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Abstract

The polyamine synthesis inhibitor eflornithine is a recommended treatment for the neglected

tropical disease Gambian human African trypanosomiasis in late stage. This parasitic dis-

ease, transmitted by the tsetse fly, is lethal unless treated. Eflornithine is administered by

repeated intravenous infusions as a racemic mixture of L-eflornithine and D-eflornithine.

The study compared the in vitro antitrypanosomal activity of the two enantiomers with the

racemic mixture against three Trypanosoma brucei gambiense strains. Antitrypanosomal in

vitro activity at varying drug concentrations was analysed by non-linear mixed effects model-

ling. For all three strains, L-eflornithine was more potent than D-eflornithine. Estimated 50%

inhibitory concentrations of the three strains combined were 9.1 μM (95% confidence inter-

val [8.1; 10]), 5.5 μM [4.5; 6.6], and 50 μM [42; 57] for racemic eflornithine, L-eflornithine and

D-eflornithine, respectively. The higher in vitro potency of L-eflornithine warrants further

studies to assess its potential for improving the treatment of late-stage Gambian human Afri-

can trypanosomiasis.

Author summary

The neglected tropical disease human African trypanosomiasis is lethal unless treated.

One of the treatments for the late stage–i.e. when parasites have invaded the central ner-

vous system–of Gambian human African trypanosomiasis is the drug eflornithine, which

is dosed as 50:50 racemic mixture of the two enantiomers L-eflornithine and D-eflor-

nithine. This study showed that L-eflornithine was better than D-eflornithine at inhibiting

the growth of parasites in vitro. The 50% inhibitory concentration for L-eflornithine

was 5.5 μM in comparison to 50 μM for D-eflornithine. This higher in vitro potency for

L-eflornithine warrants further studies to assess its potential as an improved treatment for

late-stage Gambian human African trypanosomiasis.
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Löfmark R, Mäser P, Ashton M (2021)

Enantiospecific antitrypanosomal in vitro activity of

eflornithine. PLoS Negl Trop Dis 15(7): e0009583.

https://doi.org/10.1371/journal.pntd.0009583

Editor: Margaret A. Phillips, University of Texas

Southwestern Medical School, UNITED STATES

Received: March 30, 2021

Accepted: June 21, 2021

Published: July 12, 2021

Copyright: © 2021 Boberg et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

from the Swedish National Data Service database

with SND-ID: 2021-45, https://snd.gu.se/en/

catalogue/study/2021-45.

Funding: The Swedish Research Council (2016-

05780), www.vr.se/english.html (MA), and Swiss

Tropical and Public Health Institute, www.swisstph.

ch/en/ (PM), funded the project. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

https://orcid.org/0000-0002-4422-6226
https://orcid.org/0000-0003-1785-7302
https://orcid.org/0000-0003-3122-1941
https://doi.org/10.1371/journal.pntd.0009583
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009583&domain=pdf&date_stamp=2021-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009583&domain=pdf&date_stamp=2021-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009583&domain=pdf&date_stamp=2021-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009583&domain=pdf&date_stamp=2021-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009583&domain=pdf&date_stamp=2021-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009583&domain=pdf&date_stamp=2021-07-22
https://doi.org/10.1371/journal.pntd.0009583
http://creativecommons.org/licenses/by/4.0/
https://snd.gu.se/en/catalogue/study/2021-45
https://snd.gu.se/en/catalogue/study/2021-45
http://www.vr.se/english.html
http://www.swisstph.ch/en/
http://www.swisstph.ch/en/


Introduction

The neglected tropical disease human African trypanosomiasis (HAT), also known as sleeping

sickness, is fatal unless treated. The amino acid analogue DL-alpha-difluoromethylornithine,

known as eflornithine, was first developed for oncological use [1] and later discovered to have

antitrypanosomal activity [2]. Eflornithine, included in the World Health Organization

