, and we characterize the 
resulting payoff. Before doing so, we establish some basic properties of ironed vir-
tual valuations.

15 See Section OA2 in the online Appendix for a more formal definition of ​ϵ​- and ​δ​-extensions.
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LEMMA 1: For every ​i  ∈  N​ and every ​​p​i​​  ∈ ​ ​i​​​,

	 (a)	​​ H​i​​​(​v​i​​, ​p​i​​)​  < ​ v​i​​​ for ​​v​i​​  < ​ v​ i​ 
​m​i​​​​ and ​​H​i​​​(​v​ i​ 

​m​i​​​, ​p​i​​)​  = ​ v​ i​ 
​m​i​​​​;

	 (b)	​​ H​i​​​(​v​i​​, · )​​ is continuous at ​​p​i​​​ for every ​​v​i​​  ∈ ​ V​i​​​(​p​i​​)​​.

Now, consider any signal structure ​​b​i​​  ∈ ​ B​i​​​ of bidder ​i​. An ​ϵ​-extension ​​b​ i​ 
ϵ​​ 

of ​​b​i​​​ for some ​ϵ  ∈ ​ (0, 1)​​ replaces every ​​p​i​​​ with ​​p​ i​ 
I​​ and ​​p​ i​ 

II​​ for ​​v ˆ ​  = ​ v​ i​ 
​m​i​​−1​​(​p​i​​)​​ 

and ​ξ  =  ϵ​. Specifically, whenever ​​b​i​​​ draws ​​p​i​​  ∈ ​ ​i​​​, ​​b​ i​ 
ϵ​​ instead draws ​​p​ i​ ′​  = ​ p​ i​ 

I​​ with  
probability ​θ​(​p​i​​)​  = ​ p​i​​​(​v​ i​ 

​m​i​​​​(​p​i​​)​)​ϵ​ and ​​p​ i​ 
ϵ​  = ​ p​ i​ 

II​​ with probability ​1 − θ​(​p​i​​)​​. 
Intuitively, for any posterior ​​p​i​​​ under ​​b​i​​​, ​​b​ i​ 

ϵ​​ perfectly reveals the valuation with prob-
ability ​ϵ​ if the valuation is the highest possible one under ​​p​i​​​, which is represented by 
posterior ​​p​ i​ ′​​. Otherwise, posterior ​​p​ i​ 

ϵ​​ results where all virtual valuations except for 
the highest one are strictly greater than under ​​p​i​​​.

The following lemma shows that all ironed virtual valuations ​​H​i​​​(​v​i​​, ​p​ i​ 
ϵ​)​​ (except 

for ​​H​i​​​(​v​ i​ 
​m​i​​​, ​p​ i​ 

ϵ​)​  = ​ v​ i​ 
​m​i​​​​) are strictly increasing in ​ϵ​. Hence, in consequence of choos-

ing an ​ϵ​-extension ​​b​ i​ 
ϵ​​ instead of ​​b​i​​​, bidder ​i​ wins any tie that occurs under ​​b​i​​​, and 

he also wins when his ironed virtual valuation is zero and among the highest ones 
under ​​b​i​​​. This is true even in the limit when ​ϵ​ approaches zero and the cost in terms 
of a lower information rent vanishes. That is, bidder ​i​’s allocation probabilities and 
thus his payoff are in general not continuous in ​ϵ​ at ​ϵ  =  0​. The payoff in the limit 
when ​ϵ​ approaches zero can be expressed using the following definition. For ​𝐩  ∈  ​ 
and ​𝐯  ∈  V​(𝐩)​​, let

(10) ​

	​​ W ˆ ​​0​​​(𝐯, 𝐩)​  = ​ {i  ∈  N ∣ ​H​i​​​(​v​i​​, ​p​i​​)​  ≥  0, i  ∈ ​ arg max​ 
j
​ ​ ​ H​j​​​(​v​j​​, ​p​j​​)​, ​v​i​​  ∈ ​ V​i​​​(​p​i​​)​\​{​v​ i​ 

​m​i​​​}​}​​

be the set of bidders ​i​ whose ironed virtual valuations are weakly positive, the high-
est among all bidders, and not their highest possible one at ​​p​i​​​.

LEMMA 2: 

	 (a)	 For every ​i  ∈  N​, every ​​p​i​​  ∈ ​ ​i​​​, and every ​​v​i​​  ∈ ​ V​i​​​(​p​i​​)​\​{​v​ i​ 
​m​i​​​}​​, ​​H​i​​​(​v​i​​, ​p​ i​ 

ϵ​)​  
> ​ H​i​​​(​v​i​​, ​p​i​​)​​ and ​​H​i​​​(​v​i​​, ​p​ i​ 

ϵ​)​​ is strictly increasing in ​ϵ​.

	 (b)	 Let ​f​ be any optimal strategy for the auctioneer. For every ​i  ∈  N​ and 
every ​𝐛  ∈  B​,

	​​ lim​ 
ϵ→0

​ ​ ​U​ i​ 
f​​(​b​ i​ 

ϵ​, ​𝐛​−i​​)​  = ​ ∫ ​​i​​
​ 

 

 ​​​∫ ​​−i​​
​ 

 

 ​​​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ [​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​𝟏​i∈​​W ˆ ​​0​​​(𝐯,𝐩)​​​ p​(𝐯)​ d​b​−i​​​(​𝐩​−i​​)​ d​b​i​​​(​p​i​​)​.​

Observe that ​​𝟏​i∈​​W ˆ ​​0​​​(𝐯,𝐩)​​​  ≥ ​ q​ i​ 
f​​(𝐯, 𝐩)​​ if ​​v​i​​  < ​ v​ i​ 

​m​i​​​​ and ​​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​  =  0​ if  
​​v​i​​  = ​ v​ i​ 

​m​i​​​​. Thus, ​​lim​ϵ→0​​ ​U​ i​ 
f​​(​b​ i​ 

ϵ​, ​𝐛​−i​​)​  ≥ ​ U​ i​ 
f​​(𝐛)​​: an increase of ​ϵ​ from zero results in 

bidder ​i​ winning any tie that can occur under ​𝐛​ as well as winning when his and 
the highest ironed virtual valuation is zero. If such events have positive probability 
under ​𝐛​, then by the continuity of ironed virtual valuations, an ​ϵ​-extension ​​b​ i​ 

ϵ​​ with 
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small enough ​ϵ​ (so that the cost of reducing the information rent vanishes) results in 
a strictly higher payoff than ​​b​i​​​.

A ​δ​-extension ​​b​ i​ 
δ​​ of ​​b​i​​​ differs from ​​b​i​​​ only at posteriors where some ironed virtual 

valuations are strictly negative: it replaces every posterior ​​p​i​​​ such that

(11) ​​ m​i​​  >  1    and    ​H​i​​​(​v​ i​ 
k​, ​p​i​​)​  <  0  ≤ ​ H​i​​​(​v​ i​ 

k+1​, ​p​i​​)​  for some k  < ​ m​i​​,​

with ​​p​ i​ 
I​​ and ​​p​ i​ 

II​​ for ​​v ˆ ​  = ​ v​ i​ 
k​​(​p​i​​)​​ and ​ξ  =  δ​(​p​i​​)​  ∈ ​ (0, 1)​​. Specifically, when-

ever ​​b​i​​​ draws such a ​​p​i​​​, ​​b​ i​ 
δ​​ instead draws ​​p​ i​ ′′​  = ​ p​ i​ 

I​​ with probability ​θ​(​p​i​​)​  
= ​ [1 − ​P​i​​​(​v​ i​ 

k​​(​p​i​​)​)​]​δ​(​p​i​​)​​ and ​​p​ i​ 
δ​(​p​i​​)​​  = ​ p​ i​ 

II​​ with probability ​1 − θ​(​p​i​​)​​.
The following lemma shows that each ​δ​(​p​i​​)​​ can be chosen such that the negative 

ironed virtual valuation at the cutoff ​​v​ i​ 
k​​(​p​i​​)​​ increases to zero under ​​p​ i​ 

δ​(​p​i​​)​​​. Most impor-
tantly, such a ​δ​-extension comes at no cost because all weakly positive ironed virtual 
valuations remain unchanged, and it thus allows bidder ​i​ to weakly increase his payoff.

LEMMA 3: 

	 (a)	 For every ​i  ∈  N​ and every ​​p​i​​  ∈ ​ ​i​​​ that satisfies (11), there is a  
​δ​(​p​i​​)​  ∈ ​ (0, 1)​​ such that

	 (12)	​​ H​i​​​(​v​i​​, ​p​ i​ 
δ​(​p​i​​)​​)​  = ​ {​

0,
​ 

if ​v​i​​  = ​ v​ i​ 
k​;

​  
​H​i​​​(​v​i​​, ​p​i​​)​,

​ 
if ​v​i​​  ∈ ​ {​v​ i​ 

k+1​, …, ​v​ i​ 
​m​i​​​}​.

​​​

		  Moreover, ​​H​i​​​(​v​i​​, ​p​ i​ ′′​)​  = ​ H​i​​​(​v​i​​, ​p​i​​)​​ for all ​​v​i​​  ∈ ​ V​i​​​(​p​ i​ ′′​)​​.

	 (b)	 Let ​f​ be any optimal strategy of the auctioneer, ​i  ∈  N​, and ​𝐛  ∈  B​. Let ​​b​ i​ 
δ​​ be 

such that for every ​​p​i​​  ∈ ​ ​i​​​ that satisfies (11), (12) holds. Then, ​​U​ i​ 
f​​(​b​ i​ 

δ​, ​𝐛​−i​​)​  
≥ ​ U​ i​ 

f​​(𝐛)​​.

V.  Existence of Subgame-Perfect Nash Equilibria

This section shows the existence of a subgame-perfect Nash equilibrium in the 
overall two-stage game of information disclosure and auction design. An SPNE con-
sists of an optimal strategy ​f​ for the auctioneer and a profile of signal structures ​𝐛​ 
that forms a Nash equilibrium in the disclosure game defined by ​f​. Thus, we prove 
the existence of an SPNE by presenting a disclosure game that has a Nash equilib-
rium. For ​𝐩  ∈  ​ and ​𝐯  ∈  V​(𝐩)​​, let

	​​ W​0​​​(𝐯, 𝐩)​  = ​ {i  ∈  N ∣ ​H​i​​​(​v​i​​, ​p​i​​)​  ≥  0 and i  ∈ ​ arg max​ 
j
​ ​ ​ H​j​​​(​v​j​​, ​p​j​​)​}​​

be the set of bidders whose ironed virtual valuation is weakly positive and the high-
est among all bidders. Consider the allocation rule ​​𝐪​​ h​​( · , 𝐩)​​ given by

(13) ​​ q​ i​ 
h​​(𝐯, 𝐩)​  = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​

1 / |​​W ˆ ​​0​​​(𝐯, 𝐩)​|,
​ 

if i  ∈ ​​ W ˆ ​​0​​​(𝐯, 𝐩)​;

​   1 / |​W​0​​​(𝐯, 𝐩)​|,​  if i  ∈ ​ W​0​​​(𝐯, 𝐩)​ and ​​W ˆ ​​0​​​(𝐯, 𝐩)​  =  ∅;​    

0,

​ 

otherwise,

  ​​​
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where ​​​W ˆ ​​0​​​(𝐯, 𝐩)​​ is the subset of bidders in ​​W​0​​​(𝐯, 𝐩)​​ whose valuation is not their 
highest possible one, as defined in (10). Under ​​𝐪​​ h​​, the object is allocated also when 
the highest ironed virtual valuation is zero. Moreover, ties are broken uniformly but 
not necessarily among all bidders in the tie. Specifically, if there is a tie at ​​(𝐯, 𝐩)​​ 
and the set of bidders ​​​W ˆ ​​0​​​(𝐯, 𝐩)​​ is not empty, then the tie is broken only among the 
bidders in ​​​W ˆ ​​0​​​(𝐯, 𝐩)​​.

LEMMA 4: For every ​p  ∈  ​, ​​q​​ h​​( · , p)​​ is an optimal allocation rule.

Let ​​𝐭​​ h​​( · , 𝐩)​​ be an optimal transfer rule corresponding to ​​𝐪​​ h​( · , 𝐩)​, obtained from 
Proposition 1(b). We call the disclosure game defined by ​h : 𝐩  ↦  (​𝐪​​ h​( · , 𝐩), ​𝐭​​ h​( · , 𝐩))​  
the hierarchical disclosure game.16 We will show that this game has a Nash equilibrium.

Denote the vector payoff function of the hierarchical disclosure game by ​​
𝐔​​ h​  :  B  → ​ ℝ​​ n​​, where ​​𝐔​​ h​​(𝐛)​  = ​ (​U​ 1​ 

h​​(𝐛)​, …, ​U​ n​ 
h​​(𝐛)​)​​. The graph of ​​𝐔​​ h​​ is the set  

​​{​(𝐛, 𝐲)​  ∈  B × ​ℝ​​ n​ ∣ 𝐲  = ​ 𝐔​​ h​​(𝐛)​}​​. Endow each set ​​B​i​​​ with the weak* topology and 
Cartesian products with the product topology. According to Reny (1999, theorem 
3.1), the hierarchical disclosure game has a Nash equilibrium if it is better-reply 
secure, that is, if whenever ​​(​𝐛​​ ∗​, ​𝐲​​ ∗​)​​ is in the closure of the graph of the vector pay-
off function and ​​𝐛​​ ∗​​ is not a Nash equilibrium, then there is a bidder ​i​ and a strategy ​​
b​i​​  ∈ ​ B​i​​​ such that ​​U​ i​ 

h​​(​b​i​​, ​𝐛​−i​​)​  > ​ y​ i​ 
∗​​ for all ​​𝐛​−i​​​ in some open neighborhood of ​​𝐛​ −i​ 

∗ ​​.17

LEMMA 5: The hierarchical disclosure game is better-reply secure. Hence, it has 
a Nash equilibrium.

The proof uses the ​ϵ​-extensions of signal structures introduced in Section 
IVB.18 For illustration, suppose ​​(​𝐛​​ ∗​, ​𝐲​​ ∗​)​​ is in the closure of the graph of the vec-
tor payoff function, that is, there is a sequence of strategy profiles ​​(​𝐛​​ l​)​​ such that  
​​lim​l→∞​​ ​𝐛​​ l​  = ​ 𝐛​​ ∗​​ and ​​lim​l→∞​​ ​𝐔​​ h​​(​𝐛​​ l​)​  = ​ 𝐲​​ ∗​​. The key step is to show that if ​​y​ i​ 

∗​  > ​
U​ i​ 

h​​(​𝐛​​ ∗​)​​ for some bidder ​i​, then there is a bidder ​j​ and a strategy ​​b​j​​​ such that  
​​U​ j​ 

h​​(​b​j​​, ​𝐛​ −j​ 
∗ ​)​  > ​ y​ j​ 

∗​​. If ​​y​ i​ 
∗​  > ​ U​ i​ 

h​​(​𝐛​​ ∗​)​​, we can infer (i) there are ties under ​​𝐛​​ ∗​​ and bid-
der ​i​ wins with strictly higher probability in the limit of ​​(​𝐛​​ l​)​​ than at ​​𝐛​​ ∗​​ and (ii) ​i​’s 
valuation in the ties is not his highest possible one since payoffs do not depend 
on the allocation probability with the highest valuation (as ​​H​i​​​(​v​ i​ 

​m​i​​​, ​p​i​​)​  = ​ v​ i​ 
​m​i​​​​ by 

Lemma 1(a)). By (i), some bidder ​j​ reaches some of the same ties under ​​𝐛​​ ∗​​ and 
wins with strictly lower probability in the limit of ​​(​𝐛​​ l​)​​ than at ​​𝐛​​ ∗​​. By (ii) and the 
construction of the allocation rules in the hierarchical disclosure game, ​j​’s valuation 
in the ties is also not his highest possible one, so he would benefit from a higher 
allocation probability. Now, through an ​ϵ​-extension ​​b​ j​ 

∗ϵ​​, ​j​ can raise his ironed virtual 
valuations and thus his allocation probability. The cost is that he reveals his highest 
possible valuation with probability ​ϵ​, which reduces his information rent. But by 

16 Measurability of ​h​ follows from the continuity of ​​H​i​​​(​v​i​​, · )​​ shown in Lemma 1(b).
17 Reny (1999, theorem 3.1) requires each ​​B​i​​​ to be convex and compact and each function ​​U​ i​ 

h​​( · , ​𝐛​−i​​)​​ to be 
quasi-concave for all ​​𝐛​−i​​  ∈  ​B​−i​​​. Clearly, ​​B​i​​​ is convex; ​​B​i​​​ is compact because it is a closed subset of the (compact) 
space of all distributions on ​​​i​​​ endowed with the weak* topology. Quasi-concavity of ​​U​ i​ 

h​​( · , ​𝐛​−i​​)​​ follows from 
linearity.

18 It is related to Reny’s (1999) proof that the multiunit first-price auction is better-reply secure.
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choosing ​ϵ​ very small, this cost becomes negligible, and so ​​U​ j​ 
h​​(​b​ j​ 

∗ϵ​, ​𝐛​ −j​ 
∗ ​)​  > ​ y​ j​ 

∗​​, as 
required for better-reply security.

We already pointed out that if there is a disclosure game that has a Nash equilib-
rium, then the overall two-stage game of information disclosure and auction design 
has an SPNE. Hence, the following proposition directly follows from Lemma 5.

PROPOSITION 2: A subgame-perfect Nash equilibrium exists.

VI.  Information Disclosure and Expected Revenue

We now present our main result on the auctioneer’s expected revenue in any 
subgame-perfect Nash equilibrium. We first show that in every Nash equilibrium 
of a disclosure game, with probability one some bidder’s ironed virtual valuation is 
strictly positive.

LEMMA 6: Suppose ​b​ is a Nash equilibrium of a disclosure game. Then, there is a 
bidder ​i  ∈  N​ such that

(14)	​​ b​i​​​(​{​p​i​​  ∈ ​ ​i​​ ∣ ​H​i​​​(​v​i​​, ​p​i​​)​  >  0  ∀ ​v​i​​  ∈ ​ V​i​​​(​p​i​​)​}​)​  =  1.​

The key idea behind this lemma is that competition in information disclosure erodes 
information rents such that keeping the object is strictly suboptimal for the auction-
eer. The proof uses the ​ϵ​- and ​δ​-extensions introduced in Section IVB. For illustra-
tion, let ​f​ be any optimal strategy for the auctioneer and consider the corresponding 
disclosure game. Let ​𝐛​ be a profile of signal structures that does not satisfy (14), that 
is, under which the ironed virtual valuation of every bidder can be weakly negative. 
Through a ​δ​-extension ​​b​ i​ 

δ​​, any bidder ​i​ can raise strictly negative ironed virtual valu-
ations (if any) to zero without sacrificing any payoff. By performing an ​ϵ​-extension 
of ​​b​ i​ 

δ​​, bidder ​i​ can raise these ironed virtual valuations further to a value strictly 
above zero—with which he wins the auction whenever all other bidders happen to 
have a weakly negative ironed virtual valuation. The cost of the ​ϵ​-extension is that, 
with probability ​ϵ​, bidder ​i​ reveals his highest possible valuation, which reduces his 
information rent. But by choosing ​ϵ​ very small, this cost becomes negligible. Hence, ​​
b​i​​​ was not a best response against ​​𝐛​−i​​​.

