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Many control programmes against neglected tropical diseases have been interrupted due to the coronavirus
disease 2019 (COVID-19) pandemic, including those that rely on active case finding. In this study we focus on
gambiense human African trypanosomiasis (gHAT), where active screening was suspended in the Democratic
Republic of Congo (DRC) due to the pandemic. We use two independent mathematical models to predict the
impact of COVID-19 interruptions on transmission and reporting and achievement of the 2030 elimination of
transmission (EOT) goal for gHAT in two moderate-risk regions of the DRC. We consider different interruption
scenarios, including reduced passive surveillance in fixed health facilities, and whether this suspension lasts until
the end of 2020 or 2021. Our models predict an increase in the number of new infections in the interruption
period only if both active screening and passive surveillance were suspended, and with a slowed reduction—but
no increase—if passive surveillance remains fully functional. In all scenarios, the EOTmay be slightly pushed back
if no mitigation, such as increased screening coverage, is put in place. However, we emphasise that the biggest
challenge will remain in the higher-prevalence regions where EOT is already predicted to be behind schedule
without interruptions unless interventions are bolstered.
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Introduction
The threat posed by the coronavirus disease 2019 (COVID-19)
pandemic is not limited to the direct consequences of the disease
itself. In addition to the economic burden that many countries
are facing due to lockdowns, the public healthmeasures initiated
to suppress transmission of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) may have an additional impact
on the ability to control other infectious diseases. A disruption
in the usual activities of health services has the potential to
lead to an increased loss of life as surveillance and access to
diagnostics and treatment is more limited.1 These challenges to
public health systems will affect Africa disproportionately, with
COVID-19 providing an additional burden to many already fragile
health systems.2 Previousmodelling studies have suggested that
COVID-19-related interruptions to malaria control could lead to

substantially higher case and death numbers in Africa in the near
future.3,4
Gambiense human African trypanosomiasis (gHAT) is a vector-

borne disease of Central and West Africa, which is typically fatal
when left untreated, for which the delivery of interventions has
already been impacted by the COVID-19 pandemic. A primary
intervention to control gHAT is the use of active screening (AS),
where at-risk populations in hard-to-reach locations are tested
using serological diagnostics followed by subsequent case con-
firmation and treatment.5 In April 2020, the World Health Orga-
nization (WHO) recommended that active case-finding activities
and mass treatment campaigns for neglected tropical diseases
should be postponed until further notice.6 The lack of AS results
in a reliance on the passive healthcare system and individuals
self-presenting to health centres following the onset of symp-
toms. This will likely lead to diagnosis at a later stage of this
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lethal disease, with additional uncertainty about whether the
pandemic will also lead to patient fears about travelling to health
centres and a reduced priority of the disease for diagnosis in
health centres due to COVID-19 testing.7–9
For gHAT, interruptions in AS in the past have led to increased

infections in subsequent years. The 2014–2015 Ebola outbreak in
Guinea, which completely interrupted AS and resulted in ‘partial’
passive surveillance, coincided with a decrease in reported gHAT
incidence that was likely due to poor surveillance rather than
a true reduction in infection numbers.7 We can also learn from
other interruptions of AS: a period of no active screening in
2007–2008 in Mandoul, Chad, also led to increased passive case
detections in 2008, with modelling suggesting there was an
increase in transmission.10 A challenge for controlling intensified
disease management neglected tropical diseases (IDM NTDs)
is the strong link between control activities (i.e. screening) and
surveillance through case reporting, so a reduction in reported
cases can be indicative of either success (if surveillance is strong)
or reduced intervention efforts.11–13
There is a risk that the interruption of gHAT interventions will

impact the goal of elimination of transmission (EOT) of gHAT
by 2030, which has been set by the WHO.14,15 While modelling
suggests that it is already unlikely that all areas will achieve
this goal,16,17 there is now the potential for further delays. To
quantify the length of a delay in time to reach EOT caused
by COVID-19 interruptions, and the corresponding increase in
transmission and number of cases and possible deaths, we
used two independent stochastic models for gHAT infection in
two distinct transmission settings in the Democratic Republic of
Congo (DRC), the country with the highest case burden. We also
simulate mitigation scenarios by accelerating active screening
after interruptions to study potential readjustments.