(WHO) model list of essential medicines [3], is dosed intravenously, commonly together with

oral nifurtimox, to treat the late stage of Gambian HAT [4–7], which account for 98% of the

total HAT cases [8]. The intravenous administration of eflornithine requires hospital-like set-

tings. Treatment accessibility in rural areas would increase if an oral eflornithine treatment

was available with easier and less costly logistics [9]. However, clinical trials with oral racemic

eflornithine have failed to achieve sufficiently high systemic exposure, most likely due to poor

bioavailability at maximum tolerated oral dose [9,10]. The two enantiomers, L- and D-eflor-

nithine, both inhibited the target enzyme ornithine decarboxylase (ODC) in a cell free assay

with human ODC [11]. However, the potential difference in antitrypanosomal efficacy on a

parasite level may limit the possibility for oral treatment since the enantiomers differ in their

oral bioavailability [12]. This study aimed to investigate the antitrypanosomal in vitro activities

of racemic eflornithine, L-eflornithine and D-eflornithine against three Trypanosoma brucei
(T.b.) gambiense strains to support whether a future late-stage Gambian HAT treatment with a

potentially more active enantiomer would be feasible or not.

Materials and methods

Compounds

Eflornithine hydrochloride was donated by the UNICEF/UNDP/World Bank/WHO Special

Programme for Research and Training in Tropical Disease ([TDR], Geneva, Switzerland).

L-eflornithine and D-eflornithine were separated from the racemic mixture by semi-prepara-

tive liquid chromatography [13]. Racemic eflornithine, L-eflornithine and D-eflornithine were

dissolved in sterile water for the in vitro activity assay and diluted in culture medium before

incubation of T.b. gambiense parasites in 96-well plates.

Parasites and cell culture conditions

The T.b. gambiense strain STIB930 is a derivative of the strain TH1/78E (031), which was iso-

lated in 1978 from a patient in Côte d’Ivoire [14]. The K03048 strain was isolated from a

patient in South Sudan in 2003 [15]. The 130R strain was isolated 2003 from a patient in the

Democratic Republic of the Congo [16]. Parasite incubation conditions were 37˚C, 5% CO2

atmosphere, in HMI-9 medium [17] with fetal bovine serum and human serum, 15% and 5%,

respectively. Parasites were subcultured at appropriate dilutions every two to three days to

ensure maintenance in exponential growth phase.

In vitro growth inhibition assays

Racemic eflornithine, L-eflornithine and D-eflornithine were tested in an AlamarBlue serial

drug dilution assay, described in detail elsewhere [18], in order to quantify parasite growth

inhibition. In brief, serial drug dilutions were prepared in 96-well microtiter plates containing

HMI-9 medium. Pre-experimental parasites counts were obtained using a CASY cell counter

(OLS OMNI Life Science, Bremen, Germany) before the wells were inoculated with 100,000 T.

b. gambiense parasites and incubated for 72 hours. The fluorescent agent resazurin was added

before the plates were incubated for another four to six hours. SpectraMax Gemini XS micro-

plate fluorescence scanner was used to read the plates at the excitation and emission
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wavelengths 536 nm and 588 nm, respectively. To determine the in vitro growth inhibition,

the study was conducted with five independent experiments for the STIB930 T.b. gam-
biense strain with racemic eflornithine and seven with L-eflornithine or D-eflornithine,

respectively. Four independent experiments were performed for the K03048 and 130R T.b.

gambiense strains with racemic eflornithine and six with L-eflornithine or D-eflornithine,

respectively. Time-dependence for the drug exposure was studied for racemic eflornithine,

L-eflornithine and D-eflornithine in a series of in vitro growth inhibition assays where the

T.b. gambiense strain STIB930 was under drug exposure for 24, 48 or 72 hours. All other

parts of the experiment followed a similar protocol as the AlamarBlue serial drug dilution

assay and plate readings as previously described. Racemic eflornithine, L-eflornithine and

D-eflornithine were tested in an in vitro cytotoxicity assay with L6 rat skeletal myoblast

cells using a protocol described in full elsewhere [19]. The positive control in the cytotoxic-

ity in vitro assay was podophyllotoxin with a known 50% inhibitory concentration (IC50) of

0.02 μM (0.007 μg/mL).

