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ABSTRACT Ensuring continued success against malaria depends on a pipeline of
new antimalarials. Antimalarial drug development utilizes preclinical murine and ex-
perimental human malaria infection studies to evaluate drug efficacy. A sequential
approach is typically adapted, with results from each stage informing the design of
the next stage of development. The validity of this approach depends on confidence
that results from murine malarial studies predict the outcome of clinical trials in
humans. Parasite clearance rates following treatment are key parameters of drug effi-
cacy. To investigate the validity of forward predictions, we developed a suite of
mathematical models to capture parasite growth and drug clearance along the drug
development pathway and estimated parasite clearance rates. When comparing the
three infection experiments, we identified different relationships of parasite clear-
ance with dose and different maximum parasite clearance rates. In Plasmodium ber-
ghei-NMRI mouse infections, we estimated a maximum parasite clearance rate of 0.2
(1/h); in Plasmodium falciparum-SCID mouse infections, 0.05 (1/h); and in human vol-
unteer infection studies with P. falciparum, we found a maximum parasite clearance
rate of 0.12 (1/h) and 0.18 (1/h) after treatment with OZ439 and MMV048, respec-
tively. Sensitivity analysis revealed that host-parasite driven processes account for up
to 25% of variance in parasite clearance for medium-high doses of antimalarials.
Although there are limitations in translating parasite clearance rates across these
experiments, they provide insight into characterizing key parameters of drug action
and dose response and assist in decision-making regarding dosage for further drug
development.

KEYWORDS antimalarial drug development, translational medicine, parasite-host
interactions, parasite clearance, within-host models

Recent progress in reducing malaria burden is threatened by emerging resistance
against current first-line treatments and by suboptimal adherence to existing treat-

ment schedules. Development of new antimalarial treatments is therefore more urgent
than ever (1). Requirements for new antimalarial treatment regimens are multifaceted,
spanning safety, efficacy, and dose optimization for all populations, including pregnant
women, infants, and children (2).

Before testing compounds in vivo, promising compounds are identified in vitro, and
their parasiticidal efficacy is assessed in whole-cell or target-based assays (3). In preclinical
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stages, drug efficacy is often investigated using murine malarial infection. Historically,
infection of normal mice with Plasmodium berghei was shown to be a useful experiment
to measure crude drug efficacy and to select promising candidates (4). However, enzy-
matic differences between the human malaria parasite Plasmodium falciparum led to
selection bias in candidate selection (5). More recently, the humanized mouse model of
NODscidIL-2R' c2/2 (SCID) mice infected with P. falciparum has been shown to provide
insights into efficacy against the human parasite in vivo (6–8) and further assists candi-
date selection. Early human efficacy studies via experimental infection of malaria-naive
individuals, termed volunteer infection studies (VIS) (9) or controlled human malaria
infection (CHMI) studies, provide an opportunity to evaluate antimalarial activity in
humans with low parasite burden in a controlled setting. These studies avoid the con-
founding factors of drug efficacy observed in clinical malaria cases, such as acquired im-
munity, concomitant diseases, and medication (10–12).

Drug efficacy indices, used to summarize drug effect over time, are key measures
by which to evaluate the progression of drug candidates from the preclinical to clinical
stages of the drug development pipeline. For malaria, pharmacodynamic/efficacy indi-
ces include the following: (i) measurements of total or proportional parasite clearance,
such as the parasite clearance rate or parasite reduction ratio over 48 h (PRR48) (4); (ii)
drug exposure typically reported by indicative drug concentrations, such as the MIC
(8); and (iii) clinical endpoints, such as adequate clinical and parasitological response
(ACPR) (13). Parasite clearance measures are widely used in antimalarial drug develop-
ment to guide compound selection (2) and are also reported in clinical studies in
endemic areas as a measure of drug efficacy (14).

In a previous paper, we developed a suite of mathematical models of parasite growth
and drug-parasite dynamics to investigate murine malaria infection and malaria drug ex-
perimental tests. Through extensive simulation of these models and comparison with data
for several drugs, we found that the experimental systems and differences between the
two murine malaria infections had appreciable effects on measured drug efficacy and
treatment outcomes. More specifically, we found that drug efficacy is influenced by host-
parasite dynamics in P. berghei-NMRI mouse infection where resource limitation is caused
by aggressive parasite growth, namely, limitations of red blood cells (RBCs) (15). In P. falcip-
arum-SCID mouse infection, we found that continued injections of human RBCs have a no-
ticeable impact on subsequent clearance patterns of uninfected and infected RBCs (iRBCs).
We additionally identified mechanisms of observed recrudescence patterns after noncura-
tive treatment that are not discernible from the experimental data nor captured by current
modeling approaches of antimalarial drugs. These unknown mechanisms may include
altered parasite maturation or dormancy and affect experimental measures of cure, thus
limiting interpretations of curative dose for a particular drug (15).

In this study, we examined the ability of the parasite clearance after treatment esti-
mated from murine experiments to translate to estimates in human studies. This analysis
used data from studies of two antimalarials, MMV048 and OZ439 (artefenomel), in the P.
berghei-NMRI mouse, in P. falciparum (strain 3D7)-SCID mouse, and in P. falciparum (strain
3D7)-human infection experiments. Both compounds are part of the Medicines for Malaria
Venture portfolio (https://www.mmv.org/research-development/mmv-supported-projects).
OZ439 is a synthetic peroxide antimalarial candidate that is fast acting against all asexual
erythrocytic parasite stages. It is currently being evaluated in combination with ferroquine
in phase II clinical studies (11, 16–18). MMV048 is a Plasmodial phosphatidylinositol 4-ki-
nase (PI4K) inhibitor efficacious against liver erythrocytic parasite-life cycle stages currently
in phase IIa (19–21).

We modeled parasite growth and clearance following two new antimalarial treatments
in murine and human malarial infections (Fig. 1a, model development and calibration). We
included relevant and potentially important features of parasite growth, host, and drug dy-
namics in the models of all three testing systems following a comprehensive examination
of their biological and experimental background. Through simulation and global sensitivity
analysis of these models, we explored and compared the estimates of parasite clearance
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for a range of dosing regimens and parasite and host assumptions in all three systems (Fig.
1b). Through this analysis, we demonstrated which of the factors (host, parasite, host-para-
site, and drug dynamics) primarily determine the relationship between parasite clearance
estimates across the antimalarial drug development pathway and assess implications for
decision making in drug development.

RESULTS

The design of the studies/experiments used to evaluate the candidate antimalarials
(MMV048 and OZ439) in normal mice, SCID mice, and human volunteers is described
in Table 1 and Fig. 2a to c (left side). Mice were infected with inocula containing
around 2� 107 parasites or more, resulting in progression to severe disease with high
parasitemia of up to 60 to 80% (P. berghei, parasitized mouse RBCs) and 15 to 20%
(P. falciparum, parasitized human RBCs) within a week of inoculation. By design, human
volunteers do not progress to high parasitemia to avoid severe clinical illness (9).
Volunteers reach parasitemia of around 104 parasites/ml (corresponding to 0.0002%
under the assumption of 5� 109 RBCs/ml in male humans [22]) before treatment.