Methods
Study populations
In this work we focus on administrative regions in Kwilu province
(within the former Bandundu province), which was the highest
endemic province in the country in 2016. We selected two
different health zones within Kwilu, Bagata and Mosango, both
classified as moderate risk in 2016 (1–10 reported cases per
10 000 people per year14), although Bagata has had higher
case reporting (see SI-1 Figures 2,5, 7). Both health zones are
similar in population size (estimated at 121433 for Mosango
and 165990 for Bagata in 2015).18 The health zones have had
regular active screening, with Bagata generally observing higher
coverage. In Bagata the mean coverage during 2014–2018 was
approximately 35% and the maximum was approximately 45%;
in Mosango the mean coverage during 2014–2018 was approx-
imately 33% and the maximum was 60%. We chose regions in
which vector control has not yet been implemented in order to
better study the effect of screening interruptions.

Model overview
The impact of interruptions of screening programs was studied
using two independently developed stochastic models of gHAT
infection, model S (Swiss Tropical and Public Health Institute)
and model W (University of Warwick), developed independently

and previously described in other modelling studies.19–23 Both
these models take into account different stages of the disease
and transmission between vectors and humans who might be
at low or high risk of exposure to vector bites. They also allow
for various screening programmes, including passive surveillance
(PS) and AS, through which infected people may be identified
and treated (more details, including a table with the similarities
and differences in the models and simulations, can be found in
SI-1 [see Table 8])20,24.
The parameters used in the stochastic models were taken

from fitting the corresponding deterministic models to the
human case screening data recorded for the years 2000–2016
in each health zone, except for the model S calibration for
Bagata, which used data for 2000–2018 (see SI-1 and SI-2)20.
The fits assumed a 3% annual increase of the human population
according to the available estimates and an increase in the pas-
sive detection rate over time—an improvement that is backed
by both anecdotal evidence and previous modelling studies
([data aggregation]20,24). Annual rates of active screening were
captured directly from the data for the period 2000–2018. The
stochastic simulations use 200 sets of parameter values of the
posterior distributions of specific health zones and each model
generates 200 000 stochastic realisations (1000 stochastic real-
isations for each of the 200 parameter sets). The model outputs
compared with historic data can be seen in SI-1 (Figures 2 and 4).

Interruption scenarios
For a no-interruption baseline, we assume AS and PS interven-
tions continue indefinitely from 2019 with the same number of
people screened annually, given by the mean value of the last
5 y (2014–2018). We then consider six potential interruption
scenarios of gHAT activities due to COVID-19. We assume all
interruptions start at the beginning of April 2020, but they may
last until either the end of 2020 or 2021. The interruptions may
disrupt either AS or both AS and PS. While AS is assumed to
be fully suspended within the interruption period, PS may be
partially operating, going back to the detection capacity before
modelled improvement; for model W this was the PS level in
1998 and for model S this was for 2000. Table 1 summarises
these six interruption scenarios. The interventions are reinstated
to the baseline values (mean AS and full PS) after the interruption
period. Moreover, we studied identical scenarios with mitigation,
where AS is set to the maximum coverage observed in the data
between 2000 and 2018, after interruption finishes. Simulating
these 13 scenarios allows us to study possibilities of catching
up to previously expected progress or even accelerating towards
the 2030 goal.