We are now in the position to establish our main result, according to which 
information disclosure raises the auctioneer’s expected revenue. As a benchmark, 
suppose the bidders cannot disclose information, so that the auctioneer designs 
the auction based on the prior beliefs. We refer to this as the model without infor-
mation disclosure, as compared to our actual model with information disclosure. 
Suppose that for each bidder ​i​, the prior ​​​p – ​​i​​​ is such that in the model without infor-
mation disclosure, the ironed virtual valuation for valuation ​​​v –​​ i​ 

1​​ is weakly negative,  
​​H​i​​​(​​v –​​ i​ 

1​, ​​p – ​​i​​)​  ≤  0​. Then by Corollary 1, in the model without disclosure there is an 
optimal auction ​​(​𝐪̂  ​​( · , ​𝐩 – ​)​, ​𝐭  ​​( · , ​𝐩 – ​)​)​​ that is dominant strategy incentive compatible 
and ex post individually rational and, with probability one, does not allocate the 
object when the profile of valuations ​​(​​v –​​ 1​ 

1​, …, ​​v –​​ n​ 
1​)​​ obtains.
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Return now to our actual model with information disclosure. Clearly, the auc-
tion ​​(​𝐪̂  ​​( · , 𝐩)​, ​𝐭  ​​( · , 𝐩)​)​​ with ​​𝐪̂  ​​(𝐯, 𝐩)​  = ​ 𝐪̂  ​​(𝐯, ​𝐩 – ​)​​ and ​​𝐭  ​​(𝐯, 𝐩)​  = ​ 𝐭  ​​(𝐯, ​𝐩 – ​)​​ for each  
​𝐯  ∈  V​(𝐩)​​ is dominant strategy incentive compatible and ex post individually ratio-
nal for every profile of posteriors ​𝐩  ∈  ​.19 Hence, it lies in the auctioneer’s choice 
set at every ​𝐩​. Moreover, if she uses it at every ​𝐩​, she obtains the same expected 
revenue as in the model without information disclosure.20 However, this auction is 
not optimal at profiles ​𝐩​ where ​​(​​v –​​ 1​ 

1​, …, ​​v –​​ n​ 
1​)​  ∈  V​(𝐩)​​ and for at least one bidder all 

possible ironed virtual valuations are strictly positive: at such profiles, every optimal 
auction allocates the object with probability one by Proposition 1. Invoking Lemma 
6, we conclude that in every subgame-perfect Nash equilibrium ​​(​ f​​ ∗​, ​𝐛​​ ∗​)​​, the auc-
tioneer’s expected revenue satisfies

	​​ ∫ 𝐩∈​ 
 

 ​​ ​  ∑ 
i∈N

​​​ ​  ∑ 
𝐯∈V​(𝐩)​

​​​​t​ i​ 
​f​​ ∗​​​(𝐯, 𝐩)​p​(𝐯)​ d​b​​ ∗​​(𝐩)​  > ​ ∫ 𝐩∈​ 

 

 ​​ ​  ∑ 
i∈N

​​​ ​  ∑ 
𝐯∈V​(𝐩)​

​​​​​t ̂ ​​i​​​(𝐯, 𝐩)​p​(𝐯)​ d​b​​ ∗​​(𝐩)​​

	​ = ​  ∑ 
i∈N

​​​ ​ ∑ 
𝐯∈​V 

–
​
​​​​​t ̂ ​​i​​​(𝐯, ​𝐩 – ​)​​p – ​​(𝐯)​,​

where the equality follows from (1). This proves our main result.

THEOREM 1: Suppose that for each bidder ​i  ∈  N​, the prior ​​​p – ​​i​​​ is such that in the 
model without information disclosure, the ironed virtual valuation for valuation ​​​v –​​ i​ 

1​​ 
is weakly negative, ​​H​i​​​(​​v –​​ i​ 

1​, ​​p – ​​i​​)​  ≤  0​. Then in every subgame-perfect Nash equilib-
rium ​​( ​f​​ ∗​, ​b​​ ∗​)​​ of the model with information disclosure, the auctioneer’s expected 
revenue is strictly higher than in the model without information disclosure,

	​​ ∫ 𝐩∈​ 
 

 ​​​  ∑ 
i∈N

​ 
 

 ​​ ​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ t​ i​ 
​f​​ ∗​​​(𝐯, 𝐩)​p​(𝐯)​ d​b​​ ∗​​(𝐩)​  > ​  ∑ 

i∈N
​ 

 

 ​​  ​  ∑ 
𝐯∈​V 

–
​
​ 

 

 ​​​​ t ̂ ​​i​​​(𝐯, ​𝐩 – ​)​​p – ​​(𝐯)​.​

VII.  Examples of Equilibrium Information Disclosure

We showed that our two-stage game of information disclosure and auction design 
has a subgame-perfect Nash equilibrium, and we showed the key property that infor-
mation disclosure raises the auctioneer’s expected revenue in every equilibrium. In 
this section, we present equilibrium disclosure strategies for several special cases of 
the model.

Two Possible Valuations.—Consider a generalization of the setting of Section II: 
there are ​n​ bidders with arbitrary priors ​​𝐩 – ​​ with the same support ​​​V 

–
​​i​​  = ​ {​v​​ L​, ​v​​ H​}​​ for 

all ​i  ∈  N​.
Suppose bidder ​i​ perfectly discloses his valuation. That is, the signal structure ​​

b​i​​​ draws with probability ​​​p – ​​i​​​(​v​​ L​)​​ the posterior ​​p​i​​​ such that ​​V​i​​​(​p​i​​)​  = ​ {​v​​ L​}​​ and with 
probability ​​​p – ​​i​​​(​v​​ H​)​​ the posterior ​​p​i​​​ such that ​​V​i​​​(​p​i​​)​  = ​ {​v​​ H​}​​. Clearly, the payoff 
of bidder ​i​ is then zero. But also the payoff of every bidder ​j  ≠  i​ is zero for every 

19 If ​​(​𝐪 ˆ ​​( · , ​𝐩 – ​)​, ​𝐭 ˆ ​​( · , ​𝐩 – ​)​)​​ is merely Bayesian incentive compatible and interim individually rational, these proper-
ties need not carry over to ​​(​𝐪 ˆ ​​( · , 𝐩)​, ​𝐭 ˆ ​​( · , 𝐩)​)​​, as they depend on the bidders’ revised beliefs ​𝐩​.

20 Incidentally, this proves that the auctioneer cannot be worse off through information disclosure.
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signal structure ​​b​j​​​: under every posterior ​​p​j​​​ such that ​​p​j​​​(​v​​ L​)​  ∈ ​ (0, 1)​​, bidder ​j​ never 
wins the auction with valuation ​​v​​ L​​ since ​​H​j​​​(​v​​ L​, ​p​j​​)​  < ​ v​​ L​  ≤ ​ H​i​​​(​v​i​​, ​p​i​​)​​, and thus his 
ex ante expected payoff (9) is zero. Intuitively, with binary valuations the auctioneer 
only leaves an information rent to bidder ​j​ if she needs to deter him from reporting ​​v​​ L​​ 
when his valuation is ​​v​​ H​​. Yet if bidder ​i​’s valuation is known, the auctioneer prefers 
to always let ​i​ win when ​j​ reports ​​v​​ L​​, such that there is no need for such deterrence.

Hence, if bidder ​i​ perfectly discloses, every signal structure ​​b​j​​​ is a best response 
of every bidder ​j  ≠  i​. This observation does not depend on which optimal auctions 
the auctioneer chooses. Accordingly, every profile of signal structures where at least 
two bidders perfectly disclose is a Nash equilibrium of every disclosure game.

PROPOSITION 3: Suppose ​​​V 
–
​​i​​  = ​ {​v​​ L​, ​v​​ H​}​​ for all ​i  ∈  N​. Then, ​​b​​ ∗​​ is a Nash equi-

librium of every disclosure game if for at least two bidders ​i  ∈  N​, ​​b​ i​ 
∗​​ draws with 

probability ​​​p – ​​i​​​(​v​​ L​)​​ the posterior ​​p​ i​ ′​​ such that ​​V​i​​​(​p​ i​ ′​)​  = ​ {​v​​ L​}​​ and with probability  
​​​p – ​​i​​​(​v​​ H​)​​ the posterior ​​p​ i​ ′′​​ such that ​​V​i​​​(​p​ i​ ′′​)​  = ​ {​v​​ H​}​​. Moreover, the equilibrium payoff 
is ​​U​i​​​(​b​​ ∗​)​  =  0​ for all ​i  ∈  N​.

In the online Appendix, we further show that there are no other Nash equilibria 
(see Proposition OA1). When there are only two bidders, both perfectly disclosing 
is therefore the unique Nash equilibrium of every disclosure game.

With at least two bidders perfectly disclosing, the auctioneer’s revenue is equal to 
the first-best surplus ​​∑ 𝐯∈​V 

–
​​ 

 
 ​​​ (​max​i∈N​​ ​v​i​​)​​p – ​​(𝐯)​​. This is always strictly greater than the 

revenue ​​∑ 𝐯∈​V 
–
​​ 

 
 ​​ max​{0, ​max​i∈N​​ ​H​i​​​(​v​i​​, ​​p – ​​i​​)​}​​p – ​​(𝐯)​​ in the model without disclosure, where 

bidders may earn an information rent. For example, if ​​​V 
–
​​i​​  = ​ {1, 4}​​ and ​​​p – ​​i​​​(1)​  =  3 / 4​ 

for ​i  ∈  N  = ​ {1, 2}​​, then the revenue is ​​[1 − ​​(3 / 4)​​​ 2​]​ · 4 + ​​(3 / 4)​​​ 2​ · 1  =  37 / 16​ 
with disclosure and ​​[1 − ​​(3 / 4)​​​ 2​]​ · 4  =  28 / 16​ without disclosure. So the relative 
gain through disclosure is about 32 percent.

Two Symmetric Bidders and Three Possible Valuations.—Let there be two bid-
ders with identical priors over three possible valuations. The following proposition 
identifies a symmetric strategy profile that is a Nash equilibrium of every disclosure 
game. Proposition OA2 in the online Appendix shows that there are no other Nash 
equilibria.

PROPOSITION 4: Suppose ​N  = ​ {1, 2}​​ and ​​​V 
–
​​i​​  = ​ {​v​​ 1​, ​v​​ 2​, ​v​​ 3​}​​ with ​​​p – ​​i​​​(​v​​ k​)​  

= ​ ρ​​ k​  >  0​ for ​i  ∈  N​ and ​k  ∈ ​ {1, 2, 3}​​. Let ​​ y 
¯
 ​  = ​ (​v​​ 3​ − ​v​​ 2​)​ / ​(​v​​ 3​ − ​v​​ 1​)​​. The fol-

lowing strategy profile ​​(​b​ 1​ 
∗​, ​b​ 2​ 

∗​)​​ with ​​b​ 1​ 
∗​  = ​ b​ 2​ 

∗​​ is a Nash equilibrium of every dis-
closure game: under each ​​b​ i​ 

∗​​, posterior ​​p​i​​​ such that ​​V​i​​​(​p​i​​)​  = ​ {​v​​ 1​}​​ is drawn with 
probability ​​ρ​​ 1​​, posterior ​​p​i​​​ such that ​​V​i​​​(​p​i​​)​  = ​ {​v​​ 3​}​​ is drawn with probability

(15)	​​ π​​ 3​  =  max​{0, ​ρ​​ 3​ − ​ 
1 − ​ y 

¯
 ​
 _ ​ y 

¯
 ​ ​ ​ ρ​​ 1​ ln​[​ 

​ρ​​ 1​ + ​ρ​​ 2​
 _ 

​ρ​​ 1​
 ​ ]​}​  < ​ ρ​​ 3​,​

and with the remaining probability ​​(1 − ​ρ​​ 1​ − ​π​​ 3​)​​ a posterior ​​p​i​​​ such that  
​​V​i​​​(​p​i​​)​  = ​ {​v​​ 2​, ​v​​ 3​}​​ and ​​p​i​​​(​v​​ 2​)​  =  1 − ​p​i​​​(​v​​ 3​)​  =  y​ is drawn from the continuous 
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distribution identified with probability density function ​ϕ​ of parameter ​y​ on ​​[​ y 
¯
 ​, ​y –​]​​, 

where

	​ϕ​(y)​  = ​   κ _ 
y ​​(1 − y)​​​ 2​

 ​  with  κ  = ​ 
​ρ​​ 2​
 _ 

1 − ​ρ​​ 1​ − ​π​​ 3​
 ​ ​​(​ 

​y –​
 _____ 

1 − ​   y ​
 ​ − ​ 

​ y 
¯
 ​
 _ 

1 − ​ y 
¯
 ​
 ​)​​​ 

−1

​ for y  ∈ ​ [​ y 
¯
 ​, ​y –​]​,​

and ​​y –​  ∈ ​ (​ y 
¯
 ​, 1)​​ uniquely solves

(16)	​​ 
​ρ​​ 3​ − ​π​​ 3​

 _ 
​ρ​​ 2​

 ​   =  ln​[​ 
​y –​
 _____ 

1 − ​y –​
 ​ ​ 
1 − ​ y 

¯
 ​
 _ ​ y 

¯
 ​ ​ ]​ ​​(​ 

​y –​
 _____ 

1 − ​   y ​
 ​ − ​ 

​ y 
¯
 ​
 _ 

1 − ​ y 
¯
 ​
 ​)​​​ 

−1

​.​

Moreover, if ​​π​​ 3​  >  0​, then the equilibrium payoff is ​​U​ i​ 
f​​(​b​ 1​ 

∗​, ​b​ 2​ 
∗​)​  = ​ (​v​​ 2​ − ​v​​ 1​)​ ​ρ​​ 1​ ​ρ​​ 2​​.

In contrast to the case of binary valuations, perfect disclosure is not an equilibrium 
when there are three possible valuations. Indeed, by retaining some private infor-
mation, bidder ​i​ can earn an information rent if ​i​’s competitor perfectly discloses 
his valuation and this happens to be ​​v​​ 1​​. Under the equilibrium signal structure ​​b​ i​ 

∗​​, 
bidder ​i​ perfectly reveals if he has valuation ​​v​​ 1​​ but retains some private information 
regarding whether ​​v​​ 2​​ or ​​v​​ 3​​ realized. Specifically, the support of ​​b​ i​ 

∗​​ contains a contin-
uum of posteriors ​​p​i​​​ on ​​V​i​​​(​p​i​​)​  = ​ {​v​​ 2​, ​v​​ 3​}​​ with ​​p​i​​​(​v​​ 2​)​  ∈ ​ [​ y 

¯
 ​, ​y –​]​​, which implies that 

the virtual valuation ​​H​i​​​(​v​​ 2​, ​p​i​​)​  ≥ ​ v​​ 1​​. If bidder ​i​ plays ​​b​ i​ 
∗​​, bidder ​j  ≠  i​ thus faces 

an opponent whose virtual valuation is always at least ​​v​​ 1​​. Intuitively, it is thus a best 
response of bidder ​j​ to also perfectly reveal ​​v​​ 1​​ and to choose a signal structure such 
that ​​H​j​​​(​v​​ 2​, ​p​j​​)​  ≥ ​ v​​ 1​​ with positive probability. Moreover, as we show in the proof, 
the probability density ​ϕ​ is constructed in such a way that the distribution of virtual 
valuations ​​H​i​​​(​v​​ 2​, ​p​i​​)​​ bidder ​j​ faces renders him indifferent between any signal struc-
ture that ensures ​​p​j​​​(​v​​ 2​)​  ∈ ​ [​ y 

¯
 ​, ​y –​]​​ when his valuation is ​​v​​ 2​​ (possibly with the require-

ment that ​​v​​ 3​​ is never revealed, ​​π​3​​  =  0​). Accordingly, ​​b​ j​ 
∗​​ is indeed a best response.

The payoffs ​​U​ i​ 
f​​(​b​ 1​ 

∗​, ​b​ 2​ 
∗​)​​ in the equilibrium of Proposition 4 are the same in every 

disclosure game: how ties are resolved in the auction if ​​v​1​​  = ​ v​2​​  ∈ ​ {​v​​ 1​, ​v​​ 3​}​​ does 
not affect the ex ante expected payoff (9), otherwise ties happen with probability 
zero, and all virtual valuations are strictly positive. According to Proposition OA2 
in the online Appendix, ​​(​b​ 1​ 

∗​, ​b​ 2​ 
∗​)​​ is the unique equilibrium of each disclosure game. 

Thus, the bidders’ payoffs (like the revenue) are the same across all subgame-perfect 
Nash equilibria ​​(​f​​ ∗​, ​𝐛​​ ∗​)​​. Moreover, the equilibrium disclosure always strictly 
increases the virtual valuations of ​​v​​ 1​​ and ​​v​​ 2​​, resulting in a strictly higher revenue 
for the auctioneer than in the model without disclosure, independent of whether  
​​H​i​​​(​​v –​​ i​ 

1​, ​​p – ​​i​​)​  ≤  0​. Further, the resulting allocation is ex post efficient and, unlike in the 
binary-valuations case, bidders always earn strictly positive payoffs from retaining 
some relevant private information. As we point out next, these payoffs can be both 
higher or lower than in the model without disclosure.