Parasite-host dynamics and experimental design influence treatment in
murine malaria infection. In our previous work (15), we developed several mathemat-
ical models of parasite and drug dynamics in both P. berghei-NMRI and P. falciparum-
SCID mice (Fig. 1a). The experimental system and mathematical models are described
in Fig. 2a and b, respectively. Using the parameter estimates from the original paper
(for both parasite growth and pharmacokinetic-pharmacodynamic [PKPD] models), we
simulated the models of murine infection to compare their results with our VIS simula-
tions below (Fig. 1b). Here, we primarily compared parasite clearance after treatment
across the three testing systems (Fig. 1b, comparison of parasite clearance across ex-
perimental systems) as estimated from the models for a range of drug doses. We sub-
sequently assessed the influence of experimental design and parasite-host system on
parasite clearance throughout the antimalarial development pathway by sampling
from the posterior distributions for VIS and by sampling parameters from a log-normal
distribution with 20% standard deviation for the murine models (Fig. 1b, sensitivity
analysis).

FIG 1 Standardized workflow for the systematic investigation of parasite-host-drug dynamics throughout the (pre)
clinical antimalarial development process. (a) Mechanistic models of parasite growth are calibrated to extensive
undisturbed parasite growth (control) data in murine and human infection experiments on a population (mouse) or
individual (human) level. Combined with models of drug concentration (PK) over time, they are used to calibrate to
treatment data over multiple doses and drugs. Models were selected for further analysis based on appropriate
goodness-of-fit measures and assessment of biological plausibility. (b) Model simulation over multiple drugs and doses
facilitates the comparison of the parasite reduction rate over all experimental systems. Subsequent sensitivity analysis
allows the identification of parasite, host, or drug dynamics as the drivers of experimental outcomes.
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In the two murine systems, several experimental and parasite-host traits were
examined by including them in a suite of models (further details in Materials and
Methods and Table S5 in the supplemental material) (15). From an experimental per-
spective, data availability and experimental design differ between the two murine
infection systems. For example, in P. berghei-NMRI infection, the volume of blood sam-
ple needed for analysis and aggressive parasite growth limits the frequency of collec-
tion for measurements of parasitemia. From the host perspective, we investigated and
quantified adaptions of the host-system to increasing parasite burden. In P. berghei-
NMRI infection, we included erythropoiesis (23, 24) or clearance patterns as well as par-
asite adaptions, such as parasite maturation (25) and target RBC preferences (23), in
our models to capture patterns of RBC availability and the occurrence of anemia (Fig.
2a). In P. falciparum-SCID infection experiments, continued injections of human eryth-
rocytes hinder the occurrence of anemia and lead to an increase in the proportion of
available human host-cells throughout the experiment (Fig. 2b). The injected human
RBC volume of 4.55� 109 RBCs every 2 to 3 days (corresponds to 46% of total mouse
RBCs) leads to a high clearance of excess erythrocytes throughout the experiments,
thus likely affecting measures of drug efficacy (6). Different hypotheses regarding the
influences on RBC clearance mechanisms were formalized in our models of P. falcipa-
rum-SCID mouse infection (Fig. 2b).

Using a maximum likelihood approach, we estimated the parameters of our parasite
growth models by fitting them to the pooled experimental control data of untreated
parasite growth. The fitted models were then combined with the pharmacodynamic
(PD) models to analyze the influence of the parasite-host dynamics and experimental
design on parasite clearance after treatment.

For MMV048, we captured the parasite clearance data after treatment by including a
delayed parasite clearance of parasites damaged or killed by the drug, modeled by the
clearance rate of dead parasites CLY, in both murine hosts (Table S5, clearance PD model
selection, CLY range of 0.036 to 0.041 [1/h] in P. berghei-NMRI and CLY range of 0.068 to
0.071 [1/h] in P. falciparum-SCID infection over all mechanistic parasite growth models). In
contrast, for OZ439, we observed a delayed drug effect through a turnover (Table S5, turn-
over PD model selection, kR (first-order rate constant for biological intermediate) range of
0.013 to 0.06 (1/h) in P. berghei-NMRI and kR range of 0.013 to 0.016 (1/h) in P. falciparum-

TABLE 1 Overview of the data and experimental outcomes in our analysis of murine and human malaria infectiona

Parameter
P. berghei ANKA in NMRI
mice

P. falciparum (3D7) in SCID
mice P. falciparum (3D7) in human

No. subjects
Control (separate) 215 (Yes) 132 (Yes) 177 (No)
MMV390048 65 50 20
OZ439 200 48 24

No. subjects/dose 3–10 1–2 6–8

No. dose levels
MMV390048 7 SD; 5 QD 2 DD; 6 QD 3 SD
OZ439 14 SD; 3 TD 10 SD; 1 DD 3 SD

Minimum expt length (d) 3–4 (up to 30) 8 (up to 31) 8 (up to 30)

Inoculum (no. iRBCs) 2� 107 3.5� 107 1,800–2,800 (viable parasites)

Total cure (no. mice)
MMV048 4� 3 mg/kg (3) 4� 20 mg/kg (2) 1� 80 mg (8)
OZ439 1� 30 mg/kg (30) 1� 100 mg/kg (2)

Outcomes Activity; cure (survival,
parasite clearance)

PKPD relationship; parasite
clearance; cure

PKPD relationship; parasite clearance;
cure

Parasitemia output Percentage of infected RBCs Percentage of infected RBCs Concn of infected RBCs per ml
aUntreated parasite growth behavior was informed by a separate control group in murine experiments and by parasite growth data before treatment commences in human
infection. Experimental outcomes evolve over the preclinical and clinical stages with increasing data richness per subject over time from crude efficacy measures, such as
activity and parasite reduction, to more detailed concentration effect relationships. Measures of parasite reduction (e.g., parasite clearance rate or proportional antimalarial
activity) are frequently used to evaluate compounds throughout the clinical development stages (2). SD, single dose; DD, double dose; TD, triple dose; QD, quadruple dose.
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SCID infection over all mechanistic parasite growth models) (15). In both murine experi-
mental systems, we found that assumptions on parasite-host dynamics result in differing
estimates of parasite clearance times, therefore influencing the evaluation of new com-
pounds (see Fig. 4 in reference 15).