Results
We compared infection dynamics of different scenarios by fol-
lowing the predicted annual number of new human infections,
reported cases corresponding to both passive surveillance and
active screening and the deaths caused by gHAT. Figures 1 and 2
show themean dynamics over time, averaged for all realisations,
of all 13 scenarios as described in Table 1. In some cases the
mean is substantially higher than the median and so we provide
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Table 1. gHAT strategies and interruption scenarios (due to COVID-19) considered in this simulation study

Name Interruption length
AS during
interruption PS during interruption

Mitigation after
interruption

Baseline None Mean of 2014–2018 Full (current detection rate
is fitted)

Not applicable

2020 A From April 2020
until end of 2020

None Full No, mean AS reinstated
Yes, maximum AS begins

2020 A+PP From April 2020
until end of 2020

None Partial (levels in 2000 for
model S and 1998 for
model W)

No, mean AS reinstated
Yes, maximum AS begins

2020 A+P From April 2020
until end of 2020

None None No, mean AS reinstated
Yes, maximum AS begins

2020-21 A From April 2020
until end of 2021

None Full No, mean AS reinstated
Yes, maximum AS begins

2020-21 A+PP From April 2020
until end of 2021

None Partial No, mean AS reinstated
Yes, maximum AS begins

2020-21 A+P From April 2020
until end of 2021

None None No, mean AS reinstated
Yes, maximum AS begins

baseline projections in the SI-1, showing themeanandmedian as
well as the 95% prediction intervals for the two models and both
health zones (see SI-1 Figures 3 and 6). These wider prediction
intervals explain why the mean number of new transmissions in
model S can be greater than in model W (Figure 2), even though
there is a higher probability of achieving EOT for model S at any
time in Bagata and during 2020–2030 in Mosango (Figure 3).
Similar trends can be recognised for the two health zones

of Bagata and Mosango despite their different prevalence and
infection dynamics. The results from both models and both
health zones predict a significant increase in the mean number
of new infections following suspension of both AS and PS. On the
other hand, the number of reported cases decreases during the
interruption period but then resurges in the following years, espe-
cially in mitigated scenarios where active screening is reinstated
at themaximumhistoric coverage. More importantly, ourmodels
predict higher death rates during and after the interruptions. If
PS continues, either at full or reduced capacity, our simulations
indicate that the number of infections is unlikely to increase dur-
ing the interruption; however, progress towards elimination of
transmission could slow or stagnate during interruption. Putting
these results together, the loss is more pronounced for longer
interruptions (until the end of 2021) and, as expected, the worst
response is observed when both active and passive activities
are fully ceased. These results suggest retaining a minimum
level of PS plays a significant role in controlling transmission,
even if planned AS cannot go ahead. In the worst scenario, if all
activities are suspended for 2 y (2020–21 A+P), mitigations are
not expected to help catch up with the baseline before 2030.
In addition to examining the expected infection and report-

ing dynamics, we also estimate the EOT probability by calculating

the cumulative fraction of simulations reaching EOT over time for
these health zones. In case of no interruptions, our models pre-
dict a fairly high probability (82% chance for model W and 79%
formodel S) to achieve EOT inMosango by 2030. Suspension of AS
alone is not predicted to disturb that substantially (see Figure 3).
This probability is clearly decreased, yet still >70%, in the worst-
case scenario when all activities are suspended for 2 y even with-
outmitigation. Themedian elimination year is delayed for almost
2 y in this scenario. Mitigated programs can facilitate elimination
and may even result in higher probabilities of achieving the EOT
goal compared with the baseline scenario without interruption
in the case that some PS was retained. In contrast to Mosango,
reaching the 2030 EOT goal does not seem likely with the current
programs in Bagata (29% and 56% probability for models W and
S, respectively), even without any pause in gHAT-related activi-
ties. However, EOT by 2030 becomes more unlikely when severe
interruptions are introduced. Our predictions for Bagata suggest
the median elimination year to be between 2029 and 2035,
which could be delayed to 2032–2037 in theworst-case scenario.
To visualise the predicted delays in elimination, we present

violin plots representing the probability that EOT is predicted
to occur during a specific year (probability density function of
EOT) in our simulations (Figure 4), which clearly show how the
distributions are shifted towards later years for severe scenarios.
While the qualitative trends and even 2030 EOT probabilities