Data and statistical analyses

Eq 1 was fitted to the antitrypanosomal in vitro activity data using non-linear mixed effects

modelling as implemented in Phoenix software (Version 8.2, Certara, Princeton, NJ, USA).

Firstly, each combination of compound and parasite strain was fitted separately by naïve

pooled data analysis to estimate IC50, sigmoidicity factor gamma (γ) that characterizes the con-

centration-inhibition relationship steepness and maximum inhibition (Imax) where I0 repre-

sents the baseline effect without drug exposure according to:

Inhibition ¼ I0 �
Imax � Concentrationg

ICg

50
þ Concentrationg

ð1Þ

In a second step, each compound was separately fitted to pooled data for all strains. For

model validation, parameter estimate plausibility was assessed and bootstrap (n = 1000) using

the first-order conditional estimate-extended least square method was performed. The boot-

strap estimates were used to establish the 5th and 95th percentiles for the model predictions.

Differences in parameter estimates from the bootstrap were assessed as statistically significant

for 95% confidence intervals (95% CI) without overlap. For discrimination between nested

models with γ = 1 or estimated γ in non-linear mixed effects modelling, a decrease in -2 log

likelihood over 3.84 for the more complex model was regarded as statistically significant

(P< 0.05) with an assumed χ2 distribution for the difference in -2 log likelihood. Plots and sta-

tistical analysis were made using Rstudio (Version 1.3.1093) with the R software (Version

4.0.3, 2020, The R foundation for Statistical Computing).

Results

Antitrypanosomal in vitro activity against STIB930, K03048 and 130R

All compounds inhibited the growth of the three T.b. gambiense strains in a concentration-

dependent manner (Fig 1). L-eflornithine had the lowest IC50 estimates throughout, with

4.1 μM (95% CI 3.1; 5.0), 8.9 μM (7.0; 11) and 7.7 μM (6.8; 8.5) for strains STIB930, K03048

and 130R, respectively. D-eflornithine was less potent with IC50 estimates of 39 μM (29; 49),

73 μM (62; 85) and 76 μM (66; 86) for the same strains. IC50 values for racemic eflornithine

were 6.4 μM (5.2; 7.7), 17 μM (15; 18) and 14 μM (12; 17) for STIB930, K03048 and 130R,

respectively (Table 1).
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Fig 1. Antitrypanosomal in vitro activity for racemic eflornithine and its enantiomers against three different T.b.

gambiense strains. In vitro activity for racemic eflornithine (blue), L-eflornithine (green) and D-eflornithine (red)

against T.b. gambiense strains a) STIB930, b) K03048 and c) 130R. Parasite growth values are shown as relative
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Growth inhibition analysis for all strains pooled

Pooling the data for the three strains resulted in IC50 estimates (95% CI) of 9.1 μM (8.1; 10),

5.5 μM (4.5; 6.6), and 50 μM (42; 57) for racemic eflornithine, L-eflornithine and D-eflor-

nithine, respectively. The sigmoidicity factor γ and Imax values were similar for racemic eflor-

nithine, L-eflornithine and D-eflornithine (Table 1). The 5th to 95th percentiles for model

predictions did not overlap at concentrations close to IC50 values for the three treatments (Fig

2). The overall in vitro 90% inhibitory concentration (IC90) for racemic eflornithine, L-eflor-

nithine and D-eflornithine were 25 μM, 17 μM and 166 μM, respectively. The growth inhibi-

tion was time-dependent as the concentration antitrypanosomal in vitro activity relationship

after 72 h was steeper, and with a lower IC50 estimate compared to the IC50 estimates for 24 h

and 48 h drug exposure times (S1 Fig and S1 Table). No observations of in vitro cytotoxicity

were made in the L6 cell assay at relevant in vitro concentrations for racemic eflornithine, L-

eflornithine and D-eflornithine whereas the positive control podophyllotoxin was cytotoxic

with an expected IC50 at approximately 0.02 μM (S2 Fig).