FIG 2 Experimental sampling design and investigated parasite-host dynamics in preclinical and clinical antimalarial drug development. Parasitemia of a typical
subject in each experimental system is shown on the left side. Subjects are inoculated on day 0 (black syringe), and treatment (blue syringe, oral dose)
commences on the same day or up to 4 days afterward in murine malaria infection (a, b) and after 7 to 9 days in human infection (c). Each dot represents one
measurement, with black dots indicating untreated growth/growth before treatment and blue dots representing parasitemia after treatment. Separate control
groups were measured in murine experiments. The murine infections are measured in percent of infected RBCs P (%) (a, b), and human infections are measured
in infected RBCs per milliliter P (parasites/ml) (c) (Table 1). For illustrative purposes, we added a conversion of P (parasites/ml) to P (%) in VIS (c) based on the
assumption of 5� 109 RBCs per milliliter in male humans (22). The schematics of mathematical models used to describe parasite growth in the respective system
are shown on the right side. (a, b) In murine malaria infection, capturing uninfected (X) and infected (Y) RBC dynamics is crucial to understand implications of
resource limitation (P. berghei-NMRI infection) and resource replenishment (P. falciparum-SCID infection) (15). Details on murine model structure can be found in
Material and Methods (equations 1 to 6). In contrast, low total numbers of parasites P(t) in P. falciparum-human infection and increased number of measurements
shift modeling focus on dynamics of intraerythrocytic parasite stages over time (c). The exponential growth model i can only be used to capture parasite growth
of P. falciparum in SCID mouse and human, as data are not informative enough in P. berghei-NMRI infection.
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Human volunteer infection studies exhibit large variation in observed parasite
growth and clearance dynamics. We modeled parasite growth prior to treatment
using data from 177 volunteers in 27 treatment cohorts in VIS conducted at Berghofer
QIMR, Brisbane between 2012 and 2016 (26). These cohorts were part of 14 studies
investigating new antimalarials in development and currently available antimalarials.
Volunteers were infected with 1,800 to 2,800 infected RBCs and treated 7 to 9 days af-
ter inoculation (26).

Sampling frequency of human volunteers was much higher compared with that of
murine experiments; however, the number of measurements above the lower limit of
quantification (LLOQ) (111 parasites/ml) varied between cohorts and volunteers with a
median of five quantifiable measurements (ranging from one to eight). These detailed
data allowed us to capture features of the parasite life cycle, such as the characteristic
oscillation in parasite densities. This phenomenon is caused by periodical sequestra-
tion of late-stage asexual parasite stages to the deep microvasculature of the host
organs (27) and synchronicity in parasite growth determined by the distribution of par-
asite age in the inoculum (28).

The models of asexual parasite growth in human volunteers are described in Fig.
2c. We adapted a discrete time model (29) previously used to investigate antimalarial
treatment (28), resistance against artemisinin combination therapy (30), and the impact
of new antimalarial combinations (31). A set of difference equations (model S parasite
stages, equation 7) describes the parasite inoculation, capturing its size and age distri-
bution, and the subsequent mechanism of intraerythrocytic parasite development
including ageing and parasite death. Based on analysis by Wockner et al., that quanti-
fied parasite growth behavior of P. falciparum (3D7) in VIS, the life cycle length was set
to 39 h (26). For comparison, we tested a second model that assumes exponential para-
site growth (model i, equation 10), summarizing parasite replication and death into
one growth parameter. This model is commonly used to capture parasite growth and
treatment effects in antimalarial drug development (8, 11).

We incorporated the models into a Bayesian hierarchical framework to estimate the
posterior distributions of the model parameters from the VIS data. We investigated dif-
ferent levels of parameter variability, distinguishing between parasite and host-de-
pendent parameters by varying hierarchical parameter allocation in different parasite
growth model specifications (see Table S2, models S1 to S3, in the supplemental mate-
rial). Model S3, from here on referred to as model S, was selected based on the
Watanabe-Akaike information criterion (WAIC) (Table S2). The parameters describing
distribution of the initial parasite load (mean m ipl and standard deviation s ipl) and the
intrinsic parasite multiplication factor, rp, were found to vary on a cohort level, whereas
the initial parasite load ipl and parasite death rate due to host clearance d p vary
between individuals (see Fig. S7 in the supplemental material). The population poste-
rior predictions of the two parasite growth models (Fig. 3) begin on day 4 after inocula-
tion when quantifiable parasitemia measurements from the volunteers are first avail-
able (Fig. 2). We estimated a parasite multiplication factor pmf of 17.0 (15.3 to 20.0)
over one life cycle of 39 h (equation 7). Identifiability issues of growth rate rp were
detected by the partial congruency of the marginal prior and posterior distributions
(Fig. S7). This means that data on parasite growth are not informative enough for esti-
mating this parameter, similar to previous model analysis (32). For exponential growth
model i, we estimated a pmf of 12.61 (11.2 to 14.2) over one parasite life cycle.
Differences in the parasite growth rate rp between individuals within cohorts could not
be linked to cohort or subject-specific parameters for model i (see Fig. S8 in the supple-
mental material).

Given our calibrated VIS parasite growth models, we incorporated PK models and
modeled drug effects (pharmacodynamics) (Fig. 1a) to analyze single-dose treatment
of 20 volunteers with MMV048 and 24 volunteers with OZ439 (see Table S1 in the sup-
plemental material). Drug concentrations after treatment were predicted using phar-
macokinetic (PK) models (equation S1and S2 in the supplemental material) and individ-
ual PK parameters specified (Data Set S1 in the supplemental material). We simulated

Burgert et al. Antimicrobial Agents and Chemotherapy

April 2021 Volume 65 Issue 4 e01539-20 aac.asm.org 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

ac
 o

n 
08

 M
ar

ch
 2

02
2 

by
 1

31
.1

52
.2

25
.4

0.

https://aac.asm.org


individual PK profiles to exclude large variation in drug concentration as an influencing
factor in the following analysis. Drug concentration over time was described by a two-
compartment model with zero-order absorption for MMV048 and a 2-compartment
model with linear absorption for OZ439. In the following section, we explain the results
for OZ439. The analysis of MMV048 is detailed in the supplemental material, and any
deviations are highlighted and discussed here.

We incorporated a direct effect of drug concentration on parasite death (equation
8) and additionally tested for drug concentration-induced retarded parasite growth
(equation 9) due to the reduced parasite growth observed after noncurative dosing
with OZ439 and the shift in oscillation patterns to a longer period. This phenomenon
was also previously described for artemisinin derivatives (33). A comparison of drug
action model based on WAIC and additional observations are included in Table S3 in
the supplemental material.

We detected drug concentration-dependent prolongation of parasite stages after
treatment with MMV048 and OZ439, meaning that at sufficiently high drug concentra-
tions, each life cycle stage can be prolonged by 26min or 65min, respectively (equa-
tion 13). Through description of individual treatment effects via subject-specific param-
eters of drug efficacy (see Fig. S9 to S12 in the supplemental material), we could
capture individual parasite clearance and recrudescence curves after treatment with
MMV048 (see Fig. S3 and S4 in the supplemental material) and OZ439 (see Fig. S5 and
S6 in the supplemental material) for all subjects.

Although the posterior predictions of recrudescence (Fig. 4) fit the data well, we
note that informed mechanistic models and inclusion of experimental recrudescence
outcomes and cure are hindered by limited data on cure probability since each cohort
only consisted of eight subjects. Additionally, insights into minimum parasite concen-
trations for cure are missing.