for the two health zones are similar between models, we note
that there are quantitative differences. In particular, model S has
wider prediction intervals than model W (see SI-1 in Figures 2
and 4) and this is reflected in both the higher means for new
transmission in both health zones, even though medians are
lower, and in the wider violin plot distributions.
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Figure 1. Predicted gHAT infections in the Bagata health zone based on different COVID-19 interruption scenarios. The graphs show the expected
number of new transmissions, reported cases and number of deaths caused by the disease (mean values) for model S (left-hand side) and model
W (right-hand side). The health zone population was 165 990 in 2015. The baseline is shown as a black solid line. Individual interruption scenarios
without mitigation are depicted by solid lines of different colours as indicated in the first panel. The corresponding mitigation scenarios are shown
with dashed lines using comparable colours.

Discussion
Our analysis of two independent models highlights the possible
damage caused by the suspension of gHAT interventions due to
COVID-19. In the most severe scenario, we assume both AS and
PS would be completely stopped until the end of 2021, which
is predicted to delay EOT by an average of 2–3 y. However, the
COVID-19 pandemic continues to evolve and it remains unclear
when public health measures will be relaxed (or reinstated).
In case of longer interruptions (not simulated here), we might
expect more serious damage to the gains made to date by the
elimination efforts.

The predictions made are specific to two health zones of the
DRC—Mosango and Bagata; other health zones could behave
differently, especially if current controls are playing a stronger
role in reducing transmission. Our analysis predicts EOT may
still be achieved in Mosango by 2030 thanks to the recent boost
in AS coverage. Our predictions are more uncertain in Bagata.
Model S suggests the 2030 EOT goal, which may have been
achievable without any interruption, could be missed due to
the interruptions if PS is reduced, however, model W predicts
the elimination goal is unlikely to be met without intensifying
interventions, even without COVID-19-related interruptions. The
heterogeneous nature of active screening in gHAT-endemic

248

D
ow

nloaded from
 https://academ

ic.oup.com
/trstm

h/article/115/3/245/6145847 by U
niversity of Basel user on 28 M

ay 2021



Transactions of the Royal Society of Tropical Medicine and Hygiene

Figure 2. Predicted gHAT infections in the Mosango health zone based on different COVID-19 interruption scenarios. The graphs show the expected
number of new transmissions, reported cases and number of deaths caused by the disease (mean values) for model S (left-hand side) and model
W (right-hand side). The health zone population was 121 433 in 2015. The baseline is shown as a black solid line. Individual interruption scenarios
without mitigation are depicted by solid lines of different colours as indicated in the first panel. The corresponding mitigation scenarios are shown
with dashed lines using comparable colours.

areas and the underlying focal nature of disease transmission
mean that results will be region specific for the delay in EOT and
the necessity of mitigation strategies should be evaluated on
this basis.14 Additionally, in Mosango and Bagata there has been
no wide-scale vector control, and we would expect qualitatively
different impacts in areas where this has already been imple-
mented. In the Ebola outbreak of 2014–2015, the interruption
to active screening and passive surveillance is thought to have
caused an increase in transmission in the affected areas, except
in places where small insecticide impregnated targets could be
maintained, indicating tsetse control is likely protective during
medical interruptions if it remains in situ.7,25

Moreover, our results suggest that retaining functioning
passive surveillance, even partially, can help to avoid significant
delays in EOT and prevent substantial increases inmortality. Even
with a functional health system, it is unclear how pandemic-
induced changes in health-seeking behaviour, in addition to
redirecting limited health resources, will impact levels of pas-
sive case finding. Mitigation through increasing coverage of
AS following interruption could also increase the probability of
meeting the 2030 EOT goal. On the whole, our results suggest
a milder impact of COVID-19-related delays on gHAT inci-
dence and mortality than that suggested by similar studies on
malaria.3,4
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Figure 3. Cumulative probability of elimination of transmission by year. Predictions of bothmodels showing the probability of achieving EOT by a given
year are plotted for the period of 2022–2040 for the Bagata and Mosango health zones under different interruptions and the correspondingmitigation
scenarios (maximum AS after the interruption) are shown by dashed lines. A zoomed version around 2030 is shown as an inset (yellow boxes).