Discussion

The enantiospecific eflornithine antitrypanosomal activity is to the best of our knowledge doc-

umented herein for the first time. The overall in vitro potency of L-eflornithine was about

9-fold higher than D-eflornithine against three T.b. gambiense strains. As a result, the IC50 esti-

mate for racemic eflornithine was approximately twice that of L-eflornithine due to 1:1 inclu-

sions of much less potent D-eflornithine. The difference in antitrypanosomal activity could

possibly be due to an enantioselective eflornithine transport into the T.b. gambiense parasites

since the enantiomers appear to have similar inactivation properties on an enzyme level [11].

Clinically, total eflornithine concentrations in cerebrospinal fluid over 50 μM, equating to

approximately 5.5 times the overall in vitro IC50 in the present study, have been associated

with efficient parasite eradication in late-stage Gambian HAT patients after intravenous

fluorescence in the AlamarBlue serial drug dilution assay. Dots represent observed experimental data, lines the model

predictions and grey areas the 5th to 95th percentiles of the model prediction central values.

https://doi.org/10.1371/journal.pntd.0009583.g001

Table 1. IC50, gamma and Imax estimates for racemic eflornithine, L-eflornithine and D-eflornithine in three different T.b. gambiense strains and overall across all

strains.

Parameter Drug STIB930 Estimate (95% CI) K03048 Estimate (95% CI) 130R Estimate (95% CI) Overall Estimate (95% CI)

IC50 (μM) Racemic eflornithine 6.4 (5.2 to 7.7) 17 (15 to 18) 14 (12 to 17) 9.1 (8.1 to 10)

L-eflornithine 4.1 (3.1 to 5.0) 8.9 (7.0 to 11) 7.7 (6.8 to 8.5) 5.5 (4.5 to 6.6)

D-eflornithine 39 (29 to 49) 73 (62 to 85) 76 (66 to 86) 50 (42 to 57)

Gamma Racemic eflornithine 2.8 (2.4 to 3.4) 1.5 (1.3 to 1.6) 1.7 (1.4 to 1.9) 1.7 (1.5 to 2.1)

L-eflornithine 2.5 (1.9 to 3.2) 1.5 (1.3 to 1.7) 1.5 (1.4 to 1.6) 1.6 (1.3 to 1.8)

D-eflornithine 2.8 (2.0 to 4.0) 1.6 (1.2 to 1.8) 1.4 (1.1 to 1.7) 1.7 (1.3 to 2.2)

Imax Racemic eflornithine 0.95 (0.92 to 0.97) 0.93 (0.88 to 0.98) 0.94 (0.91 to 1.0) 0.94 (0.91 to 0.98)

L-eflornithine 0.96 (0.94 to 0.98) 0.92 (0.87 to 0.95) 0.95 (0.92 to 0.98) 0.94 (0.92 to 0.97)

D-eflornithine 1.0 (0.96 to 1.0) 0.93 (0.88 to 0.99) 0.93 (0.89 to 0.98) 0.97 (0.93 to 1.0)

Residual variability Racemic eflornithine 0.12 (0.090 to 0.14) 0.15 (0.054 to 0.22) 0.15 (0.068 to 0.18) 0.18 (0.15 to 0.19)

L-eflornithine 0.13 (0.11 to 0.15) 0.13 (0.092 to 0.17) 0.12 (0.082 to 0.14) 0.16 (0.14 to 0.17)

D-eflornithine 0.14 (0.11 to 0.17) 0.14 (0.089 to 0.18) 0.14 (0.085 to 0.17) 0.17 (0.15 to 0.19)