To consider a particularly tractable specification, let ​​ρ​​ 1​  = ​ ρ​​ 2​  = ​ ρ​​ 3​  =  1 / 3​, ​​
v​​ 1​  =  1​, ​​v​​ 2​  =  2​, and ​​v​​ 3​  >  2 + ln​[2]​​. Thus, ​​π​​ 3​  >  0​ and equilibrium payoffs take 
the simple form given in Proposition 4, resulting in ​​U​ i​ 

f​​(​b​ 1​ 
∗​, ​b​ 2​ 

∗​)​  =  1 / 9​ independent 
of ​​v​​ 3​​. As the allocation is ex post efficient, the expected total surplus is ​​(5 ​v​​ 3​ + 7)​ / 9​, 
and the auctioneer’s revenue therefore ​​(5 ​v​​ 3​ + 5)​ / 9​. In Figure 2, revenue and payoff 
are depicted by the solid lines in panels A and B, respectively. Next, consider the 
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benchmark without disclosure, which corresponds to the dashed lines in Figure 2, 
and note that ​​J​i​​​(​v​​ 1​, ​​p – ​​i​​)​  =  − 1​ and ​​J​i​​​(​v​​ 2​, ​​p – ​​i​​)​  =  4 − ​v​​ 3​​. If ​​v​​ 3​  >  4​, the auctioneer 
sets a reserve price equal to ​​v​​ 3​​, resulting in revenue ​5 ​v​​ 3​ / 9​ and payoffs ​​u​i​​​(​𝐩 – ​)​  =  0​. 
Hence, not only the auctioneer but also the bidders strictly benefit from the disclo-
sure. If ​​v​​ 3​  <  4​, the auctioneer’s revenue in the benchmark is ​5 ​v​​ 3​ / 9 + ​(4 − ​v​​ 3​)​ / 3​, 
and payoffs are ​​u​i​​​(​𝐩 – ​)​  = ​ (​v​​ 3​ − 2)​​(1 + ​γ​i​​)​ / 9​, where ​​γ​i​​​ is the probability that bid-
der ​i​ wins in case ​​v​i​​  = ​ v​j​​  =  2​. If tie-breaking is symmetric or if ​​v​​ 3​  ∈ ​ (3, 4)​​, both 
bidders are worse off under disclosure, whereas otherwise always at least one bidder 
is worse off. The relative gain in revenue through disclosure can be as high as 25 
percent, which obtains for ​​v​​ 3​  =  4​.

Equilibrium Inefficiency and Diverging Benefits.—We now consider an example 
with two asymmetric bidders. The example will show that disclosure need not result 
in an efficient allocation of the object and that disclosure may benefit some bidders 
and at the same time harm others. Suppose

(17)	​​​ V 
–
​​1​​  = ​ {1, 7 / 4}​  with  ​​p – ​​1​​​(1)​  = ​​ p – ​​1​​​(7 / 4)​  =  1 / 2,

	​​ V 
–
​​2​​  = ​ {1, 2, 4}​  with  ​​p – ​​2​​​(1)​  = ​​ p – ​​2​​​(2)​  = ​​ p – ​​2​​​(4)​  =  1 / 3.​

Then, the virtual valuations are

	​​ J​1​​​(1, ​​p – ​​1​​)​  =  1 / 4,  ​  J​1​​​(7 / 4, ​​p – ​​1​​)​  =  7 / 4, 

and

	​ J​2​​​(1, ​​p – ​​2​​)​  =  − 1,  ​  J​2​​​(2, ​​p – ​​2​​)​  =  0,  ​  J​2​​​(4, ​​p – ​​2​​)​  =  4.​

Figure 2. Comparative Statics with Respect to ​​v​​ 3​​

Notes: The figure shows comparative statics with respect to ​​v​​ 3​​ given ​​ρ​​ 1​  =  ​ρ​​ 2​  =  ​ρ​​ 3​  =  1 / 3​, ​​v​​ 1​  =  1​, and ​​v​​ 2​  =  2​. 
The solid lines indicate revenue and payoff, respectively, as a function of ​​v​​ 3​​ in the model with information disclo-
sure. The dashed line segments indicate revenue and payoff (for three values of ​​γ​i​​​), respectively, in the benchmark 
without disclosure.
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In the model without disclosure, bidder 2 wins the auction if his valuation is ​4​ and 
bidder 1 wins otherwise. Thus, only bidder 1 earns an information rent, resulting in 
payoffs ​​u​1​​​(​𝐩 – ​)​  >  0​ and ​​u​2​​​(​𝐩 – ​)​  =  0​.

Consider the hierarchical disclosure game (i.e., the allocation rule is ​​𝐪​​ h​​ given in 
(13)). The following proposition identifies an equilibrium where bidder 1 perfectly 
discloses, whereas bidder 2 perfectly reveals valuation 1 and partially reveals valu-
ation 4.21

PROPOSITION 5: Let ​N  = ​ {1, 2}​​ and assume (17). The following strategy profile  
​​(​b​ 1​ 

∗​, ​b​ 2​ 
∗​)​​ is a Nash equilibrium of the hierarchical disclosure game: ​​b​ 1​ 

∗​​ draws pos-
teriors ​​p​ 1​ ′ ​​ and ​​p​ 1​ ′′​​ each with probability ​1 / 2​, where ​​V​1​​​(​p​ 1​ ′ ​)​  = ​ {1}​​ and ​​V​1​​​(​p​ 1​ ′′​)​  
= ​ {7 / 4}​​; ​​b​ 2​ 

∗​​ draws posterior ​​p​ 2​ ′ ​​, ​​p​ 2​ ′′​​, and ​​p​ 2​ ′′′​​, respectively, with probability  
​1 / 3​, ​1 / 6​, and ​1 / 2​, where ​​V​2​​​(​p​ 2​ ′ ​)​  = ​ {1}​​, ​​V​2​​​(​p​ 2​ ′′​)​  = ​ {4}​​, and ​​V​2​​​(​p​ 2​ ′′′​)​  = ​ {2, 4}​​ 
with ​​p​ 2​ ′′′​​(2)​  =  2 / 3​.

Clearly, bidder 1’s equilibrium payoff is zero. Note that posterior ​​p​ 2​ ′′′​​ is such that ​​
J​2​​​(2, ​p​ 2​ ′′′​)​  =  1​. Under allocation rule ​​𝐪​​ h​​, bidder 2 therefore wins the auction if his 
valuation is ​2​ and bidder 1’s valuation is ​1​. It follows that bidder 2 obtains an infor-
mation rent in the auction at posterior profile ​​(​p​ 1​ ′ ​, ​p​ 2​ ′′′​)​​. We conclude that the equilib-
rium payoffs satisfy ​​U​1​​​(​b​ 1​ 

∗​, ​b​ 2​ 
∗​)​  =  0​ and ​​U​2​​​(​b​ 1​ 

∗​, ​b​ 2​ 
∗​)​  >  0​. Comparing these payoffs 

with those in the model without disclosure, we see that the benefits from disclosure 
diverge: bidder 1 is worse off and bidder 2 is better off. Moreover, an inefficient allo-
cation may obtain in equilibrium ​​(​b​ 1​ 

∗​, ​b​ 2​ 
∗​)​​ because in the auction at ​​(​p​ 1​ ′′​, ​p​ 2​ ′′′​)​​, bidder 

1 wins with valuation ​7 / 4​ when bidder 2’s valuation is ​2​.

VIII.  Extension: Private Disclosure

So far, we have assumed that bidders publicly disclose information: whatever 
they reveal to the auctioneer before the auction is also observed by the other bidders. 
Depending on the context, however, bidders may prefer to privately persuade the 
auctioneer and minimize the amount of information that is revealed to their compet-
itors. We now relax the assumption of public disclosure and show that our results 
still hold.

To keep the sequential structure of our model, we continue to assume that, once 
bidders have simultaneously chosen their signal structures, ​𝐛​ is publicly observed. 
However, the signal that then realizes from signal structure ​​b​i​​​ is no longer public, but 
is only (perfectly) observed by bidder ​i​ and the auctioneer, who, accordingly, update 
to posterior ​​p​i​​​. This means that the other bidders observe that bidder ​i​ communicates 
with the auctioneer (represented by ​​b​i​​​) but they do not learn the actual information 
he reveals (represented by ​​p​i​​​). As a consequence, the bidders and the auctioneer 
need no longer share common posteriors ​𝐩​ about each valuation when the auction 
takes place.

21 Lemma OA3 in the online Appendix implies that both bidders perfectly reveal their lowest valuation in every 
equilibrium of every bilateral disclosure game if the lowest valuations coincide. Using this fact, it is straightforward 
to extend the Proof of Proposition 5 to show that the equilibrium is unique.
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To also cover arbitrary degrees of partially private disclosure, we allow for bid-
der ​i​ to partially learn what the others disclose. That is, while bidder ​i​ does not 
directly observe the realizations from the signal structures ​​𝐛​−i​​​ and the resulting 
posteriors ​​𝐩​−i​​​ of the auctioneer, he observes an exogenously fixed imperfect signal 
of these realizations, which is also observed by the auctioneer. This imperfect signal 
allows bidder ​i​ to update his belief about what the others have disclosed: it induces 
for bidder ​i​ a belief ​​s​i​​​ about the posteriors ​​𝐩​−i​​​ of the auctioneer. The belief ​​s​i​​​ is 
drawn from a set of possible beliefs ​​S​i​​​ according to a distribution ​​σ​i​​​ such that, to be 
consistent with the profile of signal structures ​​𝐛​−i​​​ of the other bidders, it holds that

(18)	​​ ∫ ​​−i​​
​ 

 

 ​​ d​b​−i​​​(​𝐩​−i​​)​  = ​ ∫ ​S​i​​
​ 

 

 ​​​∫ ​​−i​​
​ 

 

 ​​  d​s​i​​​(​𝐩​−i​​)​ d​σ​i​​​(​s​i​​)​​

for any Borel set ​​​−i​​  ⊆ ​ ​−i​​​. Let ​𝝈  = ​ (​σ​1​​, …, ​σ​n​​)​​. Note that fully private disclo-
sure, where each bidder ​i​ learns nothing about the realizations ​​𝐩​−i​​​ from ​​𝐛​−i​​​, corre-
sponds to the distribution ​​σ​i​​​ that draws belief ​​s​i​​  = ​ b​−i​​​ with probability one.

After the chosen signal structures ​𝐛​ have been observed, the auctioneer commits 
to an auction ​​(𝐪​( · , 𝐩)​, 𝐭​( · , 𝐩)​)​​ for each ​𝐩​ that may realize from ​𝐛​, that is, for each 
possible posterior she may hold after the bidders have disclosed information accord-
ing to their signal structures.22 She thus solves problem [​𝐛, 𝝈​]:

(19)	​​   max​ 
​​(𝐪​(·,𝐩)​,𝐭​(·,𝐩)​)​​

𝐩∈
​​
​​ ​∫ ​ 

 

 ​​​ ∑ 
i∈N

​ 
 

 ​​ ​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ t​i​​​(𝐯, 𝐩)​p​(𝐯)​ db​(𝐩)​​

subject to for each ​i  ∈  N​, ​​p​i​​  ∈ ​ ​i​​​, and ​​s​i​​  ∈ ​ S​i​​​,

(20)�​​v​i​​ ​​Q ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​ − ​​T ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​  ≥ ​ v​i​​ ​​Q ˘ ​​i​​​(​v​ i​ ′​, ​p​i​​, ​s​i​​)​ − ​​T ˘ ​​i​​​(​v​ i​ ′​, ​p​i​​, ​s​i​​)​​, ​ ∀ ​v​i​​, ​v​ i​ ′​  ∈ ​ V​i​​​(​p​i​​)​,​

(21)	​​v​i​​ ​​Q ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​ − ​​T ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​  ≥  0​, ​ ∀ ​v​i​​  ∈ ​ V​i​​​(​p​i​​)​,​

where ​​​Q ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​  = ​ ∫ ​​−i​​​ 
 
 ​​​ Q​i​​​(​v​i​​, 𝐩)​ d​s​i​​​(​𝐩​−i​​)​​ and ​​​T ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​  = ​ ∫ ​​−i​​​ 

 
 ​​​ T​i​​​(​v​i​​, 𝐩)​ d​s​i​​​(​𝐩​−i​​)​​. 

Constraint (20) ensures Bayesian incentive compatibility and (21) interim individ-
ual rationality. These constraints are weaker than their counterparts with respect to ​​
Q​i​​​( · , 𝐩)​​ and ​​T​i​​​( · , 𝐩)​​ in Section III because (4) and (5) for each ​𝐩​ imply (20) and 
(21). Hence, the auctioneer cannot do worse than under public disclosure. The fol-
lowing result shows that she can also not do better.

PROPOSITION 6: Let ​f​ be any optimal strategy for the auctioneer under public 
disclosure; that is, ​​(​q​​ f​​( · , p)​, ​t​​ f​​( · , p)​)​​ is an optimal auction satisfying Proposition 
1(b) for each ​p  ∈  ​. Then ​​​(​q​​ f​​( · , p)​, ​t​​ f​​( · , p)​)​​p∈​​​ solves problem [​𝐛, 𝝈​].

Proposition 6 shows that independent of what the other bidders learn about the 
information bidder ​i​ discloses according to ​​b​i​​​ (i.e., independent of ​𝐛​ and ​𝝈​), it is 
optimal for the auctioneer to use the same auctions as under public disclosure. What 

22 The commitment assumption is not crucial, as we argue at the end of this section.
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primarily matters for the auctioneer is the information rent she has to grant to each 
bidder ​i​ because he privately knows his valuation. This information rent depends 
only on ​​p​i​​​, which is why the auctioneer cannot exploit her superior information 
about the other bidders when dealing with bidder ​i​.

As by Proposition 6 any information other than ​𝐩​ is irrelevant for the auctioneer’s 
design problem, we may again focus on a two-stage game where the auctioneer’s 
strategy is a function ​f​ of just ​𝐩​ (cf. Section I). Then, any optimal strategy ​f​ gives 
rise to a disclosure game to which all results in the preceding sections apply. In par-
ticular, Theorem 1 extends to any equilibrium ​​(​f​​ ∗​, ​𝐛​​ ∗​)​​ of the two-stage game with 
private disclosure.

Note that we have assumed that the auctioneer can commit to auctions before 
knowing ​𝐩​. Dropping this assumption, we obtain an informed principal problem, as 
the choice of auction may then convey information about ​​𝐩​−i​​​ to bidder ​i​. According 
to Proposition 6, however, what bidder ​i​ learns about ​​𝐩​−i​​​ is irrelevant for the auc-
tioneer.23 Hence, our results also extend to the case without commitment.

IX.  Conclusion

In optimal auction design, the auctioneer’s problem is to sell the object at the 
highest possible price without knowing the bidders’ valuations. To this end, she 
designs an auction mechanism that determines transfers as well as the allocation of 
the object depending on reports by the bidders about their valuations. Often, bidders 
can anticipate that they will take part in an auction and that this auction is yet to be 
designed. For example, governments announce long in advance their intention to sell 
public assets such as electromagnetic spectrum. We augmented a standard model of 
optimal auction design by a prior stage in which the bidders can disclose informa-
tion about their valuations to the auctioneer. We showed that, quite generally, the 
anticipation of optimally designed auctions gives bidders an incentive to disclose 
valuable information. Importantly, this incentive arises automatically without the 
auctioneer setting rules for information disclosure or making any commitments at 
the disclosure stage. Our result suggests that auctioneers may benefit from announc-
ing plans to hold an auction early and being responsive to information disclosure.

Appendix A. Proofs

PROOF OF PROPOSITION 1:

	 (a)	 To characterize the optimal allocation rules, that is, the solutions to problem 
[P], we first show that for every allocation rule ​𝐪​ that satisfies the monotonic-
ity constraint (8), it holds that

(A1)	 ​​ ∑ 
i∈N

​ 
 

 ​​ ​  ∑ 
​v​i​​∈​V​i​​

​ 
 

 ​​​ J​i​​​(​v​i​​)​ ​Q​i​​​(​v​i​​)​ ​p​i​​​(​v​i​​)​  ≤ ​  ∑ 
i∈N

​ 
 

 ​​ ​  ∑ 
​v​i​​∈​V​i​​

​ 
 

 ​​​ H​i​​​(​v​i​​)​ ​Q​i​​​(​v​i​​)​ ​p​i​​​(​v​i​​)​.​

23 A closely related information irrelevance result is established in Skreta (2011) for the informed principal 
problem of an auctioneer who faces bidders with valuations drawn from continuous distributions that satisfy the 
regularity condition of Myerson (1981).
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		  By (7), the left-hand side of (A1) can be written as ​​∑ i∈N​ 
 
 ​​​​ T ˆ ​​i​​​, where for each ​i​,

	​​​ T ˆ ​​i​​  = ​  ∑ 
k=1

​ 
​m​i​​

 ​​​J​i​​​(​v​ i​ 
k​)​ ​Q​i​​​(​v​ i​ 

k​)​ ​p​i​​​(​v​ i​ 
k​)​​

	​ = ​  ∑ 
k=1

​ 
​m​i​​

 ​​​[​G​i​​​(​v​ i​ 
k​)​ − ​G​i​​​(​v​ i​ 

k−1​)​]​​Q​i​​​(​v​ i​ 
k​)​​

	​ =  − ​ ∑ 
k=1

​ 
​m​i​​−1

​​​G​i​​​(​v​ i​ 
k​)​​[​Q​i​​​(​v​ i​ 

k+1​)​ − ​Q​i​​​(​v​ i​ 
k​)​]​ − ​G​i​​​(​v​ i​ 

0​)​ ​Q​i​​​(​v​ i​ 
1​)​ + ​G​i​​​(​v​ i​ 

​m​i​​​)​ ​Q​i​​​(​v​ i​ 
​m​i​​​)​.​

		  Analogously, the right-hand side of (A1) can be written as ​​∑ i∈N​ 
 
 ​​​​ T ̃ ​​i​​​, where for 

each ​i​,

	​​​ T ̃ ​​i​​  = ​  ∑ 
k=1

​ 
​m​i​​

 ​​​H​i​​​(​v​ i​ 
k​)​ ​Q​i​​​(​v​ i​ 

k​)​ ​p​i​​​(​v​ i​ 
k​)​​

	​ = − ​ ∑ 
k=1

​ 
​m​i​​−1

​​​C​i​​​(​P​i​​​(​v​ i​ 
k​)​)​​[​Q​i​​​(​v​ i​ 

k+1​)​ − ​Q​i​​​(​v​ i​ 
k​)​]​ − ​C​i​​​(​P​i​​​(​v​ i​ 

0​)​)​ ​Q​i​​​(​v​ i​ 
1​)​ 

	 + ​C​i​​​(​P​i​​​(​v​ i​ 
​m​i​​​)​)​ ​Q​i​​​(​v​ i​ 

​m​i​​​)​.​

		  Then,

(A2) ​​​ T ̃ ​​i​​ − ​​T ˆ ​​i​​  =  − ​ ∑ 
k=1

​ 
​m​i​​−1

​​​[​C​i​​​(​P​i​​​(​v​ i​ 
k​)​)​ − ​G​i​​​(​v​ i​ 

k​)​]​​[​Q​i​​​(​v​ i​ 
k+1​)​ − ​Q​i​​​(​v​ i​ 

k​)​]​

	 − ​[​C​i​​​(​P​i​​​(​v​ i​ 
0​)​)​ − ​G​i​​​(​v​ i​ 

0​)​]​​Q​i​​​(​v​ i​ 
1​)​ + ​[​C​i​​​(​P​i​​​(​v​ i​ 

​m​i​​​)​)​ − ​G​i​​​(​v​ i​ 
​m​i​​​)​]​​Q​i​​​(​v​ i​ 

​m​i​​​)​.​

		  Since ​​C​i​​​(​P​i​​​(​v​ i​ 
0​)​)​  = ​ G​i​​​(​v​ i​ 

0​)​  =  0​ and ​​C​i​​​(​P​i​​​(​v​ i​ 
​m​i​​​)​)​  = ​ G​i​​​(​v​ i​ 

​m​i​​​)​​ and, by defi-
nition of ​​C​i​​​, ​​C​i​​​(​P​i​​​(​v​ i​ 

k​)​)​  ≤ ​ G​i​​​(​v​ i​ 
k​)​​, we have ​​​T ̃ ​​i​​ − ​​T ˆ ​​i​​  ≥  0​. This proves (A1).