FIG 3 Population parasite growth prediction in VIS. Median parasite densities (black dots) with their
90th percentiles over the time starting 4 days after inoculation for the 177 subjects in VIS (26). Model
predictions show the median (red) and 90th percentile (blue) with credible intervals over 100 trials
with 20 subjects. (a) The mechanistic growth model S captures parasite growth trends well over time
with discrepancies between data and prediction being centered around parasitemia under the lower
limit of quantification (LLOQ) of 111 parasites/ml and lower limit of detection (LLOD) of 10 parasites/
ml. We found a population posterior median (credible interval) of the initial parasite load (4 days
after infection) of 2.59 (2.44 to 2.74) [log(parasites/ml)], a median parasite age m ipl of 14.0 h (12.1 to
15.6) with a standard deviation s ipl of 4.32 h (3.83 to 4.90). The intrinsic parasite multiplication rate rp
of 55.2 (46.3 to 68.5) and death rate d p of 0.0302 (0.0263 to 0.0353) (1/h) describe the intraerythrocytic
replication dynamics of the parasite. (b) The exponential parasite growth in model i leads to linear growth
behavior on the log-scale and so does not capture the oscillating parasite growth behavior. We estimated
a growth rate rp of 0.0649 (1/h) (0.0620 to 0.0678). The posterior predictive checks are illustrated in Fig. S7
(model S) and Fig. S8 (model i) in the supplemental material.
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Parasite clearance is unlikely comparable across the preclinical and clinical
development pathway. The parasite clearance after treatment was estimated from
our model simulations for murine and human malaria infection (Fig. 1b) over a wide
range of single doses of each drug. The range of doses and models facilitated compari-
son across preclinical and clinical stages. We chose seven doses per experimental sys-
tem that capture realistic testing dose ranges. We simulated 1,000 trials for each mu-
rine experiment, with parameter estimates published in reference 15 (see Table S5 for
an overview) and variability added between trials, with parameters fixed within one

FIG 4 Population prediction after treatment with OZ439 in P. falciparum-human infection for
mechanistic growth model S (a to c) and exponential model i (d to f). The simulated median (red)
and 90th percentile (blue) with credible intervals over 100 trials with 20 subjects are compared to
data of individual parasite densities (black dots) in the respective treatment group. For each
treatment group, parasite clearance of a typical subject (subjects 1, 15, and 19) immediately after
treatment is illustrated with individual predictions in the inset figures (for all subjects, see Fig. S12
and Fig. S13 in the supplemental material). Immediately after treatment with 100mg OZ439 (a, d) an
increase in parasite densities and transient decelerated parasite growth was observed, which is
captured by model S through the lengthening of the parasite life cycle. After treatment with higher
doses (b, c; e, f), this effect is less influential, with more prominent parasite killing by the drug. After
treatment with 500mg (c, f) only four out of eight volunteers exhibited parasite recrudescence (see
individual data in Fig. S5 and Fig. S6 and posterior distributions in Fig. S11 and S12 in the
supplemental material). Vertical line indicates time of treatment, and the horizontal lines indicate the
LLOQ of 111 parasites/ml and LLOD of 10 parasites/ml.
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trial over all doses. In human-P. falciparum infections, we simulated 100 trials with 20
subjects per dose and varied the parasite-dependent parameters between trials and
the host-dependent parameters between subjects within a trial. The parameters of the
PK models were fixed to population values for all model simulations to allow for
adequate characterization of host-parasite-dependent dynamics and variability. The
simulation setup is detailed in Table S4 in the supplemental material.

Figure 5 compares parasite clearance calculated from simulation output after
single-dose treatment of OZ439 over the two murine and experimental human infec-
tion experiments. We find varying relationships of estimated parasite clearance with
doses across the experimental systems. Median estimates of parasite clearance rates
plateau around 0.2 (1/h) (log10 PRR48, 4.17) in P. berghei-NMRI infection and 0.05 (1/h)
(log10 PRR48, 1.04) for P. falciparum-SCID infection. Analysis for MMV048 shows similar
maximum clearance rates in murine infection (see Fig. S13 in the supplemental mate-
rial) and varying relationships with dose. In experimental P. falciparum-human infec-
tion, the parasite clearance rate for OZ439 plateaus with model S around 0.12 (1/h)
(log10 PRR48, 2.50). The ranges of the predicted clearance time of P. falciparum-human
infection between model i and model S are also reflected in the wider posterior predic-
tive intervals of the former after treatment with OZ439 (Fig. 4).

Parasite clearance is influenced by varying parasite-host dynamics throughout the
analyzed experiments of murine and human malaria infection. Despite the poor com-
parability across experimental systems, the parasite clearance predicted from mecha-
nistic models within an experimental system are comparable but with different levels
of variation. Via a global sensitivity analysis, we thus identified which host, parasite,
and drug dynamics cause the highest variability in parasite clearance after treatment
with MMV048 and OZ439. We first partitioned variability by classifying parameters by
their influence and dependency on parasite, host, or drug concentrations. For example,
the parameters of infection-induced RBC clearanceg in murine malaria models are clas-
sified as host-parasite parameters since they are induced by parasite concentration
and influence overall RBC concentration (Table 2). We then undertook a global sensitiv-
ity analysis of the models on simulated parasite clearance rates, reducing computa-
tional time by using emulators and Sobol analysis, which calculates first-order indices
and total effect indices to evaluate individual and combined parameter contributions
to the variance of parasite clearance rates (see Materials and Methods).

In general, we find in all experimental systems that parasite clearance after treat-
ment is most sensitive to drug action parameters (see Table 2). This is expected, as we
are measuring the effect of the drug in these systems. We also find that interactions of
the drug action parameters (increased total effect over first-order effect) occur over all
doses but decrease with increasing dose, evident in the convergence of first-order and
total effect values. However, in both the murine (Fig. 6b) and human P. falciparum (Fig.
6c) infections, we find at lower doses an increasing influence of both the host or para-
site or host-parasite parameters. This indicates a greater influence of the experimental
system on measured parasite clearance. Even in medium-high dose ranges, drug-unre-
lated parameters and their interactions account for up 25% of variance in parasite
clearance. This is mainly caused by sensitivity toward maximum infection-induced RBC
clearance gmax and parameter w , which capture splenic/liver clearance, and maximum
infection-induced RBC clearancegmax. The exponential growth model i shows diminish-
ing dependence on parasite replication rate rp with increasing doses in P. falciparum-
SCID infection.

Estimated treatment effects of experimental P. falciparum-human infection are sen-
sitive to the maximum drug action parameter Emax, resulting in a large range of parasite
clearance rate prediction throughout all doses. In the lower dose ranges of OZ439
treatment, the total effects of the age distribution parameters m ipl and s ipl of model S
account for up to 50% of all variance (Fig. 6c). In contrast, throughout all regimens, par-
asite parameters have negligible influence on clearance for MMV048 (see Fig. S14 in
the supplemental material). The full set of individual parameter contributions in all
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experimental systems can be found in Supplemental Data Set S2. The complete set of
results for both drugs is shown in Fig. S14 and Fig. S15 in the supplemental material.