The use of stochastic events in both presented model formu-
lations enable the direct computation of EOT prediction within
health zones by calculating the probability from multiple reali-
sations of the infection process. However, we note that neither
model considers the impact of an asymptomatic reservoir of
human infection that is able to self-cure or how an animal
reservoir may be able to sustain transmission, as the extent of
these factors remains unknown.26,27 Although animal reservoirs
and asymptomatic infections may have a substantial impact on
the effectiveness of particular strategies in achieving EOT, they
are unlikely to change the impact of COVID-19-related delays
on achieving EOT. Furthermore, local EOTs for health zones will
somewhat depend on EOTs in neighbouring regions, especially if
there is substantial movement of people between locations. The
modelling work here assumed that no importation of infection
occurs, with health zones considered ‘epidemiological islands’.
Previous modelling work indicates there may be only small rates
of importation between villages in endemic regions within the
Kwilu province,21 but nearby regions of continued transmission
could pose a threat of reintroduction into health zones that
successfully achieve EOT.
The use of two different models has enabled us to account

for some structural and parameter uncertainty due to the way
the models were constructed and fitted to observed data.
A brief summary of the model differences is given in SI-1

(Table 5). Through fitting to data, both models estimated the
passive detection rates in 2000 and 2016 (see SI-1 Tables 1 and
5), with both models achieving comparable values for 2016 in
both health zones. There was a noticeable difference in inferred
base passive detection values for Bagata between the two
models, leading tomodel S estimating an approximately 2.6-fold
and 24-fold improvement between 2000 and 2016 for stages
1 and 2, respectively, while model W suggested that these
improvements were more modest at around 4 times for stage
1 and 1.1 times for stage 2. These structural and parameter
differences illustrate why it is unsurprising that the two models
provide different projections for the baseline and interruption
scenarios. Despite this, they do reach consensus that the inter-
ruptions considered here would be unlikely to represent a large
setback for the programme. Furthermore, they provide similar
quantitative estimates for the probability that each health zone
will meet the EOT target by 2030 under baseline and suggest
that Bagata in particular will need to have an intensified strategy
to meet the EOT and achieve the goal. Neither model explicitly
incorporates the use of the new oral drug fexinidazole; however,
we believe that these results would be quite similar if compliance
with the fexinidazole drug regime and parasite clearance were
comparable to existing treatments (see SI).
These results provide a rather optimistic perspective of COVID-

19-related interruption on gHAT control. We stress that the
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Figure 4. Distribution of the year in which EOT is predicted under different interruption scenarios. The violin plots compare the probability of EOT being
achieved during each year and show model W (green) and model S (orange). Larger bars have higher probabilities of EOT being achieved in that year
and the median elimination year is shown by a darker colour. The first and second rows correspond to Bagata and Mosango respectively.

cumulative impact of simultaneous programme interruptions for
multiple diseases (NTDs and other infections) afflicting the same
vulnerable populations could become an additional global health
issue that deserves early attention and sustained control efforts.

Supplementary data
Supplementary data are available at Transactions online.

Authors’ contributions: M.A. was responsible for study implementation,
analysis and interpretation of data and writing the manuscript. SC was
responsible for study implementation and analysis and interpretation of
data. CND was responsible for analysis and interpretation of data and
writing the manuscript. SP was responsible for analysis and interpreta-
tion of data. EMM was responsible for study design. SEFS and MJK were
responsible for analysis and interpretation of data. NC was responsible
for study design and analysis and interpretation of data. KSR was respon-
sible for study design, analysis and interpretation of data and writing the
manuscript. All authors read and approved the final manuscript.