		  Secondly, an allocation rule ​𝐪​ maximizes ​​∑ i∈N​ 
 
 ​​​ ∑ ​v​i​​∈​V​i​​​ 

 
 ​​​ H​i​​​(​v​i​​)​ ​Q​i​​​(​v​i​​)​ ​p​i​​​(​v​i​​)​​ if 

and only if

(A3) ​ ∀ 𝐯  ∈  V:  ​  ∑ 
i∈W​(𝐯)​

​​​ ​q​i​​​(𝐯)​  =  1 if W​(𝐯)​  ≠  ∅    and  ​    ∑ 
i∈L​(𝐯)​

​​​ ​q​i​​​(𝐯)​  =  0.​

		  Thirdly, if ​𝐪​ satisfies the monotonicity constraint (8), then by (A2) the 
equality

	​​  ∑ 
i∈N

​ 
 

 ​​ ​  ∑ 
​v​i​​∈​V​i​​

​ 
 

 ​​​ H​i​​​(​v​i​​)​ ​Q​i​​​(​v​i​​)​ ​p​i​​​(​v​i​​)​  = ​  ∑ 
i∈N

​ 
 

 ​​ ​  ∑ 
​v​i​​∈​V​i​​

​ 
 

 ​​​ J​i​​​(​v​i​​)​ ​Q​i​​​(​v​i​​)​ ​p​i​​​(​v​i​​)​​

		  holds if and only if

(A4) ​ ∀ i  ∈  N, ∀ k  < ​ m​i​​:    ​C​i​​​(​P​i​​​(​v​ i​ 
k​)​)​  < ​ G​i​​​(​v​ i​ 

k​)​  ⇒ ​ Q​i​​​(​v​ i​ 
k​)​  = ​ Q​i​​​(​v​ i​ 

k+1​)​.​
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		  We note that if ​​C​i​​​(​P​i​​​(​v​ i​ 
k​)​)​  < ​ G​i​​​(​v​ i​ 

k​)​​, then the slope of ​​C​i​​​ does not change 
at  ​​P​i​​​(​v​ i​ 

k​)​​, so that

(A5) ​ ∀ i  ∈  N, ∀ k  < ​ m​i​​:    ​C​i​​​(​P​i​​​(​v​ i​ 
k​)​)​  < ​ G​i​​​(​v​ i​ 

k​)​  ⇒ ​ H​i​​​(​v​ i​ 
k​)​  = ​ H​i​​​(​v​ i​ 

k+1​)​.​

		  Taken together, these three steps imply that if there are allocation rules that 
satisfy (A3), (A4), and (8), then these are the optimal allocation rules. To see 
that such allocation rules exist, consider, for example, ​​𝐪̂  ​​ given by

(A6)	​​​ q ˆ ​​i​​​(𝐯)​  = ​ {​
1 / |W​(𝐯)​|,

​ 
if i  ∈  W​(𝐯)​;

​  
0,

​ 
otherwise.

 ​​​

		  Clearly, ​​𝐪̂  ​​ satisfies (A3) and (8). Moreover, using (A5), (A4) holds because if  
​​H​i​​​(​v​ i​ 

k​)​  = ​ H​i​​​(​v​ i​ 
k+1​)​​, then ​​​Q ˆ ​​i​​​(​v​ i​ 

k​)​  = ​​ Q ˆ ​​i​​​(​v​ i​ 
k+1​)​​. Thus, (A3), (A4), and (8) 

characterize the optimal allocation rules. The conditions stated in Proposition 
1(a) are equivalent because if ​​H​i​​​(​v​ i​ 

k​)​  < ​ H​i​​​(​v​ i​ 
k+1​)​​, then (A3) implies ​​Q​i​​​(​v​ i​ 

k​)​  
≤ ​ Q​i​​​(​v​ i​ 

k+1​)​​.

	 (b)	 This is immediate.

	 (c)	 By (7),

	​​  ∑ 
𝐯∈V

​ 
 

 ​​​ [​v​i​​ ​q​i​​​(𝐯)​ − ​t​i​​​(𝐯)​]​p​(𝐯)​  = ​  ∑ 
𝐯∈V

​ 
 

 ​​​ [​v​i​​ − ​J​i​​​(​v​i​​)​]​ ​q​i​​​(v)​p​(𝐯)​.​

		  By part (a), an optimal allocation rule satisfies (A4), which implies that the 
difference ​​​T ̃ ​​i​​ − ​​T ˆ ​​i​​​ defined in (A2) is zero and thus

	​​  ∑ 
𝐯∈V

​ 
 

 ​​​ J​i​​​(​v​i​​)​ ​q​i​​​(v)​p​(𝐯)​  = ​  ∑ 
𝐯∈V

​ 
 

 ​​​ H​i​​​(​v​i​​)​ ​q​i​​​(v)​p​(𝐯)​.​ ∎

PROOF OF COROLLARY 1:
Consider the optimal allocation rule ​​𝐪̂  ​​ given by (A6) in the Proof of Proposition 

1. Note that this ​​𝐪̂  ​​ satisfies

(A7)	​​​ q ˆ ​​i​​​(​v​ i​ 
k​, ​𝐯​−i​​)​  ≤ ​​ q ˆ ​​i​​​(​v​ i​ 

k+1​, ​𝐯​−i​​)​    ∀ i  ∈  N, ∀ k  < ​ m​i​​, ∀ ​𝐯​−i​​  ∈ ​ V​−i​​.​

Consider the transfer rule ​​𝐭  ​​ given by

	​​​ t ̂ ​​i​​​(​v​ i​ 
k​, ​𝐯​−i​​)​  = ​ v​ i​ 

k​ ​​q ˆ ​​i​​​(​v​ i​ 
k​, ​𝐯​−i​​)​ − ​ ∑ 

l=1
​ 

k−1

​​​(​v​ i​ 
l+1​ − ​v​ i​ 

l​)​ ​​q ˆ ​​i​​​(​v​ i​ 
l​, ​𝐯​−i​​)​.​

Taking expectations over ​​𝐯​−i​​​, ​​𝐭  ​​ clearly satisfies (6). Hence, ​​(​𝐪̂  ​, ​𝐭  ​)​​ is an optimal auc-
tion. Moreover, ​​(​𝐪̂  ​, ​𝐭  ​)​​ is ex post individually rational since

	​​ v​ i​ 
k​ ​​q ˆ ​​i​​​(​v​ i​ 

k​, ​𝐯​−i​​)​ − ​​t ̂ ​​i​​​(​v​ i​ 
k​, ​𝐯​−i​​)​  = ​  ∑ 

l=1
​ 

k−1

​​​(​v​ i​ 
l+1​ − ​v​ i​ 

l​)​ ​​q ˆ ​​i​​​(​v​ i​ 
l​, ​𝐯​−i​​)​  ≥  0​
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for each ​i​, ​k​, and ​​𝐯​−i​​​. To see that ​​(​𝐪̂  ​, ​𝐭  ​)​​ is dominant strategy incentive compatible, 
note that the gain in ex post payoff of bidder ​i​ with valuation ​​v​ i​ 

k​​ from reporting any ​​
v​ i​ 

h​​ instead is

  ​​  v​ i​ 
k​ ​​q ˆ ​​i​​​(​v​ i​ 

h​, ​𝐯​−i​​)​ − ​​t ̂ ​​i​​​(​v​ i​ 
h​, ​𝐯​−i​​)​ − ​ ∑ 

l=1
​ 

k−1

​​​(​v​ i​ 
l+1​ − ​v​ i​ 

l​)​ ​​q ˆ ​​i​​​(​v​ i​ 
l​, ​𝐯​−i​​)​

        = ​
{

​
​∑ l=k​ 

h−1 ​​​(​v​ i​ 
l+1​ − ​v​ i​ 

l​)​​[​​q ˆ ​​i​​​(​v​ i​ 
l​, ​𝐯​−i​​)​ − ​​q ˆ ​​i​​​(​v​ i​ 

h​, ​𝐯​−i​​)​]​  ≤  0,
​ 
if h  >  k;

​     
​∑ l=h​ 

k−1 ​​​(​v​ i​ 
l+1​ − ​v​ i​ 

l​)​​[​​q ˆ ​​i​​​(​v​ i​ 
h​, ​𝐯​−i​​)​ − ​​q ˆ ​​i​​​(​v​ i​ 

l​, ​𝐯​−i​​)​]​  ≤  0,
​ 
if h  <  k,

 ​​​

where the inequalities follow from (A7). ∎

PROOF OF LEMMA 1:

	 (a)	 As the posterior ​​p​i​​​ remains fixed in this part of the proof, we omit the depen-
dence on ​​p​i​​​ in the notation as in Section III.

		  Let ​k  < ​ m​i​​​. Recall that

       ​​       H​i​​​(​v​ i​ 
k​)​  = ​ 

​C​i​​​(​P​i​​​(​v​ i​ 
k​)​)​ − ​C​i​​​(​P​i​​​(​v​ i​ 

k−1​)​)​
   _______________________  

​p​i​​​(​v​ i​ 
k​)​

 ​​

		  is the slope between ​​P​i​​​(​v​ i​ 
k−1​)​​ and ​​P​i​​​(​v​ i​ 

k​)​​ of the lower convex envelope ​​C​i​​​ of the 
function that assigns to each ​​P​i​​​(​v​i​​)​​, ​​v​i​​  ∈ ​ V​i​​​, the value ​​G​i​​​(​v​i​​)​​. Hence, there are  
​l, l′​ with ​l  <  k  ≤  l′​ such that ​​C​i​​​(​P​i​​​(​v​ i​ 

l​)​)​  = ​ G​i​​​(​v​ i​ 
l​)​​, ​​C​i​​​(​P​i​​​(​v​ i​ 

l′​)​)​  
= ​ G​i​​​(​v​ i​ 

l′​)​​, and

	​​ H​i​​​(​v​ i​ 
k​)​  = ​ 

​G​i​​​(​v​ i​ 
l′​)​ − ​G​i​​​(​v​ i​ 

l​)​
  _____________  

​P​i​​​(​v​ i​ 
l′​)​ − ​P​i​​​(​v​ i​ 

l​)​
 ​.​

		  Since ​​C​i​​​(​P​i​​​(​v​ i​ 
l+1​)​)​  ≤ ​ G​i​​​(​v​ i​ 

l+1​)​​, we have

   ​​   H​i​​​(​v​ i​ 
l+1​)​  = ​ 

​C​i​​​(​P​i​​​(​v​ i​ 
l+1​)​)​ − ​C​i​​​(​P​i​​​(​v​ i​ 

l​)​)​
   _______________________  

​p​i​​​(​v​ i​ 
l+1​)​

 ​   ≤ ​ 
​G​i​​​(​v​ i​ 

l+1​)​ − ​G​i​​​(​v​ i​ 
l​)​
  _______________  

​p​i​​​(​v​ i​ 
l+1​)​

 ​   = ​ J​i​​​(​v​ i​ 
l+1​)​.​

		  Since ​​H​i​​​(​v​ i​ 
k​)​  = ​ H​i​​​(​v​ i​ 

l+1​)​​ and ​​J​i​​​(​v​ i​ 
l+1​)​  < ​ v​ i​ 

k​​, it follows that ​​H​i​​​(​v​ i​ 
k​)​  < ​ v​ i​ 

k​​.

		  Clearly, ​​C​i​​​(​P​i​​​(​v​ i​ 
​m​i​​​)​)​  = ​ G​i​​​(​v​ i​ 

​m​i​​​)​​. By contradiction, suppose ​​C​i​​​(​P​i​​​(​v​ i​ 
​m​i​​−1​)​)​  

< ​ G​i​​​(​v​ i​ 
​m​i​​−1​)​​. That is, there is a ​k  < ​ m​i​​ − 1​ such that

	​​ C​i​​​(​P​i​​​(​v​ i​ 
​m​i​​−1​)​)​  =  α ​G​i​​​(​v​ i​ 

k​)​ + ​(1 − α)​ ​G​i​​​(​v​ i​ 
​m​i​​​)​  < ​ G​i​​​(​v​ i​ 

​m​i​​−1​)​​,

		  where

	​ α ​P​i​​​(​v​ i​ 
k​)​ + ​(1 − α)​ ​P​i​​​(​v​ i​ 

​m​i​​​)​  = ​ P​i​​​(​v​ i​ 
​m​i​​−1​)​  ⇔  α  = ​ 

​p​i​​​(​v​ i​ 
​m​i​​​)​
 _ 

1 − ​P​i​​​(​v​ i​ 
k​)​

 ​.​
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		  This leads to a contradiction because

   ​​   C​i​​​(​P​i​​​(​v​ i​ 
​m​i​​−1​)​)​  = ​ G​i​​​(​v​ i​ 

​m​i​​​)​ − ​ 
​G​i​​​(​v​ i​ 

​m​i​​​)​ − ​G​i​​​(​v​ i​ 
k​)​
  ______________  

1 − ​P​i​​​(​v​ i​ 
k​)​

 ​ ​ p​i​​​(​v​ i​ 
​m​i​​​)​​

	​ = ​ G​i​​​(​v​ i​ 
​m​i​​​)​ − ​ 

​∑ l=1​ 
​m​i​​ ​​​ J​i​​​(​v​ i​ 

l​)​ ​p​i​​​(​v​ i​ 
l​)​ − ​∑ l=1​ 

k  ​​​J​i​​​(​v​ i​ 
l​)​ ​p​i​​​(​v​ i​ 

l​)​
   ______________________________  

1 − ​P​i​​​(​v​ i​ 
k​)​

 ​ ​ p​i​​​(​v​ i​ 
​m​i​​​)​​

	​ = ​ G​i​​​(​v​ i​ 
​m​i​​​)​ − ​ 

​∑ l=k+1​ 
​m​i​​ ​​​ J​i​​​(​v​ i​ 

l​)​ ​p​i​​​(​v​ i​ 
l​)​
  ________________  

1 − ​P​i​​​(​v​ i​ 
k​)​

 ​ ​ p​i​​​(​v​ i​ 
​m​i​​​)​​

	​ > ​ G​i​​​(​v​ i​ 
​m​i​​​)​ − ​v​ i​ 

​m​i​​​ ​p​i​​​(​v​ i​ 
​m​i​​​)​  = ​ G​i​​​(​v​ i​ 

​m​i​​−1​)​,​

		  where the inequality follows from ​​v​ i​ 
​m​i​​​  > ​ J​i​​​(​v​ i​ 

l​)​​ for ​l  =  k + 1, …, ​m​i​​ − 1​.  
Hence, ​​C​i​​​(​P​i​​​(​v​ i​ 

​m​i​​−1​)​)​  = ​ G​i​​​(​v​ i​ 
​m​i​​−1​)​​, and consequently, ​​H​i​​​(​v​ i​ 

​m​i​​​)​  = ​ J​j​​​(​v​ i​ 
​m​i​​​)​  

= ​ v​ i​ 
​m​i​​​​.

	 (b)	 For this part of the proof, we need to accommodate the fact that the support of 
the posterior ​​p​i​​​ can change as ​​p​i​​​ changes. We therefore redefine the functions ​​
G​i​​​ and ​​C​i​​​ with respect to the support ​​​V 

–
​​i​​  = ​ {​​v –​​ i​ 

1​, …, ​​v –​​ i​ 
​​m – ​​i​​​}​​ of the prior ​​​p – ​​i​​​.

		  Suppose ​​​m​i​​ 
– ​  >  1​, for otherwise there is nothing to prove. The notation ​​​G ̃ ​​i​​​(​​v –​​ i​ 

0​)​​  
will mean zero. For ​k  ∈ ​ {1, …, ​​m – ​​i​​}​​ and ​​p​i​​  ∈ ​ ​i​​​, define

    ​​​    G ̃ ​​i​​​(​​v –​​ i​ 
k​, ​p​i​​)​  = ​​ G ̃ ​​i​​​(​​v –​​ i​ 

k−1​, ​p​i​​)​ 

                    + ​
{

​
​p​i​​​(​​v –​​ i​ 

k​)​ ​​v –​​ i​ 
k​ − ​[1 − ​P​i​​​(​​v –​​ i​ 

k​)​]​​(​​v –​​ i​ 
k+1​ − ​​v ¯ ​​ i​ k​)​,

​ 
if k  < ​​ m – ​​i​​;

​    
​p​i​​​(​​v –​​ i​ 

k​)​ ​​v –​​ i​ 
k​,

​ 
if k  = ​​ m – ​​i​​.

​​​

		  Define ​​​C ̃ ​​i​​​( · , ​p​i​​)​  :  ​[0, 1]​  →  ℝ​ by

	​​​ C ̃ ​​i​​​(z, ​p​i​​)​  = ​   min​ 
0≤k,l≤​​m – ​​i​​,α∈​[0,1]​

​​α ​​G ̃ ​​i​​​(​​v –​​ i​ 
k​, ​p​i​​)​ + ​(1 − α)​ ​​G ̃ ​​i​​​(​​v –​​ i​ 

l​, ​p​i​​)​​

		  subject to

	​ α ​P​i​​​(​​v –​​ i​ 
k​)​ + ​(1 − α)​ ​P​i​​​(​​v –​​ i​ 

l​)​  =  z​.