DISCUSSION

Our analysis of data from three unique experimental systems of drug action in
Plasmodium infection, P. berghei-NMRI mouse infection, P. falciparum-SCID mouse
infection, and the human VIS, demonstrates a discrepancy in influencing parasite, host,
and drug dynamics on parasite clearance between the preclinical and clinical antima-
larial testing stages. This complicates the translation of results between these different
experimental systems, which aim to collectively inform drug development. We initially
intended to identify antimalarial drug efficacy indices that were reliable for translation.
Although our analysis did not result in a unifying output, our insights into parasite-
host dynamics across the preclinical murine and early clinical experimental infections
in humans via the mathematical models provide a pathway to facilitate inference from
the data. By describing the different experimental testing systems with data-calibrated
mechanistic models, we used model predictions coupled with sensitivity analysis to
identify factors significantly influencing experiments aimed to characterize drug effi-
cacy. In addition to the drug and dose being tested, we identified differing magnitudes
of host-parasite dynamics between the experimental systems as a driver of estimated
parasite clearance rate.

By employing mechanistic models of parasite growth and drug effects in all three
testing systems, we found that several important dynamics affect translation of para-
site clearance after treatment and likely other parasitological outcome measures
between preclinical and clinical systems.

Firstly, as expected, our sensitivity analysis of parasite clearance revealed a high
sensitivity to parameters of drug action in higher dose ranges in all three experimental
systems. In contrast, we found a variation in overall sensitivity of parasite clearance to
parasite-host dynamics in lower-medium dose ranges between the three experimental
systems. In murine and human P. falciparum infection, parameters of parasite growth
influenced parasite clearance after treatment with lower doses. Additionally, the occur-
rence of clearance mechanisms of excess RBCs in P. falciparum-SCID infection could
place additional constraints on parasite growth. Overall, the increased susceptibility to
the experimental setup of the SCID system limits direct translation and comparison of

FIG 5 Parasite clearance across the murine and human experiments after single-dose treatment with OZ439. Within one
experimental system, the predicted clearance rates are fairly consistent. (a) Model c (compensatory erythropoeisis) of P.
berghei-NMRI infection estimated a lower maximum drug effect Emax resulting in lower clearance rates (see Table S5 in the
supplemental material). (b) Compared to panels a and c, P. falciparum-SCID infection shows less variability. (c) The wide
clearance range observed in model predictions of the exponential growth model i for P. falciparum-human infection
stems from the wide posterior distribution of the maximum drug effect Emax. Parasite clearance rates were calculated from
simulation output using the methodology provided previously (49). For comparability, a conversion to log10 PRR48 was
added as a secondary y axis where log10 PRR48 = log10(e

parasite clearance rate �48).
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results between laboratories and highlights the need for strict experimental protocols
(15, 34). Thus, to predict human equivalent doses by exploiting the value of the P. fal-
ciparum-SCID mouse system, additional information is required concerning the inter-
play of disease dynamics and the experimental background, which could be quantified
with our modeling approach. For P. berghei-NMRI infection data, estimation of the par-
asite clearance was less sensitive to parasite-host dynamics. However, the aggressive
parasite growth in this experimental system might lead to host-cell limitations and,
therefore, different growth dynamics compared to P. falciparum infection, challenging
the translatability of drug efficacy measures. Although not investigated here, the
uncertainties regarding clearance mechanisms may also hinder the investigation of
drug-drug interactions. The testing of combination therapies relies on the ability to
allocate contribution of each drug to effects on parasite clearance and to estimate
potential drug interactions. In vitro experiments could prove to be valuable alternatives
in establishing formal descriptions of these interactions, which could thus be incorpo-
rated into mathematical models to predict the efficacy of combination (31).

Secondly, the sensitivity of parasite clearance measured at lower drug doses due
to factors other than the drug raises questions for current approaches to determine
concentration-effect relationships (equation 12) that rely on information gained in
lower-medium dose ranges to define the concentration with half-maximum effect
(EC50). Additionally, other common drug efficacy indices, such as the MIC are influ-
enced by EC50 measures (equation 17). We, therefore, recommend that inferences
based on data gathered at low-medium doses across the preclinical and clinical
stages of drug development are assessed by considering factors connected to exper-
imental and host-parasite pairing. For example, in P. falciparum-SCID and P. falcipa-
rum-human infection experiments, the sensitivity of the dose-response relationship
of data obtained at lower dose ranges should be investigated for each drug candi-
date to avoid bias in decision making. In experiments with a new compound where
drug efficacy analysis reveals a substantial influence of parasite-host dynamics in
lower dose ranges, these data should not be used to characterize the MIC for deci-
sion making.

Thirdly, our earlier work indicated that recrudescence and thus estimates of MIC
are potentially influenced by additional parasite mechanisms, including retarded

TABLE 2 Classification of model parameters into host, parasite, host-parasite, and drug parametersa

Parameter

Model parameter(s)

P. berghei-NMRI P. falciparum-SCID P. falciparum-human
Host Initial percentage of human RBCs H0;

base death rate of all RBCs l ;
Parameters of RBC density
dependent RBC clearance xmax and
kx 50

Parasite death rate at each time stage
dp

Parasite Infectivity parameter b ; no. of
merozoites per infected RBC r;
attraction of parasite to reticulocyte
« ; parasite inoculum viability v

Infectivity parameter b ; no. of
merozoites per infected RBC r;
parasite inoculum viability v ; expt
parasite growth rate rp; initial
parasitemia P0

Intrinsic parasite multiplication rate rp;
distribution parameters of the
initial parasite densitym ipl and s ipl

Host- parasite Parameters of infection-induced RBC
clearancegmax and kg50; conc. of
infected mouse RBCs achieving 0.5
growth retardation effect kl,50

Parameters of infection-induced RBC
clearancegmax and kg50; base
clearance of infected RBCs w

Initial parasite density ipl

Drug Parameters of concn effect
relationship Emax, EC50; clearance
rate for damaged parasites CLY; first-
order rate constant for biological
intermediate kR

Parameters of concn effect
relationship Emax, EC50; clearance
rate for damaged parasites CLY; first-
order rate constant for biological
intermediate kR

Parameters of concn effect
relationship Emax, EC50; growth
retardation parameter kret

aParameters were classified based on their dependency on host and parasite variable states and induction through those variables. Detailed description of parameters for
murine models of P. berghei-NMRI and P. falciparum-SCID infection can be found in reference 15. Details on parameters of P. falciparum-human infection can be found in
Fig. 2 and Table 3.
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parasite growth in P. falciparum-SCID experiments (15). Experiments explicitly aimed
at observing recrudescence are considered highly informative in understanding the
dose-response relationships in these experimental systems. However, utilizing these
experiments for modeling proved that estimation or prediction of cure might be hin-
dered by insufficient data on cure rates and curative doses in both murine and
human malaria infection (Table 1). Thus, any analysis that we could undertake on
cure or recrudescence dynamics is driven by model assumptions and was therefore
excluded from this analysis. We further excluded drug concentration-dependent
indices, such as maximum concentration, time above a threshold concentration, and
the area under the concentration time curve (AUC), because information on PK vari-
ability was missing, especially in murine experiments.