Parameters were estimated with bootstrap (n = 1000), 95% CI– 95% confidence interval

https://doi.org/10.1371/journal.pntd.0009583.t001
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infusions of racemic eflornithine [9,20]. The higher potency for L-eflornithine observed in the

present study suggests that this threshold value could potentially be decreased by approxi-

mately 50% if pure L-eflornithine were administered. Supporting this hypothesis, cerebrospi-

nal fluid concentrations over 23 μM for L-eflornithine, equating to approximately 4 times the

overall in vitro IC50 in the present study, were associated, however not statistically significant,

with probability of cure in a clinical study of 25 patients when treated with racemic eflor-

nithine orally [12]. A prospective clinical trial investigating the clinical efficacy of L-eflor-

nithine dosed intravenously and orally at appropriate, tolerated doses could elucidate the

clinical potential for L-eflornithine. The pharmacological effect of eflornithine in late-stage

Gambian HAT may be expected to depend predominantly on unbound L-eflornithine concen-

tration in the systemic circulation and central nervous system. The plasma protein binding for

racemic eflornithine has been reported as negligible [21]. Total eflornithine concentrations are

in such case expected to be identical to unbound concentrations and available to target the T.b.

gambiense parasites. The IC50 values for the antitrypanosomal in vitro activity in the present

study could therefore, with more confidence, be translated to in vivo relevant concentrations.

The pharmacodynamic effect and cure can be seen as conditioned by critical interactions

between the drug, the patient and the T.b. gambiense parasite as discussed for other antimicro-

bial agents [22].

In a more pharmacological and dose-finding oriented perspective, as discussed for antima-

larial treatments, the in vitro IC90 can be used as a free drug minimum inhibitory concentra-

tion surrogate [23]. This approach has been successful when, for instance, translating in vitro
findings to clinically relevant minimum inhibitory concentration proxy [24]. For Gambian

HAT, the IC90 values in the present study for L-eflornithine and racemic eflornithine at 17 and

25 μM, respectively, were exceeded in serum and cerebrospinal fluid after fourteen days of

racemic eflornithine treatment with two-hour intravenous infusions at 100 mg/kg four times

per day [25]. Currently, the clinical posology for racemic eflornithine is 200 mg/kg twice daily

when combined with nifurtimox [26]. Extrapolation of in vitro IC50 or IC90 to in vivo relevant

Fig 2. The overall antitrypanosomal in vitro activity was elicited by the more active L-eflornithine enantiomer.

Antitrypanosomal activity for racemic eflornithine (blue), L-eflornithine (green) and D-eflornithine (red) against three

T.b. gambiense strains collectively. Parasite growth values are shown as relative fluorescence in the AlamarBlue serial

drug dilution assay. Dots represent observed experimental data, lines the model predictions and grey areas the 5th to

95th percentiles of the model prediction central values.

https://doi.org/10.1371/journal.pntd.0009583.g002
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values of efficacious unbound drug concentration in plasma may be fraught with error since

effects also depend on whether the drug reaches its target tissue and on the role of the immune

system in vivo [27]. Uptake of eflornithine into the central nervous system is low leading to a

poor partitioning between plasma and brain or cerebrospinal fluid [28,29]. The reported clini-

cal cerebrospinal fluid to plasma or serum ratios range from 0.1 to 0.5 [9,12,25]. Eflornithine

partitioning from plasma to cerebrospinal fluid appears to be non-stereoselective when admin-

istered as a racemate orally [12]. Additionally, it is important to take the factors of target occu-

pancy, target turnover and active metabolites into account in in vitro–in vivo extrapolation.

For eflornithine, no metabolites have been identified, hence can not contribute to pharmaco-

logical effects [30]. Moreover, since eflornithine can be seen as a slow acting compound [21],

and trypanostatic rather than trypanocidal [31], the pharmacokinetic/pharmacodynamic rela-

tionship is important to consider as drug transporters in the body and/or T.b. gambiense para-

sites involved in the drug disposition could affect the clinical efficacy of eflornithine.