		  Note that ​​​C ̃ ​​i​​​(z, ​p​i​​)​  = ​ C​i​​​(z, ​p​i​​)​​ for all ​z  ∈ ​ [0, 1]​​. Consequently, for 
any ​​​v –​​ i​ 

k​  ∈ ​​ V 
–
​​i​​​ and any ​​p​i​​  ∈ ​ ​i​​​ such that ​​p​i​​​(​​v –​​ i​ 

k​)​  >  0​, we have

	​​ 
​​C ̃ ​​i​​​(​P​i​​​(​​v –​​ i​ 

k​)​, ​p​i​​)​ − ​​C ̃ ​​i​​​(​P​i​​​(​​v –​​ i​ 
k−1​)​, ​p​i​​)​

   ____________________________  
​p​i​​​(​​v –​​ i​ 

k​)​
 ​   = ​ H​i​​​(​​v –​​ i​ 

k​, ​p​i​​)​.​

		  Since ​​​G ̃ ​​i​​​(​v​i​​, · )​​ is continuous at ​​p​i​​​ for each ​​v​i​​  ∈ ​​ V 
–
​​i​​​, Berge’s Maximum 

Theorem implies that ​​​C ̃ ​​i​​​(z, · )​​ is continuous at ​​p​i​​​ for each ​z  ∈ ​ [0, 1]​​, which 
implies the continuity of ​​H​i​​​(​​v –​​ i​ 

k​, · )​​ at ​​p​i​​​. ∎
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PROOF OF LEMMA 2:

	 (a)	 As in the Proof of Lemma 1, recall that ​​H​i​​​(​v​ i​ 
k​, ​p​i​​)​​ is the slope between  

​​P​i​​​(​v​ i​ 
k−1​)​​ and ​​P​i​​​(​v​ i​ 

k​)​​ of the lower convex envelope of the function that 
assigns to each ​​P​i​​​(​v​i​​)​​, ​​v​i​​  ∈ ​ V​i​​​(​p​i​​)​​, the value ​​G​i​​​(​v​i​​, ​p​i​​)​​. Hence, for each  
​k  =  1, …, ​m​i​​​, there are ​l, l′​ such that ​0  ≤  l  <  k  ≤  l′  ≤ ​ m​i​​​ and

	​​ H​i​​​(​v​ i​ 
k​, ​p​i​​)​  = ​ 

​G​i​​​(​v​ i​ 
l′​, ​p​i​​)​ − ​G​i​​​(​v​ i​ 

l​, ​p​i​​)​
  __________________  

​P​i​​​(​v​ i​ 
l′​)​ − ​P​i​​​(​v​ i​ 

l​)​
 ​ ,​

		  where

(A8)	​ l  ∈ ​ arg max​ 
0≤​l ″ ​<k

​ ​ ​ 
​G​i​​​(​v​ i​ 

l′​, ​p​i​​)​ − ​G​i​​​(​v​ i​ 
​l ″ ​​, ​p​i​​)​
  __________________  

​P​i​​​(​v​ i​ 
​l ′ ​​)​ − ​P​i​​​(​v​ i​ 

​l ″ ​​)​
 ​ ,​

(A9)	​ l′  ∈ ​ arg min​ 
k≤​l ″ ​≤​m​i​​

​ ​ ​ 
​G​i​​​(​v​ i​ 

​l ″ ​​, ​p​i​​)​ − ​G​i​​​(​v​ i​ 
l​, ​p​i​​)​
  __________________  

​P​i​​​(​v​ i​ 
​l ″ ​​)​ − ​P​i​​​(​v​ i​ 

l​)​
 ​ .​

		  By definition,

	​​ p​ i​ 
ϵ​​(​v​i​​)​  = ​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​
​  1 _ 
1 − ​p​i​​​(​v​ i​ 

​m​i​​​)​ϵ ​ ​p​i​​​(​v​i​​)​,
​ 

if ​v​i​​  ∈ ​ V​i​​​(​p​i​​)​\​{​v​ i​ 
​m​i​​​}​;

​    
​  1 − ϵ _ 
1 − ​p​i​​​(​v​ i​ 

​m​i​​​)​ϵ ​ ​p​i​​​(​v​ i​ 
​m​i​​​)​,

​ 
if ​v​i​​  = ​ v​ i​ 

​m​i​​​.
 ​​​

		  For any ​k  < ​ m​i​​​, we have ​​P​ i​ 
ϵ​​(​v​ i​ 

k​)​  = ​ P​i​​​(​v​ i​ 
k​)​ / ​[1 − ​p​i​​​(​v​ i​ 

​m​i​​​)​ϵ]​​ and

	​​ J​i​​​(​v​ i​ 
k​, ​p​ i​ 

ϵ​)​  = ​ v​ i​ 
k​ − ​ 

1 − ​P​i​​​(​v​ i​ 
k​)​ − ϵ ​p​i​​​(​v​ i​ 

​m​i​​​)​
  __________________  

​p​i​​​(​v​ i​ 
k​)​

 ​​ (​v​ i​ 
k+1​ − ​v​ i​ 

k​)​.​

		  For any ​​ϵ ″ ​  > ​ ϵ ′ ​  ≥  0​ and any ​​v​ i​ ′​  < ​ v​ i​ ′′​  < ​ v​ i​ 
​m​i​​​​, it follows that

(A10)	​​ 
​G​i​​​(​v​ i​ ′′​, ​p​ i​ 

​ϵ ″ ​​)​ − ​G​i​​​(​v​ i​ ′​, ​p​ i​ 
​ϵ ″ ​​)​
  ____________________  

​P​ i​ 
​ϵ ″ ​​​(​v​ i​ ′′​)​ − ​P​ i​ 

​ϵ ″ ​​​(​v​ i​ ′​)​
 ​   > ​ 

​G​i​​​(​v​ i​ ′′​, ​p​ i​ 
​ϵ ′ ​​)​ − ​G​i​​​(​v​ i​ ′​, ​p​ i​ 

​ϵ ′ ​​)​
  ____________________  

​P​ i​ 
​ϵ ′ ​​​(​v​ i​ ′′​)​ − ​P​ i​ 

​ϵ ′ ​​​(​v​ i​ ′​)​
 ​ .​

		  Consider any ​​v​i​​  ∈ ​ V​i​​​(​p​i​​)​\​{​v​ i​ 
​m​i​​​}​​. For ​​ϵ ″ ​  > ​ ϵ ′ ​  ≥  0​, let ​​​v ˆ ​ ″ ​  ≥ ​ v​i​​  > ​ v ˆ ​′​ and ​​

v ″ ​  ≥ ​ v​i​​  >  v′​ with

	​​ H​i​​​(​v​i​​, ​p​ i​ 
​ϵ ″ ​​)​  = ​ 

​G​i​​​(​​v ˆ ​​ i​ ′′​, ​p​ i​ 
​ϵ ″ ​​)​ − ​G​i​​​(​​v ˆ ​​ i​ ′ ​, ​p​ i​ 

​ϵ ″ ​​)​
  ____________________  

​P​ i​ 
​ϵ ″ ​​​(​​v ˆ ​​ i​ ′′​)​ − ​P​ i​ 

​ϵ ″ ​​​(​​v ˆ ​​ i​ ′ ​)​
 ​​

		  and

	​ ​H​i​​​(​v​i​​, ​p​ i​ 
ϵ′​)​  = ​ 

​G​i​​​(​v​ i​ ′′​, ​p​ i​ 
ϵ′​)​ − ​G​i​​​(​v​ i​ ′​, ​p​ i​ 

ϵ′​)​  ___________________  
​P​ i​ 

​ϵ ′ ​​​(​v​ i​ ′′​)​ − ​P​ i​ 
​ϵ ′ ​​​(​v​ i​ ′​)​

 ​ ​.
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		  Then

 ​​ H​i​​​(​v​i​​, ​p​ i​ 
​ϵ ″ ​​)​  ≥ ​ 

​G​i​​​(​​v ˆ ​​ i​ ′′​, ​p​ i​ 
​ϵ ″ ​​)​ − ​G​i​​​(​v​ i​ ′​, ​p​ i​ 

​ϵ ″ ​​)​
  ____________________  

​P​ i​ 
​ϵ ″ ​​​(​​v ˆ ​​ i​ ′′​)​ − ​P​ i​ 

​ϵ ″ ​​​(​v​ i​ ′​)​
 ​   > ​ 

​G​i​​​(​​v ˆ ​​ i​ ′′​, ​p​ i​ 
ϵ′​)​ − ​G​i​​​(​v​ i​ ′​, ​p​ i​ 

ϵ′​)​  ___________________  
​P​ i​ 

​ϵ ′ ​​​(​​v ˆ ​​ i​ ′′​)​ − ​P​ i​ 
​ϵ ′ ​​​(​v​ i​ ′​)​

 ​   ≥ ​ H​i​​​(​v​i​​, ​p​ i​ 
ϵ′​)​,​

		  where the first inequality follows from (A8), the second one from (A10), 
and the third one from (A9). Hence, ​​H​i​​​(​v​i​​, ​p​ i​ 

ϵ​)​  > ​ H​i​​​(​v​i​​, ​p​i​​)​​ and ​​H​i​​​(​v​i​​, ​p​ i​ 
ϵ​)​​ is 

strictly increasing in ​ϵ​.

	 (b)	 Consider the ex ante expected payoff of bidder ​i​ in the optimal auction at  
​​(​p​ i​ 

ϵ​, ​𝐩​−i​​)​​,

    ​​    u​ i​ 
f​​(​p​ i​ 

ϵ​, ​𝐩​−i​​)​  = ​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ [​v​i​​ − ​H​i​​​(​v​i​​, ​p​ i​ 
ϵ​)​]​ ​q​i​​​(𝐯, ​(​p​ i​ 

ϵ​, ​𝐩​−i​​)​)​ ​p​−i​​​(​𝐯​−i​​)​ ​p​ i​ 
ϵ​​(​v​i​​)​.​

		  By the continuity of ironed virtual valuations shown in Lemma 1(b),  
​​lim​ϵ→0​​ ​H​i​​​(​v​i​​, ​p​ i​ 

ϵ​)​  = ​ H​i​​​(​v​i​​, ​p​i​​)​​. For all ​​v​i​​  ∈ ​ V​i​​​(​p​i​​)​\​{​v​ i​ 
​m​i​​​}​​,

	​​ lim​ 
ϵ→0

​ ​ ​q​ i​ 
f​​(𝐯, ​(​p​ i​ 

ϵ​, ​𝐩​−i​​)​)​  = ​ {​
1,

​ 
if i  ∈ ​​ W ˆ ​​0​​​(𝐯, 𝐩)​;

​  
0,

​ 
otherwise,

 ​​​

		  by Proposition 1(a) because ​​H​i​​​(​v​i​​, ​p​ i​ 
ϵ​)​  > ​ H​i​​​(​v​i​​, ​p​i​​)​​ for all ​ϵ​. Finally,  

​​lim​ϵ→0​​ ​p​ i​ 
ϵ​  = ​ p​i​​​. Hence, using that ​​v​ i​ 

​m​i​​​ − ​H​i​​​(​v​ i​ 
​m​i​​​, ​p​i​​)​  =  0​ by Lemma 1(a),

	​​ lim​ 
ϵ→0

​ ​ ​u​ i​ 
f​​(​p​ i​ 

ϵ​, ​𝐩​−i​​)​  = ​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ [​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​𝟏​i∈​​W ˆ ​​0​​​(𝐯,𝐩)​​​ p​(𝐯)​.​

		  Since

	​​ U​ i​ 
f​​(​b​ i​ 

ϵ​, ​𝐛​−i​​)​  = ​ ∫ ​​i​​
​ 

 

 ​​​[1 − ​p​i​​​(​v​ i​ 
​m​i​​​)​ϵ]​​∫ ​​−i​​

​ 
 

 ​​​ u​ i​ 
f​​(​p​ i​ 

ϵ​, ​𝐩​−i​​)​ d​b​−i​​​(​𝐩​−i​​)​ d​b​i​​​(​p​i​​)​,​

		  the Dominated Convergence Theorem gives the desired equation

	​​lim​ 
ϵ→0

​ ​ ​U​ i​ 
f​​(​b​ i​ 

ϵ​, ​𝐛​−i​​)​  = ​ ∫ ​​i​​
​ 

 

 ​​​∫ ​​−i​​
​ 

 

 ​​​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ [​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​𝟏​i∈​​W ˆ ​​0​​​(𝐯,𝐩)​​​ p​(𝐯)​ d​b​−i​​​(​𝐩​−i​​)​ d​b​i​​​(​p​i​​)​.​ ∎

PROOF OF LEMMA 3:

	 (a)	 Suppose ​​p​i​​  ∈ ​ ​i​​​ satisfies (11). Consider any ​​v​i​​  ∈ ​ V​i​​​(​p​ i​ ′′​)​​. Since ​​H​i​​​(​v​ i​ 
k​, ​p​i​​)​  

< ​ H​i​​​(​v​ i​ 
k+1​, ​p​i​​)​​, we have ​​C​i​​​(​P​i​​​(​v​ i​ 

k​)​, ​p​i​​)​  = ​ G​i​​​(​v​ i​ 
k​, ​p​i​​)​​, which implies

(A11)	​​ C​i​​​(​P​i​​​(​v​i​​)​, ​p​i​​)​  =  ​  min​ 
k≤l,​l ′ ​≤​m​i​​,α∈​[0,1]​

​​α ​G​i​​​(​v​ i​ 
l​, ​p​i​​)​ + ​(1 − α)​ ​G​i​​​(​v​ i​ 

l′​, ​p​i​​)​​

		  subject to

	​ α ​P​i​​​(​v​ i​ 
l​)​ + ​(1 − α)​ ​P​i​​​(​v​ i​ 

l′​)​  = ​ P​i​​​(​v​i​​)​​.

		  Since ​​V​i​​​(​p​ i​ ′′​)​  = ​ {​v​ i​ 
k+1​, …, ​v​ i​ 

​m​i​​​}​​, we have

	​​ C​i​​​(​P​ i​ ′′​​(​v​i​​)​, ​p​ i​ ′′​)​  = ​   min​ 
k≤l,l′≤​m​i​​,α∈​[0,1]​

​​α ​G​i​​​(​v​ i​ 
l​, ​p​ i​ ′′​)​ + ​(1 − α)​ ​G​i​​​(​v​ i​ 

l′​, ​p​ i​ ′′​)​​
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		  subject to

	​ α ​P​ i​ ′′​​(​v​ i​ 
l​)​ + ​(1 − α)​ ​P​ i​ ′′​​(​v​ i​ 

​l ′ ​​)​  = ​ P​ i​ ′′​​(​v​i​​)​​.

		  By definition, for all ​​v​i​​  ∈ ​ V​i​​​(​p​ i​ ′′​)​​

	​​ p​ i​ ′′​​(​v​i​​)​  = ​ 
​p​i​​​(​v​i​​)​

 _ 
1 − ​P​i​​​(​v​ i​ 

k​)​
 ​,​

		  which implies

	​​ G​i​​​(​v​i​​, ​p​ i​ ′′​)​  = ​   1 _ 
1 − ​P​i​​​(​v​ i​ 

k​)​
 ​​[​G​i​​​(​v​i​​, ​p​i​​)​ − ​G​i​​​(​v​ i​ 

k​, ​p​i​​)​]​.​

		  Hence,

	​​ C​i​​​(​P​ i​ ′′​​(​v​i​​)​, ​p​ i​ ′′​)​  = ​   1 _ 
1 − ​P​i​​​(​v​ i​ 

k​)​
 ​​[​C​i​​​(​P​i​​​(​v​i​​)​, ​p​i​​)​ − ​G​i​​​(​v​ i​ 

k​, ​p​i​​)​]​,​

		  and so ​​H​i​​​(​v​i​​, ​p​ i​ ′′​)​  = ​ H​i​​​(​v​i​​, ​p​i​​)​​.

		  For ​δ​(​p​i​​)​  =  0​, ​​H​i​​​(​v​ i​ 
k​, ​p​ i​ 

δ​(​p​i​​)​​)​  = ​ H​i​​​(​v​ i​ 
k​, ​p​i​​)​  <  0​, whereas for ​δ​(​p​i​​)​  =  1​,  

​​H​i​​​(​v​ i​ 
k​, ​p​ i​ 

δ​(​p​i​​)​​)​  = ​ v​ i​ 
k​  >  0​ by Lemma 1(a). Since ironed virtual valuations are 

continuous in posteriors by Lemma 1(b), it follows that there exists a ​δ​(​p​i​​)​  ∈ ​

(0, 1)​​ such that ​​H​i​​​(​v​ i​ 
k​, ​p​ i​ 

δ​(​p​i​​)​​)​  =  0​. By definition,

	​​ p​ i​ 
δ​(​p​i​​)​​​(​v​i​​)​  = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​

​ 
​p​i​​​(​v​i​​)​
 _______________  

1 − ​[1 − ​P​i​​​(​v​ i​ 
k​)​]​δ​(​p​i​​)​

 ​,

​ 

if ​v​i​​  ≤ ​ v​ i​ 
k​;

​   
​ 

​[1 − δ​(​p​i​​)​]​ ​p​i​​​(​v​i​​)​
  _______________  

1 − ​[1 − ​P​i​​​(​v​ i​ 
k​)​]​δ​(​p​i​​)​

 ​,
​ 
if ​v​i​​  > ​ v​ i​ 

k​,
 ​​​

	 which implies, for any ​​v​i​​  ∈ ​ {​v​ i​ 
k+1​, …, ​v​ i​ 

​m​i​​​}​​,

	​​ G​i​​​(​v​i​​, ​p​ i​ 
δ​(​p​i​​)​​)​​ ​ = ​   1 ___________________  

1 − ​[1 − ​P​i​​​(​v​ i​ 
k​)​]​δ​(​p​i​​)​

 ​ ​G​i​​​(​v​ i​ 
k​, ​p​i​​)​ 

	 + ​ 
1 − δ​(​p​i​​)​

  ___________________  
1 − ​[1 − ​P​i​​​(​v​ i​ 

k​)​]​δ​(​p​i​​)​
 ​​[​G​i​​​(​v​i​​, ​p​i​​)​ − ​G​i​​​(​v​ i​ 

k​, ​p​i​​)​]​.​

		  Since ​​C​i​​​(​P​i​​​(​v​ i​ 
k​)​, ​p​i​​)​  = ​ G​i​​​(​v​ i​ 

k​, ​p​i​​)​​ and ​​C​i​​​( · , ​p​ i​ 
δ​(​p​i​​)​​)​​ is a lower convex enve-

lope, it holds that ​​G​i​​​(​v​i​​, ​p​i​​)​  ≥ ​ G​i​​​(​v​ i​ 
k​, ​p​i​​)​ + ​H​i​​​(​v​ i​ 

k+1​, ​p​i​​)​​[​P​i​​​(​v​i​​)​ − ​P​i​​​(​v​ i​ 
k​)​]​​. 