How well the parasite clearance rate could be quantified varied between the
murine and human volunteer experimental infection data. In the murine malaria

FIG 6 Exemplary results of the sensitivity analysis of parasite clearance after OZ439 treatment toward
parameters of host, parasite, host-parasite, and drug dynamics for P. berghei-NMRI (a), P. falciparum-
SCID (b), and P. falciparum-human infection (c). Using Sobol sensitivity analysis, first-order effects
measure individual parameter contributions, and the total effect indices summarize individual and
interactive parameter contributions to the outcome variance (see Materials and Methods).
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experiments, there is limited repeated blood sampling of each mouse, and evaluating
progression of infection was limited to measuring percentage of infected RBCs (Fig. 2).
Additionally, the evidence for delayed clearance of dead parasites after treatment with
MMV048 for both murine models (15) indicates that not only drug properties but also
the host’s ability to clear damaged/dead parasites are factors that are determining
maximum clearance rate. In the VIS studies, drug treatment is typically administered at
an earlier time point at a lower parasitemia, when volunteers are typically asymptom-
atic. Thus, data from these studies are collected at parasitemia levels up to five logs
below those studied in endemic settings, a factor that may confound analysis of maxi-
mal parasite clearance.

We were able to compare drug efficacy as parasite clearance across the murine and
human infection experiments, thereby measuring drug efficacy throughout antimalar-
ial drug development, because the models formally considered experimental back-
ground (i.e., parasite-host combination and experimental procedures) as well as para-
site dynamics. Across the mathematical models of parasite growth and treatment, we
found that different levels of detail between the preclinical and clinical infection
experiments were required to capture parasite growth and thus drug effect. In the
mechanistic models of murine malaria infection, high-parasitemia and RBC clearance
mechanisms necessitate inclusion of host-cell dynamics in the models. Parasite-host
dynamics were influenced by either rapidly increasing parasite load (in the case of P.
berghei-NMRI infection) or the experimental setup, including the continued human
erythrocyte injections (in the case of P. falciparum-SCID infection). However, in VIS,
explicit description of host-cell dynamics is not required due to lower parasite load
and relatively short infection follow-up. This means that, as patients are treated due to
safety reasons when parasitemia reaches a certain level, only few parasitemia measure-
ments during the initial growth phase are available and any effect of immune response
on parasite dynamics is likely to be minimal, thus obviating the need to consider host
responses in this model. Furthermore, due to the significant variability in parasite
growth observed in the murine experiments, the parasite growth models required cali-
brated parasite fitness parameters to capture differences between laboratories as well
as unmeasured differences in virulence of parasites transferred from donor mice in
each experiment (ability of the parasite to infect new RBCs). Similarly, in VIS, parasite
growth and synchronicity were dependent on the distribution of viable parasite life
cycle stages at inoculation, and models required estimates of these age distribution to
recover observed oscillations.

For drug dynamics, we evaluated different pharmacodynamic models to capture
the observed parasite clearance in murine and human infection. In murine experi-
ments, delayed clearance of parasites damaged/killed by the drug and drug action
through a turnover model were identified. Although in vitro experiments reported
slight stage specificity of OZ439 (16), with an increased action against trophozoites
and schizonts, data were too sparse in the VIS studies to provide a detailed analysis.
We did not find evidence of delayed clearance of damaged or dead parasites (27) for
the two compounds analyzed. However, this could change for other antimalarials
depending on the mode of action, parasite load, and data resolution.

Our estimated value of 17.0 (95% credible interval, 15.3 to 20.0) for the multiplica-
tion factor of the parasite after every 39-h life cycle in P. falciparum (3D7) VIS is compa-
rable to previous estimates of 16.4 (95% confidence interval, 15.1 to 17.8) (26) and 21.8
(95% credible interval, 17.6 to 26.9 at a life cycle length of 42 h) (32) in VIS studies. The
growth of parasitemia has been modeled using a variety of methods, e.g., testing sta-
tistical models for quantification (26), assays for in vivo determination (35), and linking
it to disease severity (36). However, we found a potential issue of statistical parameter
identifiability for this rate where the intrinsic parasite multiplication rate exhibits weak
identifiability and strong correlation with the parasite death rate. Nevertheless, we
decided to maintain both dynamics, an intrinsic growth rate and parasite death rate, in
the model instead of a net growth rate to capture differences between cohorts and
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individuals and to highlight gaps in knowledge. In theory, the synchronous parasite
growth in VIS could inform these two parameters if information on parasite age distri-
butions throughout the parasite life cycle were collected (37). However, this informa-
tion was not available in the cohorts analyzed and in practice may be difficult to
obtain. As parasite numbers after treatment are very low in VIS, the role of immunity
for successful treatment is unknown from these studies. However, further analysis and
modeling could combine information on parasite growth in clinical field trials in preex-
posed patients (38–40) and, thus, potentially estimate the effect of the immune system
on parasite growth to inform dosing recommendation.

The necessity for timely decisions regarding the progression of antimalarial com-
pounds to the next experimental stages and design of future experiments might not
allow for extensive analysis of data through mechanistic models for each drug.
However, the mechanistic models developed and validated in the context of this study
could serve as a tool to assess potential influences stemming from parasite-host dy-
namics and help to improve the experimental design of future experiments, providing
more depth than the analysis of experimental data alone.

Although drug efficacy data from these three discussed experimental systems allow
the comparison of compounds within one in vivo experimental system, we are cur-
rently not able to translate parasite clearance measures between the systems.
Furthermore, as assumptions on the mode of drug action potentially influence clear-
ance patterns, either by data analysis or as predicted by the models, the comparison of
compounds with different modes of action is complicated. Our analysis shows that
there are different underlying parasite-host dynamics in each system that influence ex-
perimental analysis and thus drug efficacy evaluation (either by extrapolation or by
models). Therefore, a reliable strategy to translate efficacy measures and produce
insights from drug-parasite-host dynamics between the development stages has not
yet been identified. Additionally, preclinical and early clinical testing of new com-
pounds is expensive and time-consuming. This is especially true for antimalarials, as
only combination therapies will be considered for phase 3 clinical trials and future
implementation. To identify appropriate combination therapies, combinations are cur-
rently tested in both P. falciparum-SCID experiments (41) and P. falciparum-human
infection in VIS (42). Therefore, we suggest that the value of current and new
approaches in in vitro drug efficacy experiments should be revisited in antimalarial
development.

In vitro experiments allow the possible identification of mode of drug action, stage
specificity, and evaluation of parasite killing in dependence on the unbound drug-con-
centration without the influence of parasite-host dynamics. This can be achieved with
current in vitro experiments (43, 44) or by developing new in vitro approaches.

Modeling and simulation strategies could thus be informed by more appropriate in
vitro data unlike today, where large assumptions need to be made on parasite-host dy-
namics in vivo. The in vitro dose-response relationship could then be translated to pre-
dict human drug efficacy by taking into account parasite growth and clearance mecha-
nisms in human VIS using mechanistic within-host parasite growth models. If
validated, this approach could accelerate drug selection in antimalarial drug develop-
ment by allowing a streamlined prediction of drug efficacy from in vitro experiments to
humans, therefore reducing the need for substantial or complicated murine efficacy
experiments. An investment in setting up new and appropriate in vitro experiments
and analysis and/or model frameworks could, therefore, support the cost-efficient
translation between experimental systems through efficient candidate selection and
ability to inform early clinical dosing in real-life settings.