Acknowledgements: The authors thank the PNLTHA for original data
collection, the WHO for data access (in the framework of the WHO HAT
Atlas). Calculations of model S were performed at the sciCORE Center for
Scientific Computing at the University of Basel (http://scicore.unibas.ch/).
We thank Ron Crump and Ching-I Huang for original model W fitting.

Funding: This work was supported by the Bill and Melinda Gates Founda-
tion through the NTD Modelling Consortium (OPP1184344) and through
the Human African Trypanosomiasis Modelling and Economic Predictions
for Policy (HAT MEPP) project (OPP1177824). The funders had no role
in the study design, data collection and analysis, decision to publish or
preparation of the manuscript.

Competing interests: None declared.

Ethical approval: Not required.

Data availability: We stated what data we used, include the necessary
ones and cited the references properly in the main text and the SI.

References
1 Wang J, Xu C, Wong YK, et al. Preparedness is essential for
malaria-endemic regions during the COVID-19 pandemic. Lancet.
2020;395(10230):1094–6.

2 Makoni M. Africa prepares for coronavirus. Lancet. 2020;395
(10223):483.

3 Hogan AB, Jewell BL, Sherrard-Smith E, et al. Potential impact of the
COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income
and middle-income countries: a modelling study. Lancet Glob Health.
2020;8(9):e1132–41.

4 Sherrard-Smith E, Hogan AB, Hamlet A, et al. The potential public
health consequences of COVID-19 on malaria in Africa. Nat Med.
2020;26(9):1411–6.

5 World Health Organization. Control and surveillance of human African
trypanosomiasis. WHO TRS 984. Geneva: World Health Organization;
2013.

6 World Health Organization. Global Health Observatory. Available from:
https://www.who.int/data/gho.

7 Camara M, Ouattara E, Duvignaud A, et al. Impact of the Ebola out-
break on Trypanosoma brucei gambiense infection medical activi-
ties in coastal Guinea, 2014-2015: a retrospective analysis from the
Guinean national Human African Trypanosomiasis control program.
PLoS Negl Trop Dis. 2017;11:e0006060.

8 Chanda-Kapata P, Kapata N, Zumla A. COVID-19 andmalaria: a symp-
tom screening challenge for malaria endemic countries. Int J Infect
Dis. 2020;94:151–3.

9 Mitashi P, Hasker E, Mbo F, et al. Integration of diagnosis and treat-
ment of sleeping sickness in primary healthcare facilities in the
Democratic Republic of the Congo. Trop Med Int Health. 2015;20(1):
98–105.

10 Mahamat MH, Peka M, Rayaisse JB, et al. Adding tsetse control to
medical activities contributes to decreasing transmission of sleeping

251

D
ow

nloaded from
 https://academ

ic.oup.com
/trstm

h/article/115/3/245/6145847 by U
niversity of Basel user on 28 M

ay 2021

https://academic.oup.com/trstmh/article-lookup/doi/10.1093/trstmh/trab019#supplementary-data
http://scicore.unibas.ch/
https://www.who.int/data/gho


M. Aliee et al.

sickness in the Mandoul focus (Chad). PLoS Negl Trop Dis.
2017;11(7):e0005792.

11 Coffeng LE, Le Rutte EA, Muñoz J, et al. Impact of changes in detection
effort on control of visceral leishmaniasis in the Indian subcontinent.
J Infect Dis. 2020;221(Suppl 5):S546–53.

12 NTD Modelling Consortium. The potential impact of programmes
interruptions due to COVID-19 on 7 neglected tropical diseases:
a modelling-based analysis. Gates Open Res. 2020;4:115. Available
from: https://doi.org/10.21955/gatesopenres.1116665.1.

13 Toor J, Adams ER, Aliee M, et al. Predicted impact of COVID-19 on
neglected tropical disease programs and the opportunity for innova-
tion. Clin Infect Dis. 2020; doi: 10.1093/cid/ciaa933.