Thus,

	​​ G​i​​​(​v​i​​, ​p​ i​ 
δ​(​p​i​​)​​)​​ ​ ≥ ​   1 ___________________  

1 − ​[1 − ​P​i​​​(​v​ i​ 
k​)​]​δ​(​p​i​​)​

 ​ ​G​i​​​(​v​ i​ 
k​, ​p​i​​)​ 

� + ​ 
1 − δ​(​p​i​​)​

  ___________________  
1 − ​[1 − ​P​i​​​(​v​ i​ 

k​)​]​δ​(​p​i​​)​
 ​ ​H​i​​​(​v​ i​ 

k+1​, ​p​i​​)​​[​P​i​​​(​v​i​​)​ − ​P​i​​​(​v​ i​ 
k​)​]​​

	​ = ​ G​i​​​(​v​ i​ 
k​, ​p​ i​ 

δ​(​p​i​​)​​)​+ ​H​i​​​(​v​ i​ 
k+1​, ​p​i​​)​​[​P​ i​ 

δ​(​p​i​​)​​​(​v​i​​)​ − ​P​ i​ 
δ​(​p​i​​)​​​(​v​ i​ 

k​)​]​ 

� ∀ ​v​i​​  ∈ ​ {​v​ i​ 
k+1​, …, ​v​ i​ 

​m​i​​​}​.​
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		  Since ​​H​i​​​(​v​ i​ 
k​, ​p​ i​ 

δ​(​p​i​​)​​)​  =  0  ≤ ​ H​i​​​(​v​ i​ 
k+1​, ​p​i​​)​​ and ​​C​i​​​( · , ​p​ i​ 

δ​(​p​i​​)​​)​​ is a lower convex 
envelope, it follows that ​​C​i​​​(​P​ i​ 

δ​(​p​i​​)​​​(​v​ i​ 
k​)​, ​p​ i​ 

δ​(​p​i​​)​​)​  = ​ G​i​​​(​v​ i​ 
k​, ​p​ i​ 

δ​(​p​i​​)​​)​​. Hence, anal-
ogously to (A11), we have for any ​​v​i​​  ∈ ​ {​v​ i​ 

k+1​, …, ​v​ i​ 
​m​i​​​}​​,

     ​     C​i​​​(​P​ i​ 
δ​(​p​i​​)​​​(​v​i​​)​, ​p​ i​ 

δ​(​p​i​​)​​)​ 

	   =  ​  min​ 
k≤l,​l ′ ​≤​m​i​​,α∈​[0,1]​

​​α ​G​i​​​(​v​ i​ 
l​, ​p​ i​ 

δ​(​p​i​​)​​)​ + ​(1 − α)​ ​G​i​​​(​v​ i​ 
​l ′ ​​, ​p​ i​ 

δ​(​p​i​​)​​)​

		  subject to

	​ α ​P​ i​ 
δ​(​p​i​​)​​​(​v​ i​ 

l​)​ + ​(1 − α)​ ​P​ i​ 
δ​(​p​i​​)​​​(​v​ i​ 

​l ′ ​​)​  = ​ P​ i​ 
δ​(​p​i​​)​​​(​v​i​​)​​.

		  Using the definitions of ​​p​ i​ 
δ​(​p​i​​)​​​(​v​i​​)​​ and ​​G​i​​​(​v​i​​, ​p​ i​ 

δ​(​p​i​​)​​)​​,

   ​​   C​i​​​(​P​ i​ 
δ​(​p​i​​)​​​(​v​i​​)​, ​p​ i​ 

δ​(​p​i​​)​​​(​v​i​​)​)​​

   ​   = ​ 
1 − δ​(​p​i​​)​

  ___________________  
1 − ​[1 − ​P​i​​​(​v​ i​ 

k​)​]​δ​(​p​i​​)​
 ​ ​C​i​​​(​P​i​​​(​v​i​​)​, ​p​i​​)​ + ​ 

δ​(​p​i​​)​
  ___________________  

1 − ​[1 − ​P​i​​​(​v​ i​ 
k​)​]​δ​(​p​i​​)​

 ​ ​G​i​​​(​v​ i​ 
k​, ​p​i​​)​.​

		  Consequently, ​​H​i​​​(​v​i​​, ​p​ i​ 
δ​(​p​i​​)​​)​  = ​ H​i​​​(​v​i​​, ​p​i​​)​​.

	 (b)	 Let ​​​ ˆ ​​i​​  = ​ {​p​i​​  ∈ ​ ​i​​ ∣ (11) holds}​​. We have

 ​​ U​ i​ 
f​​(​b​ i​ 

δ​, ​𝐛​−i​​)​  = ​ ∫ ​​i​​\​​ ˆ ​​i​​
​ 

 

 ​​​ ∫ ​​−i​​
​ 

 

 ​​​   ∑ 
𝐯∈V​(𝐩)​

​​​​[​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​​q​ i​ 
f​​(𝐯, 𝐩)​p​(𝐯)​ d​b​−i​​​(​𝐩​−i​​)​ d​b​i​​​(​p​i​​)​​

	​ + ​∫ ​​ ˆ ​​i​​
​ 

 

 ​​​∫ ​​−i​​
​ 

 

 ​​​   ∑ 
𝐯∈V​(𝐩)​:​v​i​​>​v​ i​ 

k​
​​​​[​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​q​ i​ 

f​​(𝐯, 𝐩)​p​(𝐯)​ d​b​−i​​​(​𝐩​−i​​)​ d​b​i​​​(​p​i​​)​​

	​ + ​∫ ​​ ˆ ​​i​​
​ 

 

 ​​​∫ ​​−i​​
​ 

 

 ​​​   ∑ 
𝐯∈V​(𝐩)​:​v​i​​=​v​ i​ 

k​
​​​​v​i​​ ​q​ i​ 

f​​(𝐯, ​(​p​ i​ 
δ​(​p​i​​)​​, ​𝐩​−i​​)​)​p​(𝐯)​ d​b​−i​​​(​𝐩​−i​​)​ d​b​i​​​(​p​i​​)​​

	​ ≥ ​ U​ i​ 
f​​(𝐛)​.​ ∎

PROOF OF LEMMA 4:
Let ​𝐩  ∈  ​. Suppose ​​H​i​​​(​v​i​​, ​p​i​​)​  = ​ H​i​​​(​v​ i​ ′​, ​p​i​​)​​ for ​​v​i​​, ​v​ i​ ′​  ∈ ​ V​i​​​(​p​i​​)​​. We show that  

​​Q​ i​ 
h​​(​v​i​​, 𝐩)​  = ​ Q​ i​ 

h​​(​v​ i​ ′​, 𝐩)​​. By Proposition 1(a), this is all we need to show.
Since ​​H​i​​​(​v​i​​, ​p​i​​)​  = ​ H​i​​​(​v​ i​ ′​, ​p​i​​)​​, ​​W​0​​​(​(​v​i​​, ​𝐯​−i​​)​, 𝐩)​  = ​ W​0​​​(​(​v​ i​ ′​, ​𝐯​−i​​)​, 𝐩)​​ for all ​​

𝐯​−i​​​. By Lemma 1(a), either ​​H​i​​​(​v​i​​, ​p​i​​)​  < ​ v​i​​  < ​ v​ i​ 
​m​i​​​​ or ​​H​i​​​(​v​i​​, ​p​i​​)​  = ​ v​i​​  = ​ v​ i​ 

​m​i​​​​. Hence,  
​​v​i​​  < ​ v​ i​ 

​m​i​​​​ if and only if ​​v​ i​ ′​  < ​ v​ i​ 
​m​i​​​​, which implies ​​​W ˆ ​​0​​​(​(​v​i​​, ​𝐯​−i​​)​, 𝐩)​  = ​​ W ˆ ​​0​​​(​(​v​ i​ ′​, ​𝐯​−i​​)​, 𝐩)​​ 

for all ​​𝐯​−i​​​. Consequently, ​​q​ i​ 
h​​(​(​v​i​​, ​𝐯​−i​​)​, 𝐩)​  = ​ q​ i​ 

h​​(​(​v​ i​ ′​, ​𝐯​−i​​)​, 𝐩)​​ for all ​​𝐯​−i​​​, and thus  
​​Q​ i​ 

h​​(​v​i​​, 𝐩)​  = ​ Q​ i​ 
h​​(​v​ i​ ′​, 𝐩)​​. ∎

PROOF OF LEMMA 5:
We start with an auxiliary result.24

24 Claim A1 holds for any disclosure game, not just the hierarchical one.
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CLAIM A1: For every ​b  ∈  B​, every ​i  ∈  N​, and every ​η  >  0​, there exists a  
​​b​ i​ ′​  ∈ ​ B​i​​​ and an open neighborhood of ​​b​−i​​​ such that ​​U​ i​ 

h​​(​b​ i​ ′​, ​b​ −i​ ′  ​)​  > ​ U​ i​ 
h​​(b)​ − η​ for 

all ​​b​ −i​ ′  ​​ in the neighborhood.

PROOF:
Let ​𝐛  ∈  B, i  ∈  N, η  >  0​. For ​ϵ  ∈ ​ (0, 1)​​, let ​​​b ˆ ​​ i​ 

ϵ​  ∈ ​ B​i​​​ be the distribution on ​​ 
generated by first drawing an ​ϵ′​-extension ​​b​ i​ 

​ϵ ′ ​​​ of ​​b​i​​​ from the uniform distribution 
over ​ϵ′  ∈ ​ [ϵ / 2, ϵ]​​ and then drawing a posterior ​​​p ˆ ​​i​​  = ​ p​ i​ 

ϵ′​​ or ​​​p ˆ ​​i​​  = ​ p​ i​ ′​​ from ​​b​ i​ 
ϵ′​​. Since 

the ironed virtual valuations ​​H​i​​​(​v​i​​, ​p​ i​ 
ϵ′​)​​, ​​v​i​​  ∈ ​ V​i​​​(​p​i​​)​\​{​v​ i​ 

​m​i​​​}​​, are strictly increasing in 
​ϵ​′ by Lemma 2(a), for any ​x  ∈  ℝ​ posteriors ​​p​ i​ 

ϵ′​​ such that ​​H​i​​​(​v​i​​, ​p​ i​ 
ϵ′​)​  =  x​ for ​​v​i​​  ∈  

​V​i​​​(​p​i​​)​\​{​v​ i​ 
​m​i​​​}​​ have probability zero under ​​​b ˆ ​​ i​ 

ϵ​​. (That is, ties occur with probability 
zero at valuations that matter for ​i​’s ex ante expected payoff in the auction.) Hence, 
the ex ante expected payoff, ​​u​ i​ 

h​​(​​p ˆ ​​i​​, · )​​, is continuous in ​​𝐩​−i​​​ for ​​​b ˆ ​​ i​ 
ϵ​​-almost all ​​​p ˆ ​​i​​​, and 

so ​​∫ ​​i​​​ 
 
 ​​​ u​ i​ 

h​​(​​p ˆ ​​i​​, · )​ 𝑑​​b ˆ ​​ i​ 
ϵ​​(​​p ˆ ​​i​​)​​ is continuous in ​​𝐩​−i​​​ by the Dominated Convergence Theorem. 

Since ​​∫ ​​i​​​ 
 
 ​​​ u​ i​ 

h​​(​​p ˆ ​​i​​, ·)​ d​​b ˆ ​​ i​ 
ϵ​​(​​p ˆ ​​i​​)​​ is also bounded, the definition of the weak* topology 

implies that, for every ​η′  >  0​, there is an open neighborhood of ​​𝐛​−i​​​ such that  
​​U​ i​ 

h​​(​​b ˆ ​​ i​ 
ϵ​, ​𝐛​ −i​ ′  ​)​  > ​ U​i​​​(​​b ˆ ​​ i​ 

ϵ​, ​𝐛​−i​​)​ − η′​ for all ​​𝐛​ −i​ ′  ​​ in the neighborhood. Since  

​​lim​ϵ→0​​ ​U​ i​ 
h​​(​​b ˆ ​​ i​ 

ϵ​, ​𝐛​−i​​)​  ≥ ​ U​ i​ 
h​​(𝐛)​​ by Lemma 2(b), we can choose ​ϵ​ small enough such 

that ​​U​ i​ 
h​​(​​b ˆ ​​ i​ 

ϵ​, ​𝐛​ −i​ ′  ​)​  > ​ U​ i​ 
h​​(𝐛)​ − η​ for all ​​𝐛​ −i​ ′  ​​ in an open neighborhood of ​​𝐛​−i​​​.

Let ​​(​𝐛​​ ∗​, ​𝐲​​ ∗​)​​ be in the closure of the graph of ​​U​​ h​​. Since the weak* topology on  
​​B​i​​​ is metrizable (see Dudley 2002, theorem  11.3.3), there is a sequence ​​(​𝐛​​ l​)​​ 
in ​B​ such that ​​lim​l→∞​​ ​𝐛​​ l​  = ​ 𝐛​​ ∗​​ and ​​lim​l→∞​​ ​𝐔​​ h​​(​𝐛​​ l​)​  = ​ 𝐲​​ ∗​​(see Dudley 2002, theo-
rem 2.1.3). Suppose ​​𝐛​​ ∗​​ is not a Nash equilibrium. To verify better-reply security, we 
must show that

(A12)	​​ 
there is a bidder i and a strategy ​b​i​​  ∈ ​ B​i​​ such that

​     
​U​ i​ 

h​​(​b​i​​, ​𝐛​−i​​)​  > ​ y​ i​ 
*​ for all ​𝐛​−i​​ in an open neighborhood of ​𝐛​ −i​ 

∗ ​ .
​​

Suppose first that ​​U​ i​ 
h​​(​𝐛​​ ∗​)​  ≥ ​ y​ i​ 

∗​​ for all bidders ​i  ∈  N​. Then, there is a bidder ​i​ 
and a ​​b​i​​  ∈ ​ B​i​​​ such that ​​U​ i​ 

h​​(​b​i​​, ​𝐛​ −i​ 
∗ ​)​  > ​ U​ i​ 

h​​(​𝐛​​ ∗​)​  ≥ ​ y​ i​ 
∗​​ because ​​𝐛​​ ∗​​ is not a Nash equi-

librium. Hence, (A12) holds by Claim A1.
For the rest of the proof, define ​​​u ˆ ​​i​​​(𝐩)​  = ​ ∑ 𝐯∈V​(𝐩)​​ 

 
 ​​​ [​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​𝟏​i∈​​W ˆ ​​0​​​(𝐯,𝐩)​​​ p​(𝐯)​​. 

Let ​​​U ˆ ​​i​​​(𝐛)​  = ​ ∫ ​ 
 
 ​​ ​​u ˆ ​​i​​​(𝐩)​ db​(𝐩)​​. Note that

(A13)	​​​ U ˆ ​​i​​​(𝐛)​  ≥ ​ U​ i​ 
h​​(𝐛)​,  ∀ 𝐛  ∈  B.​

Moreover, since ​​​u ˆ ​​i​​​ is upper semicontinuous, the Portmanteau Theorem (see 
Bogachev 2007, corollary 8.2.5) implies

(A14)	​​​ U ˆ ​​i​​​(​𝐛​​ ∗​)​  ≥ ​ lim sup​ 
l→∞

​ ​ ​​ U ˆ ​​i​​​(​𝐛​​ l​)​.​

Now suppose that ​​y​ i​ 
∗​  > ​ U​ i​ 

h​​(​𝐛​​ ∗​)​​ for some bidder ​i​. Then, the set of discontinuity 
points of ​​u​ i​ 

h​​ has positive probability under ​​𝐛​​ ∗​​ by the Portmanteau Theorem (see 
Klenke 2020, theorem 13.16). Thus, there is an ​x  ∈ ​ {1 / n, …, 1 / 2, 1}​​ and a ​𝐯  ∈ ​ V 

–
​​  
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such that for ​​M​i​​  = ​ {𝐩  ∈   ∣ ​q​ i​ 
h​​(𝐯, 𝐩)​  =  x, p​(𝐯)​  >  0, ​v​i​​  ∈ ​ V​i​​​(​p​i​​)​\​{​v​ i​ 

​m​i​​​}​}​,​  
we have ​​b​​ ∗​​(​M​i​​)​  >  0​. Indeed, we can assume this for ​x  ≠  1​, for otherwise  
​​U​ i​ 

h​​(​𝐛​​ ∗​)​  = ​​ U ˆ ​​i​​​(​𝐛​ i​ 
∗​)​​, which contradicts ​​y​ i​ 

∗​  > ​ U​ i​ 
h​​(​𝐛​​ ∗​)​​ since ​​​U ˆ ​​i​​​(​𝐛​​ ∗​)​  

≥ ​ lim sup​l→∞​​ ​​U ˆ ​​i​​​(​𝐛​​ l​)​  ≥ ​ lim sup​l→∞​​ ​U​ i​ 
h​​(​𝐛​​ l​)​  = ​ y​ i​ 

∗​​ by (A14) and (A13). Since 
​x  ≠  1​, there are bidders ​​i ′ ​  ≠  i​ such that ​​b​​ ∗​​(​M​​i ′ ​​​)​  >  0​. For ​η  >  0​, define ​​M​ ​i ′ ​​ 

η​  = ​

{𝐩  ∈   ∣ ∃ 𝐩′  ∈ ​ M​i′​​ such that  ||𝐩 − 𝐩′ ||  <  η}​​. Since ​​M​ ​i ′ ​​ 
η​​ is open, ​​lim inf​l→∞​​ ​b​​ l​​(​M​ ​i ′ ​​ 

η​)​  
≥ ​ b​​ ∗​​(​M​ ​i ′ ​​ 

η​)​  ≥ ​ b​​ ∗​​(​M​​i ′ ​​​)​  >  0​ by the Portmanteau Theorem. Since ​​q​ j​ 
h​​(𝐯, 𝐩)​  =  1​ for 

at most one bidder ​j  ∈  N​, it follows that there is a bidder ​j​ such that

(A15)�​​ lim inf​ 
l→∞

​ ​ ​ b​​ l​​(​{𝐩  ∈ ​ M​ j​ 
η​ ∣ ​q​ j​ 

h​​(𝐯, 𝐩)​  <  1, p​(𝐯)​  >  0, ​v​j​​  ∈ ​ V​j​​​(​p​j​​)​\​{​v​ j​ 
​m​i​​​}​}​)​  >  0 

� ∀ η  >  0.​

Then ​​y​ j​ 
∗​  < ​ lim sup​l→∞​​ ​​U ˆ ​​j​​​(​𝐛​​ l​)​  ≤ ​​ U ˆ ​​j​​​(​𝐛​​ ∗​)​  = ​ lim​ϵ→0​​ ​U​ j​ 

h​​(​b​ j​ 
∗ϵ​, ​𝐛​ −j​ 

∗ ​)​​, where the first 
inequality follows from (A15), the second one from (A14), and the equality from 
Lemma 2(b). Thus, ​​U​ j​ 

h​​(​b​ j​ 
∗ϵ​, ​𝐛​ −j​ 

∗ ​)​  > ​ y​ j​ 
∗​​ for small ​ϵ​, and so (A12) holds by Claim A1.