MATERIALS ANDMETHODS
Data, parasite growth, and PKPD models in murine experiments.Models of murine malaria infec-

tion (Fig. 2) were calibrated to extensive parasite growth data and subsequent treatment with multiple
antimalarial drugs (Table 1). Here, we briefly present the base structure (model a) of the ordinary differ-
ential equations for the murine malaria infection model as specified in reference 15. Parasite growth
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within the host is described by ordinary differential equations capturing dynamics of uninfected murine
host RBCs, Xm(murine); infected RBCs, YXm; and merozoites, M. RBC dynamics are incorporated with constant
production y (cells/h) and decay rate mXm

(1/h) and become infected through invasion with merozoites
dependent on the infectivity parameter b (cells/ml h).

dXm

dt
¼ �2 mXm

Xm 2bXmM (1)

Infected RBCs (Y) burst after 1/a hours to release r new merozoites (M) that die with rate d [1/h]. The
aging of the parasite throughout the parasite-life cycle is incorporated via n transit compartments.

DYXm;1

dt
¼ bXmM2 aYXm;1 (2a)

dYXm;i

dt
¼ aYXm;i21 2 aYXm;I ; i ¼ 2; . . . ; n (2b)

dM
dt

¼ 2b Xm 1YXmð ÞM1arYXm;n 2 dM (3)

The parasitemia, as percentage of infected RBCs, is calculated by summing over the parasite age
stages and dividing by the total number of RBCs, as follows:

YXm ¼
Xn

i¼1
YXm;i (4)

P ¼ YXm

Xm 1YXm
100 (5)

The initial number of infected RBCs is informed by the inoculum size, its viability v , and the mouse
blood volume Vn.

YXm;0;i ¼ v
inoculum

Vn
(6)

For reference, population models for murine parasite growth and drug treatment were estimated via
a maximum likelihood approach on trust region optimization.

Data, parasite growth, and PKPD models in human VIS experiments. (i) Data in VIS. Parameters
for the parasite growth models were estimated using previously published (26) parasite growth data
from 177 malaria-naive healthy volunteers enrolled in 27 cohorts as part of 14 VIS studies. Briefly, volun-
teers were inoculated intravenously on day 0 with human erythrocytes infected with P. falciparum (3D7
strain). Treatment commenced on day 7 to 9 after infection. Parasite growth was monitored using a
quantitative PCR assay (P. falciparum 18S rRNA gene). Specifics of parasite growth monitoring and data
processing can be found in reference 26.

Parameters for drug efficacy were estimated from parasite clearance data (see Table S1 in the sup-
plemental material) collected from volunteers administered single doses of OZ439 (artefenomel) (11)
(cohorts 4, 5, and 6) and MMV048 (cohorts 15, 16, and 27) (20). In the MMV048 cohorts, gametocyte con-
centration data were also available, where parasite measurements were discarded if the gametocyte count
exceeded 10% of the total parasite count. Further details of the data and clinical trial identifiers are given
in Table S1. All data was previously published (11, 21). As previously reported, all studies were approved
by the QIMR-B Human Research Ethics Committee, and all subjects provided informed consent (26).

Pharmacokinetic models of OZ439 and MMV048 in VIS. Human population pharmacokinetic (PK)
modeling of the OZ439 and MMV048 concentration versus time profiles was performed using Monolix
(version Monolix 2018R1). A 2-compartment PK model with zero order absorption (see equation S1 in
the supplemental material) best described MMV048 concentrations, and a 2-compartment PK model
with first-order absorption described the OZ439 concentrations (see equation S2 in the supplemental
material). Structural PK model specifications and individual parameter can be found in Supplemental
Data Set S1.

Mathematical models of within-host parasite growth and posttreatment parasite clearance in
VIS. P. falciparum-human infection is described via difference equations able to capture the changing
age structure of the parasitemia over time. The difference equations for model S (equations 7 to 9) and
model i (equations 10 and 11), with incorporated drug action as specified in Results, are given below
(equations 7 to 11). We estimated parasite growth and treatment effects in a two-step sequential pro-
cess. Firstly, parasite growth parameters were estimated from parasite growth data before treatment.
Secondly, we fixed the individual posterior median of parasite growth parameters and individual PK pa-
rameters to estimate parameters of drug efficacy (Fig. 1a). Treatment effect E incorporates parasite death
through treatment as an increase in parasite death rate d p. The evaluated treatment models include a
direct drug effect model and additional drug-induced growth retardation causing a lengthening of the
parasite life cycle length al. Model output of model S is the number of circulating parasites Pcirc (equa-
tion 14). The parasite multiplication factor pmf can be calculated for model S using the intrinsic parasite
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multiplication rate rp and death rate dp. It constitutes an estimation of the average number of merozoites
that emerge from one infected RBC after a reproduction cycle within an RBC has been finished and suc-
cessful invasion of new RBCs at parasite age a=1 has completed (equation 7). Details of the parameters
are provided in Table 3.

(i) Model S, mechanistic asexual parasite growth model incorporating parasite stages and drug
effect. Our mechanistic model of growth of parasite density P over the life cycle of length aL = 39 h at
age a and time t is given by the following equation:

P a; tð Þ ¼ P a2 1; t2 1ð Þe2d p ; a ¼ 2; 3; . . . ; al
rpP al; t2 1ð Þe2d p ; a ¼ 1

�
(7)

The direct drug effect on this model is incorporated via E (equation 12) representing the drug con-
centration-dependent increase of parasite death rate d P.

P a; tð Þ ¼ P a2 1; t2 1ð Þe2d p2E; a ¼ 2; 3; . . . ; al
rpP al; t2 1ð Þe2d p2E; a ¼ 1

:

�
(8)

The direct drug effect model is extended to include drug concentration-dependent growth
retardation.

P a; tð Þ ¼
P a; t21ð Þkret 12 e2d p2E2kretð Þ

d p1E1kret
1P a2 1; t2 1ð Þe2d p2E2kret ; a ¼ 2; 3; . . . ; al

P a; t2 1ð Þkret 12 e2d p2E2kretð Þ
d p1E1kret

1rpP al; t2 1ð Þe2d p2E2kret ; a ¼ 1

8>>>><
>>>>:

(9)

(ii) Model i, exponential parasite growth model incorporating drug effect. Parasite growth for
the exponential model i is modeled on the logarithmic scale with the initial parasite concentration P0
and parasite growth rate Pgr.

lnðP tð ÞÞ ¼ P0 1 pgrt (10)

Treatment is included by decreasing parasite growth rate as follows:

lnðP tð ÞÞ ¼ P0 1

ðt
0

ðpgr 2 EÞ (11)

(iii) Additional equations. In both models, drug effect is given by E as follows:

E ¼ EmaxCg

EC50
g1Cg

(12)

and growth retardation in mechanistic model S is given by kret as follows:

kret ¼ kret;maxCg

EC50
g1Cg

(13)

The maximum possible parasite age stage prolongation is therefore given by ((1/1 2 kret,max [h
21])) 2 1

[h])� 60, where 1 h is the original length of the age stage and 60 converts hours into minutes.