14 Franco JR, Cecchi G, Priotto G, et al. Monitoring the elimination of
human African trypanosomiasis at continental and country level:
update to 2018. PLoS Negl Trop Dis. 2020;14(5):e0008261.

15 Simarro PP, Cecchi G, Franco JR, et al. Monitoring the progress towards
the elimination of gambiense human African trypanosomiasis. PLoS
Negl Trop Dis. 2015;9(6):e0003785.

16 Huang CI, Crump RE, Brown P, et al. Shrinking the gHAT map: identify-
ing target regions for enhanced control of gambiense human African
trypanosomiasis in the Democratic Republic of Congo. medRxiv. 2020;
https://doi.org/10.1101/2020.07.03.20145847.

17 NTD Modelling Consortium Discussion Group on Gambiense Human
African Trypanosomiasis. Insights from quantitative and mathemat-
ical modelling on the proposed 2030 goal for gambiense human
African trypanosomiasis (gHAT). Gates Open Res. 2020;3:1553.

18 Office for the Coordination of Humanitarian Affairs. Journees
Nationales de Vaccination (JNV) Activities de vaccination sup-
plementaire, RDC. https://data.humdata.org/about/license/legacy_
hrinfo [accessed May 2016].

19 Castaño MS, Aliee M, Mwamba Miaka E, et al. Screening strategies for
a sustainable endpoint for gambiense sleeping sickness. J Infect Dis.
2019;221(Suppl 5):S539–45.

20 Crump RE, Huang CI, Knock E, et al. Quantifying epidemiological
drivers of gambiense human African trypanosomiasis across the
Democratic Republic of Congo. medRxiv. 2020; https://doi.org/10.
1101/2020.06.23.20138065.

21 Davis CN, Rock KS, Miaka EM, et al. Village-scale persistence and elim-
ination of gambiense human African trypanosomiasis. PLoS Negl Trop
Dis. 2019;13(10):e0007838.

22 Rock KS, Torr SJ, Lumbala C, et al. Quantitative evaluation of the strat-
egy to eliminate human African trypanosomiasis in the Democratic
Republic of Congo. Parasit Vectors. 2015;8:532.

23 Stone CM, Chitnis N. Implications of heterogeneous biting
exposure and animal hosts on Trypanosomiasis brucei gambi-
ense transmission and control. PLoS Comput Biol. 2015;11(10):
e1004514.

24 Castaño MS, Ndeffo-Mbah ML, Rock KS, et al. Assessing the impact
of aggregating disease stage data in model predictions of human
African trypanosomiasis transmission and control activities in Ban-
dundu province (DRC). PLoS Negl Trop Dis. 2020;14(1):e0007976.

25 Kagabadouno M, Camara O, Camara M, et al. Ebola outbreak brings
to light an unforeseen impact of tsetse control on sleeping sickness
transmission in Guinea. bioRxiv. 2018. DOI: 10.1101/202762.

26 Capewell P, Cren-Travaille C, Marchesi F, et al. The skin is a signifi-
cant but overlooked anatomical reservoir for vector-borne African try-
panosomes. Elife. 2016. https://doi.org/10.7554/eLife.17716.

27 Büscher P, Bart JM, Boelaert M, et al. Do cryptic reservoirs
threaten gambiense-sleeping sickness elimination? Trends Parasitol.
2018;34(3):197–207.

252

D
ow

nloaded from
 https://academ

ic.oup.com
/trstm

h/article/115/3/245/6145847 by U
niversity of Basel user on 28 M

ay 2021

https://doi.org/10.21955/gatesopenres.1116665.1
https://doi.org/10.1101/2020.07.03.20145847
https://data.humdata.org/about/license/legacy_hrinfo
https://doi.org/10.1101/2020.06.23.20138065
https://doi.org/10.7554/eLife.17716