Hence, the hierarchical disclosure game is better-reply secure. Thus, it has a Nash 
equilibrium by Reny (1999, theorem 3.1). ∎

PROOF OF PROPOSITION 2:
In the main text. ∎

PROOF OF LEMMA 6:
Let ​f​ be any optimal strategy for the auctioneer. By contradiction, suppose ​𝐛​ is a 

Nash equilibrium of the disclosure game defined by ​f​ and (14) does not hold. That is,

(A16)  	​​b​i​​​(​{​p​i​​  ∈ ​ ​i​​ ∣ ∃ ​v​i​​  ∈ ​ V​i​​​(​p​i​​)​ such that  ​H​i​​​(​v​i​​, ​p​i​​)​  ≤  0}​)​  >  0,  ∀ i  ∈  N.​

Suppose first that for some bidder ​i​, we have in addition ​​b​i​​​(​{​p​i​​  ∈ ​ ​i​​ ∣ ∃ ​v​i​​  ∈ ​ V​i​​​(​p​i​​)​ 
such that ​H​i​​​(​v​i​​, ​p​i​​)​  <  0}​)​  >  0​. For every ​​p​i​​  ∈ ​ ​i​​​ such that ​​H​i​​​(​v​i​​, ​p​i​​)​  <  0​ for 
some ​​v​i​​  ∈ ​ V​i​​​(​p​i​​)​​, (11) holds. Consider a ​δ​-extension ​​b​ i​ 

δ​​ of ​​b​i​​​. By Lemma 3, we can 
choose ​δ​ such that for all ​​p​i​​​ that satisfy (11),

	​​ H​i​​​(​v​i​​, ​p​ i​ 
δ​(​p​i​​)​​)​  = ​ {​

0,
​ 

if ​v​i​​  = ​ v​ i​ 
k​;

​  
​H​i​​​(​v​i​​, ​p​i​​)​,

​ 
if ​v​i​​  ∈ ​ {​v​ i​ 

k+1​, …, ​v​ i​ 
m​}​,

​​​

​​H​i​​​(​v​i​​, ​p​ i​ ′′​)​  = ​ H​i​​​(​v​i​​, ​p​i​​)​​ for all ​​v​i​​  ∈ ​ V​i​​​(​p​ i​ ′′​)​​, and ​​U​ i​ 
f​​(​b​ i​ 

δ​, ​𝐛​−i​​)​  ≥ ​ U​ i​ 
f​​(𝐛)​​.  

Applying ​δ​-extensions iteratively if necessary, we obtain a signal structure ​​b​ i​ ′​​ 
such that ​​b​ i​ ′​​(​{​p​i​​  ∈ ​ ​i​​ ∣ ​H​i​​​(​v​i​​, ​p​i​​)​  ≥  0  ∀ ​v​i​​  ∈ ​ V​i​​​(​p​i​​)​}​)​  =  1​ and ​​U​ i​ 

f​​(​b​ i​ ′​, ​𝐛​−i​​)​  
≥ ​ U​ i​ 

f​​(𝐛)​​.
Thus, when examining whether ​​b​i​​​ is a best response against ​​𝐛​−i​​​ for any bidder ​i​, 

we can assume without loss of generality that ​​b​i​​​(​{​p​i​​  ∈ ​ ​i​​ ∣ ​H​i​​​(​v​i​​, ​p​i​​)​  ≥  0 ∀ ​v​i​​  ∈ ​
V​i​​​(​p​i​​)​}​)​  =  1​. Consider an ​ϵ​-extension ​​b​ i​ 

ϵ​​ of ​​b​i​​​. By Lemma 2(b),

	​​ lim​ 
ϵ→0

​ ​ ​U​ i​ 
f​​(​b​ i​ 

ϵ​, ​𝐛​−i​​)​  = ​ ∫ ​​i​​
​ 

 

 ​​​∫ ​​−i​​
​ 

 

 ​​​   ∑ 
𝐯∈V​(𝐩)​

​ 
 

 ​​​ [​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​𝟏​i∈​​W ˆ ​​0​​​(𝐯,𝐩)​​​ p​(𝐯)​ d​b​−i​​​(​𝐩​−i​​)​ d​b​i​​​(​p​i​​)​.​
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By (A16) and since ​​q​i​​​(𝐯, 𝐩)​  =  1​ for at most one bidder ​i  ∈  N​, it follows that there 
are bidders ​i​ such that ​​lim​ϵ→0​​ ​U​ i​ 

f​​(​b​ i​ 
ϵ​, ​𝐛​−i​​)​  > ​ U​ i​ 

f​​(𝐛)​​. Hence, for small ​ϵ​, ​​U​ i​ 
f​​(​b​ i​ 

ϵ​, ​𝐛​−i​​)​  
> ​ U​ i​ 

f​​(𝐛)​​. Thus, ​​b​i​​​ is not a best response against ​​𝐛​−i​​​, and consequently, ​𝐛​ is not a 
Nash equilibrium, a contradiction. ∎

PROOF OF THEOREM 1:
In the main text. ∎

PROOF OF PROPOSITION 3:
In the main text. ∎

PROOF OF PROPOSITION 4:
We first show that the signal structure ​​b​ i​ 

∗​​ as given in the proposition is well 
defined. The function ​ϕ​ is a probability density on ​​[​ y 

¯
 ​, ​y –​]​​ as

	​​ ∫ ​ y 
¯
 ​​ 
​y –​
​​ ϕ​(y)​ dy  =  κ​(​  ​y –​

 _____ 
1 − ​y –​

 ​ − ​ 
​ y 
¯
 ​
 _ 

1 − ​ y 
¯
 ​
 ​ + ln​[​ 

​y –​
 _____ 

1 − ​y –​
 ​ ​ 
1 − ​ y 

¯
 ​
 _ ​ y 

¯
 ​ ​ ]​)​  =  1​,

where the second equality is implied by the definition of ​κ​ and (16). Next, we 
prove that there is a unique ​​y –​  ∈ ​ (​ y 

¯
 ​, 1)​​ that solves (16). Let ​​z –​  = ​ y –​ / ​(1 − ​y –​)​​ and ​​ z 

¯
 ​  

= ​  y 
¯
 ​ / ​(1 − ​ y 

¯
 ​)​​ so that the right-hand side of (16) can be written as ​R​(​z –​, ​ z 

¯
 ​)​  

= ​ (ln​[​z –​]​ − ln​[​ z 
¯
 ​]​)​ / ​(​z –​ − ​ z 

¯
 ​)​​. Note that ​R​ is continuous and strictly decreasing in ​​

z –​​, ​​lim​​z –​→​ z 
¯
 ​​​ R​(​z –​, ​ z 

¯
 ​)​  =  1 / ​ z 

¯
 ​​, and ​​lim​​z –​→∞​​ R​(​z –​, ​ z 

¯
 ​)​  =  0​. By (15), the left side of (16) 

satisfies

	​​ 
​ρ​​ 3​ − ​π​​ 3​

 _ 
​ρ​​ 2​

 ​   =  min​{​ 
​ρ​​ 3​

 _ 
​ρ​​ 2​

 ​, ​ 1 _ ​ z 
¯
 ​ ​ ​ 
​ρ​​ 1​

 _ 
​ρ​​ 2​

 ​ ln​[​ 
​ρ​​ 1​ + ​ρ​​ 2​

 _ 
​ρ​​ 1​

 ​ ]​}​  < ​  1 _ ​ z 
¯
 ​ ​​

since ​ln​[​(​ρ​​ 1​ + ​ρ​​ 2​)​ / ​ρ​​ 1​]​  < ​ ρ​​ 2​ / ​ρ​​ 1​​. Hence, there is a unique ​​z –​  ∈ ​ (​ z 
¯
 ​, ∞)​​ and there-

fore a unique ​​y –​  ∈ ​ (​ y 
¯
 ​, 1)​​ that solves (16). Finally, we verify that ​​b​ i​ 

∗​  ∈ ​ B​i​​​, that is, ​​
b​ i​ 

∗​​ satisfies (1). For valuation ​​v​​ 1​​, which is perfectly disclosed, (1) clearly holds. For 
valuation ​​v​​ 2​​,

   ​​   ​∫ ​​i​​
​ 

 

 ​​ ​p​i​​​(​v​​ 2​)​ d​b​ i​ 
∗​​(​p​i​​)​  ​= ​ (1 − ​ρ​​ 1​ − ​π​​ 3​)​​∫ ​ y 

¯
 ​​ 
​y –​
​​yϕ​(y)​ dy 

	 = ​ (1 − ​ρ​​ 1​ − ​π​​ 3​)​​(​ 
​y –​
 _____ 

1 − ​   y ​
 ​ − ​ 

​ y 
¯
 ​
 _ 

1 − ​ y 
¯
 ​
 ​)​κ  = ​ ρ​​ 2​​​,

and for valuation ​​v​​ 3​​,

	​​ ∫ ​​i​​
​ 

 

 ​​ ​p​i​​​(​v​​ 3​)​ d​b​ i​ 
∗​​(​p​i​​)​  = ​ π​​ 3​ + ​(1 − ​ρ​​ 1​ − ​π​​ 3​)​​∫ ​ y 

¯
 ​​ 
​y –​
​​​(1 − y)​ϕ​(y)​ dy  = ​ ρ​​ 3​​

because ​​∫ ​ y 
¯
 ​​ ​y –​​​ϕ​(y)​ dy  =  1​ and ​​(1 − ​ρ​​ 1​ − ​π​​ 3​)​​∫ ​ y 

¯
 ​​ ​y –​​​yϕ​(y)​ dy  = ​ ρ​​ 2​​.

Now, we will show that ​​b​ i​ 
∗​​ is a best response against itself. So, suppose bidder ​j​ 

plays the equilibrium strategy ​​b​ j​ 
∗​​. Accordingly, he perfectly discloses his valuation 
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when it is ​​v​​ 1​​, which implies ​​H​j​​​(​v​​ 1​, ​p​j​​)​  = ​ v​​ 1​​. Moreover, for all posteriors ​​p​j​​​ with  
​V​(​p​j​​)​  = ​ {​v​​ 2​, ​v​​ 3​}​​, ​​p​j​​​(​v​​ 2​)​  =  y  ≥ ​  y 

¯
 ​​, which implies

	​​ H​j​​​(​v​​ 2​, ​p​j​​)​  = ​ v​​ 2​ − ​ 
1 − y

 _ y  ​​(​v​​ 3​ − ​v​​ 2​)​  ≥ ​ v​​ 2​ − ​ 
1 − ​ y 

¯
 ​
 _ ​ y 

¯
 ​ ​​ (​v​​ 3​ − ​v​​ 2​)​  = ​ v​​ 1​​,

whereas ​​H​j​​​(​v​​ 2​, ​p​j​​)​  < ​ H​j​​​(​v​​ 3​, ​p​j​​)​  = ​ v​​ 3​​ for ​y  <  1​. Now, consider bidder ​i  ≠  j​ who 
uses an arbitrary strategy ​​b​i​​​. Recall that his ex ante expected payoff in the auction 
at ​​(​p​i​​, ​p​j​​)​​ is

	​​ u​ i​ 
f​​(​p​i​​, ​p​j​​)​  = ​   ∑ 

𝐯∈V​(𝐩)​
​ 

 

 ​​​ [​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​q​ i​ 
f​​(𝐯, 𝐩)​p​(𝐯)​.​

As the virtual valuation of ​i​’s opponent is always at least ​​v​​ 1​​, ​​[​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​q​ i​ 
f​​(𝐯, 𝐩)​  

=  0​ whenever ​​v​i​​  = ​ v​​ 1​​. Hence, it is a best response for ​i​ to also perfectly disclose ​​
v​​ 1​​: when doing so, the contribution of ​​v​i​​  = ​ v​​ 1​​ to the auction payoff is still zero, 
whereas the contribution of ​​v​i​​  > ​ v​​ 1​​ remains unaffected. To see that the latter is 
true, note that for ​​v​i​​  > ​ v​​ 1​​, either ​​H​i​​​(​v​i​​, ​p​i​​)​  = ​ J​i​​​(​v​i​​, ​p​i​​)​​ and thus ​​H​i​​​(​v​i​​, ​p​i​​)​​ is inde-
pendent of ​​p​i​​​(​v​​ 1​)​​ or ​​v​​ 1​  > ​ H​i​​​(​v​​ 1​, ​p​i​​)​  = ​ H​i​​​(​v​i​​, ​p​i​​)​  > ​ J​i​​​(​v​i​​, ​p​i​​)​​, ​​v​i​​  = ​ v​​ 2​​, and thus ​​
q​ i​ 

f​​(𝐯, 𝐩)​  =  0​ independent of whether ​​v​​ 1​​ is perfectly disclosed.
Moreover, we also have ​​[​v​i​​ − ​H​i​​​(​v​i​​, ​p​i​​)​]​ ​q​ i​ 

f​​(𝐯, 𝐩)​  =  0​ if ​​v​i​​  = ​ v​​ 3​​ and if ​​v​i​​  = ​ v​​ 2​​ 
and ​​p​i​​​(​v​​ 2​)​  < ​  y 

¯
 ​​ or ​​p​i​​​(​v​​ 2​)​  =  1​. Hence, bidder ​i​ expects a nonzero payoff only from 

posteriors ​​p​i​​​ with ​​p​i​​​(​v​​ 2​)​  ∈ ​ [​ y 
¯
 ​, 1)​​. Conditional on drawing the posterior ​​p​i​​​ with  

​​p​i​​​(​v​​ 2​)​  = ​ y​i​​  ≥ ​  y 
¯
 ​​, bidder ​i​’s expected payoff is

  ​​  ∫ ​​j​​
​ 

 

 ​​​u​ i​ 
f​​(​p​i​​, ​p​j​​)​ d​b​ j​ 

∗​​(​p​j​​)​

        = ​ [​v​​ 2​ − ​H​i​​​(​v​​ 2​, ​p​i​​)​]​ ​p​i​​​(​v​​ 2​)​​∫ ​​j​​
​ 

 

 ​​​[​p​j​​​(​v​​ 1​)​ + ​p​j​​​(​v​​ 2​)​ ​𝟏​​p​j​​​(​v​​ 2​)​<​p​i​​​(​v​​ 2​)​​​]​ d​b​ j​ 
∗​​(​p​j​​)​

        = ​ (1 − ​y​i​​)​​(​v​​ 3​ − ​v​​ 2​)​​(​ρ​​ 1​ + ​(1 − ​ρ​​ 1​ − ​π​​ 3​)​​∫ ​ y _ ​​ 
​y​i​​
​​yϕ​(y)​ dy)​​,

where

 ​​ (1 − ​ρ​​ 1​ − ​π​​ 3​)​​∫ ​ y 
¯
 ​​ 
​y​i​​
​​ yϕ​(y)​ dy  = ​

{
​
​(1 − ​ρ​​ 1​ − ​π​​ 3​)​​[​ 

​y​i​​ _ 1 − ​y​i​​
 ​ − ​ 

​ y 
¯
 ​
 _ 1 − ​ y 
¯
 ​ ​]​κ,

​ 
if ​y​i​​  ∈ ​ [​ y 

¯
 ​, ​y –​]​;

​    
​ρ​​ 2​,

​ 
if ​y​i​​  ≥ ​ y –​.

 ​​​

Let ​​​ ˆ ​​i​​​ denote a set of posteriors such that ​​p​i​​​(​v​​ 2​)​  =  1 − ​p​i​​​(​v​​ 3​)​  = ​ y​i​​  ∈ ​ (​y –​, 1)​​. 
Consider a strategy ​​b​i​​​ such that ​​∫ ​p​i​​∈​​ ˆ ​​i​​​ 

 
 ​​  d​b​i​​​(​p​i​​)​  >  0​. As ​1 − ​y​i​​  = ​ p​i​​​(​v​​ 3​)​​, the poste-

riors in ​​​ ˆ ​​i​​​ contribute

	​​ ∫ ​p​i​​∈​​ ˆ ​​i​​
​ 

 

 ​​​ ∫ ​​j​​
​ 

 

 ​​​u​ i​ 
f​​(​p​i​​, ​p​j​​)​ d​b​ j​ 

∗​​(​p​j​​)​ d​b​i​​​(​p​i​​)​  = ​ (​v​​ 3​ − ​v​​ 2​)​​(​ρ​​ 1​ + ​ρ​​ 2​)​​∫ ​p​i​​∈​​ ˆ ​​i​​
​ 

 

 ​​​ p​i​​​(​v​​ 3​)​ d​b​i​​​(​p​i​​)​​

to ​i​’s expected payoff. Consider another strategy ​​b​ i​ ′​​ that coincides with ​​b​i​​​ except that 
it does not draw any ​​p​i​​  ∈ ​​  ˆ ​​i​​​: instead, ​​b​ i​ ′​​ draws the posterior such that ​​p​i​​​(​v​​ 2​)​  =  1 − ​
p​i​​​(​v​​ 3​)​  = ​ y –​​ with probability ​​∫ ​p​i​​∈​​ ˆ ​​i​​​ 

 
 ​​ ​ p​i​​​(​v​​ 3​)​ d​b​i​​​(​p​i​​)​ / ​(1 − ​y –​)​​ and the posterior such that ​​

p​i​​​(​v​​ 2​)​  =  1​ with probability ​​∫ ​p​i​​∈​​ ˆ ​​i​​​ 
 
 ​​  d​b​i​​​(​p​i​​)​ − ​∫ ​p​i​​∈​​ ˆ ​​i​​​ 

 
 ​​ ​ p​i​​​(​v​​ 3​ )​ d​b​i​​​(​p​i​​)​ / ​(1 − ​y –​)​​. Note  
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that ​​b​ i​ ′​​ yields the same expected payoff as ​​b​i​​​. Hence, it is a best response for ​i​ to use 
a strategy under which ​​p​i​​​(​v​​ 2​)​  ∈ ​ (​y –​, 1)​​ has probability zero.