TABLE 3 Parameters of the parasite growth and treatment modelsa

Parameter Unit Description Bounds [lower, upper]
ipl parasites/ml Parasite density 4 days after inoculation (log transformed) [1, 15]
m ipl h Mean of the initial parasite age distribution [5, 10]
s ipl h SD of the initial parasite age distribution [2, 20]
d p 1/h Drug-independent parasite death rate [0.001, 1]
rp Parasite replication rate [40, 80]
al h Length of the parasite life cycle Fixed to 39 h
as h Sequestration age of asexual parasites Fixed to 25 h
pmf Parasite multiplication factor
EC50 mg/ml Drug concn causing 50% of Emax MMV048, [0.001, 0.8]; OZ439, [1E-6, 0.1]
Emax 1/h Maximum effect of the drug [0.0001, 1]
g Hill coefficient, steepness of the CE curve
kret 1/h Growth retardation due to drug treatment
kret,max 1/h Maximum growth retardation [0.0001, 1]
aThe bounds for parameter estimation were set to include all plausible values based on previously published models (28, 30–32).
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In model S, the number of circulating parasites is given by summing parasite concentration up to
the parasite age stage as, after which parasites sequester.

Pcirc tð Þ ¼
Xas

a¼1
Pða; tÞ (14)

The parasite multiplication factor (pmf) over one parasite life cycle with length al for model S is
given by

pmf ¼ rpe
2d pal (15)

The parasite growth rate pgr of exponential growth model i results in a parasite multiplication
factor of

pmf ¼ expðpgralÞ (16)

Under the assumption of exponential parasite growth (model i), the MIC, where parasite replication
equals zero, can be calculated with

MIC ¼ EC50
pgr

Emax 1 pgr

� �1
g

(17)

Parameter estimation. Parasite growth and pharmacodynamic parameters for humans were esti-
mated in R (version 3.6.0) with package RStan (version 2.18.2) (45) using a Bayesian hierarchical model-
ing approach. In brief, this means that subject- and/or trial-dependent parameters were defined as a sec-
ond hierarchy level in addition to the population parameters. Parameters were estimated using a
noncentered parameterization approach (46) and then transformed using inverse logit transformation
within prespecified lower and upper bounds (47) based on biological background information (Table 3).
Prior distributions for the population mean parameters were given by standard normal distributions
before the logit transformation. Priors for the interindividual variability were defined by the Cholesky
factors of the correlation matrices using a Cholesky LKJ correlation distribution with a shape parameter
of 2 for efficiency and computational stability (47). We ran five chains with 4,000 iterations each of which
2,000 were used as a burn-in. The posterior samples were cumulated over all chains to illustrate the joint
and marginal posterior distributions in Fig. S7 to S12 in the supplemental material. The 95% credible
interval of each parameter is given by the 2.5% and 97.5% quantiles of the posterior distribution (see
Fig. S3 to S6 in the supplemental material). The M3 method was used for dealing with parasite measure-
ments below the lower limit of quantification of 111 parasites/ml.

Models were evaluated using the R package bayesplot (version 1.6.0) and loo (version 2.1.0), and
model selection was based on the Watanabe-Akaike information criterion (WAIC) (48) and the effective
sample size neff, an estimate of the number of independent draws from the posterior distribution. neff
was required to be over 0.1 for all parameters. Additionally, divergences in any of the chains were eval-
uated visually, and the convergence criteria R̂ was calculated (potential scale reduction statistic should
be less than 1.05). Posterior predictive checks were performed to visually assess how well the model fits
the parasitological data.

Model simulation and analysis: parasite clearance. We used the well-calibrated models to esti-
mate efficacy index parasite clearance rate and log10 PRR48 for a range of drug doses and regimes in
both murine and human testing systems (Fig. 1b, parasite clearance analysis).

Simulation and subsequent analysis of murine P. berghei-NMRI and P. falciparum-SCID infection were
executed in a pooled manner: one set of parameters was drawn and simulated over all doses for each
experiment. Population parameter distributions are defined as a log-normal distribution LN(m, 0.2m)
with the previously estimated mean m (see Table S5 in the supplemental material for a summary) (15).
The experimental parameters infectivity parameter b and initial percentage of human RBCs H0 were
drawn from the pool of estimated parameter values. Simulations were performed using R package
IQRtools (version 0.9.999).

P. falciparum-human infection was simulated with parameter variability implemented on a trial and
subject level. Within one trial, subjects were allocated the subject-specific parameters ipl and d p and
shared the parasite related parameters m ipl, s ipl, and rp. Parameters were drawn from the estimated var-
iance-covariance within the bounds specified for estimation (Table 3). Simulations were performed in R.
Human PK parameters were fixed to population-level parameters. Additional information on the simula-
tions can be found in Table S4 in the supplemental material. Parameters not previously estimated were
fixed to values previously reported (15, 26). Simulation results were processed to extract the parasite
clearance rate as described previously (49). Potential lag phases after treatment at the beginning of the
clearance curve and tail phases at the end of the clearance curve are excluded from analysis as described
previously (49). The clearance rate is extracted from the clearance curve on the log scale using linear
regression and corresponds to the slope of the parasite clearance curve.

Model simulation and analysis: sensitivity of parasite clearance to host-parasite and drug
dynamics. A global sensitivity analysis was performed to assess the sensitivity of parasite clearance after
treatment to the parameters describing drug action and parasite growth. We performed a global sensi-
tivity analysis by decomposition of the variance of model output (in this case, parasite clearance rate)
via Sobol analysis (50). Calculation of the first-order indices and total effect indices for all model
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parameters allows assessment of individual and combined parameter contributions to the variance of
parasite clearance rate across the whole parameter space (51). As Sobol analysis is computationally in-
tensive due to the required number of points across the input parameter space (n= 200,000) and boot-
strap replicates (n= 1,000), we reduced computational time needed to simulate the parasite-PKPD mod-
els by training emulators of the original models. We thus trained a Gaussian process model on
simulation output for each of the parasite growth models and doses analyzed using R package hetGP
(version 1.1.2). We normalized input parameters and output to be between 0 and 1 due to the large dif-
ferences in scales. The criterion for acceptance of our trained model was out of sample prediction with a
predictive accuracy of R2 . 0.97. The sensitivity analysis was performed using the function soboljansen
in the R package sensitivity (version 1.16.2) on the trained Gaussian-process model. Parameters contrib-
uting under 1% were excluded from further analysis. Remaining parameters were summarized into pa-
rameters of host, parasite, host-parasite, and drug dynamics for the visualization of results according to
Table 2.

Data availability. The data sets analyzed during the current study are available from the corre-
sponding author on request and with permission of Medicines for Malaria Venture.
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