Only three T.b. gambiense strains were tested in the study which is a limitation. Granted, an

analysis with more strains would render more generalizable approximations when extrapolat-

ing from the in vitro results to the clinic. Eflornithine resistance has been associated with non-

expression of the TbAAT6 transporter gene [32]. This TbAAT6-dependent eflornithine trans-

port into T.b. gambiense parasites has been investigated further where lines of trypanosomes

showed lower sensitivity to eflornithine when the TbAAT6 transporter gene was silenced [33].

If the uptake by this amino acid transporter disfavours D-eflornithine, it might contribute to

the observed higher in vitro activity for L-eflornithine in the present study. Radiolabelled com-

pound could be used to decouple the potentially enantioselective transport of eflornithine into

T.b. gambiense parasites. In vivo studies with L-eflornithine would potentially increase the con-

fidence in the presented findings; however, the experiments mentioned above were assessed as

outside of the study scope.

To achieve and sustain global elimination of HAT [34], it is imperative to design, make, test

and analyse results for novel compounds in the pipeline. For both patients and care givers, an

oral route of administration of drugs would be much preferred. Oral administration of racemic

eflornithine has been investigated in clinical [9,20,21,25,35–38] and preclinical [12,39,40] stud-

ies but the antitrypanosomal efficacy and tolerability of enantiopure L-eflornithine is still to be

investigated. The mechanisms and the potential enantioselectivity of the noted gastrointestinal

side effects in the clinical studies with oral racemic eflornithine remain so far unknown. An

oral alternative HAT treatment, fexinidazole, has been approved [41,42] and is first line treat-

ment for patients with a cerebrospinal fluid leucocyte count less than 100 per μL. Acoziborole

is currently in clinical trials [43]. Overall, these advances are important to achieve global elimi-

nation of HAT.

In conclusion, the present study showed that the L-eflornithine enantiomer elicited higher

antitrypanosomal in vitro activity, as it was more effective than D-eflornithine against three

different T. b. gambiense strains in vitro. This knowledge could be used in the future to predict

in vivo efficacious doses of the more active L-eflornithine enantiomer using pharmacokinetic/

pharmacodynamic models to assess the feasibility of L-eflornithine treatment for late-stage

Gambian HAT.

Supporting information

S1 Fig. Time-dependent antitrypanosomal in vitro activity for eflornithine and its enantio-

mers. Time-dependent in vitro activity for a) racemic eflornithine (blue dashed lines), L-eflor-

nithine (green small dashed lines) and D-eflornithine (red full lines) after 24 h (thick lines), 48

h (medium lines) and 72 h (thin lines) of drug exposure. Parasite growth values are shown as
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relative fluorescence in the AlamarBlue serial drug dilution assay. Dots represent observed

experimental data and lines the model predictions. b) Mean IC50 values with error bars show-

ing the standard error of the estimates for racemic eflornithine (blue dashed line), L-eflor-

nithine (green dotted line) and D-eflornithine (red full line) after different drug exposure

times. Please note the log10 scale on the y-axis in S1b Fig.

(TIFF)

S2 Fig. In vitro cytotoxicity assay for racemic eflornithine, its enantiomers and podophyl-

lotoxin. a) In vitro activity against L6 cells for racemic eflornithine (blue), L-eflornithine

(green) and D-eflornithine (red) and b) in vitro activity for the positive control podophyllo-

toxin (dark blue). L6 cell growth values are shown as relative fluorescence in the assay. Dots

represent observed experimental data and the coloured lines the model predictions.

(TIFF)

S1 Table. IC50, gamma, Imax and residual variability estimates in the time-dependent assay

for racemic eflornithine, L-eflornithine and D-eflornithine.

(DOCX)
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Investigation: Mikael Boberg, Monica Cal, Marcel Kaiser, Rasmus Jansson-Löfmark, Pascal

Mäser, Michael Ashton.

Methodology: Mikael Boberg, Monica Cal, Marcel Kaiser, Rasmus Jansson-Löfmark, Pascal
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Supervision: Monica Cal, Marcel Kaiser, Rasmus Jansson-Löfmark, Pascal Mäser, Michael
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