So, suppose bidder ​i​ plays a strategy ​​b​i​​​ such that ​​p​i​​​(​v​​ 2​)​  ∈ ​ [0, ​y –​]​ ∪ ​{1}​​ 
with probability one and ​​v​​ 1​​ is perfectly disclosed. Only posteriors ​​p​i​​​ such that  
​​p​i​​​(​v​2​​)​  =  1 − ​p​i​​​(​v​​ 3​)​  = ​ y​i​​  ∈ ​ [​ y 

¯
 ​, ​y –​]​​ contribute nonzero payoff. For ​​y​i​​  ∈ ​ [​ y 

¯
 ​, ​y –​]​​, we 

can write ​​∫ ​​j​​​ 
 
 ​​  ​u​ i​ 

f​​(​p​i​​, ​p​j​​)​ d​b​ j​ 
∗​​(​p​j​​)​  = ​ (​v​​ 3​ − ​v​​ 2​)​​[ψ​(1 − ​y​i​​)​ + ω ​y​i​​]​​, where

	​ ψ  = ​ ρ​​ 1​ − ​(1 − ​ρ​​ 1​ − ​π​​ 3​)​ ​ 
​ y 
¯
 ​
 _ 

1 − ​ y 
¯
 ​
 ​ κ  and  ω  = ​ (1 − ​ρ​​ 1​ − ​π​​ 3​)​κ.​

Then, ​i​’s payoff in the disclosure game is

(A17)  ​​  U​ i​ 
f​​(​b​i​​, ​b​ j​ 

∗​)​  = ​ ∫ ​​i​​
​ 

 

 ​​​∫ ​​j​​
​ 

 

 ​​​u​ i​ 
f​​(​p​i​​, ​p​j​​)​ d​b​ j​ 

∗​​(​p​j​​)​ d​b​i​​​(​p​i​​)​

	 = ​ (​v​​ 3​ − ​v​​ 2​)​​∫ ​{​p​i​​∣​p​i​​​(​v​​ 2​)​∈​[​ y 
¯
 ​,​y –​]​}​​ 

 

 ​​​ [ψ ​p​i​​​(​v​​ 3​)​ + ω ​p​i​​​(​v​​ 2​)​]​ d​b​i​​​(​p​i​​)​.​

Clearly, ​ω  >  0​. We next show that depending on ​​π​​ 3​​, either ​ψ  =  0​ or ​ψ  >  0​. 
Consider definition (15). If

	​​ π​​ 3​  =(>)  ​ρ​​ 3​ − ​ 
1 − ​ y 

¯
 ​
 _ ​ y 

¯
 ​ ​ ​ ρ​​ 1​ ln​[​ 

​ρ​​ 1​ + ​ρ​​ 2​
 _ 

​ρ​​ 1​
 ​ ]​,​

which means ​​π​​ 3​  ≥(=)  0​, then (16) yields

	 ​​ 
1 − ​ y 

¯
 ​
 _ ​ y 

¯
 ​ ​ ​ 

​ρ​​ 1​
 _ 

​ρ​​ 2​
 ​ln​[​ 

​ρ​​ 1​ + ​ρ​​ 2​
 _ 

​ρ​​ 1​
 ​ ]​  =(>)  ln​[​ 

​y –​
 _____ 

1 − ​y –​
 ​ ​ 
1 − ​ y 

¯
 ​
 _ ​ y 

¯
 ​ ​ ]​​​(​ 

​y –​
 _____ 

1 − ​y –​
 ​ − ​ 

​ y 
¯
 ​
 _ 

1 − ​ y 
¯
 ​
 ​)​​​ 

−1

​​

	​ ⇔ ​   ​y –​
 _____ 

1 − ​y –​
 ​  =(>)  ​ 

​ρ​​ 1​ + ​ρ​​ 2​
 _ 

​ρ​​ 1​
 ​ ​ 

​ y 
¯
 ​
 _ 

1 − ​ y 
¯
 ​
 ​​

(A18)	​ ⇒  κ  =(<)  ​ 
​ρ​​ 1​
 _ 

1 − ​ρ​​ 1​ − ​π​​ 3​
 ​ ​ 
1 − ​ y 

¯
 ​
 _ ​ y 

¯
 ​ ​​

and therefore ​ψ  =(>)  0​. So, suppose ​​π​​ 3​  ≥  0​ and ​ψ  =  0​. It then follows from 
(A17) that ​​U​ i​ 

f​​(​b​i​​, ​b​ j​ 
∗​)​​ is maximized by any ​​b​i​​​ such that ​​∫ ​{​p​i​​∣​p​i​​​(​v​​ 2​)​∈​[​ y 

¯
 ​,​y –​]​}​​ 

 
 ​​​ p​i​​​(​v​​ 2​)​ d​b​i​​​(​p​i​​)​  

= ​ ρ​​ 2​​. Hence, ​​b​i​​  = ​ b​ j​ 
∗​​ is indeed a best response. Now, suppose ​​π​​ 3​  =  0​ and ​ψ  >  0​. 

By (A17), ​​U​ i​ 
f​​(​b​i​​, ​b​ j​ 

∗​)​​ is maximized by any ​​b​i​​​ such that ​​∫ ​{​p​i​​∣​p​i​​​(​v​​ 2​)​∈​[​ y 
¯
 ​,​y –​]​}​​ 

 
 ​​​ p​i​​​(​v​​ 2​)​ d​b​i​​​(​p​i​​)​  

= ​ ρ​​ 2​​ and ​​∫ ​{​p​i​​∣​p​i​​​(​v​​ 2​)​∈​[​ y 
¯
 ​,​y –​]​}​​ 

 
 ​​​ p​i​​​(​v​​ 3​)​ d​b​i​​​(​p​i​​)​  = ​ ρ​​ 3​​. Hence, again, ​​b​i​​  = ​ b​ j​ 

∗​​ is a best 
response.

We are left to prove the claim regarding the equilibrium payoff. If ​​π​​ 3​  >  0​, 
then ​ψ  =  0​ and (A18) holds with equality. Hence, by (A17),

	​​ U​ i​ 
f​​(​b​ 1​ 

∗​, ​b​ 2​ 
∗​)​  = ​ (​v​​ 3​ − ​v​​ 2​)​ω​ρ​​ 2​  = ​ (​v​​ 3​ − ​v​​ 2​)​ ​ 

1 − ​ y 
¯
 ​
 _ ​ y 

¯
 ​ ​ ​ ρ​​ 1​​ρ​​ 2​  = ​ (​v​​ 2​ − ​v​​ 1​)​​ρ​​ 1​​ρ​​ 2​.​ ∎

PROOF OF PROPOSITION 5:
We will show that ​​b​ 1​ 

∗​, ​b​ 2​ 
∗​​ are best responses against each other. If bidder 2 plays ​​

b​ 2​ 
∗​​, his virtual valuation is always at least ​1​ because ​​J​2​​​(2, ​p​ 2​ ′′′​)​  =  1​. Thus, bidder 1’s 

payoff is zero under any signal structure, and ​​b​ 1​ 
∗​​ is a best response.
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Similarly, if bidder 1 plays ​​b​ 1​ 
∗​​, bidder 2 can win the auction only if his virtual 

valuation is at least ​1​. Thus, it is a best response to perfectly reveal valuation ​1​, 
that is, to draw ​​p​ 2​ ′ ​​ with probability ​1 / 3​.25 Moreover, bidder 2 then only obtains 
an information rent in the auction at posterior profiles ​​(​p​1​​, ​p​2​​)​​ such that ​​V​2​​​(​p​2​​)​  
= ​ {2, 4}​​ and he wins the auction with valuation 2. This is the case at ​​(​p​ 1​ ′ ​, ​p​2​​)​​ such that  
​​p​2​​​(2)​  ≥ ​ p​ 2​ ′′′​​(2)​  =  2 / 3​, which ensures ​​J​2​​​(2, ​p​2​​)​  ≥  1​, and at ​​(​p​ 1​ ′′​, ​p​2​​)​​ such that  
​​p​2​​​(2)​  ≥  8 / 9​, which ensures ​​J​2​​​(2, ​p​2​​)​  ≥  7 / 4​. Bidder 2’s payoff at such profiles is ​​
u​ 2​ 

h​​(​p​1​​, ​p​2​​)​  =  2 − 2 ​p​2​​​(2)​​.
Any posterior ​​p​2​​​ such that ​​p​2​​​(2)​  ∈ ​ (0, 2 / 3)​​ yields zero payoff, and bidder 2 

can do better by performing an ​ϵ​-extension to replace ​​p​2​​​ with ​​p​ 2​ ′′′​​ and ​​p​ 2​ ′′​​. So, a best 
response ​​b​2​​​ of bidder 2 draws among posteriors such that ​​V​2​​​(​p​2​​)​  = ​ {2, 4}​​ only 
those that satisfy ​​p​2​​​(2)​  ≥  2 / 3  > ​​ p – ​​2​​​, which implies that ​​b​2​​​ must also draw ​​p​ 2​ ′′​​ 
with positive probability (to ensure consistency (1)). Suppose under ​​b​2​​​ posterior ​​p​2​​​ 
such that ​​p​2​​​(2)​  ∈ ​ (2 / 3, 8 / 9)​​ is drawn with some probability ​β​. Then bidder 2 can 
improve by performing the opposite of an ​ϵ​-extension: drawing ​​p​ 2​ ′′′​​ with a probabil-
ity greater than ​β​ and reducing the probability of ​​p​ 2​ ′′​​. This is profitable, as ​​(​p​ 1​ ′ ​, ​p​ 2​ ′′′​)​​ 
both realizes with higher probability and yields a higher payoff than ​​(​p​ 1​ ′ ​, ​p​2​​)​​. Now, 
suppose ​​p​2​​​ such that ​​p​2​​​(2)​  ≥  8 / 9​ is drawn with some probability ​β​. Accordingly, 
the payoff in the auction given ​​p​2​​​ is always positive, so that ​​p​2​​​ contributes  
​β · ​[2 − 2 ​p​2​​​(2)​]​​ to the expected payoff. Again, bidder 2 can replace ​​p​2​​​ and instead 
reduce the probability of ​​p​ 2​ ′′​​ and draw ​​p​ 2​ ′′′​​ with probability ​β ​p​2​​​(2)​ / ​p​ 2​ ′′′​​(2)​  >  β​. 
Note that the auction payoff given ​​p​ 2​ ′′′​​ is positive only when bidder 1’s valuation is 
1. Thus ​​p​ 2​ ′′′​​ contributes ​β ​p​2​​​(2)​ / ​p​ 2​ ′′′​​(2)​ · ​[2 − 2 ​p​ 2​ ′′′​​(2)​]​ / 2​ to the expected payoff. 
Since ​​p​2​​​(2)​  ≥  8 / 9​ and ​​p​ 2​ ′′′​​(2)​  =  2 / 3​, the contribution of ​​p​ 2​ ′′′​​ is strictly greater 
than the contribution of ​​p​2​​​; that is, replacing ​​p​2​​​ is profitable. We conclude that by 
choosing ​​b​ 2​ 

∗​​, bidder 2 can improve upon any ​​b​2​​​ that with positive probability draws 
posteriors ​​p​2​​​ such that ​​p​2​​​(2)​  ∈ ​ (0, 2 / 3)​ ∪ ​(2 / 3, 1]​​. Consequently, ​​b​ 2​ 

∗​​ is a best 
response against ​​b​ 1​ 

∗​​. ∎

PROOF OF PROPOSITION 6:
As in Section III, by standard arguments, there are transfers such that incentive 

compatibility (20) holds if and only if ​​​Q ˘ ​​i​​​(​v​ i​ 
k+1​, ​p​i​​, ​s​i​​)​  ≥ ​​ Q ˘ ​​i​​​(​v​ i​ 

k​, ​p​i​​, ​s​i​​)​​ for all ​k  ∈ ​

{1, …, ​m​i​​ − 1}​​ and ​i  ∈  N​. Moreover, noting that by (18) the objective (19) can 
be written as

	​​  ∑ 
i∈N

​ 
 

 ​​​ ∫ ​​i​​
​ 

 

 ​​​∫ ​S​i​​
​ 

 

 ​​​  ∑ 
​v​i​​∈​V​i​​​(​p​i​​)​

​ 
 

 ​​​​ T ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​ ​p​i​​​(​v​i​​)​ d​σ​i​​​(​s​i​​)​ d​b​i​​​(​p​i​​)​,​

for any solution to problem [​𝐛, σ​], again all the local downward incentive constraints 
as well as individual rationality (21) for valuation ​​v​ i​ 

1​​ for ​​(​σ​i​​, ​b​i​​)​​-almost all ​​(​s​i​​, ​p​i​​)​​ 
and all ​i  ∈  N​ are binding, yielding interim expected transfers

(A19)	​​​ T ˘ ​​i​​​(​v​ i​ 
k​, ​p​i​​, ​s​i​​)​  = ​ v​ i​ 

k​ ​​Q ˘ ​​i​​​(​v​ i​ 
k​, ​p​i​​, ​s​i​​)​ − ​ ∑ 

l=1
​ 

k−1

​​​(​v​ i​ 
l+1​ − ​v​ i​ 

l​)​ ​​Q ˘ ​​i​​​(​v​ i​ 
l​, ​p​i​​, ​s​i​​)​.​

25 For details, see the Proof of Proposition 4, which involves a similar argument.
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Hence, bidder ​i​’s contribution to the auctioneer’s objective can be written as

   ​​   ∫ ​​i​​
​ 

 

 ​​​∫ ​S​i​​
​ 

 

 ​​​  ∑ 
​v​i​​∈​V​i​​​(​p​i​​)​

​ 
 

 ​​​​ T ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​​p​i​​​(​v​i​​)​ d​σ​i​​​(​s​i​​)​ d​b​i​​​(​p​i​​)​

          = ​ ∫ ​​i​​
​ 

 

 ​​​∫ ​S​i​​
​ 

 

 ​​​  ∑ 
​v​i​​∈​V​i​​​(​p​i​​)​

​ 
 

 ​​​ J​i​​​(​v​i​​, ​p​i​​)​ ​​Q ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​ ​p​i​​​(​v​i​​)​ d​σ​i​​​(​s​i​​)​ d​b​i​​​(​p​i​​)​,​

where ​​J​i​​​(​v​ i​ 
k​, ​p​i​​)​​ is the virtual valuation defined in Section  III. Consequently, the 

solutions to problem [​𝐛, σ​] satisfy (A19) and solve problem [P′]:

	 ​​  max​ 
​​(𝐪​(·,𝐩)​)​​

𝐩∈
​​
​​ ​ ∑ 
i∈N

​​​​∫ ​​i​​
​ 

 

 ​​​∫ ​S​i​​
​ 

 

 ​​​  ∑ 
​v​i​​∈​V​i​​​(​p​i​​)​

​​​​J​i​​​(​v​i​​, ​p​i​​)​ ​​Q ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​ ​p​i​​​(​v​i​​)​ d​σ​i​​​(​s​i​​)​ d​b​i​​​(​p​i​​)​,​

​subject to

(A20) ​​ Q ˘ ​​i​​​(​v​ i​ 
1​, ​p​i​​, ​s​i​​)​  ≤  ⋯  ≤ ​​ Q ˘ ​​i​​​(​v​ i​ 

​m​i​​​, ​p​i​​, ​s​i​​)​    ∀ i  ∈  N, ​p​i​​  ∈ ​ ​i​​, ​s​i​​  ∈ ​ S​i​​.​

The remainder of the proof consists in adapting arguments from the Proof of 
Proposition 1(a) to show that the solutions to problem [P] also solve [P′]. We will 
first show that for any allocation rule that satisfies the monotonicity constraint (A20),

(A21)  ​​   ∑ 
i∈N

​ 
 

 ​​​ ∫ ​​i​​
​ 

 

 ​​​∫ ​S​i​​
​ 

 

 ​​​  ∑ 
​v​i​​∈​V​i​​​(​p​i​​)​

​​​​J​i​​​(​v​i​​, ​p​i​​)​ ​​Q ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​ ​p​i​​​(​v​i​​)​ d​σ​i​​​(​s​i​​)​ d​b​i​​​(​p​i​​)​

              ≤ ​  ∑ 
i∈N

​ 
 

 ​​​ ∫ ​​i​​
​ 

 

 ​​​∫ ​S​i​​
​ 

 

 ​​​  ∑ 
​v​i​​∈​V​i​​​(​p​i​​)​

​ 
 

 ​​​ H​i​​​(​v​i​​, ​p​i​​)​ ​​Q ˘ ​​i​​​(​v​i​​, ​p​i​​, ​s​i​​)​ ​p​i​​​(​v​i​​)​ d​σ​i​​​(​s​i​​)​ d​b​i​​​(​p​i​​)​.​

As in the Proof of Proposition 1(a), define

	​​​ T ˆ ​​i​​​(𝐩)​  ≔ ​  ∑ 
k=1

​ 
​m​i​​

 ​​​J​i​​​(​v​ i​ 
k​, ​p​i​​)​ ​Q​i​​​(​v​ i​ 

k​, 𝐩)​ ​p​i​​​(​v​ i​ 
k​)​

and

	​​ T ̃ ​​i​​​(𝐩)​  ≔ ​  ∑ 
k=1

​ 
​m​i​​

 ​​​H​i​​​(​v​ i​ 
k​, ​p​i​​)​ ​Q​i​​​(​v​ i​ 

k​, 𝐩)​ ​p​i​​​(​v​ i​ 
k​)​.​

From (A2), it follows that (suppressing the dependence of ​​C​i​​​ and ​​G​i​​​ on ​​p​i​​​)

   ​​   ∫ ​​−i​​
​ 

 

 ​​​ [​​T ̃ ​​i​​​(𝐩)​ − ​​T ˆ ​​i​​​(𝐩)​]​ d​s​i​​​(​𝐩​−i​​)​

          =  − ​ ∑ 
k=1

​ 
​m​i​​−1

​​​[​C​i​​​(​P​i​​​(​v​ i​ 
k​)​)​ − ​G​i​​​(​v​ i​ 

k​)​]​​[​​Q ˘ ​​i​​​(​v​ i​ 
k+1​, ​p​i​​, ​s​i​​)​ − ​​Q ˘ ​​i​​​(​v​ i​ 

k​, ​p​i​​, ​s​i​​)​]​.​

This is positive whenever monotonicity (A20) holds, which implies (A21).
Now, it follows from the Proof of Proposition 1(a) that the optimal allocation 

rules identified there maximize the right-hand side of (A21) and that (A21) holds 
with equality for these allocation rules. Hence these allocation rules solve problem 
[P′ ].
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Finally, note that (6) for all ​𝐩  ∈  ​ implies (A19). Thus, ​​​(𝐪​( · , 𝐩)​, 𝐭​( · , 𝐩)​)​​𝐩∈​​​ 

satisfies (A19) and solves problem [P′ ] if ​​(𝐪​( · , 𝐩)​, 𝐭​( · , 𝐩)​)​​ satisfies Proposition 

1(b) for all ​𝐩​. ∎
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